
OpenGL R© ES
Common Profile Specification 2.0.25 (Difference Specification)

(November 2, 2010) (Annotated)

Editors: Aaftab Munshi, Jon Leech

Copyright c© 2002-2008 The Khronos Group Inc. All Rights Reserved.

This specification is protected by copyright laws and contains material proprietary to the Khronos
Group, Inc. It or any components may not be reproduced, republished, distributed, transmitted,
displayed, broadcast or otherwise exploited in any manner without the express prior written per-
mission of Khronos Group. You may use this specification for implementing the functionality
therein, without altering or removing any trademark, copyright or other notice from the specifi-
cation, but the receipt or possession of this specification does not convey any rights to reproduce,
disclose, or distribute its contents, or to manufacture, use, or sell anything that it may describe,
in whole or in part.

Khronos Group grants express permission to any current Promoter, Contributor or Adopter mem-
ber of Khronos to copy and redistribute UNMODIFIED versions of this specification in any fash-
ion, provided that NO CHARGE is made for the specification and the latest available update of
the specification for any version of the API is used whenever possible. Such distributed speci-
fication may be re-formatted AS LONG AS the contents of the specification are not changed in
any way. The specification may be incorporated into a product that is sold as long as such prod-
uct includes significant independent work developed by the seller. A link to the current version
of this specification on the Khronos Group web-site should be included whenever possible with
specification distributions.

Khronos Group makes no, and expressly disclaims any, representations or warranties, express
or implied, regarding this specification, including, without limitation, any implied warranties of
merchantability or fitness for a particular purpose or non-infringement of any intellectual prop-
erty. Khronos Group makes no, and expressly disclaims any, warranties, express or implied,
regarding the correctness, accuracy, completeness, timeliness, and reliability of the specification.
Under no circumstances will the Khronos Group, or any of its Promoters, Contributors or Mem-
bers or their respective partners, officers, directors, employees, agents or representatives be liable
for any damages, whether direct, indirect, special or consequential damages for lost revenues,
lost profits, or otherwise, arising from or in connection with these materials.

Khronos is a trademark of The Khronos Group Inc. OpenGL is a registered trademark, and
OpenGL ES is a trademark, of Silicon Graphics, Inc.

Contents

1 Overview 1
1.1 Conventions . 1

2 OpenGL Operation 2
2.1 OpenGL Fundamentals . 2

2.1.1 Fixed-Point Computation . 3
2.2 GL State . 3
2.3 GL Command Syntax . 3
2.4 Basic GL Operation . 3
2.5 GL Errors . 3
2.6 Begin/End Paradigm . 4
2.7 Vertex Specification . 5
2.8 Vertex Arrays . 5
2.9 Buffer Objects . 7
2.10 Rectangles . 8
2.11 Coordinate Transformations . 8
2.12 Clipping . 10
2.13 Current Raster Position . 10
2.14 Colors and Coloring . 10
2.15 Vertex Shaders . 11

2.15.1 Loading and Compiling Shader Sources . 11
2.15.2 Shader Binaries . 12
2.15.3 Program Objects . 13

3 Rasterization 15
3.1 Invariance . 15
3.2 Antialiasing . 15
3.3 Points . 15

3.3.1 Point Sprite Rasterization . 16
3.4 Line Segments . 16

3.4.1 Basic Line Segment Rasterization . 16
3.5 Polygons . 16

3.5.1 Basic Polygon Rasterization . 17
3.6 Pixel Rectangles . 17
3.7 Bitmaps . 19
3.8 Texturing . 20

i

ii Contents

3.8.1 Copy Texture . 20
3.8.2 Compressed Textures . 22
3.8.3 Texture Wrap Modes . 22
3.8.4 Texture Minification . 22
3.8.5 Texture Magnification . 22
3.8.6 Texture Framebuffer Attachment . 22
3.8.7 Texture Completeness . 22
3.8.8 Manual Mipmap Generation . 23
3.8.9 Texture State . 23
3.8.10 Texture Environments and Texture Functions . 24

3.9 Color Sum . 28
3.10 Fog . 28
3.11 Fragment Shaders . 28

4 Per-Fragment Operations and the Framebuffer 29
4.1 Per-Fragment Operations . 30

4.1.1 Pixel Ownership Test . 30
4.1.2 Alpha Test . 30
4.1.3 Stencil Test . 30
4.1.4 Blending . 30

4.2 Whole Framebuffer Operations . 32
4.3 Drawing, Reading, and Copying Pixels . 32
4.4 Framebuffer Objects . 33

4.4.1 Binding and Managing Framebuffer Objects . 33
4.4.2 Attaching Images to Framebuffer Objects . 35
4.4.3 Renderbuffer Objects . 35
4.4.4 Rendering When an Image of a Bound Texture Object is Also Attached to the

Framebuffer . 38
4.4.5 Framebuffer Completeness . 39
4.4.6 Effects of Framebuffer State on Framebuffer Dependent Values 41
4.4.7 Mapping between Pixel and Element in Attached Image 41
4.4.8 Errors . 42

5 Special Functions 44
5.1 Evaluators . 44
5.2 Selection . 44
5.3 Feedback . 45
5.4 Display Lists . 45
5.5 Flush and Finish . 45
5.6 Hints . 46

6 State and State Requests 47
6.1 Querying GL State . 47
6.2 State Tables . 50

Contents iii

A Deleting Shared Objects 69
A.1 Effect of shared object deletion on object namespace . 69
A.2 Sharing objects across multiple OpenGL ES contexts . 70

A.2.1 Updates to the state of shared objects . 71
A.2.2 The effect of shared object deletion on object namespace 71

