
OpenGLR© ES 1.1 Extension Pack Specification
Version 1.03 (Annotated)

Editor : Aaftab Munshi



Copyright (c) 2002-2005 The Khronos Group Inc. All Rights Reserved.

This specification is protected by copyright laws and contains material proprietary to the Khronos
Group, Inc. It or any components may not be reproduced, republished, distributed, transmitted,
displayed, broadcast or otherwise exploited in any manner without the express prior written per-
mission of Khronos Group. You may use this specification for implementing the functionality
therein, without altering or removing any trademark, copyright or other notice from the specifi-
cation, but the receipt or possession of this specification does not convey any rights to reproduce,
disclose, or distribute its contents, or to manufacture, use, or sell anything that it may describe,
in whole or in part.

Khronos Group grants express permission to any current Promoter, Contributor or Adopter mem-
ber of Khronos to copy and redistribute UNMODIFIED versions of this specification in any fash-
ion, provided that NO CHARGE is made for the specification and the latest available update of
the specification for any version of the API is used whenever possible. Such distributed speci-
fication may be re-formatted AS LONG AS the contents of the specification are not changed in
any way. The specification may be incorporated into a product that is sold as long as such prod-
uct includes significant independent work developed by the seller. A link to the current version
of this specification on the Khronos Group web-site should be included whenever possible with
specification distributions.

Khronos Group makes no, and expressly disclaims any, representations or warranties, express
or implied, regarding this specification, including, without limitation, any implied warranties of
merchantability or fitness for a particular purpose or non-infringement of any intellectual prop-
erty. Khronos Group makes no, and expressly disclaims any, warranties, express or implied,
regarding the correctness, accuracy, completeness, timeliness, and reliability of the specification.
Under no circumstances will the Khronos Group, or any of its Promoters, Contributors or Mem-
bers or their respective partners, officers, directors, employees, agents or representatives be liable
for any damages, whether direct, indirect, special or consequential damages for lost revenues,
lost profits, or otherwise, arising from or in connection with these materials.

Khronos is a trademark of The Khronos Group Inc. OpenGL is a registered trademark, and
OpenGL ES is a trademark, of Silicon Graphics, Inc.



Contents

1 Overview 1

2 Texture Environment Crossbar 2

3 Mirrored Texture Addressing 4

4 Cube Maps 5
4.1 Coordinate Transformations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.2 Texture Addressing Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4.3 Texture Completeness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

5 Blending Extensions 8

6 Stencil Extensions 10

7 Extended Matrix Palette 11

8 Framebuffer Objects 14

i



Chapter 1

Overview

This specification describes the OpenGL ES 1.1 Extension Pack specification. The OpenGL ES 1.1 Exten-
sion Pack is a collection of optional extensions added to OpenGL ES 1.1 that include features that are in
OpenGL 1.5 but not in OpenGL ES 1.1. The functionality implemented by this extension pack brings a
significant improvement in image quality and performance that can be leveraged by handheld 3D applica-
tions. It is the intent of the OpenGL ES working group that OpenGL ES 1.2 will make the list of features /
extensions defined by this extension pack mandatory.

In addition to the optional extensions, OpenGL ES implementations that plan to support the
Extension Pack are recommended to support a stencil bit depth of four or higher and an EGL config
with a depth and stencil buffer, where stencil bit- depth is four or higher. This recommendation will
become a mandatory requirement in OpenGL ES 1.2.

The extension strings that identify the OpenGL ES 1.1 Extension Pack are given by the following table:

Extension Name

GL OEStexture env crossbar

GL OEStextured mirrored repeat

GL OEStexture cube map

GL OESblend subtract

GL OESblend func separate

GL OESblend equation separate

GL OESstencil wrap

GL OESextended matrix palette

GL OESframebuffer object

The OpenGL ES 1.1 specification is written against the OpenGL 1.5 specification. Since theGL OES-

texture env crossbar , GL OEStextured mirrored repeat , GL OEStexture cube map, GL OES-

blend subtract , GL OESblend func separate , andGL OESstencil wrap extensions describe func-
tionality that is already part of the OpenGL 1.5 specification, the corresponding OES extensions will only
give an overview, and describe any new tokens and/or functions added by these extensions. Please refer to
the OpenGL 1.5 specification for detailed description of how these features work.

