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1 Overview

1.1 Description

WB is a disk based (sorted) associative-array package providing C, SCM, Java, and C#
libraries. These associative arrays consist of variable length (0.B to 255.B) keys and values.
Functions are provided to:

e create, destroy, open and close disk-files and associative arrays;

e insert, delete, retrieve, find next, and find previous (with respect to dictionary order of
keys); and

e The atomic ‘put’ and ‘rem’ operations allow associations to be used for process mutexs.

e apply functions, delete, or modify values over a range of consecutive key values.

The (database) disk files interoperate between the various language libraries. The inter-
face to the SCM Scheme implementation supports longer data values and SLIB relational
databases. WB, SCM, and SLIB are packages of the GNU project.

The WB implementation has a file size limit of 2732 * block size (default 2048.B) = 2743
bytes (8796.GB). WB routinely runs with databases of several hundred Megabytes. WB
does its own memory and disk management and maintains a RAM cache of recently used
blocks.

Multiple associative arrays can reside in one disk file. Simultaneous access to multiple disk
files is supported. A structure checking and garbage collecting program and a viewer are
provided. Compiled, WB occupies approximately 66 kilobytes.

WRB is implemented using a variant of B-tree structure. B-trees give slower access than
hashing but are dynamic and provide an efficient determination of successor and predecessor
keys. All operations are O(log(n)) in the size of the database. B-trees are commonly used
by database systems for implementing index structures. B-trees are optimized for using
the minimum number of disk operations for large data structures. Prefix and suffix key
compression are used for storage efficiency in WB.

1.2 History

The origination of B-trees is credited to [BM72] R. Bayer and E. McCreight in 1972.
Working at Holland Mark Martin between 1991 and 1993, Roland Zito-Wolf, Jonathan
Finger, and I (Aubrey Jaffer) wrote the Wanna B-tree system.

Jonathan Finger wrote a MUMPS-like byte-coded interpreter Sliced Bread using WB. The
integrated system was heavily used by Holland Mark Martin for the rest of the decade.

In 1994 T wrote a Scheme implementation of the relational model with an independent
object-oriented base-table layer for SLIB:
http://people.csail.mit.edu/jaffer/slib_6.html

In 1996 Holland Mark Martin assigned the copyriht for WB to the Free Software Foundation.
I released WB as a library for C and SCM. I also wrote wbtab.scm, a base-table interface
enabling SLIB’s relational database to be backed by WB.

In 2002 I added color dictionary relational databases to SLIB.


http://people.csail.mit.edu/jaffer/slib_6.html
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In 2003 I added next and previous operations to the SLIB relational package, and wrote
rwb-isam.scm for WB.

In 2004 I wrote FreeSnell, a program to compute optical properties of multilayer thin-film
coatings. At the core of FreeSnell is a rwb-isam spectral refractive-index database for over
300 materials.

In 2006 I decided to reimplement ClearMethods’ Water language on top of WB. In 2007, in
order to make Water available on the great majority of browsers and servers, Ravi Gorrepati
adapted Schlep (the SCM to C translator) to make translators to Java and C#. He also
ported the support files and test programs to Java and C#.

I continue to maintain WB. The most recent information about WB can be found on WB’s
WWW home page:
http://people.csail.mit.edu/jaffer/WB

1.3 File Organization
The source files for WB are written in the SCM dialect of Scheme:

wbdefs.scm
SCM configuration definitions.

segs.scm
handle.scm
blink.scm
prev.scm
del.scm
ents.scm
scan.scm
stats.scm

SCM code for WB-trees.

blkio.scm
wimpy POSIX interface to the disk. Replace this if you have a more direct
interface to the disk.

These files are translated into the C, C#, and Java targets by SCM scripts named scmZc,
scm2cs, and scm2java respectively. The function and variable data types in the target
languages are determined by pattern-matching the first-element strings in the associations
scmZ2c.typ, scm2cs.typ, and scm2java.typ respectively.

Files translated to C are put into the wb/ directory. Files translated to Java are put into the
wb/java/ directory. Files translated to C# are concatenated with wb/csharp/Cssys.cs
and wb/csharp/SchlepRT.cs and written to wb/csharp/Wb.cs.

In the Makefile:

‘s2hfiles’
Derived *.h files for C.

‘s2cfiles’
Derived *.c files for C.


http://people.csail.mit.edu/jaffer/WB
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‘s2jfiles’
Derived java/*.java files for Java.

‘csharp/Wb.cs’
Single derived source file for C#.

WB comes with a C utility program for database files stored on disk.
wbcheck path [Program]|

Checks the structure of the database named by path and reclaims temporary trees to
the freelist.

Manifest

wb.info  documents the theory, data formats, and algorithms; the C and SCM interfaces
to WB-tree.

Changelog
documents changes to the WB.

example.scm
example program using WB-tree in SCM.

wbsys.h  The primary C include file for using the WB layer is is wbsys.h, which includes
several other files from the directory. wbsys.h also defines WB’s internal data

types.

wbsys.c  Shared data and low-level C accessors.

wbsys.scm
Shared data and low-level accessors for debugging in SCM.

wbscm.c C code for the SCM interface to WB-trees.
db.scm code for SCM interface when debugging in SCM.

scm2c.scm
SCM code which translates SCM code into C.

scm2c.typ
rules relating variable names to types in generated C.

scm2cs.scm

SCM code which translates SCM code into C#.

scm2cs.typ
rules relating variable names to types in generated C#.

scm2java.scm
SCM code which translates SCM code into Java.

scm2java.typ
rules relating variable names to types in generated Java.

test.scm file for testing WB-tree system.

test2.scm
more tests for WB-tree system.
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Makefile Unix makefile

VMSBUILD.COM
command script for compiling under VMS.

all.scm loads all the SCM files for debugging.

wbtab.scm
SCM code allowing WB to implement SLIB relational databases.

rwb—isam.scm
SCM code allowing WB to implement SLIB relational databases with numerical
and lexicographic key collations.

wbcheck.c
program for checking, repairing, and garbage collecting WB-tree databases.

wbview SCM script for displaying low-level WB database associations.

1.4 Installation

WB unpacks into a directory called ‘wb’.

If you plan to use WB with SCM, the directories scm and wb should be in the same directory.
Doing ‘make wbscm.so’ in the scm directory compiles a dynamically linkable object file from
the WB C source. Including the ‘~F wb’ option to an executable build compiles the WB
interface into the executable. It is not necessary to compile anything in wb directory.

make all Compiles 1ibwb, wbscm.so, java/wb.jar, csharp/Wb.dll and the wbcheck
executable.

make install
Installs 1ibwb, wbscm.so, java/wb.jar, and wbcheck in the $(prefix) tree,
as assigned in the Makefile.

1.5 Building from Scheme Sources

Scheme Infrastructure

SCM source is available from: http://groups . csail .mit . edu/mac/ftpdir/scm/
scm-5f3.zip

Also available as source RPM: http: //groups . csail .mit . edu/mac/ftpdir/scm/
scm-5£3-1.src.rpm

SLIB is a portable Scheme library which SCM uses: http://groups.csail.mit.edu/mac/
ftpdir/scm/slib-3b6.zip

Also available as RPM: http://groups.csail .mit.edu/mac/ftpdir/scm/slib-3b6-1.
noarch.rpm

Testing Scheme Source

From the wb directory, do ‘scm all test’. This will load the Scheme version of WB-tree
with test code. Typing ‘(main)’ will construct a test database z in this directory. If this
runs without errors then you are ready to build the C code. Exit from scm with ‘(quit)’.


http://groups.csail.mit.edu/mac/ftpdir/scm/scm-5f3.zip
http://groups.csail.mit.edu/mac/ftpdir/scm/scm-5f3.zip
http://groups.csail.mit.edu/mac/ftpdir/scm/scm-5f3-1.src.rpm
http://groups.csail.mit.edu/mac/ftpdir/scm/scm-5f3-1.src.rpm
http://groups.csail.mit.edu/mac/ftpdir/scm/slib-3b6.zip
http://groups.csail.mit.edu/mac/ftpdir/scm/slib-3b6.zip
http://groups.csail.mit.edu/mac/ftpdir/scm/slib-3b6-1.noarch.rpm
http://groups.csail.mit.edu/mac/ftpdir/scm/slib-3b6-1.noarch.rpm
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Regenerating C Sources.

make all

Testing Compiled DBSCM

Run ‘scm -rwb -1test’. This should build the test database z much more quickly than
before.

Type ‘(quit)’ to exit from DBSCM. Now run . /wbcheck z’. This will check the structure
of the database and collect temporary files. This should reclaim 52 blocks and report no
errors. If you run it again, no blocks will be collected.

1.6 License

Copyright (C) 1991, 1992, 1993, 1996, 1999, 2000, 2003, 2007, 2008
Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111, USA

This program is free software: you can redistribute it and/or modify it under the terms
of the GNU Lesser General Public License as published by the Free Software Foundation,
either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this
program. If not, see <http://www.gnu.org/licenses/>.

1.7 GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright (© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to


http://fsf.org/
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software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCIl without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
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and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.
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If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.
It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
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as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.
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The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.
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10.

11.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.
“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.


http://www.gnu.org/copyleft/
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“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.
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ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:
Copyright (C) year your name.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled ‘‘GNU
Free Documentation License’’.
If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the

“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.
If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.



14

2 Theory

We used [SAGIV] as our starting point for concurrent b-tree algorithms. However, we made
significant changes and (we feel) improvements. We have particularly tried to simplify the
algorithms to reduce the implementation and especially debugging effort. There are also
a lot of complex details involved in building a complete implementation. The goal of this
document is to describe and explain the major design decisions and any subtleties that
arose.

2.1 B-tree Structure and Access
2.1.1 Definitions

B+-tree

e is a structure of blocks linked by pointers

e is anchored by a special block called the root, and bounded by leaves

e has a unique path to each leaf, and all paths are equal length

e stores keys only at leaves, and stores reference values in other, internal, blocks
e guides key search, via the reference values, from the root to the leaves

block

e is either internal or a leaf, including the root block
e contains at most n entries and one extra pointer for some fixed n

e has no fewer than [n/2] entries, the root excepted

root block

e is a leaf when it is the only block in the tree and will then contain at least one entry
e must have at least 2 pointers to other blocks when it is internal

internal block

e contains entries consisting of a reference value and a pointer towards the leaves

e its entries point to data classified as greater than or equal to the corresponding reference
value

e its extra pointer references data classified as less than the block’s smallest reference
value

leaf block

e contains entries consisting of a key value and a pointer to the storage location of data
matching the key

e its extra pointer references the next leaf block in the tree ordering; leaves linked in this
manner are neighbors
prefix compression

Instead of storing the full text of each key, store the length of match with the previous key
(in this block) and the text of the key which doesn’t match.
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suffix compression

15

In non-leaf blocks, only store enough of the split-key to differentiate the two sequential

blocks at the lower level.

2.1.2 Block Format
The first 20 bytes of the block header format is the same for all types of blocks.

0 blk:id The ID of this block.

4 blk:top-id

The ID of the root block of this tree.

8 blk:nxt-id

The ID of the next block in the chain (at same level as this one).

12 blk:time

The 32-bit time/date when this block was last modified.

16 blk:end

Two-byte length of data in block, including header.

18 blk:level

Block level; 0 is leaf.

19 blk:typ

Block type, one of:

e dir-typ
e ind-typ
® seq-typ
o fri-typ

Directory tree.
Other tree.
Sequential chain (unused).

Free-list chain.

20 Start of data for SEQ-TYP blocks. Data spans to blk:end.

20 leaf-split-key

22 Start of data for other block types. Data spans to blk:end.

2.1.3 Tree format

The WB-tree (the "Wanna B-tree")
We use the B-link tree format (see [SAGIV]). Each leaf block contains some number of

(key,value) pairs; each non-leaf (ie. index) block contains (key, down-pointer) pairs. Each

block contains one additional key value, the SPLIT key, that is strictly greater than any
other key in the block. The tree is augmented by chaining together the nodes of each level
of the tree in split-key order (the NEXT pointers).

We allow the tree to be missing any index-insertion or block-deletion updates so long as
certain key-order invariants are maintained:

A Blocks are chained in order of increasing split key at each level, and all valid
blocks appear in the chain.

