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Abstract— We developed a deadbeat foot placement hopping
controller for an untethered monopedal robot, Salto-1P. The
controller uses a third order Taylor series approximation to
an offline dynamic model and performs well on the physical
platform. The robot demonstrated precise foot placement even
on trajectories with aggressive changes in speed, direction, and
height: in a random walk, its error standard deviation was 0.10
m. We establish how foot placement precision is tightly limited
by attitude control accuracy, requiring attitude error less than
0.7 degrees for some tasks. We also show how foot placement
precision degrades linearly as hopping height increases. These
precision results apply to the large class of controllers that
prescribe touchdown angle to control running velocity.

I. INTRODUCTION

Legged robots offer unique capabilities and challenges
when compared to other mobile platforms. Legged platforms
can move over rough or even discontinuous surfaces by tak-
ing advantage of isolated footholds inaccessible to wheeled
or tracked platforms. By jumping, a legged platform may
traverse terrain in which useable footholds may be distributed
at distances larger than the bodylength of the platform.
Unlike heavier-than-air aerial platforms that must produce
lift, legged platforms are not subject to ground effect and
do not produce downwash that might kick up dust or blow
away light objects.

Campana and Laumond developed a ballistic motion plan-
ning algorithm for saltatorial locomotion that respects takeoff
velocity and friction cone limits in complicated terrain [3].
The planner is able to find trajectories across disparate
stepping stones or even up channels between vertical walls.
Using trajectories like these, jumping robots could traverse
terrain that could be extremely difficult for other kinds of
platforms. However, following these trajectories in complex
terrain requires very accurate foot placement to avoid missing
a foothold. A robot must be able to accurately redirect its
ballistic trajectory towards the next foothold using only one
stance phase. This single-stance control is akin to deadbeat
control of a discrete-time system and we will likewise call a
controller with this ability a deadbeat foot placement hopping
controller. This work aims to improve the foot placement
precision of a small jumping robot by developing deadbeat
foot placement hopping control and examines the effect of
attitude error on foot placement precision.
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Fig. 1: Robot platform Salto-1P jumps on a chair.

One particularly useful model of legged locomotion both
in robotics and biology is the Spring Loaded Inverted Pen-
dulum (SLIP) [2]. In his seminal work on dynamic legged
systems [14], Raibert laid out simple control policies that
balance a SLIP-like monopedal hopping robot. Significant
work has built upon this controller and proposed related
control schemes like [19].

However, the SLIP dynamics cannot be integrated to
produce a closed-form solution except for particular non-
linear spring forces without gravity. In [17] a closed-form
integrable SLIP-like model is used to derive deadbeat control
of hopping apex state. Many approximations to the SLIP
dynamics like [18], [7], and [16] have also been proposed to
sidestep the non-integrability.

Numerical simulation of the hopper dynamics is another
approach. In [15], a lookup table and a polynomial approx-
imation to the table selected control inputs. In [4], [22],
and [20] deadbeat hopping of SLIP-like models is examined
analytically and in simulation. In addition, sensitivity of a
deadbeat controller to model error and control input error
was examined in [22], finding that more aggressive turns
produced larger errors. Without using SLIP dynamics, [1]
and [6] investigated sequencing deadbeat control of monope-
dal jumping platforms. Clocked deabeat control of vertical
hopping without horizontal dynamics was derived in [5]. A
reachability approach controlled the next apex state during
the stance phase in [12].
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Fig. 2: Reference frames and variables.

Several works have demonstrated precise foot placement
in physical experiments. Hodgins demonstrated precise foot
placement to enable stair climbing with a boom-mounted
planar robot by controlling the step length through variation
in the horizontal velocity, flight time, and stance time [11].
In [21] partial feedback linearization demonstrated high
precision foot placement also on a boom-mounted robot.