1



Chapter 2

Texture Environment Crossbar

TheOEStexture env crossbar extension adds the capability to use the texture color from other texture
units as sources to the COMBINE environment function. OpenGL ES 1.1 defined texture combine functions
which could use the color from the current texture unit as a source. This extension adds the ability to use
the color from any texture unit as a source.

The tables that define arguments forCOMBINERGBand COMBINEALPHA functions are extended to
includeTEXTUREn

SRCn RGB OPERANDn RGB Argument

TEXTURE SRCCOLOR Cs

ONEMINUSSRCCOLOR 1− Cs

SRCALPHA As

ONEMINUSSRCALPHA 1−As

TEXTUREn SRCCOLOR Cs
n

ONEMINUSSRCCOLOR 1− Cs
n

SRCALPHA As
n

ONEMINUSSRCALPHA 1−As
n

CONSTANT SRCCOLOR Cc

ONEMINUSSRCCOLOR 1− Cc

SRCALPHA Ac
ONEMINUSSRCALPHA 1−Ac

PRIMARYCOLOR SRCCOLOR Cf

ONEMINUSSRCCOLOR 1− Cf

SRCALPHA Af

ONEMINUSSRCALPHA 1−Af

PREVIOUS SRCCOLOR Cp

ONEMINUSSRCCOLOR 1− Cp

SRCALPHA Ap

ONEMINUSSRCALPHA 1−Ap

Table 2.1: Arguments forCOMBINERGBfunctions.

2



Texture Environment Crossbar 3

SRCn ALPHA OPERANDn ALPHA Argument

TEXTURE SRCALPHA As

ONEMINUSSRCALPHA 1−As

TEXTUREn SRCALPHA As
n

ONEMINUSSRCALPHA 1−As
n

CONSTANT SRCALPHA Ac

ONEMINUSSRCALPHA 1−Ac

PRIMARYCOLOR SRCALPHA Af

ONEMINUSSRCALPHA 1−Af

PREVIOUS SRCALPHA Ap

ONEMINUSSRCALPHA 1−Ap

Table 2.2: Arguments forCOMBINEALPHAfunctions.



Chapter 3

Mirrored Texture Addressing

TheOEStexture mirrored repeat extension extends the set of texture wrap modes to include a mode
(GL MIRRORED REPEAT) that effectively uses a texture map twice as large as the original image in which
the additional half, for each coordinate, of the new image is a mirror image of the original image.

This new mode relaxes the need to generate images whose opposite edges match by using the original
image to generate a matching ”mirror image”.

Wrap modesREPEAT, CLAMPTO EDGEandMIRROREDREPEATare now supported.

4



Chapter 4

Cube Maps

TheOEStexture cube map extension provides a new texture generation scheme for cube map textures.
Instead of the current texture providing a 2D lookup into a 2D texture image, the texture is a set of six
2D images representing the faces of a cube. The (s,t,r) texture coordinates are treated as a direction vector
emanating from the center of a cube. At texture generation time, the interpolated per-fragment (s,t,r) selects
one cube face 2D image based on the largest magnitude coordinate (the major axis). A new 2D (s,t) is
calculated by dividing the two other coordinates (the minor axes values) by the major axis value. Then the
new (s,t) is used to lookup into the selected 2D texture image face of the cube map.

Unlike a standard 2D texture that have just one target, a cube map texture has six targets, one for each
of its six 2D texture image cube faces. All these targets must be consistent, complete, and have equal width
and height (ie, square dimensions).

This extension also provides two new texture coordinate generation modes for use in conjunction with
cube map texturing. The reflection map mode generates texture coordinates (s,t,r) matching the vertex’s
eye-space reflection vector. The reflection map mode is useful for environment mapping without the sin-
gularity inherent in sphere mapping. The normal map mode generates texture coordinates (s,t,r) matching
the vertex’s transformed eye-space normal. The normal map mode is useful for sophisticated cube map
texturing-based diffuse lighting models.

The intent of the new texgen functionality is that an application using cube map texturing can use the
new texgen modes to automatically generate the reflection or normal vectors used to look up into the cube
map texture.

The following texgen modes are supported: REFLECTIONMAP and NORMAL MAP. SPHERE-
MAP, OBJECTLINEAR, and EYELINEAR texgen modes are not supported. Texgen supports a new
coordvalueSTR. This allows the application to specify the texgen mode for the appropriate coordinates in
a single call. Texgen with coord values ofS, T, R andQare not supported.