B Split keys are unique at each level.
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C Every DOWN pointer from level N+1 points to a block B at the next lower
level N whose split-key S is less than or equal to the key S1 associated with the
pointer.

C1 If the split key for block B (at level N) is strictly less than the key
associated with the ptr from level N+1 (S < S1), then it must be
the case that

a. a block B’ with that split key S1 exists at level N;
b. B’ is reachable from B by following NEXT pointers; and

c. no pointers to either B’ nor any blocks between B and B’ exist
in level N+1. We call the subchain from B through B’ the
SPAN of the (key,ptr) entry (split(B’),B).

C2 It is invalid for a down pointer to contain a key not present as a
split key at the next level.

Note that a key in an index must match its block’s split key exactly;
if a key K is less than the split-key S of the block B it points to,
searches for intervening keys will be misdirected (to the next block);
and if K is greater than S, then splits of the block after B at key
values K’ where S<K’<K will be mis-inserted in B’s paren, because
K’ should logically go AFTER K, but K’<K.

The notion of the span of an index entry is useful. We note that each
block split can be thought of as an EXTENSION of some span at
the next-higher level, while each PARENT-INSERT-UPDATE can
be thought of as a corresponding span REDUCTION. A span that
has only one block in it will be called FULLY REDUCED:; a b-tree
is fully reduced when all its spans are fully reduced, meaning that
all pending/deferred insert-updates have been performed. Lastly,
we can express rule C1 more succinctly in terms of spans:

C,C2 SPANSs must be well-formed (span must be closed; keys
must match exactly)

C1 The SPANS of the entries at any index must not over-
lap.

Key/Value Order; Uniform Leaf/Node Format

We originally had index nodes in (valuekey) order because it made insertions simple, but
abandoned that because it made all the insertion/deletion propagation code special-case.
In fact, because of the asymmetry of INSERT and DELETE, either one or the other will
require that a single operation sometimes modify two blocks (see Section 2.1.5 [Insertion
method], page 17). However, using (key,value) ordering at all levels of the tree simplified
the code considerably.

2.1.4 Split keys

Split keys seem to be an accepted method for B-tree organization. In a Blink-tree, where
one might potentially have to chain forward to find a desired key, the split key allows one to
determine when the search can be terminated. Having the split key at the end of the block
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saves one block access per search. (If the split key were at the front of the block, one would
have to access the next block in the chain to determine that a search could terminate.)

Last-key values

It is useful to define a largest key to be the split key of the last block at any given level; the
code is made more complex if the last key is some special value (eg. the null string) that
doesn’t follow lexicographic order, not to mention the problems that arise with inserting
into empty (last) blocks. We’ve reserved the set of strings starting with ‘0xff’ as split keys
only; they cannot be used as real key values. Last-key values are of the form xFF<level>.
This makes the last key in level N+1 strictly larger than any in level N, so the end-of-chain
key for level N need not be treated specially when it is inserted as a key at level N+1.

Fixed split keys/Independence of levels

We make the split keys at index levels act like those at the leaf level, that is, the split
key in a block NEVER CHANGES. The advantage is that inserts and deletes cannot cause
split-key changes, avoiding the need for code to propagate these changes, which are a pain
to test. It also makes the levels genuinely independent, a useful conceptual simplification.

The disadvantage is that this introduces a dead zone between the last key-value pair of an
index block and its split key. This complicates the code slightly, and makes the average
search path slightly longer than log(N) (by a constant factor of 1+(1/BF), where BF is the
branching factor of the tree). More annoyingly, it interacts with insertions for block splits
(see INSERTION).

2.1.5 Insertion method

Insertion in a index needs to appear atomic so that the key-order invariant is maintained.
Since we are using key/value-ordered index blocks, parent-update insertion has a special
extra step: we insert the new key and pointer in index block B, then swap value fields with
the next entry in sequence. Unfortunately, when the insertion is the end of the block, the
next entry is in the next block B’, so two blocks must be modified. (The advantage of
value/key ordering is that insertion never modifies more than one block; however, you get
screwed in the code for deletions instead.) The code checks for this case and locks both
blocks before proceeding. (An alternate solution considered is to back up the split key of
B so that the new key would go at the front of B’, but that introduces other problems.)

While the above method preserves correctness (even under concurrency), there is unfortu-
nately a 2nd-order screw WHICH STILL NEEDS TO BE IMPLEMENTED: how to write
the 2 blocks in an order that preserves correctness in case of disk crash. If only B is writ-
ten, the database will contain 2 pointers to the block whose split caused the insertion; if
only B’ is written, the pointer correctness will be violated. (It would seem that this kind
of problem is inherent to any operation that needs to maintain consistent changes across
multiple blocks.) The fix seems to be to surround the write with a notation in the root
that says this special case is being exercised and indicates what blocks were being modified
(B,B’) and what the pointers should be:

e Write (B,B’,down-ptrs) to Blk 0
e Write B’
e (Write new block if B was split by insert)
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e Write B

e Remove flags from Blk 0 and write.

We elect to write out block B’ first for consistency with the case where B’ is a new block
created by a block split. The screw case will create a damaged DB, but the danger of
deleting a doubly-pointed-at block is avoided. This is adequate information to recover
directly. (JONATHAN?)

(Other alternatives were considered. Backing up the split key at next level allows a subse-
quent insertion to be atomic, but the backing-up operation has the same two-block consis-
tency problem in keeping ITS parent index consistent. If the parent key isn’t backed up,
subsequent splits of the following block will result in incorrect updates at the next level.)

2.1.6 Deletion

Deleting can be divided into two parts: the block to be deleted must be unlinked from both
parent and predecessor, after which the block can be reclaimed.

Unlinking the block

At the moment, we've decided to simplify the delete operation by requiring that both
the parent and the previous block be available for modification, else the deletion fails (is
deferred). This makes block deletion an atomic change, which avoids several problems
introduced by permitting partial deletions (see CONCURRENCY).

Alternatives: [WANG] gives a clever way to do deletion w/o PREV, by swapping blocks.
This seemed too hard to make bulletproof for concurrency so we stuck with the PREV
method, which after all only does extra block accesses 1/BF of the time.

Crashes during DELETE

What about the order for writing the parent and predecessor blocks in a delete? We elect
to write out the PARENT block first, so that if the system should crash the chain will still
be intact. The block that we were trying to delete will still be in the chain, but it cannot
be used, it is "dead." Section 2.2.3 [Deferred Index Updates and concurrencyl, page 21,
discusses how to deal with "dead" blocks.

Reclaiming the block

One major change from [SAGIV] is that SAGIV assumed multiple copies of a block could
exist, which makes reclaiming deleted blocks complex (he suggests a timeout-based proto-
col). We opted instead to track how many pointers to each block are extant by adding a
lock for that purpose, the NAME lock (essentially, a DELETE lock). A routine must get
NAME lock on a pointer BEFORE releasing READ/WRITE on the block from which the
pointer is obtained. (SAGIV’s method is almost certainly more efficient in the sense that
our method incurs overhead on every operation as opposed to just on the problem case of
a READ request during a WRITE; several empirical studies of such tradeoffs support this
conclusion.) On the other hand, NAME lock is useful for other things, such as insuring
that the block you are PREVing from can’t be deleted while you’re looking for its parent
or predecessor . . .
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Non-symmetry of INSERT and DELETE

It is worth remembering that INSERT and DELETE are not symmetric, in the sense that a
postponed insertion is NOT equivalent to deleting a (KEY,PTR) pair. The latter operation
leaves a block whose pointer is missing unaccessible via the index, while the former leaves
the block accessible through the NEXT pointer chain.

This asymmetry has been the death of more proposals for fixing various problems involving
concurrency than I care to recall!

EXAMPLE:
1. Start with blk p with split key k at level n;
e the index (level n+1) contains: ...k,p, ...

2. split p at k’, adding block p’;
e the index should now contain ...k’,p,k,p’, ...

3. Now neither deleting p nor p’ yields the original index contents:
o If we delete p, the result is .. .k,p’, ...
o If we delete p’, the result is .. .k',p, ...

Therefore, it is not possible for a subsequent delete to "cancel" an insert; the deletes must
either wait for the relevant inserts to complete or else do special work to maintain correct-
ness.

2.1.7 Non-delete of last block in the chain

We currently do not support deletion of the last block at any level, that is, the one with
the end-of-block key. This is because this deletion requires special case to retain the end-
of-block key. One way to achieve this is to copy forward the contents of the next-to-last
block, and deleting that instead. [There are details to be worked out, eg. preservation of
correctness during this operation.]

2.1.8 Prev
[DESCRIBE HOW IT WORKS]

SCREW CASE FIX UNDERSTOOD BUT NOT YET IMPLEMENTED: if down-pointers
are missing to blocks immediately after the first block of a level, PREV will miss those
blocks. The problem occurs when a PREV-BLOCK of block B at level N occurs, causing
a PREV at level N+1. If down-pointers are missing, the block B’ associated with B’s split
key may be some predecessor of B rather than B itself. In this case PREVing at level
N+1 is wasteful but correct; it would require fewer block accesses to chain from B’ than
from PREV of that entry. However, if the B’ entry is the FIRST at level N+1, PREV will
erroneously conclude that it is at the start of the chain. It either has to (a) always look at
B’s entry at level N+1 to check that the current block’s ptr is really up-to-date, or (b) just
check when it hits the START-OF-CHAIN.

2.1.9 Root Block protocol

Root uniqueness

We guarantee that the root block number never changes and thus can be used as a unique
identifier for a given WB-tree. Other systems provide a unique tree ID by introducing
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a level of indirection in root references; this is inefficient, as root references are frequent.
When the root is split, we allocate a new block to hold the data that would have remained
in the root block, then use the old root block for the new root. This does mean that one
cannot depend on a block’s ID being unchanged if it splits!

ROOT DELETE and Reducing number of levels in a tree
NOT IMPLEMENTED.

2.1.10 Other tree organizations

There are other possibilities for tree layouts. It is possible that some of these may simplify
operations that in the current layout are complex, such as the insert-screw-case. Other
possible choices include:

split key at start rather than the end of the block;

e reversing the order of (key,value) pairs in the blocks;

e not using the split key
using TWO split keys (one at each end of the block);

running the chains backward rather than forward;

My (RJZ’s) favorite alternate assumption is allowing multiple versions of blocks to exist, as
in [SAGIV]. This would mean:

e processes would be allowed to maintain STATE in a block, such as current position,
such as for successive NEXTs; on the other hand, NEXT would have to check for
NEXT(X)<X and skip forward accordingly.

e Write/Read interlock overhead should be greatly reduced (as WRITEs do not have to
wait for reads);

e the need for NAME locking is greatly reduced, since we no longer would be trying to
count the processes that "know" about each block;

e reclaiming deleted blocks is harder;
e other issues to be evaluated: effect on rebalance, PREV, and the deferred-operation
protocol we’ve developed.

Perhaps we can explore the interrelationships in some methodical way someday . . .

2.2 Concurrency

2.2.1 Name access (and deleted-block reclamation)

In order to be able to explicitly know when a block is safe to delete, we insist that a user
must get NAME lock on a pointer BEFORE releasing READ/WRITE on the block from
which the pointer is obtained. NAME lock is useful for other things, such as
e insuring that the block you are PREVing from can’t be deleted while you're looking
elsewhere;
e CHAIN-PUT uses it to insure that the block just split doesn’t disappear during the
call to PARENT-INSERT-UPDATE

e others?
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2.2.2 Fail-out protocol/access conflict strategy

Blocked operations are at the moment simply going to fail with an error code of RETRY-
ERR, meaning that they can be safely retried later. The current idea is to use this whenever
a READ-WRITE conflict occurs. (This would not be necessary using SAGIV’s method.)
However, since various other lockout and wait conditions can occur — waits for block reads,
waits on NAME locks, waits on interlocked operations — some such facility would be needed
anyway, so it seems reasonable to try to use it to handle READ-WRITE blocking as well.

NOT REALLY IMPLEMENTED YET due to the complexity of reorganizing the code to
pass up the appropriate information in all cases. (Top-level routines return these codes but
internal routines don’t really use it yet, so retry-ability isn’t really there yet.)

