
OpenGLR© ES
Common/Common-Lite Profile Specification

Version 1.0.02 (Annotated)

Editor: David Blythe

Copyright (c) 2002-2004 The Khronos Group Inc. All Rights Reserved.

This specification is protected by copyright laws and contains material proprietary to the Khronos
Group, Inc. It or any components may not be reproduced, republished, distributed, transmitted,
displayed, broadcast or otherwise exploited in any manner without the express prior written per-
mission of Khronos Group. You may use this specification for implementing the functionality
therein, without altering or removing any trademark, copyright or other notice from the specifi-
cation, but the receipt or possession of this specification does not convey any rights to reproduce,
disclose, or distribute its contents, or to manufacture, use, or sell anything that it may describe,
in whole or in part.

Khronos Group grants express permission to any current Promoter, Contributor or Adopter mem-
ber of Khronos to copy and redistribute UNMODIFIED versions of this specification in any fash-
ion, provided that NO CHARGE is made for the specification and the latest available update of
the specification for any version of the API is used whenever possible. Such distributed speci-
fication may be re-formatted AS LONG AS the contents of the specification are not changed in
any way. The specification may be incorporated into a product that is sold as long as such prod-
uct includes significant independent work developed by the seller. A link to the current version
of this specification on the Khronos Group web-site should be included whenever possible with
specification distributions.

Khronos Group makes no, and expressly disclaims any, representations or warranties, express
or implied, regarding this specification, including, without limitation, any implied warranties of
merchantability or fitness for a particular purpose or non-infringement of any intellectual prop-
erty. Khronos Group makes no, and expressly disclaims any, warranties, express or implied,
regarding the correctness, accuracy, completeness, timeliness, and reliability of the specification.
Under no circumstances will the Khronos Group, or any of its Promoters, Contributors or Mem-
bers or their respective partners, officers, directors, employees, agents or representatives be liable
for any damages, whether direct, indirect, special or consequential damages for lost revenues,
lost profits, or otherwise, arising from or in connection with these materials.

Khronos is a trademark of The Khronos Group Inc. OpenGL is a registered trademark, and
OpenGL ES is a trademark, of Silicon Graphics, Inc.

Contents

1 Overview 1
1.1 Conventions. 1

2 OpenGL Operation 2
2.1 OpenGL Fundamentals. 2

2.1.1 Fixed-Point Computation. 3
2.2 GL State. 3
2.3 GL Command Syntax. 3
2.4 Basic GL Operation. 4
2.5 GL Errors . 4
2.6 Begin/End Paradigm. 4
2.7 Vertex Specification. 5
2.8 Vertex Arrays . 6
2.9 Rectangles. 7
2.10 Coordinate Transformations. 8
2.11 Clipping . 9
2.12 Current Raster Position. 9
2.13 Colors and Coloring. 10

3 Rasterization 12
3.1 Invariance. 12
3.2 Antialiasing . 12
3.3 Points . 12
3.4 Line Segments . 12
3.5 Polygons . 13
3.6 Pixel Rectangles. 14
3.7 Bitmaps . 16
3.8 Texturing . 16
3.9 Fog . 21

4 Per-Fragment Operations and the Framebuffer 22
4.1 Per-Fragment Operations. 22
4.2 Whole Framebuffer Operations. 23
4.3 Drawing, Reading, and Copying Pixels. 24

i

ii Contents

5 Special Functions 25
5.1 Evaluators. 25
5.2 Selection . 25
5.3 Feedback . 26
5.4 Display Lists . 26
5.5 Flush and Finish. 26
5.6 Hints. 27

6 State and State Requests 28
6.1 Querying GL State. 28
6.2 State Tables. 30

7 Core Additions and Extensions 46
7.1 Byte Coordinates. 46
7.2 Fixed Point . 47
7.3 Single-precision Commands. 48
7.4 Compressed Paletted Texture. 48
7.5 Read Format. 49
7.6 Query Matrix . 49

8 Packaging 50
8.1 Header Files. 50
8.2 Libraries. 50

A Acknowledgements 51

B OES Extension Specifications 52
B.1 OESbyte coordinates. 52
B.2 OESfixed point . 55
B.3 OESsingleprecision . 64
B.4 OESreadformat . 69
B.5 OESquerymatrix . 73
B.6 OEScompressedpalettedtexture . 76

Chapter 1

Overview

This document outlines the OpenGL ES Common and Common-Lite profiles. A profile pipeline is described
in the same order as in the OpenGL specification. The specification lists supported commands and state,
and calls out commands and state that are part of the full (desktop) OpenGL specification but not part of
the profile definition. This specification isnot a standalone document describing the detailed behavior of
the rendering pipeline subset and API. Instead, it provides a concise description of the differences between
a full OpenGL renderer and the Common/Common-Lite renderer. This document is defined relative to the
OpenGL 1.3 specification.

This document specifies the OpenGL Common/Common-Lite renderer. A companion document defines
one or more bindings to window system/OS platform combinations analogous to the GLX, WGL, and
AGL specifications.1 If required, an additional companion document describes utility library functionality
analogous to the GLU specification.

1.1 Conventions

This document describes commands in the identical order as the OpenGL 1.3 specification. Each section
corresponds to a section in the full OpenGL specification and describes the disposition of each command
relative to Common/Common-Lite profile definition. Where necessary, the profile specification provides
additional clarification of the reduced command behavior.

Each section of the specification includes tables summarizing the commands and parameters that are
retained in the Common and Common-Lite profiles. Several symbols are used within the tables to in-
dicate various special cases. The symbol† indicates that the floating-point form of the command is re-
placed by its fixed-point variant from theOESfixed point extension. The symbol♦ indicates that the
double-precision form of the command is replaced with its single-precision variant from theOESsingle -

precision extension. The symbolB indicates that an enumerant is part of a new ES-specific extension.
The superscript‡ indicates that the command is supported subject to additional constraints described in the
section body containing the table.

■ Additional material summarizing some of the reasoning behind certain decisions is included as an
annotation at the end of each section, set in this typeface. ❑

1See the OpenGL ES Native Platform Graphics Interface specification.

1

Chapter 2

OpenGL Operation

The basic GL operation remains largely unchanged. Two significant changes in the Common and Common-
Lite profiles are that commands cannot be accumulated in a display list for later processing, and the first
stage of the pipeline for approximating curve and surface geometry is eliminated. The remaining pipeline
stages include: per-vertex operations and primitive assembly, pixel operations, rasterization, per-fragment
operations, and whole framebuffer operations.

The Common/Common-Lite profile introduces several OpenGL extensions that are defined relative to
the full OpenGL 1.3 specification and then appropriately reduced to match the subset of commands in the
profile. These OpenGL extensions are divided into two categories: those that are fully integrated into the
profile definition –core additions; and those that remain extensions –profile extensions. Core additions do
not use extension suffixes, whereas profile extensions retain their extension suffixes. Chapter7 summarizes
each extension and how it relates to the profile definition. Complete extension specifications are included in
AppendixB.

■ The OpenGL ES profiles are part of a wider family of OpenGL-derived application programming
interfaces. As such, the profiles share a similar processing pipeline, command structure, and the
same OpenGL name space. Where necessary, extensions are created to augment the existing
OpenGL 1.3 functionality. OpenGL ES-specific extensions play a role in OpenGL ES profiles similar
to that played by OpenGL ARB extensions relative to the OpenGL specification. OpenGL ES-specific
extensions are either precursors of functionality destined for inclusion in future core profile revisions,
or formalization of important but non-mainstream functionality.

Extension specifications are written relative to the full OpenGL specification so that they can also be
added as extensions to an OpenGL 1.3 implementation and so that they are easily adapted to profile
functionality enhancements that are drawn from the full OpenGL specification. Extensions that are
part of the core profile do not have extension suffixes, since they are not extensions to the profile,
though they are extensions to OpenGL 1.3. ❑

2.1 OpenGL Fundamentals

Commands and tokens continue to be prefixed bygl andGL in all profiles. The wide range of support for
differing data types (8-bit, 16-bit, 32-bit and 64-bit; integer and floating-point) is reduced wherever possi-
ble to eliminate non-essential command variants and to reduce the complexity of the processing pipeline.
Double-precision floating-point parameters and data types are eliminated completely, while other command
and data type variations are considered on a command-by-command basis and eliminated when appropriate.
In the Common-Lite variation of the Common profile, the floating-point data type is also eliminated in favor

2

OpenGL Operation 3

of the fixed-point data type described in theOESfixed point extension specification.

2.1.1 Fixed-Point Computation

Both the Common and Common-Lite profile support fixed-point vertex attributes and command parameters
using a 32-bit two’s-complement signed representation with 16 bits to the right of the binary point (frac-
tion bits). The Common profile pipeline retains the same range and precision requirements as specified in
Section 2.1.1 of the OpenGL 1.3 specification. The Common-Lite profile pipeline must meet the range and
precision requirements specified in theOESfixed point extension:

Internal computations can use either fixed-point or floating-point arithmetic. Fixed-point com-
putations must be accurate to within±2−15. The maximum representable magnitude for a
fixed-point number used to represent positional or normal coordinates must be at least215;
the maximum representable magnitude for colors or texture coordinates must be at least210.
The maximum representable magnitude for all other fixed-point values must be at least215.
x · 0 = 0 · x = 0. 1 · x = x · 1 = x. x + 0 = 0 + x = x. 00 = 1. Fixed-point computations
may lead to overflows or underflows. The results of such computations are undefined, but must
not lead to GL interruption or termination.

Furthermore, the following additional constraint must be met for both profiles:

Using the notation 16.16 to indicate a 32-bit two’s-complement fixed-point number with 16
bits of fraction; if an incoming vertex is representable using 16.16, the modelview and projec-
tion matrices are representable in 16.16, and the resulting eye-space and NDC-space vertices
are representable in 16.16 (when computed using intermediate representations with sufficient
dynamic range), then the transformation pipeline must compute the eye-space and NDC-space
vertices to some reasonable accuracy (i.e., overflow is not acceptable).

■ The Common-Lite profile is a fixed-point profile. The precision and dynamic range requirements are
minimal to allow a broad range of implementations, while strong enough to allow portable application
behavior for applications written strictly to the minimum behavior. The accuracy requirements allow
pipeline implementations to internally use either fixed-point or floating-point arithmetic. The Common
profile is a superset of the Common-Lite profile and requires floating-point-like dynamic range to
avoid unexpected behavior in applications using floating-point input. ❑

2.2 GL State

The Common and Common-Lite profiles retain a large subset of the client and server state described in the
full OpenGL specification. The separation of client and server state persists. Section6.2 summarizes the
disposition of all state variables relative to the Common/Common-Lite profile.

2.3 GL Command Syntax

The OpenGL command and type naming conventions are retained identically. The new typesfixed and
clampx are added with the corresponding command suffix, ’x’. Commands using the suffixes for the
types: byte , ubyte , short , andushort are not supported. The typedouble and all double-precision
commands are eliminated. The result is that the Common profile uses only the suffixes ’f’, ’i’, and ’x’ and
the Common-Lite profile uses only the suffixes ’i’ and ’x’.

4 OpenGL Operation

2.4 Basic GL Operation

The basic command operation remains identical to OpenGL 1.3. The major differences from the OpenGL
1.3 pipeline are that commands cannot be placed in a display list; there is no polynomial function evaluation
stage; and blocks of fragments cannot be sent directly to the individual fragment operations.

2.5 GL Errors

The full OpenGL error detection behavior is retained, including ignoring offending commands and setting
the current error state. In all commands, parameter values that are not supported by the profile are treated
like any other unrecognized parameter value and an error results, i.e.,INVALID ENUMor INVALID VALUE.
Table2.1 lists the errors.

OpenGL 1.3 Common Common-Lite

NOERROR � �
INVALID ENUM � �
INVALID VALUE � �
INVALID OPERATION � �
STACKOVERFLOW � �
STACKUNDERFLOW � �
OUTOF MEMORY � �
TABLE TOOLARGE – –

Table 2.1: Error Disposition

The commandGetError is retained to return the current error state. As in OpenGL 1.3, it may be
necessary to callGetError multiple times to retrieve error state from all parts of the pipeline.

OpenGL 1.3 Common Common-Lite
GetError (void) � �

■ Well defined error behavior allows portable applications to be written. Retrievable error state allows
application developers to debug commands with invalid parameters during development. This is an
important feature during initial profile deployment. ❑

2.6 Begin/End Paradigm

The Common and Common-Lite profiles draw geometric objects exclusively using vertex arrays. Asso-
ciated colors, normals, and texture coordinates are specified using vertex arrays. The associated auxiliary
values for color, normal, and texture coordinate can also be set using a small subset of the associated attribute
specification commands described in Section 2.7. Since the commandsBeginandEnd are not supported, no
internal state indicating the begin/end state is maintained.

OpenGL Operation 5

The primitives:POINTS, LINES , LINE STRIP, LINE LOOP, TRIANGLES, TRIANGLE STRIP, andTRIANGLE -

FANare supported; the primitives:QUADS, QUADSTRIP, andPOLYGONare not supported.
Color index rendering is not supported. Edge flags are not supported.

OpenGL 1.3 Common Common-Lite
Begin(enum mode) – –
End(void) – –
EdgeFlag[v](T flag) – –

■ The Begin/End paradigm, while convenient and efficient, leads to a large number of commands that
need to be implemented. Correct implementation also involves suppression of commands that are not
legal between Begin and End. Tracking this state creates an additional burden on the implementation.
Vertex arrays, arguably can be implemented more efficiently since they present all of the primitive
data in a single function call. Edge flags are not included, as they are only used when drawing
polygons as outlines and support for PolygonModehas not been included.

Quads and polygons are eliminated since they can be readily emulated with triangles and it reduces
an ambiguity with respect to decomposition of these primitives to triangles, since it is entirely left to
the application. Elimination of quads and polygons removes special cases for line mode drawing
requiring edge flags (should PolygonModebe re-instated). ❑

2.7 Vertex Specification

The Common profile does not include the concept of Begin and End. Vertices are specified using vertex
arrays exclusively. Onlyfloat , short , andbyte coordinate and component types are supported with
the exception ofubyte rather thanshort color components. There is limited support for specifying the
current color, normal, and texture coordinate using the fixed-point or floating-point forms of the commands
Color4, Normal3, andMultiTexCoord4 .

Multitexture texture coordinates are supported, though only a single texture unit needs to be supported.

OpenGL 1.3 Common Common-Lite
Vertex{234}{sifd}[v] (T coords) – –
Normal3f(float coords) � †
Normal3{bsifd}[v] (T coords) – –
TexCoord{1234}{sifd}[v] (T coords) – –
MultiTexCoord4f (enum texture, float coords) � †
MultiTexCoord123{sifd}[v] (enum texture, T coords) – –
Color4f(float components) � †
Color{34}{bsifd ub us ui}[v] (T components) – –
Index{sifd ub}[v] (T components) – –

■ A handful of fine grain commands Color, Normal, MultiTexCoord are included so that per-primitive
attributes can be set. For each command, the most general form of the floating-point version of the

6 OpenGL Operation

command is retained to simplify addition of extensions or future revisions. Since these commands
are unlikely to be issued frequently, as they can only be used to set (overall) per-primitive attributes,
performance is not an issue.