B Acknowledgements 72

C Document History 75

D OES Extensions 76
D.1 Naming Conventions . 76
D.2 Promoting Extensions to Core Features . 76

Chapter 1

Overview

This document outlines the OpenGL ES 2.0 specification. OpenGL ES 2.0 implements the Common profile
only. The fixed point (signed 16.16) data type is supported for vertex attribute arrays only. Shader uniform
variables and command parameters no longer support fixed point in order to simplify the API and also
because the fixed point variants do not offer any additional performance. The OpenGL ES 2.0 pipeline is
described in the same order as in the OpenGL specification. The specification lists supported commands
and state, and calls out commands and state that are part of the full (desktop) OpenGL specification but
not part of the OpenGL ES 2.0 specification. This specification is not a standalone document describing
the detailed behavior of the rendering pipeline subset and API. Instead, it provides a concise description of
the differences between a full OpenGL renderer and the OpenGL ES renderer. This document is defined
relative to the OpenGL 2.0 specification.

Starting with revision 2.0.22, a standalone document titled OpenGL ES Common Profile Specification
(Full Specification) has been derived from the OpenGL 2.0 specification. The Full Specification is the
authoritative definition of OpenGL ES 2.0. This document, the Difference Specification, will continue to be
maintained as a quick reference, and to enable direct comparisons with OpenGL 2.0.

This document specifies the OpenGL ES renderer. A companion document defines one or more bindings
to window system/OS platform combinations analogous to the GLX, WGL, and AGL specifications. 1

1.1 Conventions

This document describes commands in the identical order as the OpenGL 2.0 specification. Each section
corresponds to a section in the full OpenGL specification and describes the disposition of each command
relative to this specification. Where necessary, the OpenGL ES 2.0 specification provides additional clarifi-
cation of the reduced command behavior.

Each section of the specification includes tables summarizing the commands and parameters that are re-
tained. Several symbols are used within the tables to indicate various special cases. The symbol † indicates
that an enumerant is optional and may not be supported by an OpenGL ES 2.0 implementation. The super-
script ‡ indicates that the command is supported subject to additional constraints described in the section
body containing the table.

n Additional material summarizing some of the reasoning behind certain decisions is included as an
annotation at the end of each section, set in this typeface. q

1See the Khronos Native Platform Graphics Interface specification.

1

Chapter 2

OpenGL Operation

The significant change in the OpenGL ES 2.0 specification is that the OpenGL fixed function transformation
and fragment pipeline is not supported. Other features that are not supported are that commands cannot be
accumulated in a display list for later processing, and the first stage of the pipeline for approximating curve
and surface geometry is eliminated.

n OpenGL ES 2.0 is part of a wider family of OpenGL-derived application programming interfaces.
As such, it shares a similar processing pipeline, command structure, and the same OpenGL name
space. Where necessary, extensions are created to optionally support existing OpenGL 2.0 function-
ality or to augment the existing OpenGL 2.0 functionality. OpenGL ES-specific extensions play a role
in OpenGL ES similar to that played by OpenGL ARB extensions relative to the OpenGL specifica-
tion. OpenGL ES-specific extensions are either precursors of functionality destined for inclusion in
future core revisions, or formalization of important but non-mainstream functionality.

Extension specifications are written relative to the full OpenGL specification so that they can also
be added as extensions to an OpenGL 2.0 implementation and so that they are easily adapted
to functionality enhancements that are drawn from the full OpenGL specification. Extensions that
are part of the core do not have extension suffixes, since they are not extensions, though they are
extensions to OpenGL 2.0. q

2.1 OpenGL Fundamentals

Commands and tokens continue to be prefixed by gl and GL . The wide range of support for differing data
types (8-bit, 16-bit, 32-bit and 64-bit; integer and floating-point) is reduced wherever possible to eliminate
non-essential command variants and to reduce the complexity of the processing pipeline. Double-precision
floating-point parameters and data types are eliminated completely, while other command and data type
variations are considered on a command-by-command basis and eliminated when appropriate. Fixed point
data types have also been added where appropriate.

OpenGL ES interacts with two classes of framebuffers: window-system-provided framebuffers and
application-created framebuffers. There is always one window-system-provided framebuffer, while application-
created framebuffers can be created as desired. These two types of framebuffer are distinguished primarily
by the interface for configuring and managing their state.

The effects of OpenGL ES commands on the window-system-provided framebuffer are ultimately con-
trolled by the window-system that allocates framebuffer resources. It is the window-system that determines
which portions of this framebuffer OpenGL ES may access at any given time and that communicates to
OpenGL ES how those portions are structured. Therefore, there are no OpenGL ES commands to configure

2

OpenGL Operation 3

the window-system-provided framebuffer. Similarly, display of framebuffer contents on a CRT monitor or
LCD panel (including the transformation of individual framebuffer values by such techniques as gamma
correction) is not addressed by OpenGL ES. Framebuffer configuration occurs outside of OpenGL ES in
conjunction with the window-system.

The initialization of an OpenGL ES context itself occurs when the window-system allocates a window
for OpenGL ES rendering and is influenced by the state of the window-system-provided framebuffer.

2.1.1 Fixed-Point Computation

The OpenGL ES 2.0 specification supports fixed-point vertex attributes using a 32-bit two’s-complement
signed representation with 16 bits to the right of the binary point (fraction bits). The OpenGL ES 2.0
pipeline requires the same range and precision requirements as specified in Section 2.1.1 of the OpenGL
2.0 specification.