2.2.3 Deferred Index Updates and concurrency

The basic strategy is to allow a key insert/delete that causes a block to split/become empty
to complete, but to then queue up the parent-update/block delete on some process that
will retry deferred updates in the background until they succeed.

The problem is that deletes contain two separate operations that can wait: the parent
update and the predecessor update. The two updates can be done separately if the block is
first marked "dead" so that no insertions into it can occur. Unfortunately, there is a class
of rare and complex screw cases involving the correct ordering of deletes and inserts that
happen to involve the same key. One might for example delete a block, deleting its key, and
then subsequent splits can reintroduce and re-delete it. If operations at the index level are
deferred, the ordering of these deferred operations determines whether the resulting tree is
correct.

Making block-delete atomic (as defined above) greatly simplifies this process. The block
being inserted/deleted can then serve as its own semaphore.

We have decided to adopt a lazy update strategy. That is, rather than keeping around
queues of pending parent-updates, we just throw them away if they can’t be executed im-
mediately. We can get away with this because the updates for level N+1 can be reconstructed
from the chain at level N.

Now, a deferred update only affects performance if the affected path is actually encountered:
if we find we have to chain across two blocks, it means a parent update hasn’t occurred yet;
if we encounter an empty block, it means a delete update hasn’t occurred. Our idea is to
fix these "inefficiencies" on demand, that is, only when we run into one will we expend the
effort to fix it. For the moment, assume ALL block deletes and insert updates are deferred.

The basic algorithm is:

a. If we have to chain forward in searching for a key, there must be pointer missing at the
next level (deferred insert). So we attempt to insert it. Forward chaining to reach the
NEXT and PREV of a key is normal and hence shouldn’t cause update attempts.

b. Whenever we reach an empty block, we attempt to delete it, except for the case where
we are doing an insert which should go in that block. The delete attempt will fail
UNLESS the relevant parent updates are complete, that is, if and only if the block is
within a fully reduced span.
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One major concern has been that an I/O failure during a block delete can leave a "dead"
block, that is, one which can’t be reached from its parent level. It is still in a chain but
there is no down pointer to it and no search can terminate at that node.The problem is
that once a block becomes dead we need to prevent it from being inserted into or restored
into use, because that could result in entries being out-of-order (suppose that, while the
block’s dead, some inserts of keys less than its split key occur. They’ll be directed into the
next block by the index, and be posted there. If we then restore the block, the key ordering
will be incorrect.) But it turns out that we can prevent this by observing which B-tree
operations can encounter which types of deferred-update situation, as follows:

If we think of the tree as a set of nested SPANS, where the SPAN of an index entry is
the set of entries in the blocks it SPANS, we note that during operations using search only
- GET,PUT,REM — the locus of search stays strictly within the SPAN of some entry in
the root. We enforce that a block not be deleted until its parent pointers are completely
updates, that is, its pointer has a span of exactly one block. Now suppose a block delete
fails halfway, leaving a empty block without any parent pointer. Such a block is unreachable
by FIND-NODE and hence by INSERT! This means that if INSERT encounters an empty
block, it must be valid to insert into it.

This has several interesting consequences:

a. This means that only the operations that can possibly chain ACROSS spans have to
worry about dead blocks: the NEXT and PREV operations. (What exactly is the effect
on PREV?)

b. This means that "dead" blocks can’t be deleted (unless we look for them specially).
But they (a) are only created by a rare kind of event, and (b) won’t hurt anything,
so long as we arrange that NEXT and PREVs ignore the empty blocks (ie. ignore the
value of their split keys).

c¢. The way we have defined deferred-delete reconstruction, if the block isn’t within a
fully-reduced span, the delete simply can’t succeed. This means that there is no point
in trying to delete a blank block when we’re chaining though a span, that is, we should
only try to delete empty blocks encountered (1) when following a DOWN pointer in
FIND-ENT, or (2) due to a NEXT operation (or PREV?).

[Having realized this, we can actually let block-deletes be two-part operations (again). The
only additional complexity is that then we’d need to implement a method for detecting
dead blocks, that is, differentiating them from empty blocks in the middle of large spans,
which we mustn’t try to delete. We just check if the block is continued in some span! HOW
TO DO THAT EFFICIENTLY?]

In detail, the method of detecting deferred operations goes like this:
1. RECONSTRUCTING DEFERRED PARENT-UPDATES (missing DOWN pointers):

Whenever we have to follow the NEXT pointer of a block B (in FIND-NODE),
we should attempt a PARENT-INSERT-UPDATE using the (key,value) pair
(split(B),next(B)). FIND-NODE needs to be fixed to chain right rather than
down when the "dead zone" is encountered; and it should not attempt a
PARENT-INSERT-UPDATE in this case.

PARENT-INSERT-UPDATE can fail if:
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C.

some other process is already doing the update (the first one to lock the parent
wins, the other will fail out);

the key split(B) is already present (means a DELETE is pending — this shouldn’t
really occur, though);

the update requires a block split but no blocks are available.

2. RECONSTRUCTING DEFERRED BLOCK DELETES:

Whenever we reach an empty block in FIND-NODE or a NEXT/PREV operation,
we’ll attempt a PARENT-DELETE-UPDATE.

PARENT-DELETE-UPDATE should fail when

a.

b.

d.

the key is found but points to a different block (meaning the containing span isn’t
fully reduced);

the block is NAME-locked (this means its safe to leave name-locks around, the
worst that can happen is they cause block deletes to be deferred some);

someone else is doing a PARENT-DELETE-UPDATE on this block (this can be
guaranteed by having the delete process first name-lock the block being deleted;

some block needing to be modified (parent or prev) is locked.

3. We need to fix the code that does the NEXT-KEY operation to not stop at potentially-
dead blocks. CHAIN-FIND need NOT ignore blank blocks.

In practice, we’ll want to trigger the update routines at the normal times as well, ie.
try insert-updates after block splits and delete-updates after a block becomes empty.

There are a number of new statistics we should keep; these include:

deferred PARENT-INSERT-UPDATEs (PUDs)
insert-updates that succeed
insert-updates that fail (measures overhead of the method)

insert-update failure rate

deferred block deletes

deferred block deletes that succeed

deferred block deletes that fail (measures overhead of the method)
delete failure rate

count of dead blocks found (requires extra work)

(The number of chain-forwards is also a measure of the overhead.)

[Note: this mechanism also supports a simple queuing method: keep a list of the block
numbers at which updates were deferred, and in times of low usage do FINDs to them,
which will update them as a side-effect . . .]

[Other strategies were considered but were either significantly more complex or over-heady,
or introduced unnecessary delays:

One hack is to serialize the queue of postponed index INSERT and DELETE operations by
brute force: to do them in exactly the order they arrived in. Possibly simpler alternative

method:

sort by key and timestamp them!
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I think we also decided that the interpreter could simply devote a process to each deferred
operation, since we want to shift resources toward accomplishing the deferred operations if
too many queue up.

[WANG]| maintains a queue of deleted operation on the DESTINATION block. This has
the disadvantage that whenever a block is split or merged the deferred-operation queues
have to be split or merged as well — ugh!.]

2.3 Buffer, I/0, and Free-List Management

2.3.1 Reclaiming Buffers

age vs. level vs. dirtiness

This is a perennial nuisance — There is a complex system in place which hasn’t really been
evaluated or tuned, and there is also a proposal by Jonathan to simply use the first free (or
free-able) buffer one finds.

2.3.2 update-access

It seems to me there was some case where it wasn’t OK to just do a release to #f and an
update from there — but I can’t think of it offhand . ..

2.3.3 Deferred writes of data blocks

Note: this is a different sort of referral from the "deferred index updates" discussed earlier.
Those deferred operations were correctness- preserving; these are not. The idea here is that
we can reduce i/o traffic if we can safely lose a "small" number of updates.

Description and purpose

The general idea here is that we can reduce I/O traffic by deferring writes of leaf blocks,
in the sense that the updates can be lost without compromising the structure of the data-
base. This only works where the data updates in question are not critical to database or
application. Currently, we always defer leaf updates — both PUTs and REMoves — to data
trees, where a data tree is any tree not of type DIRECTORY. (DIRECTORY leaf blocks
are written to disk after every update.) The idea is that the user application should have
control over how often the data blocks are written.

Also, referral of PUTs and DELETES should be separately controllable. This feature is
needed for example by the database itself in maintaining the free list: we can afford to
defer INSERTS of deleted block, because the worst that could happen is that a free block
gets lost. But DELETES from the free list must update immediately, else a block could be
doubly-allocated.

Implementation

The handle field ‘wcb’ has the following boolean values:
a. SAP: save block after PUTs
b. SAR: save block after REMOVEs

c. SAC: force block save after cached block changes (not currently implemented)
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d. FAC: flush buffer entirely after cached block changes (not currently implemented —
future functionality)

These bits are set as follows:

DIRECTORY
SAP=SAR=1;

FREE LIST
SAR=1; SAP=SAC=0;

USER DATA
SAP=SAR=SAC=0;

The state of these bits can be changed at any time using (han:set-wcb! han new-bits).
Directory trees force web-sap and wcb-sar when opened or created. Also, open_seg forces
the free list write control bits to be as shown above, regardless of the block type of the
free-list.

Calling flush-ents flushes some modified blocks. It is thread safe and can be called by a
timer interrupt.

2.3.4 Caching of last (leaf) block used
Works great

NOT IMPLEMENTED YET: We could actually be cleverer and cache the parents of every
node, and even the PREVs, using the same TRY-GET-ENT protocol!

2.3.5 Multiple Read Access

Multiple READ access is not supported yet. READ-READ conflicts can occur. We seem
to recall noting that this limitation kept us from encountering some other problem, whose
identity is lost for the moment.

2.3.6 Free-block management

Outline:
e free list is implemented as a B tree (its root block is in block 2 of the file)
e with cache (free-list-cache, one per segment)

e cache gets filled (to 1/2 full) when it empty and a block is needed; it gets flushed (to
1/2 full) when its about to overflow.

e cache can be filled either from the free-list-tree or if that’s empty, the file is extended.

e cache filling is now done efficiently using scan-delete. This also means that only one
disk write will be done per fill (in most cases).

e cache filling is interlocked so only one process can be filling the cache at a time.
e currently cache emptying is inefficient as each write of of a block to the tree causes an
I/O [deferred writes is intended to fix this]

Current problems:
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Last week (1/8) we concluded that (all efforts to date notwithstanding) there were still
failure cases in free-block management under concurrent operation, because of problems
like:

e multiple processes can eat up however many blocks are in the cache, meaning we still
haven’t handled the case where a PUT to the free list causes a block split (necessitating
a recursive call to FREE-BLOCK).

e Conversely, it is possible for the cache to become overfilled by a cache filling operation,
if in the meantime OTHER processes fill the cache with deleted blocks.

e We need to be sure in general that concurrent fills and/or empties don’t overfill or
over-drain the cache.

On the positive side, we realized that we NEED NOT allow enough free blocks for a free-list
insert to split the whole tree — any split except the leaf split can simply be postponed if
there isn’t a free block available at that time! (And similarly for any insert-updates that
happen to be triggered by free-list accesses.)

Come to think of it, if we happen to run out of blocks during a free-list insert, its OK to
let the insert fail, we just lose one disk block!! That may just be the answer!!

2.3.7 Buffer management routines

Two routines have been built for purging buffers.

FLUSH-BUFFER(ENT) writes out ENT if it is dirty and unlocked. It returns TERMI-
NATED if ENT is locked, RETRYERR if the write is attempted and fails, and SUCCESS

otherwise.

PURGE-BUFFER(ENT) writes out ENT if it is dirty and then frees up the buffer. This
IGNORES the access status of the buffer, so it should not be called by users; it always
returns SUCCESS.

Use (DO-SEG-BUFFERS SEG FUNC) to apply a function to all the buffers of a given seg-
ment; for example, (DO-SEG-BUFFERS SEG FLUSH-BUFFER) can be used to guarantee
that segment SEG’s disk file is up to date. DO-SEG-BUFFERS halts if FUNC returns
other than SUCCESS; the result of FUNC is returned. SUCCESS is returned if all buffers
have been successfully processed. To process all segments, use SEG = #f.