4.1 Coordinate Transformations

OpenGL 1.5 Common Common-Lite
TexGen{ifx}[v] (enum coord, enum pname, T params)

pname = TEXTUREGENMODE, params = OBJECTLINEAR – –
pname = TEXTUREGENMODE, params = EYE LINEAR – –
pname = TEXTUREGENMODE, params = SPHEREMAP – –
pname = TEXTUREGENMODE, params = REFLECTIONMAP ♦ †

5



6 Cube Maps

OpenGL 1.5 Common Common-Lite
pname = TEXTUREGENMODE, params = NORMALMAP ♦ †
pname = OBJECTPLANE – –
pname = EYEPLANE – –

TexGen{d}[v] (enum coord, enum pname, T param) – –
GetTexGen{d}v(enum coord, enum pname, T * params) – –
GetTexGen{ifx}v(enum coord, enum pname, T * params) � �
Enable/Disable(TEXTURE GEN{STR}) � �
Enable/Disable(TEXTURE GENS,T,R,Q) – –

4.2 Texture Addressing Modes

For cubemaps, the only allowed texture addressing mode isCLAMPTO EDGE.

4.3 Texture Completeness

For cube map textures, a texture iscube completeif the following conditions all hold true:

• the base level arrays of each of the six texture images making up the cube map have identical, positive,
and square dimensions.

• the base level arrays were specified with the same type.

Finally, a cube map texture ismipmap cube completeif, in addition to being cube complete, each of the
six texture images considered individually is complete.

OpenGL 1.5 Common Common-Lite
TexImage2D(enum target, int level, int internalFormat, sizei width, sizei

height, int border, enum format, enum type, const void * pixels)

target = TEXTURE CUBEMAPPOSITIVE X, border = 0 �‡ �‡

target = TEXTURE CUBEMAPPOSITIVE Y, border = 0 �‡ �‡

target = TEXTURE CUBEMAPPOSITIVE Z, border = 0 �‡ �‡

target = TEXTURE CUBEMAPNEGATIVEX, border = 0 �‡ �‡

target = TEXTURE CUBEMAPNEGATIVEY, border = 0 �‡ �‡

target = TEXTURE CUBEMAPNEGATIVEZ, border = 0 �‡ �‡

CompressedTexImage2D(enum target, int level, enum internalformat, sizei

width, sizei height, int border, sizei imageSize, const void * data)

target = TEXTURE CUBEMAPPOSITIVE X, border = 0 �‡ �‡

target = TEXTURE CUBEMAPPOSITIVE Y, border = 0 �‡ �‡

target = TEXTURE CUBEMAPPOSITIVE Z, border = 0 �‡ �‡

target = TEXTURE CUBEMAPNEGATIVEX, border = 0 �‡ �‡

target = TEXTURE CUBEMAPNEGATIVEY, border = 0 �‡ �‡

target = TEXTURE CUBEMAPNEGATIVEZ, border = 0 �‡ �‡

TexParameter{if}[v] (enum target, enum pname, T param)

target = TEXTURE CUBEMAP, � †



Cube Maps 7

OpenGL 1.5 Common Common-Lite
BindTexture(enum target, uint texture)

target = TEXTURE CUBEMAP � �
Enable/Disable(enum cap)

cap = TEXTURECUBEMAP � �
GetTexGen{ifx}v(enum env, enum pname, T * params) ♦ †
GetTexGen{d}v(enum env, enum pname, T * params) – –

State Exposed Queriable
Common

Get
Common-Lite

Get

TEXTURECUBEMAP � � IsEnabled IsEnabled
TEXTUREBINDING CUBEMAP � � GetIntegerv GetIntegerv
TEXTURECUBEMAPPOSITIVE X � – – –
TEXTURECUBEMAPNEGATIVEX � – – –
TEXTURECUBEMAPPOSITIVE Y � – – –
TEXTURECUBEMAPNEGATIVEY � – – –
TEXTURECUBEMAPPOSITIVE Z � – – –
TEXTURECUBEMAPNEGATIVEZ � – – –

Table 4.3: Texture Objects

State Exposed Queriable
Common

Get
Common-Lite

Get

MAXCUBEMAPTEXTURESIZE � � GetIntegerv GetIntegerv

Table 4.4: Implementation Dependent Values



Chapter 5

Blending Extensions

TheOESblend subtract extension adds two additional blending equationsFUNCSUBTRACTandFUNC-

REVERSESUBTRACT

OpenGL 1.5 Common Common-Lite
BlendEquation(enum mode)

mode =FUNCSUBTRACT � �
mode =FUNCREVERSESUBTRACT � �

TheOESblend func separate extension extends the blending capability by defining a function that
allows independent setting of the RGB and alpha blend factors for blend operations that require source and
destination blend factors. It is not always desired that the blending used for RGB is also applied to alpha.