2.2 GL State

The OpenGL ES 2.0 specification retains a subset of the client and server state described in the full OpenGL
specification. The separation of client and server state persists. Section 6.2 summarizes the disposition of
all state variables relative to the specification.

2.3 GL Command Syntax

The OpenGL command and type naming conventions are retained identically. A new type fixed is added.
Commands using the suffixes for the types: byte, ubyte, short, and ushort are not supported. The
type double and all double-precision commands are eliminated. The result is that the OpenGL ES 2.0
specification uses only the suffixes ’f’, and ’i’.

2.4 Basic GL Operation

The basic command operation remains identical to OpenGL 2.0. The major differences from the OpenGL
2.0 pipeline are that commands cannot be placed in a display list; there is no polynomial function evaluation
stage; the fixed function transformation and fragment pipeline is not supported; and blocks of fragments
cannot be sent directly to the individual fragment operations.

2.5 GL Errors

The full OpenGL error detection behavior is retained, including ignoring offending commands and setting
the current error state. In all commands, parameter values that are not supported are treated like any other
unrecognized parameter value and an error results, i.e., INVALID ENUM or INVALID VALUE. Table 2.1 lists
the errors.

The command GetError is retained to return the current error state. As in OpenGL 2.0, it may be
necessary to call GetError multiple times to retrieve error state from all parts of the pipeline.

n Well-defined error behavior allows portable applications to be written. Retrievable error state allows
application developers to debug commands with invalid parameters during development. This is an
important feature during initial deployment. q

4 OpenGL Operation

OpenGL 2.0 Common
NO ERROR �
INVALID ENUM �
INVALID VALUE �
INVALID OPERATION �
STACK OVERFLOW –
STACK UNDERFLOW –
OUT OF MEMORY �
TABLE TOO LARGE –

Table 2.1: Error Disposition

OpenGL 2.0 Common
enum GetError(void) �

2.6 Begin/End Paradigm

OpenGL ES 2.0 draws geometric objects exclusively using vertex arrays. The OpenGL ES 2.0 specification
supports user defined vertex attributes only. Support for vertex position, normals, colors, texture coordinates
is removed since they can be specified using vertex attribute arrays.

The associated auxiliary values for user defined vertex attributes can also be set using a small subset of
the associated attribute specification commands described in Section 2.7.

Since the commands Begin and End are not supported, no internal state indicating the begin/end state is
maintained.

The POINTS, LINES, LINE STRIP, LINE LOOP, TRIANGLES, TRIANGLE STRIP, and TRIANGLE FAN

primitives are supported. The QUADS, QUAD STRIP, and POLYGON primitives are not supported.
Color index rendering is not supported. Edge flags are not supported.

OpenGL 2.0 Common
void Begin(enum mode) –
void End(void) –
void EdgeFlag[v](T flag) –

n The Begin/End paradigm, while convenient, leads to a large number of commands that need to
be implemented. Correct implementation also involves suppression of commands that are not legal
between Begin and End. Tracking this state creates an additional burden on the implementation.
Vertex arrays, arguably can be implemented more efficiently since they present all of the primitive
data in a single function call. Edge flags are not included, as they are only used when drawing
polygons as outlines and support for PolygonMode has not been included.

Quads and polygons are eliminated since they can be readily emulated with triangles and it reduces
an ambiguity with respect to decomposition of these primitives to triangles, since it is entirely left to
the application. Elimination of quads and polygons removes special cases for line mode drawing
requiring edge flags (should PolygonMode be re-instated). q

OpenGL Operation 5

2.7 Vertex Specification

The OpenGL ES 2.0 specification does not include the concept of Begin and End. Vertices are specified
using vertex arrays exclusively.

Setting generic vertex attribute zero no longer specifies a vertex. Setting any generic vertex attribute,
including attribute zero, updates the current values of the attribute. The state required to support vertex
specification consists of MAX VERTEX ATTRIBS four-component floating-point vectors to store generic
vertex attributes.

There is no notion of a current vertex, so no state is devoted to vertex coordinates. The initial values for
all generic vertex attributes, including vertex attribute zero, are (0, 0, 0, 1).

OpenGL 2.0 Common
void Vertex{234}{sifd}[v](T coords) –
void Normal3{bsifd}[v](T coords) –
void TexCoord{1234}{sifd}[v](T coords) –
void MultiTexCoord{1234}{sifd}[v](enum texture, T coords) –
void Color{34}{bsifd ub us ui}[v](T components) –
void FogCoord{fd}[v](T coord) –
void SecondaryColor3{bsifd ub us ui}[v](T components) –
void Index{sifd ub}[v](T components) –
void VertexAttrib{1234}f[v](uint indx, T values) �
void VertexAttrib{1234}{sd}[v](uint indx, T values) –
void VertexAttrib4{bsid ubusui}v(uint indx, T values) –
void VertexAttrib4N{bsi ubusui}[v](uint indx, T values) –

n Generic per-primitive attributes can be set using the (VertexAttrib*) entry points. The most general
form of the floating-point version of the command is retained to simplify addition of extensions or
future revisions. Since these commands are unlikely to be issued frequently, as they can only be
used to set (overall) per-primitive attributes, performance is not an issue.
OpenGL ES 2.0 supports the RGBA rendering model only. One or more of the RGBA component
depths may be zero. Color index rendering is not supported. q

2.8 Vertex Arrays

Vertex data is specified using VertexAttribPointer. Pre-defined vertex data arrays such as vertex, color,
normal, texture coord arrays are not supported. Color index and edge flags are not supported. Both in-
dexed and non-indexed arrays are supported, but the InterleavedArrays and ArrayElement commands are
not supported.