(CHECK-BUFFER ENT) checks that the buffer is written and unlocked, and repairs those
that are not.
2.3.8 Other issues to document

e bucket-locking method
e treatment of access conflict conditions
e amnesia-ent

e caching criteria (eh?)

2.4 Error Handling

The problem: Calls need to return adequate information to distinguish:

1. restartable operations, for example

e update-parent on insert
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e update-parent on delete
e unlink for delete
2. non-restartable failures (eg. disk i/o error)
3. null results (eg. key not found)
4. "real values", eg. the length of a returned string, or an ENT pointer vs. NULL.
The solution: use a bounded range of negative values as "failure" codes, leaving the non-
negative return values available as "success" codes. The canonical success code is 0, but a

routine that needs to return a value (string length, ENT pointer) can do so and have that
value interpreted as a "success" code as well.

There are "degrees" of failure, and the negative codes are partitioned according to increas-
ingly severity, as follows:

value C name Meaning

0 success successful execution

-1 notpres successful execution, no data present or no change made
-2 terminated failure, no damage, caller can retry operation
-10 retryerr failure, no damage, caller can retry operation
-13 keyerr failure, no damage, call was in error

-15 argerr failure, no damage, call was in error

-20 noroom failure, no damage, out of room in file

-30 typerr failure, file or object was not of correct type
-40 ioerr i/o error, DB may be damaged

-45 strangerr internal error, DB may be damaged

-90 unkerr placeholder code

-100 maxerr

The first class represent operations that completed without error. The second class represent
operations that failed to complete, but are guaranteed to leave the DB in a correct state
and are retry-able (or easily correctable). The third class represent operations that failed
to complete, did not damage the database, but are not easily fixable or restartable. The
last class represent error conditions in which the DB was corrupted, or during which DB
corruption was detected.
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The predicate (ERR? code) returns #t if the return code is within the range NOTPRES-
MAXERR; the predicate (REALERR? code) returns #t if CODE is an actual error, as
opposed to a "not there" or "stop processing" message.

2.5 Longer Value Fields

The 256.B length limit for value strings was a barrier to many possible applications for WB.
The db:get and db:put! procedures in wbscm.c work with value strings up to 64770.B in
length (see Section 6.4 [SCM Record Operations|, page 54).

For a value string of length L:

0.B <=L <= 255.B
The value string is stored literally with given key.

256.B <= L <= 64770.B
The first 255 bytes of the value string is stored literally with the given key.
Successive 255 byte chunks of the value string are stored as L/255-1 sequential
key-value pairs. The key for each chunk is the given key with the index byte 1
<= k <= 254 appended to it.

Note that use of bt:scan is complicated by long value strings.

Proposed Extensions
The rest are proposed extensions to unlimited value string length.
256.B <= L <= bsiz - 20

The b-tree value fields points to a type datalong® block, which contains the
value.

The bsiz argument to make_seg() or block-size argument to make-seg is the
size of all WB blocks (pages) in that segment.

bsiz < L.~ Value points to head of a chain or tree of datalong blocks. Retrieved value
assembly limits practical size. Storage efficiency is good for L >> bsiz.

An interesting variant is to have two trees, one for datalongs and the other for
everything else. If the two trees are in separate segments (stored in separate
files), then the datalong segment blocksize can be optimized without impacting
speed for non-datalong operations.

bsiz < L. Value designates external file containing data. storage efficiency is good for L
>> bsiz. Retrieved value needs no assembly; use mmap().

2.6 Unlimited Length Keys and Values
by Jonathan Finger

Use 2 btrees which I will refer to as main and slave

notation D[123,4567] will translate into a string D \3 1 23 \4 4 5 6 7 where \3 is ascii 3
etc (length of following string of digits) this will result in keys sorting in numerical order.

This option requires a new type of WB block having the usual 20-byte header and a 2-byte length field.
Each block would hold up to bsiz-20 bytes of data.
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1. Data (the easy part)
The first byte of data is a flag.
IF the data length < 255
THEN
store in bytes 1 - (length_of_data + 1)
ELSE
In slave btree increment value in key D (D for data)
As an example assume the new value is 2357 and the data is 10,000 bytes

Store the data in
D[2357,0] = first 250 bytes
D[2357,1] second 250 bytes

D[2357,249] = last 250 bytes

When a new value is set, if it is > 254 bytes in length then you reuse the D[2357] names
adding or deleting as needed. Note that it is much more efficient to overwrite existing
nodes since (most) of them will be the same size and add or delete at the end. If the
new value < 255 bytes delete D[2357] and store the value in the master btree.

2. Keys (the hard part) IF key < 250 bytes
THEN
Store in master file as usual
ELSE (key >= 250 bytes)

break up the key into chunks CO ... CN; the first 250 bytes long and the rest 220 bytes
long.

Create the entries (assume current value of key V is 243)

Master btree
CO = (flag)244
Slave btree
V[244,C1] = 245
V[245,C2] = 246

V[244 + N,CN] = data

A get now consistes of breaking up the key and following the chain. The put, delete,
next, and prev code will get a bit messy since there will be multiple cases to consider.

I believe this scheme will give unlimited key and data length. Performance probably will
not be great but may be acceptable. This should give good key compression.

2.7 To Be Done
I think most of the items in RJZ’s list have been done.
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RJZ Modified 4/8,/1993

B-tree maintenacne

1/0

Concurrency

Error handling

Miscellany

Implement deferred INDEX updates (in progress).
Fix bug in PREV re missing down-ptrs.

Implement fix for insert-screw-case (flag in root or wherever it was).

Implement and test random page replacement.

Implement parent/PREV caching??

Assure enough FLC blocks for freelist splits in concurrent situation. (there
seems to be a class of problems about concurrent free-list operations: a
flush can fail if it causes a split and all the free blocks have been used
meanwhile; simultaneous flush and fills; and the like. One good idea: since
its ok if parent-updates fail, we can reduce the number of blocks a split
can REQUIRE to 1 leaf block, rather than log-N blocks).

Finish implementation of error-handling protocol??
Error log?

Recode error msg calls to take less (code) space?

Count SCAN does not need to copy value strings (since block is copied).

Jonathan wants the ability to create a seg that need not be kept valid on
disk — one that can just be rebuilt if the system crashes. This means (a)
a WCB bit in HANDLES to control "essential" updates and (b) an arg to
OPEN-SEG specifying SAFETY (it isnt valid to specify this option on a
per-handle basis).

Jonathan wants to replace FLUSH-SOME-BUKS with a call that scans
ENT-TAB for a flushable ENT and another call to (carefully) flush it.

Reduce number of arguments to scan using packets?
Create memory-resident segment?

See if packets can be replaced with multiple values?

Design/Documentation

Spell check!

Document format of data file (blocks 0,1,2).
Document type S blocks.

Write up thoughts on error-info protocol.
Write up WRITE order for blk splits.

Read papers (SAGIV, WANG, TRANSACTION book) to see how THEY
ahndle the difficult problems of delayed update and their ordering, and the
2-block mod problem for DELETE.
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2.8 Miscellany

"Largest keys" (End-of-chain marker strings).
Because we’ve reserved keys with a first byte of FF for split keys, these keys
are unavailable to the user.

NULL keys
WB supports use of the null string as a key (Sliced Bread treats the key spe-
cially).

Searching on minimum and maximum keys
Given that the null string may be used as a key, there needs to be a way
to specify a "least" key such that NEXT(least) yields the first key, even if it
is NULL. The special key strings with length s of -2 and -1 are provided to
represent the minimum and maximum key values, respectively. These keys are
only useful with NEXT, PREV, REM*, and SCAN; data cannot be associated
with these keys.

Need to document TSCAN, TSTATS.
2.8.1 Bibliography

A comprehensive B-tree bibliography can be found at: http: //www . informatik .
uni-trier.de/~ley/db/access/btree.html

[BM72] R. Bayer and E. McCreight. Organization and maintenance of large ordered
indexes. Acta Informatica, 1:173-189, 1972.

[SAGIV]  Yehoshua Sagiv. Concurrent Operations on B*-trees with Overtaking. JCSS
33(2): 275-296 (1986)

[WANG] W.E. Weihl and P. Wang. Multi-version memory: Software cache management
for concurrent B-trees. In Proc. 2nd IEEE Symp. Parallel and Distributed
Processing, 650-655, 1990.
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3 C Interface

3.1 C Compile-Time Parameters

The C Preprocessor Constants in this section are defined in wbdefs.h which is derived from
wbdefs.scm.

Each segment (file-based or not) maintains a freelist of disk blocks. In a newly created
segment, nearly all of its block numbers are in the freelist.

flc_len [C Preprocessor Constant]
flc_len must be larger than 2 times the maximum number of blocks which would
ever be needed for a freelist split. The minimum for flc_len is 10.

3.2 C Status Codes

err_P (x) [C Preprocessor Macro]
Return x if a valid error code (-1 ... MAXERR); else 0.

success_P (x) [C Preprocessor Macro]
Not err_P.
success [C Preprocessor Constant]

Successful execution (0).
Negative integers are used for errors according to increasingly severity, as follows:

notpres [C Preprocessor Constant]
Successful execution; no data present or no change made.

terminated [C Preprocessor Constant]|
Failure; no damage; caller can retry operation.

retryerr [C Preprocessor Constant]
Failure; no damage; caller can retry operation.

keyerr [C Preprocessor Constant]
Failure, no damage, call was in error.

argerr [C Preprocessor Constant]
Failure, no damage, call was in error.

noroom [C Preprocessor Constant]
Failure, no damage, out of room in file.

typerr [C Preprocessor Constant]
Failure, file or object was not of correct type.

ioerr [C Preprocessor Constant]
I/0 error, DB may be damaged.
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strangerr [C Preprocessor Constant]
Internal error, DB may be damaged.

unkerr [C Preprocessor Constant|
Placeholder code.

maxerr [C Preprocessor Constant]|
All error codes are between 0 and ‘maxerr’.

3.2.1 C Diagnostic Channel

The machine translated source utilizes dprintf as a platform-independent way to log diag-
nostic, warning, and error messages. tdprintf

dprintf ((diagout, const char *template, . ..)) [C Preprocessor Macro]
The single argument to dprintf must be an argument list within parenthesis (eg.
double parentheses). The first argument inside this list should be literally diagout.
template is a printf style format string followed by the arguments for formatting, as
with printf.

3.3 C SEGs

int init_wb (int max_num_ents_cnt, int max_num_buks, int [Function]
max_blk_size)
Initializes the WB system. init_wb should be called before any other WB functions.

max_blk_size
The size of each disk cache buffer to be allocated from RAM. It should
be an integer multiple of the file-system block size. The minimum is 1.5
kB.

max_num-_ents_cnt
The number of (RAM) disk cache buffers to be allocated. This should be
proportional to the size of the database working set. If too small, then
the disk will be kept busy writing and reading pages which get flushed to
read in other pages. The minimum is 12 times the number of threads.

The product of max_num_ents_cnt and max_blk_size should be less than
the size of RAM on your computer.

max_num-buks
The number of hash buckets for the (RAM) disk cache. It should not be
less than max_num_ents_cnt. The minimum is 2, maybe 3 (due to how
get-free-ent works).

If not all max_num_ents_cnt can be allocated (by malloc) then WB can still run
properly. The number of buffers actually allocated is returned if successful; a status
code is returned otherwise.

If the bsiz argument to make-seg is larger than the max_blk_size which was passed
to init_wb, then the call to make-seg will fail.



Chapter 3: C Interface 34

int final_wb () [Function]
Frees all memory used by the WB system. All segments will be closed.

To preserve database consistency, it is important to call final_wb or close-seg
before program termination if changes have been made to a segment.

The bsiz of a segment (given in call to make_seg) is a parameter crucial for performance;
balancing CPU time traversing blocks with file-system latency. bsiz should be an integer
multiple of the file-system block size.

In the 1990s our nominal bsiz was 2.kiB; now it should probably be 4.kiB, 8.kiB, or 16.kiB.

SEGD * open_seg (unsigned char * filename, int mutable_P) [Function]
Opens the database file filename and returns a seg, false otherwise. The database will
be read-only if the mutable_P argument is false. It will be read-write if the mutable_P
argument is true.