A. Physical Platform

Salto-1P shown in Fig. 1 is a small monopedal jumping
robot developed in [8] [9] [10] [13]. It uses a series-elastic
power modulating leg to power rapid high jumps. In the air,
a balanced inertial tail controls the robot’s pitch and two
small laterally directed propellers atop the robot control its
roll and yaw. The robot carries a 6-axis inertial measurement
unit (IMU), encoders to measure the position of its leg, leg
motor, and tail, memory for logging experimental data, and
an XBee radio for communication with the ground station.

II. METHODS

A. Approach

In developing a deadbeat foot placement hopping con-
troller, we consider a SLIP-like hopping model shown in
Fig. 2. Jumping motion can be divided into alternating stance
phases (stances) and flight phases (flights). Touchdown is the
transition between flight and stance when the foot strikes the
ground at a foot placement point. Takeoff is the transition
between stance and flight when the foot leaves the ground.

During flight, a jumping robot has no control over the
motion of its center of gravity (CG) without specialized
means to apply large forces in the air. Its CG trajectory in
flight (flight path) is a ballistic parabola set by its previous
foot placement and velocity at takeoff. The robot has only
a little control over its next foot placement and velocity at
touchdown through reorienting its foot relative to its CG.

To reach a desired foothold, the robot must set its velocity
at takeoff to aim its flight path towards the foothold. Takeoff
velocity can be changed either by control action during
stance or by changing stance initial conditions like leg angles
at the previous flight’s touchdown. [10] demonstrated that
this latter technique was useful for robots like Salto-1P that
have stances too fast for effective closed-loop control. Thus
to achieve deadbeat foot placement hopping control, a robot
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Fig. 3: Simulation model.

can set touchdown conditions from its previous flight to aim
its next flight path towards the desired foothold.

We split the deadbeat foot placement hopping control into
two parts. The first part, a velocity planner, determines what
takeoff velocity ~vt will take the robot from its upcoming foot
placement pl and place its next foot placement pn on the
desired foothold at pt. Since a family of ballistic parabolas
pass through two points, the velocity planner has one free
variable that it can set by selecting a parameter like vertical
velocity at takeoff or apex height.

The second part, a velocity controller, determines appro-
priate touchdown conditions so that the stance phase will
start from the touchdown velocity ~vi and end at the takeoff
velocity ~vo so that ~vo = ~vt computed by the velocity planner.
Salto-1P’s touchdown is parameterized by the roll angle (φ)
pitch angle (θ), and leg length (l). Touchdown leg length
changes the impulse delivered on the ground: a shorter initial
length provides a larger net impulse. We parameterize the
robot’s attitude with ZXY Euler angles, but ignore the yaw
angle (ψ) since the SLIP-like model is symmetric about Z.

We assume the robot’s leg length is small relative to its
jump height as is the case for Salto-1P. Therefore, the effects
of φ, θ, and l on pl and ~vi can be ignored so that the velocity
controller’s actions do not affect the velocity planner.

B. Simulation Model

In order to predict ~vo resulting from certain touchdown
conditions, we simulated stance in a custom Matlab rigid
body simulation matched to the physical parameters of Salto-
1P. This model consists of three bodies shown in Fig. 3: a
rigid body for the main body of the robot, a rigid body for
the tail connected to the main body by a pin joint, and a point
mass on a linear sliding constraint relative to the main body
to serve as the foot and approximate the mass and inertia of
the leg.

Leg force is computed with a leg friction model and
nonlinear spring model from [9], the kinematic relationship
between the crank angle and the foot extension produced by
the 8-bar linkage, and a DC motor model.

The touchdown transition is modeled as an inelastic col-
lision between the point mass foot and the rigid ground.
Takeoff is another inelastic collision in which the stance
leg length reaches its maximum extension and momentum
transfers from the main body to the foot.



Salto-1P’s moment of inertia about its lateral and longitu-
dinal axes are both approximately 130× 10−6 kg m2. Since
the robot weighs 0.103 kg and its CG is 0.10 m above its
foot with the leg fully retracted, the robot’s moment of inertia
about its foot is dominated by the CG distance from the foot
and is not significantly changed by the robot body’s heading.
Since the robot’s foot moves along a straight line coincident
with the CG and its moment of inertia is nearly the same at
all headings, the robot’s stance phase is insensitive to heading
and its touchdown yaw angle can be neglected.