The Common and Common-Lite profiles support only the RGBA rendering model. One or more of
the RGBA component depths may be zero. Color index rendering is not supported. ❑

2.8 Vertex Arrays

TheOESbyte coordinates extension allows vertex and texture coordinates to be specified usingbyte

types. Color index and edge flags are not supported. Both indexed and non-indexed arrays are supported,
but theInterleavedArrays andArrayElement commands are not supported.

OpenGL 1.3 Common Common-Lite
VertexPointer(int size, enum type, sizei stride, const void * ptr)

size = 2,3,4 type = BYTE B B
size = 2,3,4 type = SHORT � �
size = 2,3,4 type = FLOAT � †
size = * type = INT,DOUBLE – –

NormalPointer(enum type, sizei stride, const void * ptr)

type = SHORT,BYTE � �
type = FLOAT � †
type = INT,DOUBLE – –

ColorPointer(int size, enum type, sizei stride, const void * ptr)

size = 4 type = UNSIGNED BYTE � �
size = 4 type = FLOAT � †
size = 3 type = FLOAT,UNSIGNED BYTE – –

type = INT, DOUBLE – –
TexCoordPointer(int size, enum type, sizei stride, const void * ptr)

size = 2,3,4 type = BYTE B B
size = 2,3,4 type = SHORT � �
size = 2,3,4 type = FLOAT � †
size = 1 type = INT, DOUBLE – –

EdgeFlagPointer(sizei stride, const void * ptr) – –
IndexPointer(enum type, sizei stride, const void * ptr) – –
ArrayElement (int i) – –
DrawArrays (enum mode, int first, sizei count)

mode = POINTS,LINES,LINE STRIP,LINE LOOP � �
mode = TRIANGLES,TRIANGLESTRIP,TRIANGLE FAN � �
mode = QUADS,QUADSTRIP,POLYGON – –

DrawElements(enum mode, sizei count, enum type, const void * indices)

mode = POINTS,LINES,LINE STRIP,LINE LOOP � �
mode = TRIANGLES,TRIANGLESTRIP,TRIANGLE FAN � �
mode = QUADS,QUADSTRIP,POLYGON – –
type = UNSIGNED BYTE,UNSIGNEDSHORT � �
type = UNSIGNED INT – –

OpenGL Operation 7

InterleavedArrays(enum format, sizei stride, const void

* pointer)

– –

DrawRangeElements(enum mode, uint start, uint end,

sizei count, enum type, const void * indices)

– –

ClientActiveTexture(enum texture) � �
EnableClientState(enum cap)

cap = TEXTURECOORDARRAY,COLORARRAY � �
cap = NORMALARRAY,VERTEXARRAY � �
cap = EDGEFLAG ARRAY,INDEX ARRAY – –

DisableClientState(enum cap)

cap = TEXTURECOORDARRAY,COLORARRAY � �
cap = NORMALARRAY,VERTEXARRAY � �
cap = EDGEFLAG ARRAY, INDEX ARRAY – –

■ Float types are supported for all-around generality, short and byte types are supported for
space efficiency. Four-component vertex and texture coordinates are supported to allow an applica-
tion to fully specify post-projection vertex and texture coordinates before division by w or q. Support
for indexed vertex arrays allows for greater reuse of coordinate data between multiple faces, that is,
when the shared edges are smooth. The indexing support is limited to ubyte and ushort indices
since there is typically enough locality in the vertex array data to address the vertices with these more
compact index types.

The OpenGL 1.3 specification defines the initial type for each of the arrays to be FLOAT. Since
the array lengths are zero and the types cannot be queried by the application, this initial state is
essentially invisible to an application and minimizes a potential inconsistency with the removal of
floating-point data types from the Common-Lite profile.

Multitexture is included on the assumption that it will be supported by hardware accelerators in the
near term and it would be better to include it from the start rather than adding it during the first
revision. ❑

2.9 Rectangles

The commands for directly specifying rectangles are not supported.

OpenGL 1.3 Common Common-Lite
Rect{sifd}(T x1, T y1, T x2, T y2) – –
Rect{sifd}v(T v1[2], T v2[2]) – –

■ The rectangle commands are not used enough in applications to justify maintaining a redundant
mechanism for drawing a rectangle. ❑

8 OpenGL Operation

2.10 Coordinate Transformations

The full transformation pipeline is supported with the following exceptions: no support for specification
of double-precision matrices and transformation parameters; no support for the transpose form of the
LoadMatrix andMultMatrix commands; no support forCOLORmatrix; and no support for texture coordi-
nate generation. The double-precision only commandsDepthRange, Frustum, andOrtho are replaced with
single-precision or fixed-point variants from theOESsingle precision andOESfixed point exten-
sions. The minimum depth of theMODELVIEWmatrix stack is changed from 32 to 16.

OpenGL 1.3 Common Common-Lite
DepthRange(clampd n, clampd f) ♦ †
Viewport (int x, int y, sizei w, sizei h) � �
MatrixMode (enum mode)

mode = MODELVIEW,PROJECTION,TEXTURE � �
mode = COLOR – –

LoadMatrixf (float m[16]) � †
LoadMatrixd (double m[16]) – –
MultMatrixf (float m[16]) � †
MultMatrixd (double m[16]) – –
LoadTransposeMatrix{fd}(T m[16]) – –
MultTransposeMatrix {fd}(T m[16]) – –
LoadIdentity (void) � �
Rotatef(float angle, float x, float y, float z) � †
Rotated(double angle, double x, double y, double z) – –
Scalef(float x, float y, float z) � †
Scaled(double x, double y, double z) – –
Translatef(float x, float y, float z) � †
Translated(double x, double y, double z) – –
Frustum(double l, double r, double b, double t,

double n, double f)

♦ †

Ortho (double l, double r, double b, double t, double

n, double f)

♦ †

ActiveTexture(enum texture) � �
PushMatrix (void)

TEXTUREandPROJECTION(2 deep) � �
MODELVIEW(16 deep) � �

PopMatrix (void) � �
Enable/Disable(RESCALE NORMAL) � �
Enable/Disable(NORMALIZE) � �
TexGen{ifd}[v] (enum coord, enum pname, T param) – –
GetTexGen{ifd}v(enum coord, enum pname, T * params) – –
Enable/Disable(TEXTURE GEN{STRQ}) – –

OpenGL Operation 9

■ The double-precision version of the transform commands are not necessary when there is a single
precision version. The matrix stacks and convenience functions for computing rotations, scales, and
translations, as well as projection matrices are kept in their entirety since they are used by a large
number of of applications. The minimum depth for the modelview stack is reduced from 32 to 16
to reduce the storage requirements somewhat. The projection and texture stack depths are already
limited to a depth of two. The non-transpose form of the matrix load and multiply commands are
retained over the transpose versions to maximize compatibility with existing programming practices.

The viewport and depth range commands are supported since they provide necessary application
control over where primitives are drawn. While texture coordinate generation is useful, it is considered
too much of an implementation burden (applications can implement it to some extent themselves).
Texgen is a strong candidate for the next revision. Both normalization and rescaling of normals
are supported since normalization is deemed necessary and rescaling can be implemented using
normalization minimizing implementation burden. ❑

2.11 Clipping

Clipping against the viewing frustum is supported; however, separate user-specified clipping planes are not
supported.

OpenGL 1.3 Common Common-Lite
ClipPlane(enum plane, const double * equation) – –
GetClipPlane(enum plane, double * equation) – –
Enable/Disable(CLIP PLANE{0-5 }) – –

■ User-specified clipping planes are used predominately in engineering and scientific applications.
It would be useful to have at least one clipping plane for some ”portal-culling” algorithms, but there
hasn’t been a strong enough case made for keeping them. ❑

2.12 Current Raster Position

The concept of the current raster position for positioning pixel rectangles and bitmaps is not supported.
Current raster state and commands for setting the raster position are not supported.

OpenGL 1.3 Common Common-Lite
RasterPos{2,3,4}{sifd}[v] (T coords) – –

■ Bitmaps and pixel image primitives are not supported so there is no need to specify the raster
position. ❑

10 OpenGL Operation

2.13 Colors and Coloring

The OpenGL 1.3 lighting model is supported with the following exceptions: no support for the color index
lighting, secondary color, different front and back materials, local viewer, or color material mode other than
AMBIENTANDDIFFUSE.

Directional, positional, and spot lights are all supported. An implementation must support a minimum
of 8 lights. TheMaterial command cannot independently change the front and back face properties, so the
result is that materials always have the same front and back properties. Two-sided lighting is supported,
though the front and back material properties used in the lighting computation will also be equal. The
ColorMaterial command is not supported, so the color material mode cannot be changed from the default
AMBIENTANDDIFFUSE mode, thoughCOLORMATERIALcan be enabled in this mode. Neither local view-
ing computations nor separate specular color computation can be enabled using theLightModel command,
therefore only the OpenGL 1.3 default infinite viewer and single color computational models are supported.
Smooth and flat shading are fully supported for all primitives.

OpenGL 1.3 Common Common-Lite
FrontFace(enum mode) � �
Enable/Disable(LIGHTING) � �
Enable/Disable(LIGHT {0-7 }) � �
Materialf[v] (enum face, enum pname, T param)

face = FRONT ANDBACK � †
face = FRONT,BACK – –
pname = AMBIENT,DIFFUSE,SPECULAR,EMISSION,SHININESS � †
pname = AMBIENTANDDIFFUSE � †
pname = COLORINDEXES – –

Materiali[v] (enum face, enum pname, T param) – –
GetMaterial{if}[v] (enum face, enum pname, T * params) – –
Lightf[v] (enum light, enum pname, T param) � †
Lighti[v] (enum light, enum pname, T param) – –
GetLight{if}[v] (enum light, enum pname, T * params) – –
LightModelf[v] (enum pname, T param)

pname = LIGHT MODELTWOSIDE � †
pname = LIGHT MODELAMBIENT � †
pname = LIGHT MODELCOLORCONTROL – –
pname = LIGHT MODELLOCALVIEWER – –

LightModeli[v] (enum pname, T param) – –
Enable/Disable(COLORMATERIAL) �‡ �‡

ColorMaterial (enum face, enum mode) – –
ShadeModel(enum mode) � �

■ Lighting is a desirable feature, so as much as possible is included in the Common and Common-
Lite profiles. The minimum number of lights is not reduced since reducing it only saves memory for
the state and the savings is not significant unless it is greatly reduced. The number cannot be greatly
reduced (e.g., to 1 or 2) as many applications need three or more lights. Support for secondary color

OpenGL Operation 11

creates a non-trivial burden in the rasterization stage of the pipeline so it is not included. Local viewer
increases the amount of computation in the lighting pipeline and is not widely used (usually because
of the performance degradation), the other features controlled by the LightModel (scene ambient and
two-sided lighting) are retained. Scene ambient is retained since its default value is non-zero and
there would be no method to disable its effect if it were not included. Two-sided lighting is retained in
a simplified fashion – the front and back material values must always be equal. To ensure this, only
FRONTANDBACKcan be used as the face parameter.

The most common use for the ColorMaterial functionality is to change the ambient and diffuse coef-
ficients of the material. Since this is the default mode of the command, the ColorMaterial command
is not included, but the ability to enable and disable it is, so the net effect is that only the ambient and
diffuse material parameters can be modified. ❑

Chapter 3

Rasterization

3.1 Invariance

The invariance rules are retained in full.

3.2 Antialiasing

Multisampling is supported though an implementation is not required to provide a multisample buffer.

OpenGL 1.3 Common Common-Lite
Enable/Disable(MULTISAMPLE) � �

■ Multisampling is a desirable feature. Since an implementation need not provide an actual multi-
sample buffer and the command overhead is low, it is included. ❑

3.3 Points

Aliased and antialiased points are fully supported.

OpenGL 1.3 Common Common-Lite
PointSize(float size) � †
Enable/Disable(POINT SMOOTH) � �

■ See below. ❑

3.4 Line Segments

Aliased and antialiased lines are fully supported. Line stippling is not supported.

12

Rasterization 13

OpenGL 1.3 Common Common-Lite
LineWidth (float width) � †
Enable/Disable(LINE SMOOTH) � �
LineStipple(int factor, ushort pattern) – –
Enable/Disable(LINE STIPPLE) – –

■ Antialiasing is important for visual quality, particularly for devices with low spatial resolution (pix-
els per mm). Some antialiasing can be implemented within the application using 2D textures, but
antialiasing is used by enough applications that it should be in the profile rather than something left
to the application. The OpenGL 1.3 point and line antialiasing requirements provide substantial im-
plementation latitude. In particular, only size/width 1.0 is required to be supported and the coverage
computation constraints are easily satisfied. Line stippling is also used by ”presentation graphics”
and engineering applications. It can be implemented by the application, and the implementation cost
is considered too high to include in the profile. ❑

3.5 Polygons

Polygonal geometry support is reduced to triangle strips, triangle fans and independent triangles. All raster-
ization modes are supported except for point and linePolygonModeand antialiased polygons using polygon
smooth. Depth offset is supported inFILL mode only.

OpenGL 1.3 Common Common-Lite
CullFace(enum mode) � �
Enable/Disable(CULL FACE) � �
PolygonMode(enum face, enum mode) – –
Enable/Disable(POLYGONSMOOTH) – –
PolygonStipple(const ubyte * mask) – –
GetPolygonStipple(ubyte * mask) – –
Enable/Disable(POLYGONSTIPPLE) – –
PolygonOffset(float factor, float units) � †
Enable/Disable(enum cap)

cap = POLYGONOFFSETFILL � �
cap = POLYGONOFFSETLINE, POLYGONOFFSETPOINT – –

■ Support for all triangle types (independents, strips, fans) is not overly burdensome and each type
has some desirable utility: strips for general performance and applicability, independents for efficiently
specifying unshared vertex attributes, and fans for representing ”corner-turning” geometry. Face
culling is important for eliminating unnecessary rasterization. Polygon stipple is desirable for doing
patterned fills for ”presentation graphics”. It is also useful for transparency, but support for alpha is
sufficient for that. Polygon stippling does represent a large burden for the polygon rasterization path
and can usually be emulated using texture mapping and alpha test, so it is omitted. Polygon offset for
filled triangles is necessary for rendering coplanar and outline polygons and if not present requires
either stencil buffers or application tricks. Antialiased polygons using POLYGONSMOOTHis just as

14 Rasterization

desirable as antialiasing for other primitives, but is too large an implementation burden to include in
the Common/Common-Lite profile. ❑

3.6 Pixel Rectangles

No support for directly drawing pixel rectangles is included. LimitedPixelStoresupport is retained to allow
different pack alignments forReadPixelsand unpack alignments forTexImage2D. DrawPixels, PixelTransfer
modes andPixelZoom are not supported. The Imaging subset is not supported.