SEGD * open_segd (unsigned char * filename, int mutable_P, int [Function]
even_if_dirty_P)

Opens the database file filename and returns a seg, false otherwise. The database will

be read-only if the mutable_P argument is false. It will be read-write if the mutable_P

argument is true. If the even_if_dirty_P argument is false, then open_segd will fail if

the database file filename was not closed cleanly; otherwise it will open, clean or not.

int close_seg (SEGD * seg, int hammer_P) [Function]
Closes database segment seg and the file containing it. If hammer_P is NULL, then
if there are any problems freeing buffers, then the close is aborted. A status code is
returned.

SEGD * make_seg (unsigned char * filename, int bsiz) [Function]
The integer bsiz specifies the size of B-tree blocks. bsiz should be an integer multiple
of the file-system block size. Nominal value is 4096.

make_seg returns an open new empty mutable database named backed by file filename
if successful; otherwise false is returned.

The write-control-bits argument (wcb) to these functions controls the latency of updates to
the file after various operations. These bits are defined as follows:

value C-name Meaning

1 wcb_sap save block after PUTs

2 wcb_sar save block after REMOVEs

4 wcb_sac force block save after cached block changes

8 wcb_fac flush buffer entirely after cached block changes (not

currently implemented)

int bt_open (SEGD * seg, long blk_num, HAND * han, int wcb) [Function]
Opens bt-handle han to seg number seg, block number blk_num, and returns the type
of the block. If no such block exists or is not a root block, then a (negative) status
code is returned.
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int bt_create (SEGD * seg, int typ, HAND * han, int wcb) [Function]
Creates a new root block in seg seg of type typ, opens bt-handle han to it, and returns
a status code. If seg has insufficient room to create a new tree, then the noroom status
code is returned.

bt_create can be used to create temporary b-trees. Temporary trees will be be
reclaimed by check program after system crashes. In order to make a tree persistent,
add it to a directory (tree).

int bt_close (HAND * han) [Function]
Closes bt-handle han and returns SUCCESS.

Currently, bt_close has no effect other than to clear han.

3.4 C HANDs and Tree Operations

void close_bt (HAND * han) [Function]
Closes and frees han; the b-tree associated with han remains in the segment.

For create-db and open-db, the implicit WCB argument is the combination of ‘WCB-SAP’
and ‘WCB-SAR’.

HAND * create_db (SEGD * seg, int typ, unsigned char * name_str)  [Function]
Returns a B-tree whose name has been entered in the root directory if successful;
otherwise null.

typ should be either
e ’D’ (directory) or
e T’ (regular tree).
B-trees with typ #\D which are pointed to by special entries in the root block (1)

protect all their special entries from garbage collection by the wbcheck program. T’
is for regular (data) arrays.

HAND * open_db (SEGD * seg, unsigned char * name_str) [Function]
Returns the B-tree whose name has been entered in the root directory; or null if not
found.

int flush_ents (int attempts, int k) [Function]

k is the number of dirty block buffers to write to disk; attempts is the number of times
to try. Note that blocks in any segment may be written by flush-ents. flush-ents
returns the number of blocks written.

Note: most of the data-manipulating commands here can return notpres, with the followng
meanings:

bt-get key was not found.
bt-next no next key (eg, given key was last key).
bt-prev no prev key (eg, given key was first key).
bt-rem key was not found.
bt-put unused (could be symmetric with write).

bt-write key was found, so no write was done.
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int

int

int

int

int

int

int

bt_get (HAND * han, unsigned char * key_str, int k_len, [Function]
unsigned char * ans_str)

key_str is a string of length k_len. bt_get stores into the string ans_str the value

associated with key_str in tree han. bt_get returns the length of the string stored

into ans_str or an error code.

bt_next (HAND * han, unsigned char * key_str, int k_len, [Function]
unsigned char * ans_str)

key_str is a string of length k_len. bt_next stores into the string ans_str the next

key after key_str in tree han. bt_next returns the length of the string stored into

ans_str or an error code.

bt_prev (HAND * han, unsigned char * key_str, int k_len, [Function]
unsigned char * ans_str)

key_str is a string of length k_len. bt_prev stores into the string ans_str the last

key before key_str in tree han. bt_prev returns the length of the string stored into

ans_str or an error code.

bt_rem (HAND * han, unsigned char * key_str, int k_len, [Function]
unsigned char * ans_str)

key_str is a string of length k_len. bt_rem stores into the string ans_str the value

associated with key_str in tree han; then removes that association from tree han.

bt_rem returns the length of the string stored into ans_str or an error code.

If ans_str is 0, bt_rem removes the key_str association from tree han and returns
SUCCESS if successful; an error code if not.

bt_rem_range (HAND * han, unsigned char * key_str, int [Function]
k_len, unsigned char * key2_str, int k2_len)

key_str must be a maximum-length (256 byte) string containing a key k_len bytes

long. key2_str is a string of length k2_len.

bt_rem_range removes [key_str . .. key2_str) and their values. If key2_str <= key_str
no deletion will occur (even if key_str is found). bt_rem_range returns SUCCESS if
the operation is complete, an error status code if not.

bt_put (HAND * han, unsigned char * key_str, int k_len, [Function]
unsigned char * val_str, int v_len)

key_str is a string of length k_len. val_str is a string of length v_len. bt_put makes

the value associated with key_str be val_str in tree han. bt_put returns a status code

for the operation.

bt_write (HAND * han, unsigned char * key_str, int k_len, [Function]
unsigned char * val_str, int v_len)

key_str is a string of length k_len. val_str is a string of length v_len. If han currently

contains an association for key_str, then bt_write does not modify the tree and

returns the notpres status code.

Otherwise, bt _write makes the value associated with key_str be val_str in tree han.
bt_write returns a status code for the operation.
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3.5 C Scan

int bt_scan (HAND * han, int operation, unsigned char * kstri, [Function]
int lenl, unsigned char * kstr2, int len2, int_function func, long *
long_tab, int * respkt, int blk_limit)
bt_scan scans all keys in the range [kstrl..kstr2), performing one of several functions:

operation func RESULT

COUNT-SCAN NIL counts all keys in range

COUNT-SCAN given counts all keys in range satisfying func
REM-SCAN NIL deletes all keys in range

REM-SCAN given deletes all keys in range satisfying func
MODIFY-SCAN  NIL ARGERR

MODIFY-SCAN  given updates values for keys in range satisfying func

bt_scan returns SUCCESS if scan completed; under any other result code the scan
is resumable. The possible results are:

NOTPRES

meaning the blk_limit was exceeded;

RETRYERR
meaning func or delete got a RETRYERRR;

TERMINATED
meaning func asked to terminate the scan;

<other error>
means func or DELETE encountered this errror.

Each block of data is scanned/deleted/modified in a single operation that is, the
block is found and locked only once, and only written after all modifications are
made. Tho only exception is that MODIFY-SCANSs that increase the size of values
can cause block splits. Such cases are detected and converted to a PUT plus a NEXT.
This has two consequences: data is written out each time a PUT occurs, and it is
conceivable that func may be called more than once on the key value that caused the
split if a RETRYERR occurs in the PUT. However, SCAN guarantees that only one
modification will actually be made in this case (so that one can write INCREMENT-
RANGE, for example).

func is passed pointers to (copies of) the key and value, plus one user argument:
func (keystr klen vstr vlen extra_arg);

func is expected to return either: SUCCESS for DELETE/COUNT, NOT-
PRES/NOTDONE for SKIP (ie, DONT DELETE/COUNT), or any other code to
terminate the scan resumably at the current point. For MODIFY-SCAN, if changing
the value, the new value length is returned. Except for the case mentioned above,
the caller can depend on func being called exactly once for each key value in the
specified range, and only on those values.

If kstr2 <= kstrl, then no scan will occur (even if kstrl is found). To make possible
bounded-time operation bt_scan will access at most blk_limit blocks at a time; if you
dont care, give it -1 for blk_limit.
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The number of keys deleted/counted/modified is returned in the skey-count field
of respkt; the key to resume at is returned in kstrl (which therefore needs to be 256
bytes long); and the new key length is returned in the skey-1len field of respkt. If
returns SUCCESS, skey-1len is zero. NOTE that skey-count is cumulative, so the
caller needs to initialize it to 0 when starting a new bt_scan.

WARNING: when bt_scan returns other than SUCCESS, it modifies the kstrl string
so that the string args are correctly set up for the next call (the returned value is the
new length for kstrl). Therefore, kstrl must be a mazimum-length string!
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4 Java Interface

4.1 Java Status Codes

boolean err_P (int x) [Function]
Return x if a valid error code (-1 ... MAXERR); else 0.

boolean success_P (int x) [Function]
Not err_P.
int success [Variable]

Successful execution (0).
Negative integers are used for errors according to increasingly severity, as follows:

int notpres [Variable]
Successful execution; no data present or no change made.

int terminated [Variable]
Failure; no damage; caller can retry operation.

int retryerr [Variable]
Failure; no damage; caller can retry operation.

int keyerr [Variable]
Failure, no damage, call was in error.

int argerr [Variable]
Failure, no damage, call was in error.

int noroom [Variable]
Failure, no damage, out of room in file.

int typerr [Variable]
Failure, file or object was not of correct type.

int ioerr [Variable]
I/O error, DB may be damaged.

int strangerr [Variable]
Internal error, DB may be damaged.

int unkerr [Variable]
Placeholder code.

int maxerr [Variable]
All error codes are between 0 and ‘maxerr’.



Chapter 4: Java Interface 40

4.2 Java SEGs

int initWb (int maxNumEntsCnt, int maxNumBuks, int maxBlkSize) [Function]
Initializes the WB system. initWb should be called before any other WB functions.
maxBlkSize

The size of each disk cache buffer to be allocated from RAM. It should
be an integer multiple of the file-system block size. The minimum is 1.5
kB.

maxNumFEntsCnt
The number of (RAM) disk cache buffers to be allocated. This should be
proportional to the size of the database working set. If too small, then
the disk will be kept busy writing and reading pages which get flushed to
read in other pages. The minimum is 12 times the number of threads.

The product of maxNumFEntsCnt and maxBIkSize should be less than
the size of RAM on your computer.

maxNumBuks
The number of hash buckets for the (RAM) disk cache. It should not
be less than maxNumEntsCnt. The minimum is 2, maybe 3 (due to how
get-free-ent works).

If not all maxNumEntsCnt can be allocated (by malloc) then WB can still run prop-
erly. The number of buffers actually allocated is returned if successful; a status code
is returned otherwise.

If the bsiz argument to make-seg is larger than the maxBIkSize which was passed to
initWb, then the call to make-seg will fail.

int finalWb () [Function]
Frees all memory used by the WB system. All segments will be closed.

To preserve database consistency, it is important to call £inalWb or close-seg before
program termination if changes have been made to a segment.

The bsiz of a segment (given in call to make_seg) is a parameter crucial for performance;
balancing CPU time traversing blocks with file-system latency. bsiz should be an integer
multiple of the file-system block size.

In the 1990s our nominal bsiz was 2.kiB; now it should probably be 4.kiB, 8.kiB, or 16.kiB.

Seg openSeg (String filename, boolean mutable_P) [Function]
Opens the database file filename and returns a seg, false otherwise. The database will
be read-only if the mutable_P argument is false. It will be read-write if the mutable_P
argument is true.

Seg openSegd (String filename, boolean mutable_P, boolean [Function]
evenIfDirty_P)

Opens the database file filename and returns a seg, false otherwise. The database will

be read-only if the mutable_P argument is false. It will be read-write if the mutable_P

argument is true. If the evenlfDirty_P argument is false, then openSegd will fail if

the database file filename was not closed cleanly; otherwise it will open, clean or not.
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int closeSeg (Seg seg, boolean hammer_P) [Function]
Closes database segment seg and the file containing it. If hammer_P is NULL, then
if there are any problems freeing buffers, then the close is aborted. A status code is
returned.

Seg makeSeg (String filename, int bsiz) [Function]
The integer bsiz specifies the size of B-tree blocks. bsiz should be an integer multiple
of the file-system block size. Nominal value is 4096.

makeSeg returns an open new empty mutable database named backed by file filename
if successful; otherwise false is returned.