Furthermore, since the balanced inertial tail’s angular
velocity is kept low by braking during stance phase, the
tail’s angular momentum is small compared to the angular
momentum due to the motion of the robot’s CG. As with
the robot’s yaw heading, the tail angle and angular velocity
are also neglected. With the above assumptions, the robot’s
behavior is similar to a SLIP-like point mass with a motor-
controlled leg force and we can reduce the number of
parameters that must be searched in simulation.

Adopting the convention of [22], ~vi is measured aligned
with the horizontal bearing of the robot’s velocity. In this
touchdown velocity-aligned frame, ~vi has only two elements:
longitudinal (vix) and vertical (viz). ~vo has three elements:
longitudinal (vox), lateral (voy), and vertical (voz). This
simulation approximates a map from ~vi to ~vo controlled by
φ, θ, and l, ~vo = fs(~vi, φ, θ, l).

C. Velocity Controller

The velocity controller is composed of three functions
whose inputs are the touchdown velocity and desired takeoff
velocity φ = fφ(~vi, ~vt), θ = fθ(~vi, ~vt), l = fl(~vi, ~vt).

From the SLIP-like model’s rotational symmetry about the
Z-axis and the coordinate frame selection, there are several
symmetries in the velocity control functions:

• fθ is odd in x (fθ(vix, viz, vtx, vty, vtz) =
−fθ(−vix, viz,−vtx, vty, vtz)) and even in vty .

• fφ is odd in vty and even in x.
• fl is even in x and vty .
We ran simulations of stance for a grid of 16,170 touch-

down conditions. The baseline θ resolution was 0.05 rads
and the φ resolution was 0.03 rads but these became finer
and confined to a smaller deviation for larger viz since
large deflections would have caused slipping. The horizontal
and vertical velocities were swept at a constant step of 0.4
m/s from -2.2 to 2.2 m/s and -2.0 to -4.4 m/s respectively.
l varied from 0.226 m to 0.25 m at a constant step of
0.004 m. Simulations for which the main body impacted
the ground, reached velocities outside the range of the
touchdown velocities, and those for which the foot would
slip on a flat horizontal surface with coefficient of friction 1
were discarded.

Similarly to [15], we use a polynomial approximation
for the velocity controller functions. We fit five-dimensional
third-order Taylor series approximations for fθ, fφ, and fl
centered at the point vix = vox = 0 m/s, −viz = voz = 3.3
m/s and voy = 0 m/s using the simulation data. This point
corresponds to hopping in place with an apex height of 0.55
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Fig. 4: Block diagram of experimental system, deadbeat velocity
planning, and deadbeat velocity control. The Raibert controller
replaced the “Velocity controller” block during comparison exper-
iments.

m. Due to the symmetry constraints outlined above, there are
31 non-zero coefficients in total: five linear, eleven quadratic,
and fifteen cubic terms. The final velocity controller fθ
function is given below as an example:

fθ(vix, viz,vtx, vty, vtz) = −0.2071vix + 0.078vtx

− 0.0385vixviz + 0.0196vtxviz

− 0.0052vixvtz − 0.04vtxvtz

+ 0.003v3ix − 0.036v3tx

− 0.0024vixv
2
ty − 0.0046vtxv

2
ty

(1)

After the deadbeat velocity controller computes the desired
θ and φ angles, they are rotated out of the touchdown
velocity-aligned frame to the ZXY Euler angle frame.

D. Velocity Planner

The flight estimation and velocity planner determine the
desired takeoff velocity vt at the end of the upcoming stance
so that the robot next lands at pt. For convenience, the height
of pl is assumed to be the height of the previous desired foot
placement. pl is then predicted as the point at which the flight
path reaches this height.