Indexing support with ubyte and ushort indices is supported. Support for uint indices is not required
by OpenGL ES 2.0. If an implementation supports uint indices, it will export the OES element index -

uint extension.

OpenGL 2.0 Common
void VertexPointer(int size, enum type, sizei stride,

const void *ptr)
–

6 OpenGL Operation

OpenGL 2.0 Common
void NormalPointer(enum type, sizei stride, const void

*ptr)
–

void ColorPointer(int size, enum type, sizei stride,

const void *ptr)
–

void TexCoordPointer(int size, enum type, sizei stride,

const void *ptr)
–

void SecondaryColorPointer(int size, enum type, sizei

stride, void *ptr)
–

void FogCoordPointer(enum type, sizei stride, void *ptr) –
void EdgeFlagPointer(sizei stride, const void *ptr) –
void IndexPointer(enum type, sizei stride, const void

*ptr)
–

void ArrayElement(int i) –
void VertexAttribPointer(uint index, int size, enum type, boolean normalized,

sizei stride, const void *ptr)

size = 1,2,3,4, type = BYTE �
size = 1,2,3,4, type = UNSIGNED BYTE �
size = 1,2,3,4, type = SHORT �
size = 1,2,3,4, type = UNSIGNED SHORT �
size = 1,2,3,4, type = INT –
size = 1,2,3,4, type = UNSIGNED INT –
size = 1,2,3,4, type = FLOAT �
size = 1,2,3,4, type = FIXED �

void DrawArrays(enum mode, int first, sizei count)

mode = POINTS,LINES,LINE STRIP,LINE LOOP �
mode = TRIANGLES,TRIANGLE STRIP,TRIANGLE FAN �
mode = QUADS,QUAD STRIP,POLYGON –

void DrawElements(enum mode, sizei count, enum type, const void *indices)

mode = POINTS,LINES,LINE STRIP,LINE LOOP �
mode = TRIANGLES,TRIANGLE STRIP,TRIANGLE FAN �
mode = QUADS,QUAD STRIP,POLYGON –
type = UNSIGNED BYTE,UNSIGNED SHORT �
type = UNSIGNED INT –

void MultiDrawArrays(enum mode, int *first, sizei

*count, sizei primcount)
–

void MultiDrawElements(enum mode, sizei *count, enum

type, void **indices, sizei primcount)
–

void InterleavedArrays(enum format, sizei stride, const

void *pointer)
–

void DrawRangeElements(enum mode, uint start, uint end,

sizei count, enum type, const void *indices)
–

void ClientActiveTexture(enum texture) –
void EnableClientState(enum cap) –
void DisableClientState(enum cap) –

OpenGL Operation 7

OpenGL 2.0 Common
void EnableVertexAttribArray(uint index) �
void DisableVertexAttribArray(uint index) �

n Float types are supported for all-around generality, short, ushort, byte and ubyte types
are supported for space efficiency. Support for indexed vertex arrays allows for greater reuse of
coordinate data between multiple faces, that is, when the shared edges are smooth.

The OpenGL 2.0 specification defines the initial type for the vertex attribute arrays to be FLOAT. q

2.9 Buffer Objects

The vertex data arrays described in Section 2.8 are stored in client memory. It is sometimes desirable to
store frequently used client data, such as vertex array data in high-performance server memory. OpenGL
ES buffer objects provide a mechanism that clients can use to allocate, initialize and render from memory.
Buffer objects can be used to store vertex array and element index data.

MapBuffer and UnmapBuffer functions are not required.

OpenGL 2.0 Common
void BindBuffer(enum target, uint buffer) �
void DeleteBuffers(sizei n, const uint *buffers) �
void GenBuffers(sizei n, uint *buffers) �
void BufferData(enum target, sizeiptr size, const void

*data, enum usage)
�

void BufferSubData(enum target, intptr offset, sizeiptr

size, const void *data)
�

void *MapBuffer(enum target, enum access) –
boolean UnmapBuffer(enum target) –

Name Type Initial Value Legal Values
BUFFER SIZE integer 0 any non-negative integer

BUFFER USAGE enum STATIC DRAW STATIC DRAW, DYNAMIC DRAW, STREAM DRAW

Table 2.2: Buffer object parameters and their values

n MapBuffer and UnmapBuffer functions are not required because it may not be possible for an
application to read or get a pointer to the vertex data from the vertex buffers in server memory.

BufferData and BufferSubData define two new types that will work well on 64-bit systems, analogous
to C’s ”intptr t”. The new type ”GLintptr” should be used in place of GLint whenever it is expected
that values might exceed 2 billion. The new type ”GLsizeiptr” should be used in place of GLsizei
whenever it is expected that counts might exceed 2 billion. Both types are defined as signed integers
large enough to contain any pointer value. As a result, they naturally scale to larger numbers of bits
on systems with 64-bit or even larger pointers. q

8 OpenGL Operation

2.10 Rectangles

The commands for directly specifying rectangles are not supported.

OpenGL 2.0 Common
void Rect{sifd}(T x1, T y1, T x2, T y2) –
void Rect{sifd}v(T v1[2], T v2[2]) –

n The rectangle commands are not used enough in applications to justify maintaining a redundant
mechanism for drawing a rectangle. q

2.11 Coordinate Transformations

The fixed function transformation pipeline is no longer supported. The application can compute the neces-
sary matrices (can be the combined modelview and projection matrix, or an array of matrices for skinning)
and load them as uniform variables in the vertex shader. The code to compute transformed vertex will now
be executed in the vertex shader.

The Viewport command is supported since the viewport transformation happens after the programmable
vertex transform and is a fixed function.