OpenGL 1.3 Common Common-Lite
PixelStorei(enum pname, T param)

pname=PACKALIGNMENT,UNPACKALIGNMENT � �
pname=<all other values> – –

PixelStoref(enum pname, T param) – –
PixelTransfer{if}(enum pname, T param) – –
PixelMap{ui us f}v(enum map, int size, T * values) – –
GetPixelMap{ui us f}v(enum map, T * values) – –

Enable/Disable(COLORTABLE) – –
ColorTable(enum target, enum internalformat, sizei

width, enum format, enum type, const void * table)

– –

ColorSubTable(enum target, sizei start, sizei count,

enum format, enum type, const void * data)

– –

ColorTableParameter{if}v(enum target, enum pname, T

* params)

– –

GetColorTableParameter{if}v(enum target, enum pname, T

* params)

– –

CopyColorTable(enum target, enum internalformat, int x,

int y, sizei width)

– –

CopyColorSubTable(enum target, sizei start, int x, int

y, sizei width)

– –

GetColorTable(enum target, enum format, enum type, void

* table)

– –

ConvolutionFilter1D (enum target, enum internalformat,

sizei width, enum format, enum type, const void

* image)

– –

ConvolutionFilter2D (enum target, enum internalformat,

sizei width, sizei height, enum format, enum type,

const void * image)

– –

GetConvolutionFilter (enum target, enum format, enum type,

void * image)

– –

CopyConvolutionFilter1D(enum target, enum internalformat,

int x, int y, sizei width)

– –

Rasterization 15

CopyConvolutionFilter2D(enum target, enum internalformat,

int x, int y, sizei width, sizei height)

– –

SeparableFilter2D(enum target, enum internalformat,

sizei width, sizei height, enum format, enum type,

const void * row, const void * column)

– –

GetSeparableFilter(enum target, enum format, enum type,

void * row, void * column, void * span)

– –

ConvolutionParameter{if}[v] (enum target, enum pname, T

param)

– –

GetConvolutionParameterfv(enum target, enum pname, T

* params)

– –

Enable/Disable(POST CONVOLUTIONCOLORTABLE) – –
MatrixMode (COLOR) – –
Enable/Disable(POST COLORMATRIX COLORTABLE) – –

Enable/Disable(HISTOGRAM) – –
Histogram(enum target, sizei width, enum

internalformat, boolean sink)

– –

ResetHistogram(enum target) – –
GetHistogram(enum target, boolean reset, enum format,

enum type, void * values)

– –

GetHistogramParameter{if}v(enum target, enum pname, T

* params)

– –

Enable/Disable(MINMAX) – –
Minmax (enum target, enum internalformat, boolean

sink)

– –

ResetMinmax(enum target) – –
GetMinmax(enum target, boolean reset, enum format,

enum types, void * values)

– –

GetMinmaxParameter{if}v(enum target, enum pname, T

* params)

– –

DrawPixels(sizei width, sizei height, enum format,

enum type, void * data)

– –

PixelZoom(float xfactor, float yfactor) – –

■ The OpenGL 1.3 specification includes substantial support for operating on pixel images. In the
Common and Common-Lite profiles, the ability to draw pixel images is important, but with the con-
straint of minimizing the implementation burden. There is a concern that DrawPixels is often poorly
implemented on hardware accelerators and that many applications are better served by emulating
DrawPixels functionality by initializing a texture image with the host image and then drawing the
texture image to a screen-aligned quadrilateral. This has the advantage of eliminating the Draw-

16 Rasterization

Pixels processing path and and allows the image to be cached and drawn multiple times without
re-transferring the image data from the application’s address space. However, it requires extra pro-
cessing by the application and the implementation, possibly requiring the image to be copied twice.

The command PixelStoremust be included to allow changing the pack alignment for ReadPixelsand
unpack alignment for TexImage2D to something other than the default value of 4 to support ubyte
RGBimage formats. The integer version of PixelStore is retained rather than the floating-point version
since all parameters can be fully expressed using integer values. ❑

3.7 Bitmaps

Bitmap images are not supported.

OpenGL 1.3 Common Common-Lite
Bitmap(sizei width, sizei height, float xorig,

float yorig, float xmove, float ymove, const ubyte

* bitmap)

– –

■ The Bitmap command is useful for representing image data compactly and for positioning images
directly in window coordinates. Since DrawPixels is not supported, the positioning functionality is not
required. A strong enough case hasn’t been made for the ability to represent font glyphs or other
data more efficiently before transfer to the rendering pipeline. ❑

3.8 Texturing

1D textures, 3D textures, and cube maps are not supported. 2D textures are supported with the following
exceptions: only a limited number of image format and type combinations are supported, listed in Table3.1.
Table3.2 summarizes the disposition of all image types. The only internal formats supported are the base
internal formats:RGBA, RGB, LUMINANCE, ALPHA, andLUMINANCEALPHA. The format must match the base
internal format (no conversions from one format to another during texture image processing are supported)
as described in Table3.1. Texture borders are not supported (theborder parameter must be zero, and an
INVALID VALUEerror results if it is non-zero).

CopyTexture andCopyTexSubImageare supported. The internal format parameter can be any of the base
internal formats described forTexImage2D subject to the constraint that color buffer components can be
dropped during the conversion to the base internal format, but new components cannot be added. For exam-
ple, an RGB color buffer can be used to createLUMINANCEor RGBtextures, but notALPHA, LUMINANCE-

ALPHA, or RGBAtextures. Table3.3summarizes the allowable framebuffer and base internal format combi-
nations. If the framebuffer format is not compatible with the base texture format anINVALID OPERATION

error results.

OpenGL 1.3 Common Common-Lite
UNSIGNEDBYTE � �
BITMAP – –
BYTE – –

Rasterization 17

UNSIGNEDSHORT – –
SHORT – –
UNSIGNEDINT – –
INT – –
FLOAT – –
UNSIGNEDBYTE 3 3 2 – –
UNSIGNEDBYTE 3 3 2 REV – –
UNSIGNEDSHORT5 6 5 � �
UNSIGNEDSHORT5 6 5 REV – –
UNSIGNEDSHORT4 4 4 4 � �
UNSIGNEDSHORT4 4 4 4 REV – –
UNSIGNEDSHORT5 5 5 1 � �
UNSIGNEDSHORT5 5 5 1 REV – –
UNSIGNEDINT 8 8 8 8 – –
UNSIGNEDINT 8 8 8 8 REV – –
UNSIGNEDINT 10 10 10 2 – –
UNSIGNEDINT 10 10 10 2 REV – –

Table 3.2: Image Types

Compressed textures are supported including sub-image specification; however, no method for reading
back a compressed texture image is included, so implementation vendors must provide separate tools for
creating compressed images. The generic compressed internal formats are not supported, so compression of
textures usingTexImage2Dis not supported. TheOEScompressed paletted texture extension defines
several compressed texture formats.

Wrap modesREPEATandCLAMPTO EDGEare supported, but notCLAMPandCLAMPTO BORDER. Tex-
ture priorities, LOD clamps, and explicit base and maximum level specification are not supported. The
remaining OpenGL 1.3 texture parameters are supported including all filtering modes. Texture objects are
supported, but proxy textures are not supported. Multitexture is supported, but theCOMBINEtexture envi-
ronment mode is not.

18 Rasterization

Internal Format External Format Type Bytes per Pixel

RGBA RGBA UNSIGNEDBYTE 4
RGB RGB UNSIGNEDBYTE 3
RGBA RGBA UNSIGNEDSHORT4 4 4 4 2
RGBA RGBA UNSIGNEDSHORT5 5 5 1 2
RGB RGB UNSIGNEDSHORT5 6 5 2
LUMINANCEALPHA LUMINANCEALPHA UNSIGNEDBYTE 2
LUMINANCE LUMINANCE UNSIGNEDBYTE 1
ALPHA ALPHA UNSIGNEDBYTE 1

Table 3.1: Texture Image Formats and Types

Texture Format
Color Buffer A L LA RGB RGBA

A � – – – –
L – � – – –
LA � � � – –
RGB – � – � –
RGBA � � � � �

Table 3.3: CopyTexture Internal Format/Color Buffer Combinations

OpenGL 1.3 Common Common-Lite
TexImage1D(enum target, int level, int

internalFormat, sizei width, int border, enum

format, enum type, const void * pixels)

– –

TexImage2D(enum target, int level, int internalFormat, sizei width, sizei

height, int border, enum format, enum type, const void * pixels)

target = TEXTURE 2D, border = 0 �‡ �‡

target = PROXY TEXTURE2D – –
border > 0 – –

TexImage3D(enum target, int level, enum

internalFormat, sizei width, sizei height, sizei

depth, int border, enum format, enum type, const

void * pixels)

– –

GetTexImage(enum target, int level, enum format, enum

type, void * pixels)

– –

TexSubImage1D(enum target, int level, int xoffset,

sizei width, enum format, enum type, const void

* pixels)

– –

Rasterization 19

TexSubImage2D(enum target, int level, int xoffset,

int yoffset, sizei width, sizei height, enum format,

enum type, const void * pixels)

�‡ �‡

TexSubImage3D(enum target, int level, int xoffset, int

yoffset, int zoffset, sizei width, sizei height,

sizei depth, enum format, enum type, const void

* pixels)

– –

CopyTexImage1D(enum target, int level, enum

internalformat, int x, int y, sizei width, int

border)

– –

CopyTexImage2D(enum target, int level, enum internalformat, int x, int y,

sizei width, sizei height, int border)

border = 0 �‡ �‡

border > 0 – –
CopyTexSubImage1D(enum target, int level, int xoffset,

int x, int y, sizei width)

– –

CopyTexSubImage2D(enum target, int level, int xoffset,

int yoffset, int x, int y, sizei width, sizei

height)

�‡ �‡

CopyTexSubImage3D(enum target, int level, int xoffset,

int yoffset, int zoffset, int x, int y, sizei width,

sizei height)

– –

CompressedTexImage1D(enum target, int level, enum

internalformat, sizei width, int border, sizei

imageSize, const void * data)

– –

CompressedTexImage2D(enum target, int level, enum internalformat, sizei

width, sizei height, int border, sizei imageSize, const void * data)

target = TEXTURE 2D, border = 0 �‡ �‡

target = PROXY TEXTURE2D – –
border > 0 – –

CompressedTexImage3D(enum target, int level, enum

internalformat, sizei width, sizei height, sizei

depth, int border, sizei imageSize, const void

* data)

– –

CompressedTexSubImage1D(enum target, int level, int

xoffset, sizei width, enum format, sizei imageSize,

const void * data)

– –

CompressedTexSubImage2D(enum target, int level, int

xoffset, int yoffset, sizei width, sizei height,

enum format, sizei imageSize, const void * data)

�‡ �‡

CompressedTexSubImage3D(enum target, int level, int

xoffset, int yoffset, int zoffset, sizei width,

sizei height, sizei depth, enum format, sizei

imageSize, const void * data)

– –

GetCompressedTexImage(enum target, int lod, void * img) – –

20 Rasterization

TexParameterf(enum target, enum pname, T param)

target = TEXTURE 2D � †
target = TEXTURE 1D,TEXTURE3D,TEXTURECUBEMAP – –
pname = TEXTUREMIN FILTER,TEXTURE MAGFILTER � †
pname = TEXTUREWRAPS,TEXTURE WRAPT � †
pname = TEXTUREBORDERCOLOR – –
pname = TEXTUREMIN LOD,TEXTUREMAXLOD – –
pname = TEXTUREBASELEVEL,TEXTUREMAXLEVEL – –
pname = TEXTUREWRAPR – –
pname = TEXTUREPRIORITY – –

TexParameter{i[v] fv }(enum target, enum pname, T param) – –
GetTexParameter{if}v(enum target, enum pname, T * params) – –
GetTexLevelParameter{if}v(enum target, int level, enum

pname, T * params)

– –

BindTexture(enum target, uint texture)

target = TEXTURE 2D � �
target = TEXTURE 1D,TEXTURE3D,TEXTURECUBEMAP – –

DeleteTextures(sizei n, const uint * textures) � �
GenTextures(sizei n, uint * textures) � �
IsTexture(uint texture) – –
AreTexturesResident(sizei n, uint * textures, boolean

* residences)

– –

PrioritizeTextures(sizei n, uint * textures, clampf

* priorities)

– –

Enable/Disable(enum cap)

cap = TEXTURE2D � �
cap = TEXTURE1D,TEXTURE3D,TEXTURECUBEMAP – –

TexEnvf[v] (enum target, enum pname, T param)

pname = TEXTUREENVCOLOR � †
pname = TEXTUREENVMODE:

param = MODULATE,REPLACE,DECAL � †
param = BLEND,ADD � †
param = COMBINE – –

pname = COMBINERGB,COMBINEALPHA – –
pname = SOURCE{012} RGB,SOURCE{012} ALPHA – –
pname = RGBSCALE,ALPHASCALE – –

TexEnvi[v] (enum target, enum pname, T param) – –
GetTexEnv{if}v(enum target, enum pname, T * params) – –

■ Texturing with 2D images is a critical feature for entertainment, presentation, and engineering
applications. 1D, 3D, and cube map textures are less important. Texture objects are required for
managing multiple textures. In some applications packing multiple textures into a single large texture
is necessary for performance, therefore subimage support is also included. Copying from the frame-
buffer is useful for many shading algorithms. A limited set of formats, types and internal formats is

Rasterization 21

included. The RGB component ordering is always RGB or RGBA rather than BGRA since there is no
real perceived advantage to using BGRA. Format conversions for copying from the framebuffer are
more liberal than for images specified in application memory, since an application usually has control
over images authored as part of the application, but has little control over the framebuffer format.
Unsupported CopyTexture conversions generate an INVALID OPERATIONerror, since the error is
dependent on the presence of a particular color component in the colorbuffer. This behavior parallels
the error treatment for attempts to read from a non-existent depth or stencil buffer.

Texture borders are not included, since they are often not completely supported by full OpenGL
implementations. All filter modes are supported since they represent a useful set of quality and speed
options. Edge clamp and repeat wrap modes are both supported since these are most commonly
used. Texture priorities are not supported since they are seldom used by applications. Similarly, the
ability to control the LOD range and the base and maximum mipmap image levels is not included,
since these features are used by a narrow set of applications. Since all of the supported texture
parameters are scalar valued, the vector form of the parameter command is eliminated.

All OpenGL 1.3 texture environments except for the combine mode are supported. Combine is not
supported as it creates a substantial implementation burden and is expected to be replaced with
pixel shaders in some future version. Compressed textures are important for reducing space and
bandwidth requirements. The OpenGL 1.3 compression infrastructure is retained (for 2D textures)
and a simple palette-based compression format is added as a required profile extension.

A texture is considered incomplete in OpenGL ES if the set of mipmap arrays are not specified with
the same type. The check for completeness is done when a given texture is used to render geometry.
❑

3.9 Fog

Fog is fully supported except for color index related modes.

OpenGL 1.3 Common Common-Lite
Fogf[v](enum pname, T param)

pname =FOGMODE,FOGDENSITY,FOGSTART,FOGEND,FOGCOLOR � †
pname =FOGINDEX – –

Fogi[v](enum pname, T param) – –
Enable/Disable(FOG) � �

■ Fog is useful for entertainment applications as a way to manage frame rate while hiding drawing
mistakes. It can be emulated using texturing, but is often needed in applications that already use
texturing for other purposes. Fog does present an implementation burden, but is used in enough
applications to justify inclusion. Implementations can reduce the computational burden by computing
fog values at each vertex rather than each pixel. ❑

Chapter 4

Per-Fragment Operations and the
Framebuffer

4.1 Per-Fragment Operations

All OpenGL 1.3 per-fragment operations are supported, except for color index related operations and the
imaging subset additions (BlendColor andBlendEquation). Depth and stencil operations are supported, but
an implementation is not required to include a depth or stencil buffer.