The velocity planner computes the desired flight time tf
from vtz and the heights of the foot placements ptz , and plz .

tf =
vtz
g

+

√
v2tz − 2g(ptz − plz)

g

vtx and vty are then the horizontal displacement of pt
from pl divided by the desired flight time. These velocities
are rotated into the touchdown velocity-aligned frame.

vtx =
ptx − plx

tf
, vty =

pty − ply
tf

Note that we ignore the foot deflection away from the CG
trajectory as stated earlier. In the results we show that this
error is small in comparison to other errors.

E. Physical experiments

The Salto-1P robot in Fig. 1 was used for the following
experiments. It can jump 0.90 m high with a vertical jumping
agility of 1.36 m/s [8]. The robot is 0.17 m tall with leg
retracted and 0.32 m tall with leg fully extended.

Optitrack Prime 13 cameras and Motive software track
retroreflective markers on the robot. As shown in Fig. 4,
motion capture data stream at 100 Hz to a ground station
laptop running ROS. The ground station uses a Kalman
filter to estimate the robot’s linear position and velocity in
flight and uses these to predict pl. Acceleration is estimated
by double-differentiation of position. Touchdown is detected
when acceleration exceeds a threshold. The Kalman filter is
disabled in stance and reinitialized shortly after takeoff.

For each experiment, we specify a list of desired foot
placements to define the desired hopping trajectory. Each
desired foot placement has five parameters: x, y, and z po-
sition of pt, desired yaw angle, and desired vertical velocity
at takeoff.

The step count increments by one upon touchdown. The
next desired foot placement in the list of desired foot
placements is then selected as the new pt. The velocity
planner computes vt from pl and pt. The velocity controller
computes the desired φ, θ, and l.

The groundstation computer sends the attitude measured
by the motion capture system, desired touchdown attitudes,
and desired leg length to the robot via the XBee radio.

The robot’s onboard microcontroller runs asynchronously
from the ground station. Three 1 kHz proportional derivative
(PD) controllers on yaw, roll, and pitch angles activate the
thrusters and tail in flight to stabilize the robot’s attitude
to the desired touchdown leg angles. Another 1 kHz PD
controller retracts the leg to the desired length. The mi-
crocontroller integrates rate gyroscope readings from the
onboard IMU to estimate attitude. It fuses this estimate with
the received motion capture attitude measurement to prevent
drift due to accumulation of integrated gyroscope error.

The robot also detects its own touchdown by measuring
the deflection of the series elastic spring. If this exceeds a
threshold, the robot determines that it has hit the ground
and it extends its leg. Takeoff is detected when the spring
deflection reaches zero or the leg reaches its full extension.
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Fig. 5: Experimental comparison of deadbeat velocity controller
and Raibert hopper controller foot placement error.

After each experiment, we manually synchronize recorded
groundstation and robot data by aligning motion capture
measurements of robot height with onboard measurements
of leg deflection during stance.

III. RESULTS

A. Foot Placement Accuracy

To evaluate foot placement accuracy, the robot was com-
manded to follow a series of 95 foot placements in a
random walk on flat ground with a yaw heading of zero
and random vertical velocity changes. The commanded and
achieved foot placement trajectories are shown in Fig. 5.
Longitudinal (x) displacements ranged up to 1.3 m and
lateral (y) displacements ranged up to 0.36 m corresponding
to longitudinal speeds up to 1.68 m/s and lateral speeds up to
0.43 m/s. The longest jumps were over four times the robot’s
body length. The largest change in horizontal velocity in one
stance was 2.93 m/s. The longitudinal jumps are larger than
the lateral because Salto-1P’s inertial tail has greater control
authority than its lateral thrusters. Horizontal jump direction
angle change covered all angles from -180 degrees to +180
degrees. Desired vertical velocity at takeoff changed by up
to 0.5 m/s higher or lower on each jump.