OpenGL 2.0 Common
void DepthRange(clampd n, clampd f) –
void DepthRangef(clampf n, clampf f) �
void Viewport(int x, int y, sizei w, sizei h) �
void MatrixMode(enum mode) –
void LoadMatrixf(float m[16]) –
void LoadMatrixd(double m[16]) –
void MultMatrixf(float m[16]) –
void MultMatrixd(double m[16]) –
void LoadTransposeMatrix{fd}(T m[16]) –
void MultTransposeMatrix{fd}(T m[16]) –
void LoadIdentity(void) –
void Rotatef(float angle, float x, float y, float z) –
void Rotated(double angle, double x, double y, double

z)
–

void Scalef(float x, float y, float z) –
void Scaled(double x, double y, double z) –
void Translatef(float x, float y, float z) –
void Translated(double x, double y, double z) –
void Frustum(double l, double r, double b, double t,

double n, double f)
–

void Ortho(double l, double r, double b, double t,

double n, double f)
–

void Frustumf(float l, float r, float b, float t, float

n, float f)
–

OpenGL Operation 9

OpenGL 2.0 Common
void Orthof(float l, float r, float b, float t, float

n, float f)
–

void ActiveTexture(enum texture) �
void PushMatrix(void) –
void PopMatrix(void) –
void Enable/Disable(RESCALE NORMAL) –
void Enable/Disable(NORMALIZE) –
void TexGen{ifd}[v](enum coord, enum pname, T param) –
void GetTexGen{ifd}v(enum coord, enum pname, T *params) –
void Enable/Disable(TEXTURE GEN {STRQ}) –

n Features such as texture coordinate generation, normalization and rescaling of normals etc. can
now be implemented inside a vertex shader, and are therefore not needed. q

10 OpenGL Operation

2.12 Clipping

Clipping against the viewing frustum is supported; however, separate user-specified clipping planes are not
supported.

The following modifications describes how lines and points are clipped in OpenGL ES 2.0
If the primitive is a point, then clipping discards it if it lies outside the near or far clip plane; otherwise,

it is passed unchanged. If the primitive is a line segment, and a part of it lies outside the space between the
near and the far plane, the line is clipped and new vertex coordinates are computed for one or both vertices.
A clipped line segment endpoint lies on both the original line segment and on either the near or the far
clipping plane. If the line segment lies completely between the two planes, it is passed unchanged.

OpenGL 2.0 Common
void ClipPlane(enum plane, const double *equation) –
void GetClipPlane(enum plane, double *equation) –
void Enable/Disable(CLIP PLANE{0-5}) –

n User-specified clipping planes are used predominately in engineering and scientific applications.
User clip planes can be emulated by calculating the dot product of the user clip plane with the vertex
position in eye space in the vertex shader. This term can be defined as a varying variable. The
fragment shader can reject the pixel based on the value of this term. Depending on the float pre-
cision types supported in a fragment shader, there may be clipping artifacts because of insufficient
precision. q

2.13 Current Raster Position

The concept of the current raster position for positioning pixel rectangles and bitmaps is not supported.
Current raster state and commands for setting the raster position are not supported.

OpenGL 2.0 Common
RasterPos{2,3,4}{sifd}[v](T coords) –
WindowPos{2,3}{sifd}[v](T coords) –

n Bitmaps and pixel image primitives are not supported so there is no need to specify the raster
position. q

2.14 Colors and Coloring

The OpenGL 2.0 fixed function lighting model is no longer supported.

OpenGL 2.0 Common
void FrontFace(enum mode) �
void Enable/Disable(LIGHTING) –
void Enable/Disable(LIGHT{0-7}) –
void Materialf[v](enum face, enum pname, T param) –
void Materiali[v](enum face, enum pname, T param) –
void GetMaterialfv(enum face, enum pname, T *params) –

OpenGL Operation 11

OpenGL 2.0 Common
void GetMaterialiv(enum face, enum pname, T *params) –
void Lightf[v](enum light, enum pname, T param) –
void Lighti[v](enum light, enum pname, T param) –
void GetLightfv(enum light, enum pname, T *params) –
void GetLightiv(enum light, enum pname, T *params) –
void LightModelf[v](enum pname, T param) –
void LightModeli[v](enum pname, T param) –
void Enable/Disable(COLOR MATERIAL) –
void ColorMaterial(enum face, enum mode) –
void ShadeModel(enum mode) –

n The OpenGL 2.0 or any user defined lighting can be implemented by writing appropriate vertex
and/or pixel shaders.
ShadeModel is no longer supported as flat vs. gouraud shading only applied to the predefined color
vertex attribute. Predefined vertex attributes are not supported by OpenGL ES 2.0. q

2.15 Vertex Shaders

OpenGL 2.0 supports the fixed function vertex pipeline and a programmable vertex pipeline using vertex
shaders. OpenGL ES 2.0 supports the programmable vertex pipeline only. OpenGL ES 2.0 allows applica-
tions to describe operations that occur on vertex values and their associated data by using a vertex shader.

OpenGL ES 2.0 provides interfaces to directly load pre-compiled shader binaries, or to load the shader
sources and compile them. An OpenGL ES implementation must support one of these methods for load-
ing shaders. A query of boolean value SHADER COMPILER can be used to determine if the OpenGL ES
implementation supports a shader compiler.

2.15.1 Loading and Compiling Shader Sources

The ShaderSource command loads source code into a vertex or a fragment shader object. Once the source
code for a shader has been loaded, a shader object can be compiled using the CompileShader command. A
string that contains information about the last compilation attempt on a shader object, called the info log,
can be obtained with the GetShaderInfoLog command. The GetShaderSource command returns the shader
source for the specified shader object.