OpenGL 1.3 Common Common-Lite
Enable/Disable(SCISSOR TEST) � �
Scissor(int x, int y, sizei width, sizei height) � �

Enable/Disable(SAMPLE COVERAGE) � �
Enable/Disable(SAMPLE ALPHATO COVERAGE) � �
Enable/Disable(SAMPLE ALPHATO ONE) � �
SampleCoverage(clampf value, boolean invert) � †

Enable/Disable(ALPHA TEST) � �
AlphaFunc(enum func, clampf ref) � †

Enable/Disable(STENCIL TEST) � �
StencilFunc(enum func, int ref, uint mask) � �
StencilMask(uint mask) � �
StencilOp(enum fail, enum zfail, enum zpass) � �

Enable/Disable(DEPTH TEST) � �
DepthFunc(enum func) � �
DepthMask(boolean flag) � �

Enable/Disable(BLEND) � �
BlendFunc(enum sfactor, enum dfactor) � �

22

Per-Fragment Operations and the Framebuffer 23

BlendEquation(enum mode) – –
BlendColor(clampf red, clampf green, clampf blue,

clampf alpha)

– –

Enable/Disable(DITHER) � �

Enable/Disable(INDEX LOGIC OP) – –

Enable/Disable(COLORLOGIC OP) � �
LogicOp(enum opcode) � �

■ Scissor is useful for providing complete control over where pixels are drawn and some form of
window/drawing-surface scissoring is typically present in most rasterizers so the cost is small. Alpha
testing is useful for early rejection of transparent pixels and for some kinds of keying. Stenciling is
useful for drawing with masks and for a number of presentation effects and an implementation is
not required to support a stencil buffer (just the API and the correct behavior when not present).
Depth buffering is essential for many 3D applications and the profile should require some form of
depth buffer to be present. Blending is necessary for implementing transparency, color sums, and
some other useful rendering effects. Dithering is useful on displays with low color resolution, and the
inclusion doesn’t require dithering to be implemented in the renderer. Logic op is useful for efficient
highlighting operations. Masked operations are supported since they are often used in more complex
operations and are needed to achieve invariance. Support for blend equations other than add and
blend color would be useful, but are only included in the Imaging Subset of OpenGL 1.3 so they are
not included. ❑

4.2 Whole Framebuffer Operations

All whole framebuffer operations are supported except for color index related operations, drawing to differ-
ent color buffers, and accumulation buffer.

OpenGL 1.3 Common Common-Lite
DrawBuffer (enum mode) – –
IndexMask(uint mask) – –
ColorMask(boolean red, boolean green, boolean blue,

boolean alpha)

� �

Clear(bitfield mask) � �
ClearColor(clampf red, clampf green, clampf blue,

clampf alpha)

� †

ClearIndex(float c) – –
ClearDepth(clampd depth) ♦ †
ClearStencil(int s) � �

ClearAccum(float red, float green, float blue, float

alpha)

– –

Accum(enum op, float value) – –

24 Per-Fragment Operations and the Framebuffer

■ Multiple drawing buffers are not exposed; an application can only draw to the default buffer, so
DrawBuffer is not necessary. The accumulation buffer is not used in many applications, though it is
useful as a non-interactive antialiasing technique. ❑

4.3 Drawing, Reading, and Copying Pixels

ReadPixelsis supported with the following exceptions: the depth and stencil buffers cannot be read from and
the number of format and type combinations forReadPixelsis severely restricted. Two format/type com-
binations are supported: formatRGBAand typeUNSIGNEDBYTE for portability; and one implementation-
specific format/type combination queried using the tokensIMPLEMENTATIONCOLORREADFORMATOES

andIMPLEMENTATIONCOLORREADTYPE OES(OESread format extension). The format and type com-
binations that can be returned from these queries are listed in Table3.1. CopyPixelsandReadBuffer are not
supported. Read operations return data from the default color buffer.

OpenGL 1.3 Common Common-Lite
ReadBuffer(enum mode) – –
ReadPixels(int x, int y,sizei width, sizei height, enum

format, enum type, void * pixels)

�‡ �‡

CopyPixels(int x, int y, sizei width, sizei height,

enum type)

– –

■ Reading the color buffer is useful for some applications and also provides a platform independent
method for testing. The inclusion of the OESread format extension allows an implementation to
support a more efficient format without increasing the number of formats that must be supported.
Pixel copies can be implemented by reading to the host and then drawing to the color buffer (using
texture mapping for the drawing part). Image copy performance is important to many presentation
applications, so CopyPixelsmay be revisited in a future revision. Drawing to and reading from the
depth and stencil buffers is not used frequently in applications (though it would be convenient for
testing), so it is not included. ReadBuffer is not required since the concept of multiple drawing buffers
is not exposed. ❑

Chapter 5

Special Functions

5.1 Evaluators

Evaluators are not supported.

OpenGL 1.3 Common Common-Lite
Map1{fd}(enum target, T u1, T u2, int stride, int

order, T points)

– –

Map2{fd}(enum target, T u1, T u2, int ustride, int

uorder, T v1, T v2, int vstride, int vorder, T

* points)

– –

GetMap{ifd}v(enum target, enum query, T * v) – –
EvalCoord{12}{fd}[v] (T coord) – –
MapGrid1 {fd}(int un, T u1, T u2) – –
MapGrid2 {fd}(int un, T u1, T u2, T v1, T v2) – –
EvalMesh1(enum mode, int i1, int i2) – –
EvalMesh2(enum mode, int i1, int i2, int j1, int j2) – –
EvalPoint1(int i) – –
EvalPoint2(int i, int j) – –

■ Evaluators are not used by many applications other than sophisticated CAD applications. ❑

5.2 Selection

Selection is not supported.

OpenGL 1.3 Common Common-Lite
InitNames(void) – –
LoadName(uint name) – –
PushName(uint name) – –

25

26 Special Functions

PopName(void) – –
RenderMode(enum mode) – –
SelectBuffer(sizei size, uint * buffer) – –

■ Selection is not used by many applications. There are other methods that applications can use to
implement picking operations. ❑

5.3 Feedback

Feedback is not supported.

OpenGL 1.3 Common Common-Lite
FeedbackBuffer(sizei size, enum type, float * buffer) – –
PassThrough(float token) – –

■ Feedback is seldom used. ❑

5.4 Display Lists

Display lists are not supported.

OpenGL 1.3 Common Common-Lite
NewList(uint list, enum mode) – –
EndList (void) – –
CallList (uint list) – –
CallLists(sizei n, enum type, const void * lists) – –
ListBase(uint base) – –
GenLists(sizei range) – –
IsList (uint list) – –
DeleteLists(uint list, sizei range) – –

■ Display lists are used by many applications — sometimes to achieve better performance and some-
times for convenience. The implementation complexity associated with display lists is too large for
the implementation targets envisioned for this profile. ❑

5.5 Flush and Finish

Flush andFinish are supported.

Special Functions 27

OpenGL 1.3 Common Common-Lite
Flush(void) � �
Finish(void) � �

■ Applications need some manner to guarantee rendering has completed, so Finish needs to be
supported. Flush can be trivially supported. ❑

5.6 Hints

Hints are retained except for the hints relating to the unsupported polygon smoothing and compression of
textures (including retrieving compressed textures) features.

OpenGL 1.3 Common Common-Lite
Hint (enum target, enum mode)

target = PERSPECTIVE CORRECTIONHINT � �
target = POINT SMOOTHHINT � �
target = LINE SMOOTHHINT � �
target = FOG HINT � �
target = TEXTURE COMPRESSIONHINT – –
target = POLYGON SMOOTHHINT – –

■ Applications and implementations still need some method for expressing permissible speed versus
quality trade-offs. The implementation cost is minimal. There is no value in retaining the hints for
unsupported features. ❑

Chapter 6

State and State Requests

6.1 Querying GL State

State queries are supported forstatic state explicitly supported in the profile, such as implementation-
specific constants. Commands that query non-simple dynamic state, such asGetLight or GetMaterial
are not part of the profile. The simple state query commandGetIntegerv is retained to allow querying
of static state. The simple state variables are listed in Table6.2: supported static state is shown inboldface.
In addition to this subset, queries of the extension state:IMPLEMENTATIONCOLORREADTYPE OESand
IMPLEMENTATIONCOLORREADFORMATOESare supported.

The values of the strings returned byGetString are specified as part of the profile definition. In particular,
the version string indicates the particular OpenGL ES profile as well as the version of that profile. Strings
are listed in Table6.1.

As the profile is revised, theVERSIONstring is updated to indicate the revision. The string format
is fixed and includes a two-character profile identifier:CMfor the Common andCL for the Common-Lite
profile; and the two-digit version number (X.Y).

Strings
VENDOR as defined by OpenGL 1.3
RENDERER as defined by OpenGL 1.3
VERSION ”OpenGL ES-XX 1.0 ” XX={CM,CL}
EXTENSIONS as defined by OpenGL 1.3

Table 6.1: String State

Client and server attribute stacks are not supported by the profiles; consequently, the commandsPushAt-
trib , PopAttrib , PushClientAttrib , andPopClientAttrib are not supported.

28

State and State Requests 29

ACTIVE TEXTURE ALIASED LINE WIDTH RANGE ALIASED POINT SIZE RANGE
ALPHA BITS ALPHA TEST ALPHA TEST FUNC
ALPHA TEST REF BLEND BLEND DST
BLEND SRC BLUE BITS CLIENT ACTIVE TEXTURE
COLOR ARRAY COLOR ARRAY POINTER COLOR ARRAY SIZE
COLOR ARRAY STRIDE COLOR ARRAY TYPE COLOR CLEAR VALUE
COLOR LOGIC OP COLOR MATERIAL COLOR MATERIAL FACE
COLOR MATERIAL PARAMETER COLOR WRITEMASK COMPRESSED TEXTURE FORMATS
CULL FACE CULL FACE MODE CURRENTCOLOR
CURRENTNORMAL CURRENTRASTERCOLOR CURRENTRASTERDISTANCE
CURRENTRASTERINDEX CURRENTRASTERPOSITION CURRENTRASTERPOSITIONVALID
CURRENTRASTERTEXTURE COORDS CURRENTTEXTURE COORDS DEPTH BITS
DEPTH CLEAR VALUE DEPTH FUNC DEPTH RANGE
DEPTH TEST DEPTH WRITEMASK DITHER
DOUBLEBUFFER DRAW BUFFER FOG
FOG COLOR FOG DENSITY FOG END
FOG HINT FOG MODE FOG START
FRONT FACE GREEN BITS LIGHT0
LIGHT1 LIGHT2 LIGHT3
LIGHT4 LIGHT5 LIGHT6
LIGHT7 LIGHTING LIGHT MODEL AMBIENT
LIGHT MODEL COLOR CONTROL LIGHT MODEL LOCAL VIEWER LIGHT MODEL TWO SIDE
LINE SMOOTH LINE SMOOTH HINT LINE WIDTH
LINE WIDTH GRANULARITY LINE WIDTH RANGE LOGIC OP MODE
MATRIX MODE MAX ELEMENTS INDICES MAX ELEMENTS VERTICES
MAX LIGHTS MAX MODELVIEW STACK DEPTH MAX PROJECTION STACK DEPTH
MAX TEXTURE SIZE MAX TEXTURE STACK DEPTH MAX TEXTURE UNITS
MAX VIEWPORT DIMS MODELVIEW MATRIX MODELVIEW STACK DEPTH
NORMAL ARRAY NORMAL ARRAY POINTER NORMAL ARRAY STRIDE
NORMAL ARRAY TYPE NORMALIZE NUM COMPRESSED TEXTURE FORMATS
PACK ALIGNMENT PERSPECTIVECORRECTIONHINT POINT SIZE
POINT SIZE GRANULARITY POINT SIZE RANGE POINT SMOOTH
POINT SMOOTH HINT POLYGON OFFSETFACTOR POLYGON OFFSETFILL
POLYGON OFFSETLINE POLYGON OFFSETPOINT POLYGON OFFSETUNITS
POLYGON SMOOTH POLYGON SMOOTH HINT PROJECTIONMATRIX
PROJECTIONSTACK DEPTH RED BITS RESCALENORMAL
RGBA MODE SCISSORBOX SCISSORTEST
SHADE MODEL SMOOTH LINE WIDTH GRANULARITY SMOOTH LINE WIDTH RANGE
SMOOTH POINT SIZE GRANULARITY SMOOTH POINT SIZE RANGE STENCIL BITS
STENCIL CLEAR VALUE STENCIL FAIL STENCIL FUNC
STENCIL PASSDEPTH FAIL STENCIL PASSDEPTH PASS STENCIL REF
STENCIL TEST STENCIL VALUE MASK STENCIL WRITEMASK
STEREO SUBPIXEL BITS TEXTURE 1D
TEXTURE 2D TEXTURE 3D TEXTURE BINDING 1D
TEXTURE BINDING 2D TEXTURE BINDING 3D TEXTURE COORDARRAY
TEXTURE COORDARRAY POINTER TEXTURE COORDARRAY SIZE TEXTURE COORDARRAY STRIDE
TEXTURE COORDARRAY TYPE TEXTURE MATRIX TEXTURE STACK DEPTH
UNPACK ALIGNMENT VERTEX ARRAY VERTEX ARRAY POINTER
VERTEX ARRAY SIZE VERTEX ARRAY STRIDE VERTEX ARRAY TYPE
VIEWPORT

Table 6.2: Static and Dynamic State: Queriable state in boldface

30 State and State Requests

OpenGL 1.3 Common Common-Lite
GetBooleanv(enum pname, boolean * params) – –
GetDoublev(enum pname, double * params) – –
GetFloatv(enum pname, float * params) – –
GetIntegerv(enum pname, int * params) � �
IsEnabled(enum cap) – –
GetString(enum name) � �
PushAttrib (bitfield mask) – –
PopAttrib (void) – –
PushClientAttrib (bitfield mask) – –
PopClientAttrib (void) – –

■ There are several reasons why one type or another of internal state needs to be queried by an ap-
plication. The application may need to dynamically discover implementation limits (pixel component
sizes, texture dimensions, etc.), or the application might be part of a layered library and it may need
to save and restore any state that it disturbs as part of its rendering. PushAttrib and PopAttrib can be
used to perform this but they are expensive to implement and use and therefore not supported. Gen-
erally speaking state queries are discouraged as they are often detrimental to performance. Rather
than trying to partition different types of dynamic state that can be queried, tops of matrix stacks
for example, no dynamic state queries are supported and applications must shadow state changes
rather than querying the pipeline. This makes things difficult for layered libraries, but there hasn’t
been enough justification to retain dynamic state queries or attribute pushing and popping.

The string queries are retained as they provide important versioning, and extension information. ❑

6.2 State Tables

The following tables summarize state that is present in the Common and Common-Lite profiles. State
appearing initalic indicates unnamed state. All state has initial values identical to those specified in OpenGL
1.3.