This experiment compared the performance of the dead-
beat velocity controller and an optimally tuned Raibert
controller. This Raibert controller replaced the “Velocity
controller” block in Fig. 4. Since the Raibert horizontal
velocity controller is parameterized only by one feedback
gain, this parameter was optimized by hand tuning. Thrust
control was selected by looking up l based on vtz in a linearly
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Fig. 6: Experimental deadbeat velocity controller and Raibert
hopper controller foot placement error and vertical velocity error.

Longitudinal Error [m] STD 95th percentile
Previous controller [10] 0.516 1.0
Optimal Raibert 0.306 0.6
Deadbeat 0.097 0.3

TABLE I: Experimental longitudinal foot placement accuracies for
different controllers. For comparison, data from [10] were collected
from a slightly less agressive run with only longitudinal jumps
commanded.

interpolated lookup table of six experimentally measured
pairs of leg length and steady-state hopping vertical velocity.
In the canonical Raibert hopper controller, the stance dura-
tion is assumed to be the same as the last stance duration,
but we used a second linearly interpolated lookup table of
steady state hopping vertical velocity and stance duration
since measuring stance duration was difficult for the motion
capture system.

Fig. 6 compares the foot placement error pn − pt and
vertical velocity error voz−vtz of the Raibert controller and
deadbeat velocity controller. The Raibert controller achieved
a foot touchdown error standard deviation of 0.306 m longi-
tudinally and 0.156 m laterally, while the deadbeat velocity
controller achieved a foot touchdown error standard deviation
of 0.092 m longitudinally and 0.097 m laterally.

Both controllers experienced decreased hopping height
over time as the robot’s battery voltage dropped during the
run. The Raibert hopper controller was less able to follow
quick changes from one vtz to the next and rounded off
the corners of voz . In comparison, though its voz had a
steady offset below vtz as the battery depleted, the deadbeat
velocity controller better adjusted voz in a single stance
phase. The Raibert hopper controller achieved a vertical

Attitude 
Error 

Foot Placement Error 
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Fig. 7: Propagation of touchdown leg angle error to foot placement
error.

velocity error standard deviation of 0.29 m/s while the
deadbeat velocity controller achieved a vertical velocity error
standard deviation of 0.20 m/s.

Foot placement precision is important since this defines the
foothold size that the robot can reasonably hit. The Raibert
controller placed 95 percent of its touchdowns within 0.6 m
of the desired position, while the deadbeat velocity controller
placed 95 percent of its touchdowns within 0.3 m of the
desired position.

B. Foot Placement Sensitivity to Touchdown Leg Angle

Like [14], [19], [22], [20] and others, our algorithm
controls hopping by selecting touchdown leg angles and
leg lengths during flight. Consequently, the foot placement
accuracy is sensitive to the flight attitude control accuracy
used to position the leg as shown in Fig. 7. To investigate
how φ and θ accuracy would affect foot placement accu-
racy, we examined the sensitivity of ~vo to the touchdown
conditions. Using the simulation results that generated the
deadbeat velocity controller, we calculated sensitivity by
discrete differentiation of ~vo with respect to ~vi, φ, θ, and l.
This approximated the Jacobian of the stance velocity map
fs at each point in the grid of simulated initial conditions.

As expected, takeoff longitudinal velocity vox is highly
sensitive to θ, and takeoff lateral velocity voy is highly
sensitive to φ. vox is insensitive to φ and voy is insensitive to
θ. These sensitivities are the coefficients by which leg angle
errors will propagate into the takeoff horizontal velocities
and foot placements.