The ReleaseShaderCompiler command allows the OpenGL ES implementation to release the resources
allocated by the shader compiler. This is a hint from the application and is no indicator that the compiler
will not be used in the future. If shader sources are loaded and compiled after ReleaseShaderCompiler has
been called, the CompileShader call is supposed to successfully compile the shaders provided there are no
errors in the shader source(s).

The command

void GetShaderPrecisionFormat(enum shadertype, enum precisiontype, int *range, int *precision)

returns the range and precision for different numeric formats supported by the shader compiler. shadertype
must be VERTEX SHADER or FRAGMENT SHADER. precisiontype must be one of LOW FLOAT, MEDIUM -

12 OpenGL Operation

FLOAT, HIGH FLOAT, LOW INT, MEDIUM INT or HIGH INT. range points to an array of two integers in
which encodings of the format’s numeric range are returned. If min and max are the smallest and largest
values representable in the format, then the values returned are defined to be

range[0] = blog2(|min|)c

range[1] = blog2(|max|)c

precision points to an integer in which the log2 value of the number of bits of precision of the format is
returned. If the smallest representable value greater than 1 is 1+ ε, then *precision will contain b−log2(ε)c,
and every value in the range

[−2range[0], 2range[1]]

can be represented to at least one part in 2∗precision. For example, an IEEE single-precision floating-point
format would return range[0] = 127, range[1] = 127, and ∗precision = 23, while a 32-bit twos-
complement integer format would return range[0] = 31, range[1] = 30, and ∗precision = 0.

The minimum required precision and range for formats corresponding to the different values of preci-
siontype are described in section 4.5 of the OpenGL ES Shading Language specification.

If high precision floating-point is not supported in fragment shaders, calling GetShaderPrecisionFormat
with a precisiontype of HIGH FLOAT will return zero for range[0], range[1], and *precision.

If the value of SHADER COMPILER is not TRUE, then the error INVALID OPERATION is generated.

2.15.2 Shader Binaries

The ShaderBinary command can be used to load precompiled shader binaries.

void ShaderBinary(sizei count, const uint *shaders, enum binaryformat, const void *binary, sizei length)

This call takes a list of count shader handles described by shaders. Each shader handle refers to a unique
shader type i.e. a vertex shader or a fragment shader. The binary argument points to length bytes of pre-
compiled binary code. This provides the ability to individually load binary vertex, or fragment shaders or
load an executable binary that contains the optimized pair of vertex and fragment shaders stored in the same
binary.

The binary image will be decoded according to the specification defining the binaryformat token. A
binary data that does not match the specified binaryformat will result in an INVALID VALUE error. The bits
that represent the binary is implementation specific. An INVALID OPERATION error is generated if any of
the handles in shaders is not a valid shader object created with CreateShader, or if more than one of the
handles refers to the same type of shader (vertex or fragment shader.) If ShaderBinary failed, GetError can
be used to return the appropriate error. A failed binary load does not restore the old state of shaders for
which the binary was being loaded.

Queries of values NUM SHADER BINARY FORMATS and SHADER BINARY FORMATS return the number
of shader binary formats and the list of shader binary format values supported by an OpenGL ES implemen-
tation

Note that if shader binary interfaces are supported, then an OpenGL ES implementation may require
that an optimized pair of vertex and fragment shader binaries that were compiled together be specified to
LinkProgram. Not specifying an optimized pair may result in the LinkProgram call to fail.

OpenGL Operation 13

2.15.3 Program Objects

The shader objects that are to be used by the programmable stages of OpenGL ES are collected together to
form a program object. The programs that are executed by these programmable stages are called executa-
bles. All information necessary for defining an executable is encapsulated in a program object.

If the uniform queried with GetActiveUniform is an array, the uniform name returned will always be the
name of the uniform array appended with "[0]".

Shader objects may be attached to program objects before source code has been loaded into the shader
object, or before the shader object has been compiled. Multiple shader objects of the same type cannot be
attached to a single program object. However, a single shader object may be attached to more than one
program object. The error INVALID OPERATION is generated if shader is already attached to program or if
multiple shader objects of the same type are being attached to the program.

There is no default program or shader object in OpenGL ES 2.0. If UseProgram is called with program
set to 0, then the current program object will refer to an invalid program object. Calls to modify attached
shaders, compile attached shader objects, attach additional shader objects, and detach shader objects will
result in an INVALID VALUE error. DeleteProgram will silently ignore the value zero.

If the current program object is not a valid program object, then the output of vertex and fragment shader
as a result of any drawing commands issued using DrawArrays or DrawElements is undefined.

OpenGL 2.0 Common
void AttachShader(uint program, uint shader) �
void BindAttribLocation(uint program, uint index, const

char *name)
�

void CompileShader(uint shader) †
uint CreateProgram(void) �
uint CreateShader(enum type) �
void DeleteShader(uint shader) �
void DetachShader(uint program, uint shader) �
void DeleteProgram(uint program) �
void GetActiveAttrib(uint program, uint index, sizei

bufsize, sizei *length, int *size, enum *type, char

*name)

�

void GetActiveUniform(uint program, uint index, sizei

bufsize, sizei *length, int *size, enum *type, char

*name)