OpenGL 1.5 Common Common-Lite
BlendFuncSeparate(enum srcRGB, enum dstRGB, enum

srcAlpha, enum dstAlpha)
� �

State Exposed Queriable
Common

Get
Common-Lite

Get

BLENDSRCRGB (v1.1 BLEND SRC) � � GetIntegerv GetIntegerv
BLENDDST RGB (v1.1 BLEND DST) � � GetIntegerv GetIntegerv
BLENDSRCALPHA � � GetIntegerv GetIntegerv
BLENDDST ALPHA � � GetIntegerv GetIntegerv

Table 5.3: Pixel Operations

TheOESblend equation separate extension provides a separate blend equation for RGB and al-
pha to match the generality available for blend factors.

OpenGL 1.5 Common Common-Lite
BlendEquationSeparate(enum modeRGB, enum modeAlpha) � �

8



Blending Extensions 9

State Exposed Queriable
Common

Get
Common-Lite

Get

BLENDEQUATIONRGB � � GetIntegerv GetIntegerv
BLENDEQUATIONALPHA � � GetIntegerv GetIntegerv

Table 5.5: Pixel Operations



Chapter 6

Stencil Extensions

TheOESstencil wrap extension extends the StencilOp functions to supportINCR WRAPandDECRWRAP

modes.

OpenGL 1.5 Common Common-Lite
StencilOp(enum fail, enum zfail, enum zpass)

fail, zfail, zpass = INCR WRAP � �
fail, zfail, zpass = DECR WRAP � �

10



Chapter 7

Extended Matrix Palette

Name

OES_extended_matrix_palette

Name Strings

GL_OES_extended_matrix_palette

Contact

Aaftab Munshi (amunshi@ati.com)

Status

Ratified by the Khronos BOP, July 22, 2005.

Version

Number

Dependencies

OES_matrix_palette is required
OpenGL ES 1.1 is required.

Overview

The OES_matrix_palette extension added the ability to support vertex skinning
in OpenGL ES. One issue with OES_matrix_palette is that the minimum size of
the matrix palette is very small. This leads to applications having to break
geometry into smaller primitive sets called via. glDrawElements. This has an
impact on the overall performance of the OpenGL ES implementation. In general,
hardware implementations prefer primitive packets with as many triangles as
possible. The default minimum size defined in OES_matrix_palette is not
sufficient to allow this. The OES_extended_matrix_palette extension increases

11



12 Extended Matrix Palette

this minimum from 9 to 32.

Another issue is that it is very difficult for ISVs to handle different
size matrix palettes as it affects how they store their geometry
in the database - may require multiple representations which is
not really feasible. So the minimum size is going to be what most ISVs
will use.

By extending the minimum size of the matrix palette, we remove this
fragmentation and allow applications to render geometry with minimal
number of calls to glDrawElements or glDrawArrays. The OpenGL ES
implementation can support this without requiring any additional hardware
by breaking the primitive, plus it gives implementations the flexibility
to accelerate with a bigger matrix palette if they choose to do so.

Additionally, feedback has also been received to increase the number of
matrices that are blend per vertex from 3 to 4. The OES_extended_matrix_palette
extension increases the minium number of matrices / vertex to 4.

IP Status

None.

Issues

None

New Procedures and Functions

None

New Tokens

No new tokens added except that the default values for
MAX_PALETTE_MATRICES_OES and MAX_VERTEX_UNITS_OES are 32 and 4 respectively.

Additions to Chapter 2 of the OpenGL ES 1.0 Specification

None

Errors

None

New State

Get Value Type Command Value Description
--------- ---- ------- ------- -----------

MAX_PALETTE_MATRICES_OES Z+ GetIntegerv 32 size of matrix palette
MAX_VERTEX_UNITS_OES Z+ GetIntegerv 4 number of matrices per vertex



Extended Matrix Palette 13

Revision History

Feb 03, 2005 Aaftab Munshi First draft of extension



Chapter 8

Framebuffer Objects

Name

OES_framebuffer_object

Name Strings

GL_OES_framebuffer_object

Contact

Aaftab Munshi (amunshi@ati.com)

IP Status

None.