Importantly, the sensitivity of takeoff horizontal velocity
to touchdown leg angles increases as the robot’s touchdown
vertical velocity viz and takeoff vertical velocity voz become
faster. Fig. 8A shows this sensitivity plotted against viz .
The relationship is approximately linear with some upwards
curvature. In steady forward hopping at vix = vox = 1.0
m/s and viz = voz = 2.4 m/s, vox varies at 0.13 m/s
per degree of θ deflection and voy varies at -0.13 m/s per
degree of φ deflection. For higher steady forward hopping at
vix = vox = 1.0 m/s and viz = voz = 4.0 m/s, the horizontal
velocity sensitivity magnitudes are 0.35 m/s per degree. The
magnitudes of the vox sensitivity to θ and the voy sensitivity
to φ remain very close to each other throughout the operating
domain, so only the longitudinal direction is shown in Fig.
8A. Horizontal velocity sensitivity to touchdown leg angles
also varies with touchdown leg length l but the effect is
smaller than that of vertical velocity.
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Fig. 8: A) Simulation data showing the sensitivity of vox to
deviations in θ plotted against viz for the entire range of simulated
initial conditions. Mean sensitivity is shown in black and one
standard deviation is shown in grey.
B) Correlation between leg angle error and horizontal velocity
error in the random walk experiments. The lines have slope 0.2,
as predicted for this task by A).

To investigate how attitude control error propagates to foot
placement error, we consider steady hopping over mostly flat
terrain in which the vertical velocities change little from hop
to hop. On horizontal surfaces, horizontal foot placement
error is the product of the takeoff horizontal velocity error
and the flight time plus errors due to flight time error.
As shown in Fig. 8A, the horizontal velocity sensitivity to
touchdown leg angles rises somewhat linearly with vertical
velocity. Flight time rises approximately linearly with vzo
when the apex is significantly higher than the terrain height
variation. Therefore the foot placement error rises approx-
imately quadratically with vertical velocity for a given leg
angle error. Apex height rises quadratically with increasing
vzo, thus foot placement error is approximately linearly
related to apex height. Smaller jumps are significantly more
precise than higher jumps for a given flight attitude control
accuracy. From the numerical sensitivity data, to achieve
a foot placement error lower than 0.15 m, the acceptable
touchdown leg angle error is 2.8 degrees for vzi = vzo = 2.4

m/s but only 0.5 degrees for vzi = vzo = 4.0 m/s.
There is also a lower limit to effective hopping height

since flight time decreases linearly with takeoff vertical
velocity. If the flight time is too small, the angular velocity
required for leg reorientation will exceed the flight attitude
control authority and the touchdown attitude error will suffer.
Therefore, there is a mid-to-low hop height for which the foot
placement accuracy is optimal.

Attitude error propagation sets a foot placement precision
limit for a given attitude control accuracy. During the dead-
beat velocity controller’s random walk task, the touchdown
leg angle errors were approximately Gaussian with standard
deviations of 0.58 degrees in θ and 0.75 degrees in φ. For
this task, the numerical sensitivity data predict a takeoff
horizontal velocity sensitivity to touchdown leg angle of
about 0.2 (m/s)/deg, shown in Fig. 8B by black lines. This
prediction matches the observed data relatively well. θ error
was correlated to vox error with a coefficient of -0.61 and φ
error was correlated to voy error with a coefficient of 0.75 as
shown in Fig. 8B. This shows that a significant component of
the foot placement errors can be attributed to the touchdown
leg angle error and the deadbeat velocity controller operated
relatively near the foot placement precision limit of the
attitude control accuracy.

In comparison, the Raibert controller random walk θ
error and vox error were correlated by a coefficient of -
0.04 and the φ error and voy error were correlated by a
coefficient of 0.49. The lower correlations, particularly in
the longitudinal direction, are because the contribution of
touchdown leg angle error to foot placement error is dwarfed
by the contributions of other errors in the Raibert controller.

C. Jumping on a chair and desk

With the deadbeat foot placement hopping controller’s
superior accuracy, we demonstrated that the robot can jump
up on top of a chair and desk as shown in Fig. 9. The jumping
trajectory and foot placement errors are shown in Fig. 10.
The plastic folding chair is 0.44 m tall at the front, 0.40 m
tall at the back, 0.37 m deep, and 0.38 m wide. Jumping
onto the chair requires foot placement accuracy better than
the horizontal dimensions of the seat in order to avoid falling
off. For viz = voz = 3.9 m/s, the stance initiating the jump
onto the chair has an allowable touchdown leg angle error
of 0.7 degrees. The desk is a standard 28 inches high (0.71
m), 0.7 m deep, and 1.2 m wide. Both the jump from the
ground to the chair and from the chair to the desk are higher
than the robot’s full body length. The robot jumped 0.5 m
longitudinally to mount the chair and then 0.3 m laterally to
mount the desk.