�

int GetAttribLocation(uint program, const char *name) �
void GetShaderiv(uint shader, enum pname, int *params)

pname = SHADER TYPE, DELETE STATUS �
pname = COMPILE STATUS, INFO LOG LENGTH †
pname = SHADER SOURCE LENGTH †

void GetShaderInfoLog(uint shader, sizei bufsize, sizei

*length, char *infolog)
†

void GetShaderPrecisionFormat(enum shadertype, enum

precisiontype, int *range, int *precision)
�

14 OpenGL Operation

OpenGL 2.0 Common
void GetShaderSource(uint shader, sizei bufsize, sizei

*length, char *source)
†

int GetUniformLocation(uint program, const char *name) �
void LinkProgram(uint program) �
void ReleaseShaderCompiler() †
void ShaderBinary(int n, const uint *shaders, enum

binaryformat, const void *binary, int length)
†

void ShaderSource(uint shader, sizei count, const char

**string, const int *length)
†

void Uniform{1234}{if}(int location, T value) �
void Uniform{1234}{if}v(int location, sizei count, T

value)
�

void UniformMatrix{234}fv(int location, sizei count,

boolean transpose, T value)
�‡

void UseProgram(uint program) �
void ValidateProgram(uint program) �

n OpenGL 2.0 requires a shader compiler and therefore only supports APIs for loading shader
sources and compiling them. OpenGL ES makes the shader compiler optional and in addition pro-
vides an optional interface to directly load precompiled shader binaries.
The transpose parameter in the UniformMatrix API call can only be FALSE in OpenGL ES 2.0. The
transpose field was added to UniformMatrix as OpenGL 2.0 supports both column major and row
major matrices. OpenGL ES 1.0 and 1.1 do not support row major matrices because there was
no real demand for it. There is no reason to support both column major and row major matrices
in OpenGL ES 2.0, so the default matrix type used in OpenGL (i.e. column major) is the only one
supported. An INVALID VALUE error will be generated if tranpose is not FALSE. q

Chapter 3

Rasterization

3.1 Invariance

The invariance rules are retained in full.

3.2 Antialiasing

Multisampling is supported though an implementation is not required to provide a multisample buffer. Mul-
tisampling can be enabled and/or disabled in OpenGL using the Enable/Disable command. Multisampling
is only enabled in OpenGL ES 2.0, if the EGLconfig associated with the target render surface uses a multi-
sample buffer.

OpenGL 2.0 Common
void Enable/Disable(MULTISAMPLE) –

n Multisampling is a desirable feature. Since an implementation need not provide an actual multi-
sample buffer and the command overhead is low, it is included. q

3.3 Points

OpenGL ES 2.0 supports aliased point sprites only. The POINT SPRITE default state is always TRUE.

OpenGL 2.0 Common
void PointSize(float size) –
void PointParameter{if}[v](enum pname, T param) –
void Enable/Disable(POINT SMOOTH) –
void Enable/Disable(POINT SPRITE) –
void Enable/Disable(VERTEX PROGRAM POINT SIZE) –

15

16 Rasterization

3.3.1 Point Sprite Rasterization

Point sprite rasterization produces a fragment for each framebuffer pixel whose center lies inside a square
centered at the points (xw, yw), with side length equal to the current point sprite. The rasterization rules are
the same as that defined in the OpenGL 2.0 specification with the following differences:

• The point sprite coordinate origin is UPPER LEFT and cannot be changed.

• The point size is computed by the vertex shader, so the fixed function to multiply the point size with
a distance attenuation factor and clamping it to a specified point size range is no longer supported.

• The point size must be output by a vertex shader when rendering a point primitive. If the point size is
not output by the vertex shader, the value of point size is undefined

• Multisample point fade is not supported.

• The COORD REPLACE feature where s texture coordinate for a point sprite goes from 0 to 1 across the
point horizontally left-to-right and t texture coordinate goes from 0 to 1 vertically top-to-bottom is
replaced by the gl PointCoord variable defined in the OpenGL ES shading language specification.
gl PointCoord becomes available in the fragment shader when rasterizing points and is not related
to any texture unit.

n Point sprites are used for rendering particle effects efficiently by drawing them as a point instead of
a quad. Traditional points (aliased and anti-aliased) have seen very limited use and are therefore no
longer supported. q

3.4 Line Segments

Aliased lines are supported. Anti-aliased lines and line stippling are not supported.

OpenGL 2.0 Common
void LineWidth(float width) �
void Enable/Disable(LINE SMOOTH) –
void LineStipple(int factor, ushort pattern) –
void Enable/Disable(LINE STIPPLE) –

3.4.1 Basic Line Segment Rasterization

All varying attributes must be interpolated with perspective correction.

3.5 Polygons

Polygonal geometry support is reduced to triangle strips, triangle fans and independent triangles. All raster-
ization modes are supported except for point and line PolygonMode and antialiased polygons using polygon
smooth. Depth offset is supported in FILL mode only.

Rasterization 17

OpenGL 2.0 Common
void CullFace(enum mode) �
void Enable/Disable(CULL FACE) �
void PolygonMode(enum face, enum mode) –
void Enable/Disable(POLYGON SMOOTH) –
void PolygonStipple(const ubyte *mask) –
void GetPolygonStipple(ubyte *mask) –
void Enable/Disable(POLYGON STIPPLE) –
void PolygonOffset(float factor, float units) �
void Enable/Disable(enum cap)

cap = POLYGON OFFSET FILL �
cap = POLYGON OFFSET LINE, POLYGON OFFSET POINT –

n Support for all triangle types (independents, strips, fans) is not overly burdensome and each type
has some desirable utility: strips for general performance and applicability, independents for efficiently
specifying unshared vertex attributes, and fans for representing ”corner-turning” geometry. Face
culling is important for eliminating unnecessary rasterization. Polygon stipple is desirable for doing
patterned fills for ”presentation graphics”. It is also useful for transparency, but support for alpha is
sufficient for that. Polygon stippling does represent a large burden for the polygon rasterization path
and can usually be emulated using texture mapping and alpha test, so it is omitted. Polygon offset for
filled triangles is necessary for rendering coplanar and outline polygons and if not present requires
either stencil buffers or application tricks. Antialiased polygons using POLYGON SMOOTH is just as
desirable as antialiasing for other primitives, but is too large an implementation burden to include. q

3.5.1 Basic Polygon Rasterization

All varying attributes must be interpolated with perspective correction.