The write-control-bits argument (wcb) to these functions controls the latency of updates to
the file after various operations. These bits are defined as follows:

value C-name Meaning

1 wcb_sap save block after PUTs

2 wch_sar save block after REMOVESs

4 wcb_sac force block save after cached block changes

8 wcb_fac flush buffer entirely after cached block changes (not

currently implemented)

int btOpen (Seg seg, int blkNum, Han han, int wcb) [Function]
Opens bt-handle han to seg number seg, block number blkNum, and returns the type
of the block. If no such block exists or is not a root block, then a (negative) status
code is returned.

int btCreate (Seg seg, int typ, Han han, int wcb) [Function]
Creates a new root block in seg seg of type typ, opens bt-handle han to it, and returns
a status code. If seg has insufficient room to create a new tree, then the noroom status
code is returned.

btCreate can be used to create temporary b-trees. Temporary trees will be be re-
claimed by check program after system crashes. In order to make a tree persistent,
add it to a directory (tree).

int btClose (Han han) [Function]
Closes bt-handle han and returns SUCCESS.

Currently, btClose has no effect other than to clear han.

4.3 Java HANDs and Tree Operations

All of the methods listed here which take byte-array arguments can also take string argu-
ments, which get converted to UTF-8 byte-arrays.

void closeBt (Han han) [Function]
Closes han

For create-db and open-db, the implicit WCB argument is the combination of ‘WCB-SAP’
and ‘WCB-SAR’.
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Han createDb (Seg seg, int typ, byte [|nameStr) [Function]
Returns a B-tree whose name has been entered in the root directory if successful;
otherwise null.

typ should be either
e ’D’ (directory) or
e T’ (regular tree).
B-trees with typ #\D which are pointed to by special entries in the root block (1)

protect all their special entries from garbage collection by the wbcheck program. ’T’
is for regular (data) arrays.

Han openDb (Seg seg, byte [|nameStr) [Function]
Returns the B-tree whose name has been entered in the root directory; or null if not
found.

int flushEnts (int attempts, int k) [Function]

k is the number of dirty block buffers to write to disk; attempts is the number of times
to try. Note that blocks in any segment may be written by flush-ents. flush-ents
returns the number of blocks written.

4.4 Record Operations

byte [Ibt_Get (Han han, byte [|key) [Function]
han is a handle to an open bt. key is a string less than 255.B in length.

bt:get returns a string of the value associated with key in the bt which han is open
to. bt:get returns null if key is not associated in the bt.

byte [lbt_Next (Han han, byte [|key) [Function]
han is a handle to an open bt. key is a string less than 255.B in length.

bt:next returns the next key in bt han or null if none.

byte [lbt_Prev (Han han, byte [|key) [Function]
han is a handle to an open bt. key is a string less than 255.B in length.

bt:prev returns the previous key in bt han or null if none.

void bt_Put (Han han, byte [|key, byte [JvalStr) [Function]
han is a handle to an open, mutable bt. key and val are strings less than 255.B in
length.

bt:put! associates key with val in the bt han. A status code is returned.

boolean bt_Del (Han han, byte [|key) [Function]
han is a handle to an open, mutable bt. key is a string less than 255.B in length.

bt:rem! removes key and it’s associated value from bt han.
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4.5 Mutual Exclusion

These 2 calls can be used for locking and synchronizing processes.

boolean bt_Insert (Han han, byte [|key, byte [JvalStr) [Function]
Associates key with val in the bt han only if key was previously empty. Returns true
for success, false for failure.

byte [1bt_Rem (Han han, byte [|key) [Function]
Removes key and it’s associated value from bt han only if key is present. Returns
key’s value for success, null for failure (not present).

4.6 Multiple Operations

int bt_Delete (Han han, byte [|key, byte [|key2) [Function]
Removes keys (and their associated values) between (including) keyl and (not in-
cluding) key2 from bt han. A status code is returned.

byte [lbt_Scan (Han bthan, int op, byte [|kstri, byte [|kstr2, [Function]
java.lang.reflect.Method func, int blklimit)
btScan scans all keys in the range [kstrl..kstr2), performing one of several functions:

operation func RESULT

COUNT-SCAN NIL counts all keys in range

COUNT-SCAN given counts all keys in range satisfying func
REM-SCAN NIL deletes all keys in range

REM-SCAN given deletes all keys in range satisfying func
MODIFY-SCAN  NIL ARGERR

MODIFY-SCAN  given updates values for keys in range satisfying func

btScan returns null if there was an error; an empty byte-vector if scan completed; or
the next key to be scanned if blklimit was not ‘-1’.

Each block of data is scanned/deleted/modified in a single operation that is, the
block is found and locked only once, and only written after all modifications are
made. Tho only exception is that MODIFY-SCANSs that increase the size of values
can cause block splits. Such cases are detected and converted to a PUT plus a NEXT.
This has two consequences: data is written out each time a PUT occurs, and it is
conceivable that func may be called more than once on the key value that caused the
split if a RETRYERR occurs in the PUT. However, SCAN guarantees that only one
modification will actually be made in this case (so that one can write INCREMENT-
RANGE, for example).

func is passed pointers to (copies of) the key and value, plus one user argument:
func (keystr, klen, vstr, vlen, extra_arg);

func is expected to return either: SUCCESS for DELETE/COUNT, NOT-
PRES/NOTDONE for SKIP (ie, DONT DELETE/COUNT), or any other code to
terminate the scan resumably at the current point. For MODIFY-SCAN, if changing
the value, the new value length is returned. Except for the case mentioned above,
the caller can depend on func being called exactly once for each key value in the
specified range, and only on those values.
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If kstr2 <= kstrl, then no scan will occur (even if kstrl is found). To make possible
bounded-time operation btScan will access at most blkLimit blocks at a time; if you
dont care, give it -1 for blkLimit.

4.7 Java Legacy API

This API has identical argument configurations as the C code, including length arguments
to complement each byte-vector argument.

Note: most of the data-manipulating commands here can return notpres, with the followng
meanings:

bt-get key was not found.

bt-next no next key (eg, given key was last key).

bt-prev no prev key (eg, given key was first key).

bt-rem key was not found.

bt-put unused (could be symmetric with write).

bt-write key was found, so no write was done.

int btGet (Han han, byte [|keyStr, int kLen, byte [|ansStr) [Function]

keyStr is a string of length kLen. btGet stores into the string ansStr the value
associated with keyStr in tree han. btGet returns the length of the string stored into
ansStr or an error code.

int btNext (Han han, byte [|keyStr, int kLen, byte [|ansStr) [Function]
keyStr is a string of length kLen. btNext stores into the string ansStr the next key
after keyStr in tree han. btNext returns the length of the string stored into ansStr
or an error code.

int btPrev (Han han, byte [|keyStr, int kLen, byte [|ansStr) [Function]
keyStr is a string of length kLen. btPrev stores into the string ansStr the last key
before keyStr in tree han. btPrev returns the length of the string stored into ansStr
or an error code.

int btRem (Han han, byte [|keyStr, int kLen, byte [|ansStr) [Function]
keyStr is a string of length kLen. btRem stores into the string ansStr the value
associated with keyStr in tree han; then removes that association from tree han.
btRem returns the length of the string stored into ansStr or an error code.

If ansStr is 0, btRem removes the keyStr association from tree han and returns SUC-
CESS if successful; an error code if not.

int btRemRange (Han han, byte [|keyStr, int kLen, byte [|key2Str, [Function]
int k2Len)
keyStr must be a maximum-length (256 byte) string containing a key kLen bytes
long. key2Str is a string of length k2Len.

btRemRange removes [keyStr ... key2Str) and their values. If key2Str <= keyStr no
deletion will occur (even if keyStr is found). btRemRange returns SUCCESS if the
operation is complete, an error status code if not.
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int btPut (Han han, byte [|keyStr, int kLen, byte [JvalStr, int [Function]
vLen)
keyStr is a string of length kLen. valStr is a string of length vLen. btPut makes the
value associated with keyStr be valStr in tree han. btPut returns a status code for
the operation.

int btWrite (Han han, byte [|keyStr, int kLen, byte [JvalStr, int [Function]
vLen)
keyStr is a string of length kLen. valStr is a string of length vLen. If han currently
contains an association for keyStr, then btWrite does not modify the tree and returns
the notpres status code.

Otherwise, btWrite makes the value associated with keyStr be valStr in tree han.
btWrite returns a status code for the operation.

int btScan (Han han, int operation, byte [|kstril, int lenl, byte [Function]
[|kstr2, int len2, java.lang.reflect.Method func, int [|longTab, int
[|[respkt, int blkLimit)
btScan scans all keys in the range [kstrl..kstr2), performing one of several functions:

operation func RESULT

COUNT-SCAN NIL counts all keys in range

COUNT-SCAN given counts all keys in range satisfying func
REM-SCAN NIL deletes all keys in range

REM-SCAN given deletes all keys in range satisfying func
MODIFY-SCAN  NIL ARGERR

MODIFY-SCAN  given updates values for keys in range satisfying func

btScan returns SUCCESS if scan completed; under any other result code the scan is
resumable. The possible results are:

NOTPRES
meaning the blkLimit was exceeded;

RETRYERR
meaning func or delete got a RETRYERRR;

TERMINATED
meaning func asked to terminate the scan;

<other error>
means func or DELETE encountered this errror.

Each block of data is scanned/deleted/modified in a single operation that is, the
block is found and locked only once, and only written after all modifications are
made. Tho only exception is that MODIFY-SCANs that increase the size of values
can cause block splits. Such cases are detected and converted to a PUT plus a NEXT.
This has two consequences: data is written out each time a PUT occurs, and it is
conceivable that func may be called more than once on the key value that caused the
split if a RETRYERR occurs in the PUT. However, SCAN guarantees that only one
modification will actually be made in this case (so that one can write INCREMENT-
RANGE, for example).
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func is passed pointers to (copies of) the key and value, plus one user argument:
func (keystr klen vstr vlen extra_arg);

func is expected to return either: SUCCESS for DELETE/COUNT, NOT-
PRES/NOTDONE for SKIP (ie, DONT DELETE/COUNT), or any other code to
terminate the scan resumably at the current point. For MODIFY-SCAN, if changing
the value, the new value length is returned. Except for the case mentioned above,
the caller can depend on func being called exactly once for each key value in the
specified range, and only on those values.

If kstr2 <= kstrl, then no scan will occur (even if kstrl is found). To make possible
bounded-time operation btScan will access at most blkLimit blocks at a time; if you
dont care, give it -1 for blkLimit.

The number of keys deleted/counted/modified is returned in the skey-count field
of respkt; the key to resume at is returned in kstrl (which therefore needs to be 256
bytes long); and the new key length is returned in the skey-1len field of respkt. If
returns SUCCESS, skey-len is zero. NOTE that skey-count is cumulative, so the
caller needs to initialize it to 0 when starting a new btScan.

WARNING: when btScan returns other than SUCCESS, it modifies the kstrl string
so that the string args are correctly set up for the next call (the returned value is the
new length for kstrl). Therefore, kstrl must be a mazimum-length string!
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5 C+# Interface

5.1 C# Status Codes

bool err_P (int x) [Function]
Return x if a valid error code (-1 ... MAXERR); else 0.

bool success_P (int x) [Function]
Not err_P.
int success [Variable]

Successful execution (0).
Negative integers are used for errors according to increasingly severity, as follows:

int notpres [Variable]
Successful execution; no data present or no change made.

int terminated [Variable]
Failure; no damage; caller can retry operation.

int retryerr [Variable]
Failure; no damage; caller can retry operation.

int keyerr [Variable]
Failure, no damage, call was in error.

int argerr [Variable]
Failure, no damage, call was in error.

int noroom [Variable]
Failure, no damage, out of room in file.

int typerr [Variable]
Failure, file or object was not of correct type.

int joerr [Variable]
I/O error, DB may be damaged.

int strangerr [Variable]
Internal error, DB may be damaged.

int unkerr [Variable]
Placeholder code.

int maxerr [Variable]
All error codes are between 0 and ‘maxerr’.
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5.2 C# SEGs

int initWb (int maxNumEntsCnt, int maxNumBuks, int maxBlkSize) [Function]
Initializes the WB system. initWb should be called before any other WB functions.
maxBlkSize

The size of each disk cache buffer to be allocated from RAM. It should
be an integer multiple of the file-system block size. The minimum is 1.5
kB.

maxNumFEntsCnt
The number of (RAM) disk cache buffers to be allocated. This should be
proportional to the size of the database working set. If too small, then
the disk will be kept busy writing and reading pages which get flushed to
read in other pages. The minimum is 12 times the number of threads.