This is a challenging task since the chair seat is small
in comparison to the foot placement precision from attitude
control accuracy; the robot did not always complete it
successfully. This task also requires large changes in energy
to mount and descend obstacles higher than the robot’s size.
The robot achieved desired vertical takeoff velocities by
adding and removing energy when jumping higher and lower.



Fig. 9: The robot jumps up onto a chair and desk (trajectory in
blue), then back down (not shown here, but shown in Fig. 10).
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Fig. 10: A) Foot placements and height of the robot as it jumps
onto the chair and desk and then back down.
B) Foot placement and voz error. Grey bars show foot placement
error for the standard deviation of the random walk angle error. To
avoid falling, foot placement error cannot cross furniture edges.
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Fig. 11: Hopping on a moving platform.

D. Jumping on a moving platform

Finally, the deadbeat foot placement hopping controller
is quick to compute and is robust to moderate ground
disturbances. Due to its quick computation, it is able to
quickly retarget to a new desired touchdown location. To
demonstrate this, we outfitted a hand-carried wooden board
with motion capture markers and commanded the robot to
jump to a point on the board. The robot was commanded
to alternate between the ground at (0,0,0) and the point on
the board. The trajectories of the point on the board and the
robot foot placements are plotted in Fig. 11.

The robot converged quickly to alternating between (0,0,0)
and the board. At nineteen seconds, the platform was lifted
off the ground. The robot completed two jumps from the
ground to the board before being captured on top of the board
at 22 seconds. The robot stabilized on top of the moving
board until the board was placed on the ground and moved
rapidly to the side at 33 seconds. The robot jumped between
(0,0,0) and board twice before the aggressive horizontal jump
length caused the robot to slip and fall over.



IV. CONCLUSION

We demonstrate that our deadbeat foot placement hopping
controller achieves superior foot placement precision and
jumping height adjustment when compared to an optimally
tuned Raibert hopper controller for Salto-1P. This controller
is capable of rapid changes in direction and velocity in-
cluding reversing direction and turning at right angles. It is
capable of controlling the energy in the system to achieve
desired takeoff vertical velocities in a single jump.

We also analyze the sensitivity of the robot’s takeoff veloc-
ity to touchdown leg angle deflections and show that flight-
phase attitude error tolerance becomes tighter for higher
hopping in which the vertical velocities are faster. This
introduces an interesting tradeoff in jumping strategy. While
larger jumps enable locomotion over footholds placed farther
apart, foot placement precision degrades quadratically with
increasing vertical velocity and linearly with increasing apex
height. A larger number of smaller hops enables higher foot
placement precision to avoid missing footholds. There is
also a lower limit to the vertical velocity and height of
small jumps to keep the flight-phase angular velocity within
actuator limits. There is an optimal mid-to-low jump height
at which the robot achieves its most precise foot placements.

The deadbeat foot placement hopping controller’s high
precision and good robustness to ground disturbances en-
abled it to hop on discontinuous surfaces like office furniture
and to track a moving platform. The precision of the deadbeat
foot placement hopping controller approaches the precision
limit set by the accuracy of the flight-phase attitude control.
Future improvements to the accuracy of the flight-phase
attitude controller will enable more precise foot placement.
Extensions to include the battery state of charge in the
controller can improve the vertical velocity and hopping
height control.

The third order polynomial deadbeat velocity controller is
easy to compute. In future work it could easily be imple-
mented onboard computation-limited embedded processors
like the one on Salto-1P. Future work will also investigate a
more theoretically founded understanding of hopping control
sensitivity to errors based in simpler mathematical models
like SLIP, stance-phase strategies that could correct touch-
down errors, and the effects of non-rigid or sloped terrain on
jumping performance and control strategy.
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