State and State Requests 31

State Exposed Queriable

Begin/end object – –
Previous line vertex � –
First line-vertex flag � –
First vertex of line loop � –
Line stipple counter – –
Polygon vertices – –
Number of polygon vertices – –
Previous two triangle strip vertices � –
Number of triangle strip vertices � –
Triangle strip A/B pointer � –
Quad vertices – –
Number of quad strip vertices – –

Table 6.4: GL Internal begin-end state variables

State Exposed Queriable

CURRENTCOLOR � –
CURRENTINDEX – –
CURRENTTEXTURECOORDS � –
CURRENTNORMAL � –
Color associated with last vertex � –
Color index associated with last vertex – –
Texture coordinates associated with last vertex � –
CURRENTRASTERPOSITION – –
CURRENTRASTERDISTANCE – –
CURRENTRASTERCOLOR – –
CURERNTRASTERINDEX – –
CURRENTRASTERTEXTURECOORDS – –
CURRENTRASTERPOSITION VALID – –
EDGEFLAG – –

Table 6.5: Current Values and Associated Data

32 State and State Requests

State Exposed Queriable

CLIENT ACTIVE TEXTURE � –
VERTEXARRAY � –
VERTEXARRAYSIZE � –
VERTEXARRAYSTRIDE � –
VERTEXARRAYTYPE � –
VERTEXARRAYPOINTER � –
NORMALARRAY � –
NORMALARRAYSTRIDE � –
NORMALARRAYTYPE � –
NORMALARRAYPOINTER � –
COLORARRAY � –
COLORARRAYSIZE � –
COLORARRAYSTRIDE � –
COLORARRAYTYPE � –
COLORARRAYPOINTER � –
INDEX ARRAY – –
INDEX ARRAYSTRIDE – –
INDEX ARRAYTYPE – –
INDEX ARRAYPOINTER – –

Table 6.6: Vertex Array Data

State Exposed Queriable

TEXTURECOORDARRAY � –
TEXTURECOORDARRAYSIZE � –
TEXTURECOORDARRAYSTRIDE � –
TEXTURECOORDARRAYTYPE � –
TEXTURECOORDARRAYPOINTER � –
EDGEFLAG ARRAY – –
EDGEFLAG ARRAYSTRIDE – –
EDGEFLAG ARRAYPOINTER – –

Table 6.7: Vertex Array Data (cont.)

State and State Requests 33

State Exposed Queriable

COLORMATRIX – –
MODELVIEW MATRIX � –
PROJECTIONMATRIX � –
TEXTUREMATRIX � –
VIEWPORT � –
DEPTHRANGE � –
COLORMATRIX STACKDEPTH – –
MODELVIEWSTACKDEPTH � –
PROJECTIONSTACKDEPTH � –
TEXTURESTACKDEPTH � –
MATRIX MODE � –
NORMALIZE � –
RESCALENORMAL � –
CLIP PLANE{0-5 } – –

Table 6.8: Transformation State

State Exposed Queriable

FOGCOLOR � –
FOGINDEX – –
FOGDENSITY � –
FOGSTART � –
FOGEND � –
FOGMODE � –
FOG � –
SHADEMODEL � –

Table 6.9: Coloring

34 State and State Requests

State Exposed Queriable

LIGHTING � –
COLORMATERIAL � –
COLORMATERIAL PARAMETER – –
COLORMATERIAL FACE – –
AMBIENT (material) � –
DIFFUSE (material) � –
SPECULAR (material) � –
EMISSION (material) � –
SHININESS (material) � –
LIGHT MODELAMBIENT � –
LIGHT MODELLOCALVIEWER – –
LIGHT MODELTWOSIDE � –
LIGHT MODELCOLORCONTROL – –

Table 6.10: Lighting

State Exposed Queriable

AMBIENT (light i) � –
DIFFUSE (light i) � –
SPECULAR (light i) � –
EMISSION (light i) � –
CONSTANTATTENUATION � –
LINEAR ATTENUATION � –
QUADRATICATTENUATION � –
SPOTDIRECTION � –
SPOTEXPONENT � –
SPOTCUTOFF � –
LIGHT{0-7 } � –
COLORINDEXES – –

Table 6.11: Lighting (cont.)

State and State Requests 35

State Exposed Queriable

POINT SIZE � –
POINT SMOOTH � –
LINE WIDTH � –
LINE SMOOTH � –
LINE STIPPLE PATTERN – –
LINE STIPPLE REPEAT – –
LINE STIPPLE – –
CULL FACE � –
CULL FACEMODE � –
FRONTFACE � –
POLYGONSMOOTH – –
POLYGONMODE – –
POLYGONOFFSETFACTOR � –
POLYGONOFFSETUNITS � –
POLYGONOFFSETPOINT – –
POLYGONOFFSETLINE – –
POLYGONOFFSETFILL � –
POLYGONSTIPPLE – –

Table 6.12: Rasterization

State Exposed Queriable

MULTISAMPLE � –
SAMPLEALPHATO COVERAGE � –
SAMPLEALPHATO ONE � –
SAMPLECOVERAGE � –
SAMPLECOVERAGEVALUE � –
SAMPLECOVERAGEINVERT � –

Table 6.13: Multisampling

36 State and State Requests

State Exposed Queriable

TEXTURE1D – –
TEXTURE2D � –
TEXTURE3D – –
TEXTURECUBEMAP – –
TEXTUREBINDING 1D – –
TEXTUREBINDING 2D � –
TEXTUREBINDING 3D – –
TEXTUREBINDING CUBEMAP – –
TEXTURECUBEMAPPOSITIVE X – –
TEXTURECUBEMAPNEGATIVEX – –
TEXTURECUBEMAPPOSITIVE Y – –
TEXTURECUBEMAPNEGATIVEY – –
TEXTURECUBEMAPPOSITIVE Z – –
TEXTURECUBEMAPNEGATIVEZ – –

Table 6.14: Texture Objects

State Exposed Queriable

TEXTUREWIDTH � –
TEXTUREHEIGHT � –
TEXTUREDEPTH – –
TEXTUREBORDER – –
TEXTUREINTERNAL FORMAT � –
TEXTUREREDSIZE � –
TEXTUREGREENSIZE � –
TEXTUREBLUE SIZE � –
TEXTUREALPHASIZE � –
TEXTURELUMINANCESIZE � –
TEXTUREINTENSITY SIZE – –

Table 6.15: Texture Objects (cont.)

State and State Requests 37

State Exposed Queriable

TEXTURECOMPRESSED � –
TEXTURECOMPRESSEDIMAGESIZE � –
TEXTUREBORDERCOLOR – –
TEXTUREMIN FILTER � –
TEXTUREMAGFILTER � –
TEXTUREWRAPS � –
TEXTUREWRAPT � –
TEXTUREWRAPR – –
TEXTUREPRIORITY – –
TEXTURERESIDENT – –
TEXTUREMIN LOD � –
TEXTUREMAXLOD � –
TEXTUREBASELEVEL � –
TEXTUREMAXLEVEL � –

Table 6.16: Texture Objects (cont.)

State Exposed Queriable

ACTIVE TEXTURE � –
TEXTUREENVMODE � –
TEXTUREENVCOLOR � –
TEXTUREGEN{STRQ} – –
EYE PLANE – –
OBJECTPLANE – –
TEXTUREGENMODE – –
COMBINERGB – –
COMBINEALPHA – –
SOURCE{012} RGB – –
SOURCE{012} ALPHA – –
OPERAND{012} RGB – –
OPERAND{012} ALPHA – –
RGBSCALE – –
ALPHAALPHA – –

Table 6.17: Texture Environment and Generation

38 State and State Requests

State Exposed Queriable

SCISSORTEST � –
SCISSORBOX � –
ALPHATEST � –
ALPHATEST FUNC � –
ALPHATEST REF � –
STENCIL TEST � –
STENCIL FUNC � –
STENCIL VALUEMASK � –
STENCIL REF � –
STENCIL FAIL � –
STENCIL PASSDEPTHFAIL � –
STENCIL PASSDEPTHPASS � –
DEPTHTEST � –
DEPTHFUNC � –
BLEND � –
BLENDSRC � –
BLENDDST � –
BLENDEQUATION – –
BLENDCOLOR – –
DITHER � –
INDEX LOGIC OP – –
COLORLOGIC OP � –
LOGIC OPMODE � –

Table 6.18: Pixel Operations

State Exposed Queriable

DRAWBUFFER – –
INDEX WRITEMASK – –
COLORWRITEMASK � –
DEPTHWRITEMASK � –
STENCIL WRITEMASK � –
COLORCLEARVALUE � –
INDEX CLEARVALUE – –
DEPTHCLEARVALUE � –
STENCIL CLEARVALUE � –
ACCUMCLEARVALUE – –

Table 6.19: Framebuffer Control

State and State Requests 39

State Exposed Queriable

UNPACKSWAPBYTES – –
UNPACKLSB FIRST – –
UNPACKIMAGEHEIGHT – –
UNPACKSKIP IMAGES – –
UNPACKROWLENGTH – –
UNPACKSKIP ROWS – –
UNPACKSKIP PIXELS – –
UNPACKALIGNMENT � –
PACKSWAPBYTES – –
PACKLSB FIRST – –
PACKIMAGEHEIGHT – –
PACKSKIP IMAGES – –
PACKROWLENGTH – –
PACKSKIP ROWS – –
PACKSKIP PIXELS – –
PACKALIGNMENT � –
MAPCOLOR – –
MAPSTENCIL – –
INDEX SHIFT – –
INDEX OFFSET – –
REDSCALE – –
GREENSCALE – –
BLUE SCALE – –
ALPHASCALE – –
DEPTHSCALE – –
REDBIAS – –
GREENBIAS – –
BLUE BIAS – –
ALPHABIAS – –
DEPTHBIAS – –

Table 6.20: Pixels

40 State and State Requests

State Exposed Queriable

COLORTABLE – –
POSTCONVOLUTIONCOLORTABLE – –
POSTCOLORMATRIX COLORTABLE – –
COLORTABLE FORMAT – –
COLORTABLE WIDTH – –
COLORTABLE REDSIZE – –
COLORTABLE GREENSIZE – –
COLORTABLE BLUE SIZE – –
COLORTABLE ALPHASIZE – –
COLORTABLE LUMINANCESIZE – –
COLORTABLE INTENSITY SIZE – –
COLORTABLE SCALE – –
COLORTABLE BIAS – –

Table 6.21: Pixels (cont.)

State Exposed Queriable

CONVOLUTION1D – –
CONVOLUTION2D – –
SEPARABLE2D – –
CONVOLUTION – –
CONVOLUTIONBORDERCOLOR – –
CONVOLUTIONBORDERMODE – –
CONVOLUTIONFILTER SCALE – –
CONVOLUTIONFILTER BIAS – –
CONVOLUTIONFORMAT – –
CONVOLUTIONWIDTH – –
CONVOLUTIONHEIGHT – –

Table 6.22: Pixels (cont.)

State and State Requests 41

State Exposed Queriable

POSTCONVOLUTIONREDSCALE – –
POSTCONVOLUTIONGREENSCALE – –
POSTCONVOLUTIONBLUE SCALE – –
POSTCONVOLUTIONALPHASCALE – –
POSTCONVOLUTIONREDBIAS – –
POSTCONVOLUTIONGREENBIAS – –
POSTCONVOLUTIONBLUE BIAS – –
POSTCONVOLUTIONALPHABIAS – –
POSTCOLORMATRIX REDSCALE – –
POSTCOLORMATRIX GREENSCALE – –
POSTCOLORMATRIX BLUE SCALE – –
POSTCOLORMATRIX ALPHASCALE – –
POSTCOLORMATRIX REDBIAS – –
POSTCOLORMATRIX GREENBIAS – –
POSTCOLORMATRIX BLUE BIAS – –
POSTCOLORMATRIX ALPHABIAS – –
HISTOGRAM – –
HISTOGRAMWIDTH – –
HISTOGRAMFORMAT – –
HISTOGRAMREDSIZE – –
HISTOGRAMGREENSIZE – –
HISTOGRAMBLUE SIZE – –
HISTOGRAMALPHASIZE – –
HISTOGRAMLUMINANCESIZE – –
HISTOGRAMSINK – –

Table 6.23: Pixels (cont.)

42 State and State Requests

State Exposed Queriable

MINMAX – –
MINMAXFORMAT – –
MINMAXSINK – –
ZOOMX – –
ZOOMY – –
PIXEL MAPI TO I – –
PIXEL MAPS TO S – –
PIXEL MAPI TO {RGBA} – –
PIXEL MAPR TO R – –
PIXEL MAPG TO G – –
PIXEL MAPB TO B – –
PIXEL MAPA TO A – –
PIXEL MAPx TO y SIZE – –
READBUFFER – –

Table 6.24: Pixels (cont.)

State Exposed Queriable

ORDER – –
COEFF – –
DOMAIN – –
MAP1x – –
MAP2x – –
MAP1GRID DOMAIN – –
MAP2GRID DOMAIN – –
MAP1GRID SEGMENTS – –
MAP2GRID SEGMENTS – –
AUTONORMAL – –

Table 6.25: Evaluators

State Exposed Queriable

PERSPECTIVECORRECTIONHINT � �
POINT SMOOTHHINT � �
LINE SMOOTHHINT � �
POLYGONSMOOTHHINT – –
FOGHINT � �
TEXTURECOMPRESSIONHINT � �

Table 6.26: Hints

State and State Requests 43

State Exposed Queriable

MAXCLIP PLANES – –
MAXCOLORMATRIX STACKDEPTH – –
MAXMODELVIEWSTACKDEPTH � �
MAXPROJECTIONSTACKDEPTH � �
MAXTEXTURESTACKDEPTH � �
SUBPIXEL BITS � �
MAX3D TEXTURESIZE – –
MAXTEXTURESIZE � �
MAXCUBEMAPTEXTURESIZE – –
MAXPIXEL MAPTABLE – –
MAXNAMESTACKDEPTH – –
MAXLIST NESTING – –
MAXEVAL ORDER – –
MAXVIEWPORTDIMS � �

Table 6.27: Implementation Dependent Values

State Exposed Queriable

MAXATTRIB STACKDEPTH – –
MAXCLIENT ATTRIB STACKDEPTH – –
Maximum size of a color table – –
Maximum size of the histogram table – –
AUXBUFFERS – –
RGBAMODE – –
INDEX MODE – –
DOUBLEBUFFER – –
ALIASED POINT SIZE RANGE � �
SMOOTHPOINT SIZE RANGE � �
SMOOTHPOINT SIZE GRANULARITY � –
ALIASED LINE WIDTHRANGE � �
SMOOTHLINE WIDTHRANGE � �
SMOOTHLINE WIDTHGRANULARITY � –

Table 6.28: Implementation Dependent Values (cont.)

44 State and State Requests

State Exposed Queriable

MAXCONVOLUTIONWIDTH – –
MAXCONVOLUTIONHEIGHT – –
MAXELEMENTSINDICES � –
MAXELEMENTSVERTICES � –
MAXTEXTUREUNITS � �
SAMPLEBUFFERS � �
SAMPLES � �
COMPRESSEDTEXTUREFORMATS � �
NUMCOMPRESSEDTEXTUREFORMATS � �

Table 6.29: Implementation Dependent Values (cont.)