The product of maxNumFEntsCnt and maxBIkSize should be less than
the size of RAM on your computer.

maxNumBuks
The number of hash buckets for the (RAM) disk cache. It should not
be less than maxNumEntsCnt. The minimum is 2, maybe 3 (due to how
get-free-ent works).

If not all maxNumEntsCnt can be allocated (by malloc) then WB can still run prop-
erly. The number of buffers actually allocated is returned if successful; a status code
is returned otherwise.

If the bsiz argument to make-seg is larger than the maxBIkSize which was passed to
initWb, then the call to make-seg will fail.

int finalWb () [Function]
Frees all memory used by the WB system. All segments will be closed.

To preserve database consistency, it is important to call £inalWb or close-seg before
program termination if changes have been made to a segment.

The bsiz of a segment (given in call to make_seg) is a parameter crucial for performance;
balancing CPU time traversing blocks with file-system latency. bsiz should be an integer
multiple of the file-system block size.

In the 1990s our nominal bsiz was 2.kiB; now it should probably be 4.kiB, 8.kiB, or 16.kiB.

wb.Seg openSeg (String filename, bool mutable_P) [Function]
Opens the database file filename and returns a seg, false otherwise. The database will
be read-only if the mutable_P argument is false. It will be read-write if the mutable_P
argument is true.

wb.Seg openSegd (String filename, bool mutable_P, bool [Function]
evenIfDirty_P)

Opens the database file filename and returns a seg, false otherwise. The database will

be read-only if the mutable_P argument is false. It will be read-write if the mutable_P

argument is true. If the evenlfDirty_P argument is false, then openSegd will fail if

the database file filename was not closed cleanly; otherwise it will open, clean or not.
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int closeSeg (wb.Seg seg, bool hammer_P) [Function]
Closes database segment seg and the file containing it. If hammer_P is NULL, then
if there are any problems freeing buffers, then the close is aborted. A status code is
returned.

wb.Seg makeSeg (String filename, int bsiz) [Function]
The integer bsiz specifies the size of B-tree blocks. bsiz should be an integer multiple
of the file-system block size. Nominal value is 4096.

makeSeg returns an open new empty mutable database named backed by file filename
if successful; otherwise false is returned.

The write-control-bits argument (wcb) to these functions controls the latency of updates to
the file after various operations. These bits are defined as follows:

value C-name Meaning

1 wcb_sap save block after PUTs

2 wcb_sar save block after REMOVEs

4 wcb_sac force block save after cached block changes

8 wcb_fac flush buffer entirely after cached block changes (not

currently implemented)

int btOpen (wb.Seg seg, int blkNum, wb.Han han, int wcb) [Function]
Opens bt-handle han to seg number seg, block number blkNum, and returns the type
of the block. If no such block exists or is not a root block, then a (negative) status
code is returned.

int btCreate (wb.Seg seg, int typ, wb.Han han, int wcb) [Function]
Creates a new root block in seg seg of type typ, opens bt-handle han to it, and returns
a status code. If seg has insufficient room to create a new tree, then the noroom status
code is returned.

btCreate can be used to create temporary b-trees. Temporary trees will be be re-
claimed by check program after system crashes. In order to make a tree persistent,
add it to a directory (tree).

int btClose (wb.Han han) [Function]
Closes bt-handle han and returns SUCCESS.

Currently, btClose has no effect other than to clear han.

5.3 C# HANDs and Tree Operations

All of the methods listed here which take byte-array arguments can also take string argu-
ments, which get converted to UTF-8 byte-arrays.

void closeBt (wb.Han han) [Function]
Closes han

For create-db and open-db, the implicit WCB argument is the combination of ‘WCB-SAP’
and ‘WCB-SAR’.
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Han createDb (wb.Seg seg, int typ, byte [|nameStr) [Function]
Returns a B-tree whose name has been entered in the root directory if successful;
otherwise null.

typ should be either
e ’D’ (directory) or
e T’ (regular tree).
B-trees with typ #\D which are pointed to by special entries in the root block (1)

protect all their special entries from garbage collection by the wbcheck program. T’
is for regular (data) arrays.

Han openDb (wb.Seg seg, byte [|nameStr) [Function]
Returns the B-tree whose name has been entered in the root directory; or null if not
found.

int flushEnts (int attempts, int k) [Function]

k is the number of dirty block buffers to write to disk; attempts is the number of times
to try. Note that blocks in any segment may be written by flush-ents. flush-ents
returns the number of blocks written.

5.4 Record Operations

byte [I1bt_Get (wb.Han han, byte [|key) [Function]
han is a handle to an open bt. key is a string less than 255.B in length.

bt:get returns a string of the value associated with key in the bt which han is open
to. bt:get returns null if key is not associated in the bt.

byte [lbt_Next (wb.Han han, byte [|key) [Function]
han is a handle to an open bt. key is a string less than 255.B in length.

bt:next returns the next key in bt han or null if none.

byte [lbt_Prev (wb.Han han, byte [|key) [Function]
han is a handle to an open bt. key is a string less than 255.B in length.

bt:prev returns the previous key in bt han or null if none.

void bt_Put (wb.Han han, byte [|key, byte [JvalStr) [Function]
han is a handle to an open, mutable bt. key and val are strings less than 255.B in
length.

bt:put! associates key with val in the bt han. A status code is returned.

bool bt_Del (wb.Han han, byte [|key) [Function]
han is a handle to an open, mutable bt. key is a string less than 255.B in length.

bt:rem! removes key and it’s associated value from bt han.
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5.5 Mutual Exclusion

These 2 calls can be used for locking and synchronizing processes.

bool bt_Insert (wb.Han han, byte [|key, byte [JvalStr) [Function]
Associates key with val in the bt han only if key was previously empty. Returns true
for success, false for failure.

byte [lbt_Rem (wb.Han han, byte [|key) [Function]
Removes key and it’s associated value from bt han only if key is present. Returns
key’s value for success, null for failure (not present).

5.6 Multiple Operations

int bt_Delete (wb.Han han, byte [|key, byte [|key2) [Function]
Removes keys (and their associated values) between (including) keyl and (not in-
cluding) key2 from bt han. A status code is returned.

byte [lbt_Scan (wb.Han bthan, int op, byte [|kstri, byte [|kstr2, [Function]
string func, int blklimit)
btScan scans all keys in the range [kstrl..kstr2), performing one of several functions:

operation func RESULT

COUNT-SCAN NIL counts all keys in range

COUNT-SCAN given counts all keys in range satisfying func
REM-SCAN NIL deletes all keys in range

REM-SCAN given deletes all keys in range satisfying func
MODIFY-SCAN  NIL ARGERR

MODIFY-SCAN  given updates values for keys in range satisfying func

btScan returns null if there was an error; an empty byte-vector if scan completed; or
the next key to be scanned if blklimit was not ‘-1’.

Each block of data is scanned/deleted/modified in a single operation that is, the
block is found and locked only once, and only written after all modifications are
made. Tho only exception is that MODIFY-SCANSs that increase the size of values
can cause block splits. Such cases are detected and converted to a PUT plus a NEXT.
This has two consequences: data is written out each time a PUT occurs, and it is
conceivable that func may be called more than once on the key value that caused the
split if a RETRYERR occurs in the PUT. However, SCAN guarantees that only one
modification will actually be made in this case (so that one can write INCREMENT-
RANGE, for example).

func is passed pointers to (copies of) the key and value, plus one user argument:
func (keystr, klen, vstr, vlen, extra_arg);

func is expected to return either: SUCCESS for DELETE/COUNT, NOT-
PRES/NOTDONE for SKIP (ie, DONT DELETE/COUNT), or any other code to
terminate the scan resumably at the current point. For MODIFY-SCAN, if changing
the value, the new value length is returned. Except for the case mentioned above,
the caller can depend on func being called exactly once for each key value in the
specified range, and only on those values.
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If kstr2 <= kstrl, then no scan will occur (even if kstrl is found). To make possible
bounded-time operation btScan will access at most blkLimit blocks at a time; if you
dont care, give it -1 for blkLimit.

5.7 C# Legacy API

This API has identical argument configurations as the C code, including length arguments
to complement each byte-vector argument.

Note: most of the data-manipulating commands here can return notpres, with the followng
meanings:

bt-get key was not found.

bt-next no next key (eg, given key was last key).

bt-prev no prev key (eg, given key was first key).

bt-rem key was not found.

bt-put unused (could be symmetric with write).

bt-write key was found, so no write was done.

int btGet (wb.Han han, byte [|keyStr, int kLen, byte [|ansStr) [Function]

keyStr is a string of length kLen. btGet stores into the string ansStr the value
associated with keyStr in tree han. btGet returns the length of the string stored into
ansStr or an error code.

int btNext (wb.Han han, byte [|keyStr, int kLen, byte [JansStr) [Function]
keyStr is a string of length kLen. btNext stores into the string ansStr the next key
after keyStr in tree han. btNext returns the length of the string stored into ansStr
or an error code.

int btPrev (wb.Han han, byte [|keyStr, int kLen, byte [JansStr) [Function]
keyStr is a string of length kLen. btPrev stores into the string ansStr the last key
before keyStr in tree han. btPrev returns the length of the string stored into ansStr
or an error code.

int btRem (wb.Han han, byte [|keyStr, int kLen, byte [|ansStr) [Function]
keyStr is a string of length kLen. btRem stores into the string ansStr the value
associated with keyStr in tree han; then removes that association from tree han.
btRem returns the length of the string stored into ansStr or an error code.

If ansStr is 0, btRem removes the keyStr association from tree han and returns SUC-
CESS if successful; an error code if not.

int btRemRange (wb.Han han, byte [|keyStr, int kLen, byte [Function]
[|[key2Str, int k2Len)
keyStr must be a maximum-length (256 byte) string containing a key kLen bytes
long. key2Str is a string of length k2Len.

btRemRange removes [keyStr ... key2Str) and their values. If key2Str <= keyStr no
deletion will occur (even if keyStr is found). btRemRange returns SUCCESS if the
operation is complete, an error status code if not.
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int btPut (wb.Han han, byte [|keyStr, int kLen, byte [JvalStr, int [Function]
vLen)
keyStr is a string of length kLen. valStr is a string of length vLen. btPut makes the
value associated with keyStr be valStr in tree han. btPut returns a status code for
the operation.

int btWrite (wb.Han han, byte [|keyStr, int kLen, byte [|valStr, [Function]
int vLen)
keyStr is a string of length kLen. valStr is a string of length vLen. If han currently
contains an association for keyStr, then btWrite does not modify the tree and returns
the notpres status code.

Otherwise, btWrite makes the value associated with keyStr be valStr in tree han.
btWrite returns a status code for the operation.

int btScan (wb.Han han, int operation, byte [|kstril, int leni, [Function]

byte [|kstr2, int len2, string func, int [|1longTab, int [|respkt, int
blkLimit)

btScan scans all keys in the range [kstrl..kstr2), performing one of several functions:

operation func RESULT

COUNT-SCAN NIL counts all keys in range

COUNT-SCAN given counts all keys in range satisfying func

REM-SCAN NIL deletes all keys in range

REM-SCAN given deletes all keys in range satisfying func

MODIFY-SCAN  NIL ARGERR

MODIFY-SCAN  given updates values for keys in range satisfying func

btScan returns SUCCESS if scan completed; under any other result code the scan is
resumable. The possible results are:

NOTPRES
meaning the blkLimit was exceeded;

RETRYERR
meaning func or delete got a RETRYERRR;

TERMINATED
meaning func asked to terminate the scan;

<other error>
means func or DELETE encountered this errror.