Status

Ratified by the Khronos BOP, July 22, 2005.

Version

Last Modified Date: July 18, 2005

Number

Dependencies

OpenGL ES 1.0 is required.

EXT_framebuffer_object is required.

Overview

This extension defines a simple interface for drawing to rendering

14



Framebuffer Objects 15

destinations other than the buffers provided to the GL by the
window-system. OES_framebuffer_object is a simplified version
of EXT_framebuffer_object with modifications to match the needs of
OpenGL ES.

In this extension, these newly defined rendering destinations are
known collectively as "framebuffer-attachable images". This
extension provides a mechanism for attaching framebuffer-attachable
images to the GL framebuffer as one of the standard GL logical
buffers: color, depth, and stencil. When a framebuffer-attachable
image is attached to the framebuffer, it is used as the source and
destination of fragment operations as described in Chapter 4.

By allowing the use of a framebuffer-attachable image as a rendering
destination, this extension enables a form of "offscreen" rendering.
Furthermore, "render to texture" is supported by allowing the images
of a texture to be used as framebuffer-attachable images. A
particular image of a texture object is selected for use as a
framebuffer-attachable image by specifying the mipmap level, cube
map face (for a cube map texture) that identifies the image.
The "render to texture" semantics of this extension are similar to
performing traditional rendering to the framebuffer, followed
immediately by a call to CopyTexSubImage. However, by using this
extension instead, an application can achieve the same effect,
but with the advantage that the GL can usually eliminate the data copy
that would have been incurred by calling CopyTexSubImage.

This extension also defines a new GL object type, called a
"renderbuffer", which encapsulates a single 2D pixel image. The
image of renderbuffer can be used as a framebuffer-attachable image
for generalized offscreen rendering and it also provides a means to
support rendering to GL logical buffer types which have no
corresponding texture format (stencil etc). A renderbuffer
is similar to a texture in that both renderbuffers and textures can
be independently allocated and shared among multiple contexts. The
framework defined by this extension is general enough that support
for attaching images from GL objects other than textures and
renderbuffers could be added by layered extensions.

To facilitate efficient switching between collections of
framebuffer-attachable images, this extension introduces another new
GL object, called a framebuffer object. A framebuffer object
contains the state that defines the traditional GL framebuffer,
including its set of images. Prior to this extension, it was the
window-system which defined and managed this collection of images,
traditionally by grouping them into a "drawable". The window-system
API’s would also provide a function (i.e., eglMakeCurrent) to bind a
drawable with a GL context. In this extension however, this
functionality is subsumed by the GL and the GL provides the function
BindFramebufferOES to bind a framebuffer object to the current context.
Later, the context can bind back to the window-system-provided framebuffer
in order to display rendered content.



16 Framebuffer Objects

Previous extensions that enabled rendering to a texture have been
much more complicated. One example is the combination of
ARB_pbuffer and ARB_render_texture, both of which are window-system
extensions. This combination requires calling MakeCurrent, an
operation that may be expensive, to switch between the window and
the pbuffer drawables. An application must create one pbuffer per
renderable texture in order to portably use ARB_render_texture. An
application must maintain at least one GL context per texture
format, because each context can only operate on a single
pixelformat or FBConfig. All of these characteristics make
ARB_render_texture both inefficient and cumbersome to use.

OES_framebuffer_object, on the other hand, is both simpler to use
and more efficient than ARB_render_texture. The
OES_framebuffer_object API is contained wholly within the GL API and
has no (non-portable) window-system components. Under
OES_framebuffer_object, it is not necessary to create a second GL
context when rendering to a texture image whose format differs from
that of the window. Finally, unlike the pbuffers of
ARB_render_texture, a single framebuffer object can facilitate
rendering to an unlimited number of texture objects.