State Exposed Queriable

REDBITS � �
GREENBITS � �
BLUE BITS � �
ALPHABITS � �
INDEX BITS – –
DEPTHBITS � �
STENCIL BITS � �
ACCUMBITS – –

Table 6.30: Implementation Dependent Pixel Depths

State Exposed Queriable

LIST INDEX – –
LIST MODE – –
Server attribute stack – –
ATTRIB STACKDEPTH – –
Client attribute stack – –
CLIENT ATRIB STACKDEPTH – –
NAMESTACKDEPTH – –
RENDERMODE – –
SELECTIONBUFFERPOINTER – –
SELECTIONBUFFERSIZE – –
FEEDBACKBUFFERPOINTER – –
FEEDBACKBUFFERSIZE – –
FEEDBACKBUFFERTYPE – –
Current error code(s) � �
Corresponding error flags � �

Table 6.31: Miscellaneous

State and State Requests 45

State Exposed Queriable

IMPLEMENTATIONCOLORREADTYPE OES � �
IMPLEMENTATIONCOLORREADFORMATOES � �

Table 6.32: Core Additions and Extensions

Chapter 7

Core Additions and Extensions

An OpenGL ES profile consists of two parts: a subset of the full OpenGL pipeline, and some extended
functionality that is drawn from a set of OpenGL ES-specific extensions to the full OpenGL specification.
Each extension is pruned to match the profile’s command subset and added to the profile as either a core
addition or a profile extension. Core additions differ from profile extensions in that the commands and
tokens do not include extension suffixes in their names.

Profile extensions are further divided into required (mandatory) and optional extensions. Required ex-
tensions must be implemented as part of a conforming implementation, whereas the implementation of
optional extensions are left to the discretion of the implementor. Both types of extensions use extension
suffixes as part of their names, are present in theEXTENSIONSstring, and participate in function address
queries defined in the platform embedding layer. Required extensions have the additional packaging con-
straint, that commands defined as part of a required extension must also be available as part of a static
binding if core commands are also available in a static binding. The commands comprising an optional
extension may optionally be included as part of a static binding.

From an API perspective, commands and tokens comprising a core addition are indistinguishable from
the original OpenGL subset. However, to increase application portability, an implementation may also
implement a core addition as an extension by including suffixed versions of commands and tokens in the
appropriate dynamic and optional static bindings and the extension name in theEXTENSIONSstring.

■ Extensions preserve all traditional extension properties regardless of whether they are required
or optional. Required extensions must be present; therefore, additionally providing static bindings
simplifies application usage and reinforces the ubiquity of the extension. Permitting core additions
to be included as extensions allows extensions that are promoted to core additions in later profile
revisions to continue to be available as extensions, retaining application compatibility. ❑

The Common and Common-Lite profiles add subsets of theOESbyte coordinates , OESfixed -

point , andOESsingle precision ES-specific extensions as core additions;OESread format and
OEScompressed paletted texture as required profile extensions; andOESquery matrix as an op-
tional profile extension.

7.1 Byte Coordinates

The OESbyte coordinates extension allowsbyte data types to be used as vertex and texture coordi-
nates. The Common/Common-Lite profile supportsbyte coordinates in vertex array commands.

46

Core Additions and Extensions 47

Extension Name Common Common-Lite

OESbyte coordinates core addition core addition
OESfixed point core addition core addition
OESsingle precision core addition n/a

OESread format required extension required extension
OEScompressed paletted texture required extension required extension

OESquery matrix optional extension optional extension

Table 7.1: OES Extension Disposition

7.2 Fixed Point

The OESfixed point extension defines an integer fixed-point data type for use as vertex attributes and
command parameters. The extension specification includes commands that parallel all OpenGL 1.3 com-
mands with floating-point parameters (including commands that support a single parameter type version
such asDepthRange, PointSize, andLineWidth). The subset of commands included in the Common and
Common-Lite profiles matches exactly the subset of floating-point commands included in the profile. The
subset of commands is summarized in Table7.2

Normal3x(fixed coords)

MultiTexCoord4x (fixed coords)

Color4x(fixed coords)

VertexPointer(int size, enum type, sizei stride, const void * ptr)

size = 2,3,4 type = FIXED

ColorPointer(int size, enum type, sizei stride, const void * ptr)

size=3,4 type=FIXED

NormalPointer(enum type, sizei stride, const void * ptr)

type = FIXED

TexCoordPointer(int size, enum type, sizei stride, const void * ptr)

size = 2,3,4 type = FIXED

DepthRangex(clampx n, clampx f)

LoadMatrixx (fixed m[16])

MultMatrixx (fixed m[16])

Rotatex(fixed angle, fixed x, fixed y, fixed z)

Scalex(fixed x, fixed y, fixed z)

Translatex(fixed x, fixed y, fixed z)

Frustumx(fixed l, fixed r, fixed b, fixed t, fixed n, fixed f)

Orthox (fixed l, fixed r, fixed b, fixed t, fixed n, fixed f)

48 Core Additions and Extensions

Materialx[v] (enum face, enum pname, T param)

Lightx[v] (enum light, enum pname, T param)

LightModelx[v] (enum pname, T param)

PointSizex(fixed size)

LineWidthx (fixed width)

PolygonOffsetx(fixed factor, fixed units)

TexParameterx(enum target, enum pname, T param)

TexEnvx[v](enum target, enum pname, T param)

Fogx[v](enum pname, T param)

SampleCoveragex(clampx value, boolean invert)

AlphaFuncx(enum func, clampx ref)

ClearColorx(clampx red, clampx green, clampx blue, clampx alpha)

ClearDepthx(clampx depth)

Table 7.2: Common/Common-Lite profile subset ofOESfixed point

7.3 Single-precision Commands

TheOESsingle precision commandsextension creates new single-precision parameter command vari-
ants of commands that have no such variants (DepthRange, TexGen, Frustum, Ortho , etc.). Only the subset
matching the profile feature set is included in the Common profile.

DepthRangef(clampf n, clampf f)

Frustumf (float l, float r, float b, float t, float n, float f)

Orthof (float l, float r, float b, float t, float n, float f)

ClearDepthf(clampf depth)

7.4 Compressed Paletted Texture

TheOEScompressed paletted texture extension provides a method for specifying a compressed tex-
ture image as a color index image accompanied by a palette. The extension adds ten new texture internal
formats to specify different combinations of index width and palette color format:
PALETTE4 RGB8OES, PALETTE4 RGBA8OES, PALETTE4 R5 G6 B5 OES, PALETTE4 RGBA4OES,
PALETTE4 RGB5A1 OES, PALETTE8 RGB8OES, PALETTE8 RGBA8OES, PALETTE8 R5 G6 B5 OES,
PALETTE8 RGBA4OES, andPALETTE8 RGB5A1 OES. The state queries forNUMCOMPRESSEDTEXTURE-

FORMATSandCOMPRESSEDTEXTUREFORMATSinclude these formats.

Core Additions and Extensions 49

7.5 Read Format

The OESread format extension allows implementation-specific pixel type and format parameters to be
queried by an application and used inReadPixelcommands. The format and type values must be from the
set of supported texture image format and type values specified in Table3.1.

7.6 Query Matrix

The optionalOESquery matrix extension allows the current modelview, texture, or projection matrix to
be retrieved to assist with diagnostics and debugging during application development. The command allows
retrieval of separate mantissa and exponent values so that an implementation of a fixed-point profile with
internal dynamic range greater than 16.16 can return full range results.

Chapter 8

Packaging

8.1 Header Files

The header file structure is the same as a full OpenGL distribution, using a single header file:gl.h . Addi-
tional enumerantsVERSIONES CMx y andVERSIONES CL x y , wherex andy are the major and minor
version numbers as described in Section6.1, are included in the header file. These enumerants indicate the
versions of profiles supported at compile-time.

8.2 Libraries

Each profile defines a distinct link-library. The library name includes the profile name aslibGLES nn.z

wherenn is eitherCMor CL and .z is a platform-specific library suffix (i.e.,.a , .so , .lib , etc.). The
symbols for the platform-specific embedding library are also included in the link-library. Availability of
static and dynamic function bindings is platform dependent. Rules regarding the export of bindings for core
additions, required profile extensions, and optional platform extensions are described in Chapter7.

50

Appendix A

Acknowledgements

The OpenGL ES Common and Common-Lite profiles are the result of the contributions of many people,
representing a cross section of the desktop, hand-held, and embedded computer industry. Following is a
partial list of the contributors, including the company that they represented at the time of their contribution:

Aaftab Munshi, ATI

Andy Methley, Panasonic

Carl Korobkin, 3d4W

Chris Hall, Seaweed Systems

Claude Knaus, Silicon Graphics

David Blythe, 3d4W

Ed Plowman, ARM

Graham Connor, Imagination Technologies

Harri Holopainen, Hybrid Graphics

Jacob Strom, Ericsson

Jani Vaarala, Nokia

Jon Leech, Silicon Graphics

Justin Couch, Yumetech

Kari Pulli, Nokia

Lane Roberts, Symbian

Mark Callow, HI

Mark Tarlton, Motorola

Mike Olivarez, Motorola

Neil Trevett, 3Dlabs

Phil Huxley, Tao Group

Tom Olson, Texas Instruments

Ville Miettinen, Hybrid Graphics

51

Appendix B

OES Extension Specifications

B.1 OES byte coordinates

Name

OES_byte_coordinates

Name Strings

GL_OES_byte_coordinates

Contact

Kari Pulli, Nokia (kari.pulli ’at’ nokia.com)

Status

Ratified by the Khronos BOP, July 23, 2003.

Version

$Date: 2003/07/23 04:23:25 $ $Revision: 1.5 $

Number

291

Dependencies

OpenGL 1.1 is required.

Overview

This extension allows specifying, additionally to all existing
values, byte-valued vertex and texture coordinates to be used.

The main reason for introducing the byte-argument is to allow
storing data more compactly on memory-restricted environments.

52

OES Extension Specifications 53

IP Status

There is no intellectual property associated with this extension.

Issues

None known.

New Procedures and Functions

None

New Tokens

Accepted by the <type> parameter of VertexPointer and TexCoordPointer

BYTE 0x1400

Additions to Chapter 2 of the OpenGL 1.3 Specification (OpenGL Operation)

Add signed byte entry points to first paragraph of
section 2.7 (Vertex Specification):

void Vertex{234}bOES(T coords);
void Vertex{234}bvOES(T coords);

and to the second paragraph:

void TexCoord{1234}bOES(T coords);
void TexCoord{1234}bvOES(T coords);

and to the third paragraph:

void MultiTexCoord{1234}bOES(enum texture, T coords);
void MultiTexCoord{1234}bvOES(enum texture, T coords);

Add byte to supported types in Table 2.4 (Vertex Array Sizes):

Command Sizes Types
VertexPointer 2,3,4 byte,short,int,float,double
TexCoordPointer 1,2,3,4 byte,short,int,float,double

Additions to Chapter 3 of the OpenGL 1.3 Specification (Rasterization)

None

Additions to Chapter 4 of the OpenGL 1.3 Specification (Per-Fragment
Operations and the Frame Buffer)

None

54 OES Extension Specifications

Additions to Chapter 5 of the OpenGL 1.3 Specification (Special Functions)

None

Additions to Chapter 6 of the OpenGL 1.3 Specification (State and
State Requests)

None

Additions to Appendix A of the OpenGL 1.3 Specification (Invariance)

None

Additions to the AGL/GLX/WGL Specifications

GLX Protocol

Byte type commands are mapped on the client-side to the
appropriate short or int command protocol.

Errors

No new errors, giving byte as <type> argument to VertexPointer or
TexCoordPointer is not an error any more.

New State

(table 6.6, pp. 214-215)

Get Value Type Get Command Value Description Sec. Attribute
--------- ---- ----------- ----- ----------- ---- ---------

VERTEX_x Z_5 GetIntegerv FLOAT Type of 2.8 vertex-array
vertex
coordinates

TEXTURE_COORD_x 2* x Z_5 GetIntegerv FLOAT Type of 2.8 vertex-array
texture
coordinates

_x = _ARRAY_TYPE

New Implementation Dependent State

None

Revision History

Sep 23, 2002 Kari Pulli Created the document
Sep 26, 2002 Kari Pulli Incorporated comments by Jon Leech
Feb 26, 2003 David Blythe Changed prefix to OES
Jul 08, 2003 David Blythe Deleted Dependencies on section, added

extension number, narrow state table
Jul 11, 2003 David Blythe Changed to use OES suffixes
Jul 12, 2003 David Blythe Added note about GLX protocol

OES Extension Specifications 55

B.2 OES fixed point

Name
OES_fixed_point

Name Strings

GL_OES_fixed_point

Contact

David Blythe (blythe ’at’ bluevoid.com)

Status

Ratified by the Khronos BOP, July 23, 2003.

Version

Last Modifed Date: 12 July 2003
Author Revision: 0.7

Number

292

Dependencies

None
The extension is written against the OpenGL 1.3 Specification.

Overview

This extension provides the capability, for platforms that do
not have efficient floating-point support, to input data in a
fixed-point format, i.e., a scaled-integer format. There are
several ways a platform could try to solve the problem, such as
using integer only commands, but there are many OpenGL commands
that have only floating-point or double-precision floating-point
parameters. Also, it is likely that any credible application
running on such a platform will need to perform some computations
and will already be using some form of fixed-point representation.
This extension solves the problem by adding new ‘‘fixed’, and
‘‘clamp fixed’’ data types based on a a two’s complement
S15.16 representation. New versions of commands are created
with an ’x’ suffix that take fixed or clampx parameters.

IP Status

None

56 OES Extension Specifications

Issues

* Add double-precision (S31.32) form too?
NO

* Additional InterleavedArray formats?
NO

* Should newly suffixed commands, e.g., PointSize, get an alias with
a float or double suffix for consistency?

NO

* Are enums converted to fixed by scaling by 2ˆ16.
NO. An enums are passed through as if they are already in
S15.16 form. Requiring scaling is too error prone.