Each block of data is scanned/deleted/modified in a single operation that is, the
block is found and locked only once, and only written after all modifications are
made. Tho only exception is that MODIFY-SCANs that increase the size of values
can cause block splits. Such cases are detected and converted to a PUT plus a NEXT.
This has two consequences: data is written out each time a PUT occurs, and it is
conceivable that func may be called more than once on the key value that caused the
split if a RETRYERR occurs in the PUT. However, SCAN guarantees that only one
modification will actually be made in this case (so that one can write INCREMENT-
RANGE, for example).
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func is passed pointers to (copies of) the key and value, plus one user argument:
func (keystr klen vstr vlen extra_arg);

func is expected to return either: SUCCESS for DELETE/COUNT, NOT-
PRES/NOTDONE for SKIP (ie, DONT DELETE/COUNT), or any other code to
terminate the scan resumably at the current point. For MODIFY-SCAN, if changing
the value, the new value length is returned. Except for the case mentioned above,
the caller can depend on func being called exactly once for each key value in the
specified range, and only on those values.

If kstr2 <= kstrl, then no scan will occur (even if kstrl is found). To make possible
bounded-time operation btScan will access at most blkLimit blocks at a time; if you
dont care, give it -1 for blkLimit.

The number of keys deleted/counted/modified is returned in the skey-count field
of respkt; the key to resume at is returned in kstrl (which therefore needs to be 256
bytes long); and the new key length is returned in the skey-1len field of respkt. If
returns SUCCESS, skey-len is zero. NOTE that skey-count is cumulative, so the
caller needs to initialize it to 0 when starting a new btScan.

WARNING: when btScan returns other than SUCCESS, it modifies the kstrl string
so that the string args are correctly set up for the next call (the returned value is the
new length for kstrl). Therefore, kstrl must be a mazimum-length string!
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6 SCM Interface

DBSCM is a disk based, sorted associative array package (WB) integrated into the Scheme
implementation SCM. These associative arrays consist of keys which are strings of length
less than 256 bytes and values which are strings of length less than 64770.B. Associative
arrays can be used to form a MUMPS style database which can be used to implement
standard record structures without auxiliary files (see example in example.scm).

The WB implementation (compiled) adds about 66 kilobytes to the size of SCM.

6.1 SCM Status Codes

err? x [Function]
Return x if a valid error code (-1 ... MAXERR); else #f.

success? X [Function]
Not err?.
success [constant)]

Successful execution (0).
Negative integers are used for errors according to increasingly severity, as follows:

notpres [constant)
Successful execution, no data present or no change made

terminated [constant]
Failure, no damage, caller can retry operation

retryerr [constant)
Failure, no damage, caller can retry operation

keyerr [constant]
Failure, no damage, call was in error

argerr [constant)]
Failure, no damage, call was in error

noroom [constant)
Failure, no damage, out of room in file.

typerr [constant]
Failure, file or object was not of correct type.

ioerr [constant)
I/O error, DB may be damaged.

strangerr [constant]
Internal error, DB may be damaged.
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unkerr [constant]
Placeholder code.

maxerr [constant)
All error codes are between 0 and maxerr.

6.2 SCM Segments

The block-size of a segment (given in call to make-seg) is a parameter crucial for perfor-
mance; balancing CPU time traversing blocks with file-system latency. block-size should
be an integer multiple of the file-system block size.

In the 1990s our nominal block-size was 2.kiB; now it should probably be 4.kiB, 8.kiB, or
16.kiB.

init-wb max-num-ents max-num-buks max-blk-size [Scheme Procedure]
Initializes the WB system. Max-blk-size determines the size of the disk cache buffers.
max-num-ents is the number of disk cache buffers to be allocated. (* max-num-
ents Max-blk-size) should be less than the size of RAM on your computer. If not
all max-num-ents cannot be allocated (by malloc) then WB can still run properly.
max-num-buks is the number of hash buckets for the disk cache. It should be of
approximately the same size as or larger than max-num-ents. The number of buffers
actually allocated is returned if successful; a status code is returned otherwise.

If init-wb is called with the same arguments after it has already been called, NOTPRES
(-1) is returned.

final-wb [Scheme Procedure]
Frees all memory used by the WB system. All segments will be closed.

open-seg filename mutable? [Scheme Procedure]
Opens the database file filename and returns a segment if successful, and false oth-
erwise. The database will be read-only if the mutable? argument is false. It will be
read-write if the mutable? argument is true.

close-seg seg hammer [Scheme Procedure]
Closes database segment seg and the file containing it. If hammer is #f then if there
are any problems freeing buffers then the close is aborted. A status code is returned.

make-seg filename block-size [Scheme Procedure]
The integer block-size specifies the size of B-tree blocks. block-size should be an
integer multiple of the file-system block size. Nominal value is 4096.

make-seg creates a new open empty mutable database seg of name filename. If
successful, seg is returned; otherwise a status code is returned.

6.3 SCM B-Trees

The write-control-bits argument (WCB) to these functions controls the latency of updates
to the file after various operations. These bits are defined as follows:
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value Name Meaning

1 WCB-SAP save block after PUTs

2 WCB-SAR save block after REMOVESs

4 WCB-SAC force block save after cached block changes (not cur-
rently implemented)

8 WCB-FAC flush buffer entirely after cached block changes (not

currently implemented)

create-bt seg typ wcb [Scheme Procedure]
Creates a new root block in seg seg of type typ and returns a bt-handle open to it if
successful; otherwise #f. This would typically be used to create a temporary b-tree
which should be reclaimed by check if system crashes.

open-bt seg blknum wcb [Scheme Procedure]
Returns a bt-handle open to seg number seg, block number blknum if successful;
otherwise #f. If no such block exists or is not a root block, #f is returned.

For create-db and open-db, the implicit WCB argument is the combination of ‘WCB-SAP’
and ‘WCB-SAR’.

create-db seg typ name [Scheme Procedure]
Returns a B-tree whose name has been entered in the root directory if successful;
otherwise #f.

typ should be either
e #\D (directory) or
o #\T (regular tree).
B-trees with typ #\D which are pointed to by special entries in the root block (1)

protect all their special entries from garbage collection by the check program. #\T is
for regular (data) arrays.

open-db seg name [Scheme Procedure]
Returns the B-tree whose name has been entered in the root directory or #f if not
found.

Dirty block buffers can also be flushed to disk by calls to flush-ents. flush-ents can be
called at any time after WB is initialized, even by an asynchronous background process.

flush-ents attempts k [Scheme Procedure]
k is the number of dirty block buffers to write to disk; attempts is the number of times
to try. Note that blocks in any segment may be written by flush-ents. flush-ents
returns the number of blocks written.

Block numbers are stored in the directory as four-byte integers. In order to make WB
files portable between big-endian and little-endian computers, all conversions of four-byte
pointers should be done by str2long and long2str!.
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str2long string index [Scheme Procedure]
Converts the 4 bytes in string starting at index into an unsigned integer and returns
it.

long2str! string index integer [Scheme Procedure]

Stores integer into 4 bytes of string starting at index.

6.4 SCM Record Operations

bt:get han key [Scheme Procedure]
han is a handle to an open bt. key is a string less than 255.B in length.

bt:get returns a string of the value associated with key in the bt which han is open
to. bt:get returns #f if key is not associated in the bt.

bt:next han key [Scheme Procedure]
han is a handle to an open bt. key is a string less than 255.B in length.

bt:next returns the next key in bt han or #f if none.

bt:prev han key [Scheme Procedure]
han is a handle to an open bt. key is a string less than 255.B in length.

bt :prev returns the previous key in bt han or #f if none.

bt:put! han key val [Scheme Procedure]
han is a handle to an open, mutable bt. key and val are strings less than 255.B in
length.

bt:put! associates key with val in the bt han. A status code is returned.

bt:rem! han key [Scheme Procedure]
han is a handle to an open, mutable bt. key is a string less than 255.B in length.

bt:rem! removes key and it’s associated value from bt han.

The value strings bt:get and bt:put! work with are limited to 255.B in length. db:get
and db:put! work with value strings up to 64770.B in length.

db:get han key [Scheme Procedure]
han is a handle to an open bt. key is a string less than 255.B in length.

db:get returns a string (up to 64770.B long) of the value associated with key in the
bt which han is open to. Returns #f if key is not in the bt.

db:put! han key val [Scheme Procedure]
han is a handle to an open, mutable bt. key is a string less than 255.B in length. val
is a string less than 64770.B in length.

db:put! associates key with val in the bt han. A status code is returned.
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6.5 SCM Mutual Exclusion

These 2 calls can be used for locking and synchronizing processes.

bt:put han key val [Scheme Procedure]
Associates key with val in the bt han only if key was previously empty. Returns #t
for success, #f for failure.

bt:rem han key [Scheme Procedure]
Removes key and it’s associated value from bt han only if key is present. Returns
key’s value for success, #f for failure (not present).

6.6 SCM Multiple Operations

bt:rem* han keyl key2 [Scheme Procedure]
Removes keys (and their associated values) between (including) keyl and (not in-
cluding) key2 from bt han. A status code is returned.

bt:scan han op keyl keyZ2 func blklimit [Scheme Procedure]
Applies procedure func to a range of keys (and values) and either counts, modifies,
or deletes those associations. A list of a status code, the count of records processed,
and a new value for keyl is returned.

If op is -1, indicated keys will be deleted; If op is 0, indicated keys will be counted; If
op is 1, the value of each key in the range will be changed to be the string returned
by func.

Func is called with 2 string arguments, the key and the value. If op is 1 and func
returns #f then no change will be made. If op is 1 and func returns a string then that
string will replace the value for that key. For the other (count, delete) modes, func
should return #f or #t. If func is #t, the association will be counted (and possibly
deleted).

Keys from keyl (inclusive) up to key2 (exclusive) are scanned. If blklimit is -1
then the entire range is scanned; otherwise only as many blocks (internal database
structures) as specified by blklimit are scanned. The scan can be restarted by using
the returned information. For instance, the following expression counts the number
of keys between "3" and "4" one block at a time and returns a list of the number of
keys and the number of blocks.

(do ((res (bt:scan current-bt 0 "3" "4" (lambda (k v) #t) 1)
(bt:scan current-bt 0 (caddr res) "4" (lambda (k v) #t) 1))
(blks O (+ 1 blks))
(cnt 0 (+ cnt (cadr res))))
((not (= -1 (car res))) (list (+ cnt (cadr res)) (+ 1 blks))))

It is good to specify a positive blklimit when dealing with large scans. More details
on the operation of scan can be found in scan.scm.

6.7 SCM Diagnostics

The value returned by the following routines is unspecified.
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check-access [Scheme Procedure]
Checks that buffers and locks are in a consistent state and fixes them if WB routines
have been interrupted.

clear-stats [Scheme Procedure]
Resets all the collected statistics to 0.

stats [Scheme Procedure]
Prints a summary of operational statistics since the last clear-stats or cstats.

cstats [Scheme Procedure]
Prints a summary of operational statistics since the last clear-stats or cstats, then
calls clear-stats.

show-buffers [Scheme Procedure]
Prints a table of the status of all disk cache buffers.



61

7 SCM Relational Databases

These relational database packages are for the SCM interface.

7.1 wb-table
(require ’wb-table)

wb-table is a straightforward embedding of SLIB base-table (see Section “Base Table” in
SLIB) in WB with SCM. It supports scheme expressions for keys and values whose text
representations are less than 255 characters in length. The primitive types supported are:

boolean #t or #f.

string 0 - 255 byte string.

symbol 0 - 255 byte symbol.

atom internal legacy alias for symbol (or #f).

integer

number

ordinal String representation (< 256.B) of numbers. Nonnegative integers sort
correctly.

expression Scheme expression (representation must be < 256.B).

7.2 rwb-isam
(require ’rwb-isam)

rwh-isam is a sophisticated base-table implementation built on WB and SCM which uses
binary numerical formats for keys and non-key fields. It supports IEEE floating-point and
fixed-precision integer keys with the correct numerical collation order.

In addition to the types described for wb-table, rwh-isam supports the following types for
keys and values:

r64 Real represented by one IEEE 64.bit number.
r32 Real represented by one IEEE 32.bit number.
s64 Signed 64.bit integer.

$32 Signed 32.bit integer.

s16 Signed 16.bit integer.

s8 Signed 8.bit integer.

u64 Nonnegative 64.bit integer.

u32 Nonnegative 32.bit integer.

ul6 Nonnegative 16.bit integer.

u8 Nonnegative 8.bit integer.

Complex numbers are supported for non-key fields:

c64 Complex represented by two IEEE 64.bit numbers.
c32 Complex represented by two IEEE 32.bit numbers.
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