Please refer to the EXT_framebuffer_object extension for a
detailed explaination of how framebuffer objects are supposed to work,
the issues and their resolution. This extension can be found at
http://oss.sgi.com/projects/ogl-sample/registry/EXT/framebuffer_object.txt

New Tokens

Accepted by the <internalformat> parameter of RenderbufferStorageOES

RGB565_OES 0x8D62

New Procedures and Functions

boolean IsRenderbufferOES(uint renderbuffer);
void BindRenderbufferOES(enum target, uint renderbuffer);
void DeleteRenderbuffersOES(sizei n, const uint * renderbuffers);
void GenRenderbuffersOES(sizei n, uint * renderbuffers);

void RenderbufferStorageOES(enum target, enum internalformat,
sizei width, sizei height);

void GetRenderbufferParameterivOES(enum target, enum pname, int * params);

boolean IsFramebufferOES(uint framebuffer);
void BindFramebufferOES(enum target, uint framebuffer);
void DeleteFramebuffersOES(sizei n, const uint * framebuffers);
void GenFramebuffersOES(sizei n, uint * framebuffers);



Framebuffer Objects 17

enum CheckFramebufferStatusOES(enum target);

void FramebufferTexture2DOES(enum target, enum attachment,
enum textarget, uint texture,
int level);

void FramebufferRenderbufferOES(enum target, enum attachment,
enum renderbuffertarget, uint renderbuffer);

void GetFramebufferAttachmentParameterivOES(enum target, enum attachment,
enum pname, int * params);

void GenerateMipmapOES(enum target);

OES_framebuffer_object implements the functionality defined by EXT_framebuffer_object
with the following limitations:

- there is no support for DrawBuffer{s}, ReadBuffer{s}.

- FramebufferTexture2DOES can be used to render
directly into the base level of a texture image only. Rendering to any
mip-level other than the base level is not supported.

- FramebufferTexture3DOES is not supported as OpenGL ES 1.1 and 2.0 does
not support 3D textures. Support for 3D textures in OpenGL ES 2.0 is
provided by the OES_texture_3D optional extension. FramebufferTexture3DOES
has been moved to this extension specification.

- section 4.4.2.1 of the EXT_framebuffer_object spec describes the function
RenderbufferStorageEXT. This function establishes the data storage, format,
and dimensions of a renderbuffer object’s image. <target> must be
RENDERBUFFER_EXT. <internalformat> must be one of the internal formats
from table 3.16 or table 2.nnn which has a base internal format of RGB, RGBA,
DEPTH_COMPONENT, or STENCIL_INDEX.

The above paragraph is modified by OES_framebuffer_object and states thus:

"This function establishes the data storage, format, and
dimensions of a renderbuffer object’s image. <target> must be RENDERBUFFER_OES.
<internalformat> must be one of the sized internal formats from the following
table which has a base internal format of RGB, RGBA, DEPTH_COMPONENT,
or STENCIL_INDEX"

The following formats are required:

Sized Base
Internal Format Internal format
--------------- ---------------
RGB565_OES RGB
RGBA4 RGBA
RGB5_A1 RGBA



18 Framebuffer Objects

DEPTH_COMPONENT_16 DEPTH_COMPONENT

The following formats are optional:

Sized Base
Internal Format Internal format
--------------- ---------------
RGBA8 RGBA
RGB8 RGB
DEPTH_COMPONENT_24 DEPTH_COMPONENT
DEPTH_COMPONENT_32 DEPTH_COMPONENT
STENCIL_INDEX1_OES STENCIL_INDEX
STENCIL_INDEX4_OES STENCIL_INDEX
STENCIL_INDEX8_OES STENCIL_INDEX

The optional formats are described by the OES_rgb8_rgba8, OES_depth24,
OES_depth32, OES_stencil1, OES_stencil4, and OES_stencil8 extensions.
Even though these formats are optional in this extension, the OpenGL ES
APIs (1.x and 2.x versions) can mandate some or all of these optional formats.

If RenderbufferStorageOES is called with an <internalformat> value that is
not supported by the OpenGL ES implementation, an INVALID_ENUM error will
be generated.

Revision History

02/25/2005 Aaftab Munshi First draft of extension
04/27/2005 Aaftab Munshi Added additional limitations to simplify

OES_framebuffer_object implementations
07/06/2005 Aaftab Munshi Added GetRenderbufferStorageFormatsOES

removed limitations that were added to OES
version of RenderbufferStorage,
and FramebufferTexture2DOES.

07/07/2005 Aaftab Munshi Removed GetRenderbufferStorageFormatsOES
after discussions with Jeremy Sandmel,
and added specific extensions for the
optional renderbuffer storage foramts

07/18/2005 Aaftab Munshi Added comment that optional formats can
be mandated by OpenGL ES APIs.


	Overview
	Texture Environment Crossbar
	Mirrored Texture Addressing
	Cube Maps
	Coordinate Transformations
	Texture Addressing Modes
	Texture Completeness

	Blending Extensions
	Stencil Extensions
	Extended Matrix Palette
	Framebuffer Objects