New Procedures and Functions

NOTE: ‘T’ expands to ’const fixed * ’ or ‘fixed’ as appropriate

void Vertex{234}x[v]OES(T coords);
void Normal3x[v]OES(T coords);
void TexCoord{1234}x[v]OES(T coords);
void MultiTexCoord{1234}x[v]OES(enum texture, T coords);
void Color{34}x[v]OES(T components);
void Indexx[v]OES(T component);
void RectxOES(fixed x1, fixed y1, fixed x2, fixed y2);
void RectxvOES(const fixed v1[2], const fixed v2[2]);

void DepthRangexOES(clampx n, clampx f);
void LoadMatrixxOES(const fixed m[16]);
void MultMatrixxOES(const fixed m[16]);
void LoadTransposeMatrixxOES(const fixed m[16]);
void MultTransposeMatrixxOES(const fixed m[16]);
void RotatexOES(fixed angle, fixed x, fixed y, fixed z);
void ScalexOES(fixed x, fixed y, fixed z);
void TranslatexOES(fixed x, fixed y, fixed z);
void FrustumxOES(fixed l, fixed r, fixed b, fixed t, fixed n, fixed f);
void OrthoxOES(fixed l, fixed r, fixed b, fixed t, fixed n, fixed f);
void TexGenx[v]OES(enum coord, enum pname, T param);
void GetTexGenxvOES(enum coord, enum pname, T * params);

void ClipPlanexOES(enum plane, const fixed * equation);
void GetClipPlanexOES(enum plane, fixed * equation);

void RasterPos{234}x[v]OES(T coords);

void Materialx[v]OES(enum face, enum pname, T param);
void GetMaterialxOES(enum face, enum pname, T param);
void Lightx[v]OES(enum light, enum pname, T * params);
void GetLightxOES(enum light, enum pname, T * params);
void LightModelx[v]OES(enum pname, T param);

OES Extension Specifications 57

void PointSizexOES(fixed size);
void LineWidthxOES(fixed width);
void PolygonOffsetxOES(fixed factor, fixed units);

void PixelStorex{enum pname, T param);
void PixelTransferxOES(enum pname, T param);
void PixelMapx{enum map int size T * values);
void GetPixelMapxv{enum map int size T * values);

void ConvolutionParameterx[v]OES(enum target, enum pname, T param);
void GetConvolutionParameterxvOES(enum target, enum pname, T * params);
void GetHistogramParameterxvOES(enum target, enum pname, T * params);

void PixelZoomxOES(fixed xfactor, fixed yfactor);

void BitmapxOES(sizei width, sizei height, fixed xorig, fixed yorig,
fixed xmove, fixed ymove, const ubyte * bitmap);

void TexParameterx[v]OES(enum target, enum pname, T param);
void GetTexParameterxvOES(enum target, enum pname, T * params);
void GetTexLevelParameterxvOES(enum target, int level, enum pname, T * params);
void PrioritizeTexturesxOES(sizei n, uint * textures, clampx * priorities);
void TexEnvx[v]OES(enum target, enum pname, T param);
void GetTexEnvxvOES(enum target, enum pname, T * params);

void Fogx[v]OES(enum pname, T param);

void SampleCoverageOES(clampx value, boolean invert);
void AlphaFuncxOES(enum func, clampx ref);

void BlendColorxOES(clampx red, clampx green, clampx blue, clampx alpha);

void ClearColorxOES(clampx red, clampx green, clampx blue, clampx alpha);
void ClearDepthxOES(clampx depth);
void ClearAccumxOES(clampx red, clampx green, clampx blue, clampx alpha);
void AccumxOES(enum op, fixed value);

void Map1xOES(enum target, T u1, T u2, int stride, int order, T points);
void Map2xOES(enum target, T u1, T u2, int ustride, int uorder,

T v1, T v2, int vstride, int vorder, T points);
void MapGrid1xOES(int n, T u1, T u2);
void MapGrid2xOES(int n, T u1, T u2, T v1, T v2);
void GetMapxvOES(enum target, enum query, T * v);
void EvalCoord{12}x[v]OES(T coord);

void FeedbackBufferxOES(sizei n, enum type, fixed * buffer);
void PassThroughxOES(fixed token);

GetFixedvOES(enum pname, fixed * params);

58 OES Extension Specifications

New Tokens

FIXED_OES 0x140C

Additions to Chapter 2 of the OpenGL 1.3 Specification (OpenGL Operation)

Section 2.1.1 Floating-Point Computation

Add the following paragraphs:

On some platforms, floating-point computations are not sufficiently
well supported to be used in an OpenGL implementation. On such
platforms, fixed-point representations may be a viable substitute for
floating-point. Internal computations can use either fixed-point
or floating-point arithmetic. Fixed-point computations must be
accurate to within +/-2ˆ-15. The maximum representable magnitude
for a fixed-point number used to represent positional or normal
coordinates must be at least 2ˆ15; the maximum representable
magnitude for colors or texture coordinates must be at least 2ˆ10.
The maximum representable magnitude for all other fixed-point
values must be at least 2ˆ15. x * 0 = 0* x = 0. 1 * x = x * 1 = x. x +
0 = 0 + x = x. 0ˆ0 = 1. Fixed-point computations may lead to
overflows or underflows. The results of such computations are
undefined, but must not lead to GL interruption or termination.

Section 2.3 GL Command Syntax

Paragraph 3 is updated to include the ’x’ suffix and

Table 2.1 is modified to include the row:

| x | fixed |

Table 2.2 is modified to include the rows:

--
| fixed | 32 | signed 2’s complement S15.16 scaled integer|
--
| clampx | 32 | S15.16 scaled integer clamped to [0, 1] |
--

and the count of the number of rows in the text is changed to 16.

Add paragraph

The mapping of GL data types to data types of a specific
language binding are part of the language binding definition and
may be platform-dependent. Type conversion and type promotion
behavior when mixing actual and formal arguments of different

OES Extension Specifications 59

data types are specific to the language binding and platform.
For example, the C language includes automatic conversion
between integer and floating-point data types, but does not
include automatic conversion between the int and fixed or
float and fixed GL types since the fixed data type is not a
distinct built-in type. Regardless of language binding,
the enum type converts to fixed-point without scaling and
integer types are converted by multiplying by 2ˆ16.

Section 2.7 Vertex Specification

Commands are revised to included ’x’ suffix.

Section 2.8 Vertex Arrays

Table 2.4 Vertex Array Sizes is revised to include the ’fixed’ type
for all commands except EdgeFlagPointer.

References to Vertex command suffixes are revised to include ’x’.

Section 2.9 Rectangles

Revise to include ’x’ suffix.

Section 2.10 Coordinate Transformations

Revise to include ’x’ suffix. Section 2.10.1 describes clampx.
Add alternate suffixed versions of Ortho and Frustum.

Section 2.11 Clipping

Add alternate suffixed version of ClipPlane.

Section 2.12 Current Raster Position

Revise to include ’x’ suffix.

Section 2.13 Colors and Coloring

Revise to include ’x’ suffix and
Table 2.6 is modified to include row:

| fixed | c |

Additions to Chapter 3 of the OpenGL 1.3 Specification (Rasterization)

Section 3.3 Points

60 OES Extension Specifications

Add alternate suffixed PointSize command.

Section 3.4 Line Segments

Add alternate suffixed LineWidth command.

Section 3.5 Polygons

Add alternate suffixed PolygonOffset command.

Section 3.6 Pixel Rectangles

Revise to include ’x’ suffix on PixelStore, PixelTransfer, PixelMap,
ConvolutionParameter.

Table 3.5 is modified to include row:

| FIXED | fixed | No |

Add alternate suffixed PixelZoom to Section 3.6.5

Section 3.7 Bitmaps

Add alternate suffixed Bitmap command.

Section 3.8 Texturing

Revise to include ’x’ suffix in TexParameter (Section 3.8.4).

Add alternate suffixed PrioritizeTextures command (Section 3.8.11).

Revise to include ’x’ suffix in TexEnv (Section 3.8.12).

Section 3.10 Fog

Revise to include ;x; suffix in Fog command.

Additions to Chapter 4 of the OpenGL 1.3 Specification (Per-Fragment
Operations and the Frame Buffer)

Section 4.1 Fragment Operations

Add alternate suffixed SampleCoverage command (Section 4.1.3),
AlphaFunc command (Section 4.1.4), BlendColor command (Section 4.1.7).

Section 4.2 Whole Framebuffer Operations

Add alternate suffixed ClearColor, ClearDepth, and ClearAccum commands

OES Extension Specifications 61

(Section 4.2.3).

Add alternate suffixed Accum command (Section 4.2.4).

Additions to Chapter 5 of the OpenGL 1.3 Specification (Special Functions)

Section 5.1 Evaluators

Revise to include ’x’ suffix on Map1, Map2, Map1Grid, and Map2Grid
commands.

Section 5.3 Feedback

Add alternate suffixed FeedbackBuffer and PassThrough commands.
Revise Figure 5.2 to indicate ’f’ values may also be ’x’ values.

Additions to Chapter 6 of the OpenGL 1.3 Specification (State and
State Requests)

Add GetFixedv to Section 6.1.1. Revise Section 6.1.2 to
include implied conversions for GetFixedv.

Revise to include ’x’ suffix for GetClipPlane, GetLightm GetMaterial,
GetTexEnv, GetTexGen, GetTexParameter, GetTexLevelParameter,
GetPixelMap, and GetMap in Section 6.1.3.

Revise to include ’x’ suffix for GetHistogramParameter (Section 6.1.9).

Section 6.2 State Tables

Revise intro paragraph to include GetFixedv.

Additions to Appendix A of the OpenGL 1.3 Specification (Invariance)

None

Additions to the AGL/GLX/WGL Specifications

None

Additions to the WGL Specification

None

Additions to the AGL Specification

None

Additions to Chapter 2 of the GLX 1.3 Specification (GLX Operation)

The data representation is client-side only. The GLX layer

62 OES Extension Specifications

performs translation between fixed and float representations.

Additions to Chapter 3 of the GLX 1.3 Specification (Functions and Errors)

Additions to Chapter 4 of the GLX 1.3 Specification (Encoding on the X
Byte Stream)

Additions to Chapter 5 of the GLX 1.3 Specification (Extending OpenGL)

Additions to Chapter 6 of the GLX 1.3 Specification (GLX Versions)

GLX Protocol

Fixed type entry points are mapped on the client-side to the
appropriate floating-point command protocol. To preserve precision,
double-precision protocol is encouraged, but not required.

Errors

None

New State

None

New Implementation Dependent State

None

Revision History

12/15/2002 0.1
- Original draft.

03/31/2003 0.2
- Corrected a typo in GetClipPlanex and FIXED_OES.

04/24/2003 0.3
- Added clarification that enums must be converted to fixed

by scaling when passed in a fixed parameter type. Corrected
some typos.

05/29/2003 0.4
- Changed enums to be passed unscaled when passed to a

fixed formal parameter.

07/08/2003 0.5
- Removed bogus Dependencies on section
- Added extension number and enumerant value

07/11/2003 0.6
- Added OES suffixes

OES Extension Specifications 63

07/12/2003 0.7
- Added note about GLX protocol

64 OES Extension Specifications

B.3 OES single precision

Name
OES_single_precision

Name Strings

GL_OES_single_precision

Contact

David Blythe (blythe ’at’ bluevoid.com)

Status

Ratified by the Khronos BOP, July 23, 2003.

Version

Last Modifed Date: 22 July 2003
Author Revision : 0.4

Number

293

Dependencies

None
The extension is written against the OpenGL 1.3 Specification.

Overview

This extension adds commands with single-precision floating-point
parameters corresponding to the commands that only variants that
accept double-precision floating-point input. This allows an
application to avoid using double-precision floating-point
data types. New commands are added with an ’f’ prefix.

IP Status

None

Issues

* An alternative is to suggest platforms define GLfloat and
GLdouble to be the same type, since it is unlikely that both
single- and double-precision are required at the same time.

Resolved: This might create additional confusion, so it is
better to define new commands.

OES Extension Specifications 65

New Procedures and Functions

void DepthRangefOES(clampf n, clampf f);
void FrustumfOES(float l, float r, float b, float t, float n, float f);
void OrthofOES(float l, float r, float b, float t, float n, float f);

void ClipPlanefOES(enum plane, const float * equation);
void GetClipPlanefOES(enum plane, float * equation);

void void glClearDepthfOES(clampd depth);

New Tokens

None

Additions to Chapter 2 of the OpenGL 1.3 Specification (OpenGL Operation)

Section 2.10 Coordinate Transformations

Revise to include ’f’ suffix.
Add alternate suffixed versions of DepthRange (2.10.1).
Add alternate suffixed versions of Ortho and Frustum (2.10.2).

Section 2.11 Clipping

Add alternate suffixed version of ClipPlane.

Additions to Chapter 3 of the OpenGL 1.3 Specification (Rasterization)

None

Additions to Chapter 4 of the OpenGL 1.3 Specification (Per-Fragment
Operations and the Frame Buffer)

Section 4.2.3 Clearing the Buffers

Add alternate suffixed version of ClearDepth.

Additions to Chapter 5 of the OpenGL 1.3 Specification (Special Functions)

None

Additions to Chapter 6 of the OpenGL 1.3 Specification (State and
State Requests)

None

Additions to Appendix A of the OpenGL 1.3 Specification (Invariance)

None

66 OES Extension Specifications

Additions to the AGL/GLX/WGL Specifications

None

Additions to the WGL Specification

None

Additions to the AGL Specification

None

Additions to Chapter 2 of the GLX 1.3 Specification (GLX Operation)

The data representation is client-side only. The GLX layer
performs translation between float and double representations.

Additions to Chapter 3 of the GLX 1.3 Specification (Functions and Errors)

Additions to Chapter 4 of the GLX 1.3 Specification (Encoding on the X
Byte Stream)

Additions to Chapter 5 of the GLX 1.3 Specification (Extending OpenGL)

Additions to Chapter 6 of the GLX 1.3 Specification (GLX Versions)

GLX Protocol

Five new GL rendering commands are added. The following commands
are sent to the server as part of a glXRender request:

ClearDepthfOES
2 8 rendering command length
2 4308 rendering command opcode
4 FLOAT32 z

DepthRangefOES
2 12 rendering command length
2 4309 rendering command opcode
4 FLOAT32 n
4 FLOAT32 f

FrustumfOES
2 28 rendering command length
2 4310 rendering command opcode
4 FLOAT32 l
4 FLOAT32 r
4 FLOAT32 b
4 FLOAT32 t
4 FLOAT32 n
4 FLOAT32 f

OES Extension Specifications 67

OrthofOES
2 28 rendering command length
2 4311 rendering command opcode
4 FLOAT32 l
4 FLOAT32 r
4 FLOAT32 b
4 FLOAT32 t
4 FLOAT32 n
4 FLOAT32 f

ClipPlanefOES
2 24 rendering command length
2 4312 rendering command opcode
4 ENUM plane
4 FLOAT32 v[0]
4 FLOAT32 v[1]
4 FLOAT32 v[2]
4 FLOAT32 v[3]

The remaining commands are non-rendering commands. These commands are
sent separately (i.e., not as part of a glXRender or glXRenderLarge
request), using the glXVendorPrivateWithReply request:

GetClipPlanefOES
1 CARD8 opcode (X assigned)
1 17 GLX opcode (glXVendorPrivateWithReply)
2 4 request length
4 1421 vendor specific opcode
4 GLX_CONTEXT_TAG context tag
4 ENUM plane

=>
1 1 reply
1 unused
2 CARD16 sequence number
4 0 reply length
4 FLOAT32 v[0]
4 FLOAT32 v[1]
4 FLOAT32 v[2]
4 FLOAT32 v[3]
8 unused

Errors

None

New State

None

New Implementation Dependent State

68 OES Extension Specifications

None

Revision History

03/27/2003 0.1
- First draft created.

07/08/2003 0.2
- Delete unused Dependencies on section
- Added extension number

07/09/2003 0.3
- Added missing ClearDepthfOES
- Removed ’_’s from names.

07/22/2003 0.4
- Added GLX protocol (Thomas Roell)

OES Extension Specifications 69

B.4 OES read format

Name
OES_read_format

Name Strings

GL_OES_read_format

Contact

David Blythe (blythe ’at’ bluevoid.com)

Status

Ratified by the Khronos BOP, July 23, 2003.

Version

Last Modifed Date: July 8, 2003
Author Revision: 0.2

Number

295

Dependencies

None
The extension is written against the OpenGL 1.3 Specification.

Overview

This extension provides the capability to query an OpenGL
implementation for a preferred type and format combination
for use with reading the color buffer with the ReadPixels
command. The purpose is to enable embedded implementations
to support a greatly reduced set of type/format combinations
and provide a mechanism for applications to determine which
implementation-specific combination is supported.

IP Status

None

Issues

* Should this be generalized for other commands: DrawPixels, TexImage?

Resolved: No need to aggrandize.

70 OES Extension Specifications

New Procedures and Functions

None

New Tokens

IMPLEMENTATION_COLOR_READ_TYPE_OES 0x8B9A
IMPLEMENTATION_COLOR_READ_FORMAT_OES 0x8B9B

Additions to Chapter 2 of the OpenGL 1.3 Specification (OpenGL Operation)

None

Additions to Chapter 3 of the OpenGL 1.3 Specification (Rasterization)

None

Additions to Chapter 4 of the OpenGL 1.3 Specification (Per-Fragment
Operations and the Frame Buffer)

Section 4.3 Drawing, Reading, and Copying Pixels

Section 4.3.2 Reading Pixels

(add paragraph)
A single format and type combination, designated the
preferred format, is associated with the state variables
IMPLEMENTATION_COLOR_READ_FORMAT_OES and
IMPLEMENTATION_COLOR_READ_TYPE_OES. The preferred format
indicates a read format type combination that provides optimal
performance for a particular implementation. The state values
are chosen from the set of regularly accepted format
and type parameters as shown in tables 3.6 and 3.5.

Additions to Chapter 5 of the OpenGL 1.3 Specification (Special Functions)

None

Additions to Chapter 6 of the OpenGL 1.3 Specification (State and
State Requests)

None

Additions to Appendix A of the OpenGL 1.3 Specification (Invariance)

None

Additions to the AGL/GLX/WGL Specifications

OES Extension Specifications 71

None

Additions to the WGL Specification

None

Additions to the AGL Specification

None

Additions to Chapter 2 of the GLX 1.3 Specification (GLX Operation)

Additions to Chapter 3 of the GLX 1.3 Specification (Functions and Errors)

Additions to Chapter 4 of the GLX 1.3 Specification (Encoding on the X
Byte Stream)

Additions to Chapter 5 of the GLX 1.3 Specification (Extending OpenGL)

Additions to Chapter 6 of the GLX 1.3 Specification (GLX Versions)

GLX Protocol

TBD

Errors

None

New State

None

New Implementation Dependent State

(table 6.28)

Get Value Type Get Command Value Description Sec. Attribute
--------- ---- ----------- ----- ----------- ----- ---------
x_FORMAT_OES Z_11 GetIntegerv - read format 4.3.2 -
x_TYPE_OES Z_20 GetIntegerv - read type 4.3.2 -

x_ = IMPLEMENTATION_COLOR_READ_

Revision History

02/20/2003 0.1
- Original draft.

07/08/2003 0.2
- Marked issue regarding extending to other commands to resolved.

72 OES Extension Specifications

- Hackery to make state table fit in 80 columns
- Removed Dependencies on section
- Added extension number and enumerant values

OES Extension Specifications 73

B.5 OES query matrix

Name

OES_query_matrix

Name Strings

GL_OES_query_matrix

Contact

Kari Pulli, Nokia (kari.pulli ’at’ nokia.com)

Status

Ratified by the Khronos BOP, July 23, 2003.

Version

$Date: 2003/07/23 04:23:25 $ $Revision: 1.2 $

Number

296

Dependencies

OpenGL 1.3 is required.
OES_fixed_point is required.

Overview

Many applications may need to query the contents and status of the
current matrix at least for debugging purposes, especially as the
implementations are allowed to implement matrix machinery either in
any (possibly proprietary) floating point format, or in a fixed point
format that has the range and accuracy of at least 16.16 (signed 16 bit
integer part, unsigned 16 bit fractional part).

This extension is intended to allow application to query the components
of the matrix and also their status, regardless whether the internal
representation is in fixed point or floating point.

IP Status

There is no intellectual property associated with this extension.

Issues

None known.

74 OES Extension Specifications

New Procedures and Functions

GLbitfield glQueryMatrixxOES(GLfixed mantissa[16],
GLint exponent[16])

mantissa[16] contains the contents of the current matrix in GLfixed
format. exponent[16] contains the unbiased exponents applied to the
matrix components, so that the internal representation of component i
is close to mantissa[i] * 2ˆexponent[i]. The function returns a status
word which is zero if all the components are valid. If
status & (1<<i) != 0, the component i is invalid (e.g., NaN, Inf).
The implementations are not required to keep track of overflows. In
that case, the invalid bits are never set.

New Tokens

None

Additions to Chapter 2 of the OpenGL 1.3 Specification (OpenGL Operation)

None

Additions to Chapter 3 of the OpenGL 1.3 Specification (Rasterization)

None

Additions to Chapter 4 of the OpenGL 1.3 Specification (Per-Fragment
Operations and the Frame Buffer)

None

Additions to Chapter 5 of the OpenGL 1.3 Specification (Special Functions)

None

Additions to Chapter 6 of the OpenGL 1.3 Specification (State and
State Requests)

Insert Overview and New Procedures and Functions to become Section 6.1.13.

Additions to Appendix A of the OpenGL 1.3 Specification (Invariance)

None

Additions to the AGL/GLX/WGL Specifications

GLX Protocol

QueryMatrixxOES() is mapped to the equivalent protocol for
floating-point state queries. Two queries are required; one to
retrieve the current matrix mode and another to retrieve the
matrix values.

OES Extension Specifications 75

Dependencies on OES_fixed_point

OES_fixed_point is required for the GLfixed definition.

Errors

None

New State

None

New Implementation Dependent State

None

Revision History

Apr 15, 2003 Kari Pulli Created the document
Jul 08, 2003 David Blythe Clarified the Dependencies section,

Added extension number
Jul 12, 2003 David Blythe Add GLX protocol note

76 OES Extension Specifications

B.6 OES compressedpaletted texture

Name

OES_compressed_paletted_texture

Name Strings

GL_OES_compressed_paletted_texture

Contact

Affie Munshi, ATI (amunshi@ati.com)

Notice

IP Status

No known IP issues

Status

Ratified by the Khronos BOP, July 23, 2003.
Ratified by the Khronos BOP, Aug 5, 2004.

Version

Last Modifed Date: 21 July 2004
Author Revision: 0.5

Number

294

Dependencies

Written based on the wording of the OpenGL ES 1.0 specification

Overview

The goal of this extension is to allow direct support of palettized
textures in OpenGL ES.

Palettized textures are implemented in OpenGL ES using the
CompressedTexImage2D call. The definition of the following parameters
"level" and "internalformat" in the CompressedTexImage2D call have
been extended to support paletted textures.

OES Extension Specifications 77

A paletted texture is described by the following data:

palette format
can be R5_G6_B5, RGBA4, RGB5_A1, RGB8, or RGBA8

number of bits to represent texture data
can be 4 bits or 8 bits per texel. The number of bits
also detemine the size of the palette. For 4 bits/texel
the palette size is 16 entries and for 8 bits/texel the
palette size will be 256 entries.

The palette format and bits/texel are encoded in the
"level" parameter.

palette data and texture mip-levels
The palette data followed by all necessary mip levels are
passed in "data" parameter of CompressedTexImage2D.

The size of palette is given by palette format and bits / texel.
A palette format of RGB_565 with 4 bits/texel imply a palette
size of 2 bytes/palette entry * 16 entries = 32 bytes.

The level value is used to indicate how many mip levels
are described. Negative level values are used to define
the number of miplevels described in the "data" component.
A level of zero indicates a single mip-level.

Issues

* Should glCompressedTexSubImage2D be allowed for modifying paletted
texture data.

RESOLVED: No, this would then require implementations that do not
support paletted formats internally to also store the palette
per texture. This can be a memory overhead on platforms that are
memory constrained.

* Should palette format and number of bits used to represent each
texel be part of data or internal format.

RESOLVED: Should be part of the internal format since this makes
the palette format and texture data size very explicit for the
application programmer.

* Should the size of palette be fixed i.e 16 entries for 4-bit texels
and 256 entries for 8-bit texels or be programmable.

RESOLVED: Should be fixed. The application can expand the palette
to 16 or 256 if internally it is using a smaller palette.

New Procedures and Functions

78 OES Extension Specifications

None

New Tokens

Accepted by the <level> parameter of CompressedTexImage2D

Zero and negative values. |level| + 1 determines the number of
mip levels defined for the paletted texture.

Accepted by the <internalformat> paramter of CompressedTexImage2D

PALETTE4_RGB8_OES 0x8B90
PALETTE4_RGBA8_OES 0x8B91
PALETTE4_R5_G6_B5_OES 0x8B92
PALETTE4_RGBA4_OES 0x8B93
PALETTE4_RGB5_A1_OES 0x8B94
PALETTE8_RGB8_OES 0x8B95
PALETTE8_RGBA8_OES 0x8B96
PALETTE8_R5_G6_B5_OES 0x8B97
PALETTE8_RGBA4_OES 0x8B98
PALETTE8_RGB5_A1_OES 0x8B99

Additions to Chapter 2 of the OpenGL 1.3 Specification (OpenGL Operation)

None

Additions to Chapter 3 of the OpenGL 1.3 Specification (Rasterization)

Add to Table 3.17: Specific Compressed Internal Formats

Compressed Internal Format Base Internal Format
========================== ====================
PALETTE4_RGB8_OES RGB
PALETTE4_RGBA8_OES RGBA
PALETTE4_R5_G6_B5_OES RGB
PALETTE4_RGBA4_OES RGBA
PALETTE4_RGB5_A1_OES RGBA
PALETTE8_RGB8_OES RGB
PALETTE8_RGBA8_OES RGBA
PALETTE8_R5_G6_B5_OES RGB
PALETTE8_RGBA4_OES RGBA
PALETTE8_RGB5_A1_OES RGBA

Add to Section 3.8.3, Alternate Image Specification

If <internalformat> is PALETTE4_RGB8, PALETTE4_RGBA8, PALETTE4_R5_G6_B5,
PALETTE4_RGBA4, PALETTE4_RGB5_A1, PALETTE8_RGB8, PALETTE8_RGBA8,
PALETTE8_R5_G6_B5, PALETTE8_RGBA4 or PALETTE8_RGB5_A1, the compressed

OES Extension Specifications 79

texture is a compressed paletted texture. The texture data contains the
palette data following by the mip-levels where the number of mip-levels
stored is given by |level| + 1. The number of bits that represent a
texel is 4 bits if <interalformat> is given by PALETTE4_xxx and is 8
bits if <internalformat> is given by PALETTE8_xxx.

Compressed paletted textures support only 2D images without
borders. CompressedTexImage2D will produce an INVALID_OPERATION
error if <border> is non-zero.

To determine palette format refer to tables 3.10 and 3.11 of Chapter
3 where the data ordering for different <type> formats are described.

Add table 3.17.1: Texel Data Formats for compressed paletted textures

PALETTE4_xxx:

7 6 5 4 3 2 1 0

| 1st | 2nd |
| texel | texel |

PALETTE8_xxx

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

| 4th | 3nd | 2rd | 1st |
| texel | texel | texel | texel |

Additions to Chapter 4 of the OpenGL 1.3 Specification (Per-Fragment
Operations and the Frame Buffer)

None

Additions to Chapter 5 of the OpenGL 1.3 Specification (Special Functions)

None

Additions to Chapter 6 of the OpenGL 1.3 Specification (State and
State Requests)

None

80 OES Extension Specifications

Additions to Appendix A of the OpenGL 1.3 Specification (Invariance)

Additions to the AGL/GLX/WGL Specification

None

GLX Protocol

None

Errors

INVALID_OPERATION is generated by TexImage2D, CompressedTexSubImage2D,
CopyTexSubImage2D if <internalformat> is PALETTE4_RGB8_OES,
PALETTE4_RGBA8_OES, PALETTE4_R5_G6_B5_OES, PALETTE4_RGBA4_OES,
PALETTE4_RGB5_A1_OES, PALETTE8_RG8_OES, PALETTE8_RGBA8_OES,
PALETTE8_R5_G6_B5_OES, PALETTE8_RGBA4_OES, or PALETTE8_RGB5_A1_OES.

INVALID_VALUE is generated by CompressedTexImage2D if
if <internalformat> is PALETTE4_RGB8_OES, PALETTE4_RGBA8_OES,
PALETTE4_R5_G6_B5_OES, PALETTE4_RGBA4_OES, PALETTE4_RGB5_A1_OES,
PALETTE8_RGB8_OES, PALETTE8_RGBA8_OES, PALETTE8_R5_G6_B5_OES,
PALETTE8_RGBA4_OES, or PALETTE8_RGB5_A1_OES and <level> value is
neither zero or a negative value.

New State

The queries for NUM_COMPRESSED_TEXTURE_FORMATS and
COMPRESSED_TEXTURE_FORMATS include these ten new formats.

Revision History
04/28/2003 0.1 (Affie Munshi)

- Original draft.

05/29/2003 0.2 (David Blythe)
- Use paletted rather than palettized. Change naming of internal

format tokens to match scheme used for other internal formats.

07/08/2003 0.3 (David Blythe)
- Add official enumerant values and extension number.

07/09/2003 0.4 (David Blythe)
- Note that [NUM_]COMPRESSED_TEXTURE_FORMAT queries include the

new formats.

07/21/2004 0.5 (Affie Munshi)
- Fixed PALETTE_8xxx drawing

	Overview
	Conventions

	OpenGL Operation
	OpenGL Fundamentals
	Fixed-Point Computation

	GL State
	GL Command Syntax
	Basic GL Operation
	GL Errors
	Begin/End Paradigm
	Vertex Specification
	Vertex Arrays
	Rectangles
	Coordinate Transformations
	Clipping
	Current Raster Position
	Colors and Coloring

	Rasterization
	Invariance
	Antialiasing
	Points
	Line Segments
	Polygons
	Pixel Rectangles
	Bitmaps
	Texturing
	Fog

	Per-Fragment Operations and the Framebuffer
	Per-Fragment Operations
	Whole Framebuffer Operations
	Drawing, Reading, and Copying Pixels

	Special Functions
	Evaluators
	Selection
	Feedback
	Display Lists
	Flush and Finish
	Hints

	State and State Requests
	Querying GL State
	State Tables

	Core Additions and Extensions
	Byte Coordinates
	Fixed Point
	Single-precision Commands
	Compressed Paletted Texture
	Read Format
	Query Matrix

	Packaging
	Header Files
	Libraries

	Acknowledgements
	OES Extension Specifications
	OES_byte_coordinates
	OES_fixed_point
	OES_single_precision
	OES_read_format
	OES_query_matrix
	OES_compressed_paletted_texture