3.6 Pixel Rectangles

No support for directly drawing pixel rectangles is included. Limited PixelStore support is retained to allow
different pack alignments for ReadPixels and unpack alignments for TexImage2D. DrawPixels, PixelTransfer
modes and PixelZoom are not supported. The Imaging subset is not supported.

OpenGL 2.0 Common
void PixelStorei(enum pname, T param)

pname = PACK ALIGNMENT,UNPACK ALIGNMENT �
pname = <all other values> –

void PixelStoref(enum pname, T param) –
void PixelTransfer{if}(enum pname, T param) –
void PixelMap{ui us f}v(enum map, int size, T *values) –
void GetPixelMap{ui us f}v(enum map, T *values) –

void Enable/Disable(COLOR TABLE) –
void ColorTable(enum target, enum internalformat, sizei

width, enum format, enum type, const void *table)
–

18 Rasterization

OpenGL 2.0 Common
void ColorSubTable(enum target, sizei start, sizei

count, enum format, enum type, const void *data)
–

void ColorTableParameter{if}v(enum target, enum pname, T

*params)
–

void GetColorTableParameter{if}v(enum target, enum pname, T

*params)
–

void CopyColorTable(enum target, enum internalformat,

int x, int y, sizei width)
–

void CopyColorSubTable(enum target, sizei start, int x,

int y, sizei width)
–

void GetColorTable(enum target, enum format, enum type,

void *table)
–

void ConvolutionFilter1D(enum target, enum internalformat,

sizei width, enum format, enum type, const void

*image)

–

void ConvolutionFilter2D(enum target, enum internalformat,

sizei width, sizei height, enum format, enum type,

const void *image)

–

void GetConvolutionFilter(enum target, enum format, enum

type, void*image)
–

void CopyConvolutionFilter1D(enum target, enum

internalformat, int x, int y, sizei width)
–

void CopyConvolutionFilter2D(enum target, enum

internalformat, int x, int y, sizei width, sizei

height)

–

void SeparableFilter2D(enum target, enum internalformat,

sizei width, sizei height, enum format, enum type,

const void *row, const void *column)

–

void GetSeparableFilter(enum target, enum format, enum

type, void *row, void *column, void *span)
–

void ConvolutionParameter{if}[v](enum target, enum pname, T

param)
–

void GetConvolutionParameter{if}v(enum target, enum pname, T

*params)
–

void Enable/Disable(POST CONVOLUTION COLOR TABLE) –
void MatrixMode(COLOR) –
void Enable/Disable(POST COLOR MATRIX COLOR TABLE) –

void Enable/Disable(HISTOGRAM) –
void Histogram(enum target, sizei width, enum

internalformat, boolean sink)
–

void ResetHistogram(enum target) –

Rasterization 19

OpenGL 2.0 Common
void GetHistogram(enum target, boolean reset, enum

format, enum type, void *values)
–

void GetHistogramParameter{if}v(enum target, enum pname, T

*params)
–

void Enable/Disable(MINMAX) –
void Minmax(enum target, enum internalformat, boolean

sink)
–

void ResetMinmax(enum target) –
void GetMinmax(enum target, boolean reset, enum

format, enum types, void *values)
–

void GetMinmaxParameter{if}v(enum target, enum pname, T

*params)
–

void DrawPixels(sizei width, sizei height, enum format,

enum type, void *data)
–

void PixelZoom(float xfactor, float yfactor) –

n The OpenGL 2.0 specification includes substantial support for operating on pixel images. The
ability to draw pixel images is important, but with the constraint of minimizing the implementation
burden. There is a concern that DrawPixels is often poorly implemented on hardware accelerators
and that many applications are better served by emulating DrawPixels functionality by initializing a
texture image with the host image and then drawing the texture image to a screen-aligned quadrilat-
eral. This has the advantage of eliminating the DrawPixels processing path and and allows the image
to be cached and drawn multiple times without re-transferring the image data from the application’s
address space. However, it requires extra processing by the application and the implementation,
possibly requiring the image to be copied twice.

The command PixelStore must be included to allow changing the pack alignment for ReadPixels and
unpack alignment for TexImage2D to something other than the default value of 4 to support ubyte
RGB image formats. The integer version of PixelStore is retained rather than the floating-point version
since all parameters can be fully expressed using integer values. q

3.7 Bitmaps

Bitmap images are not supported.

OpenGL 2.0 Common
void Bitmap(sizei width, sizei height, float xorig,

float yorig, float xmove, float ymove, const ubyte

*bitmap)

–

n The Bitmap command is useful for representing image data compactly and for positioning images
directly in window coordinates. Since DrawPixels is not supported, the positioning functionality is not
required. A strong enough case hasn’t been made for the ability to represent font glyphs or other
data more efficiently before transfer to the rendering pipeline. q

20 Rasterization

3.8 Texturing

1D textures, and depth textures are not supported. 2D textures, and cube maps are supported with the
following exceptions: only a limited number of image format and type combinations are supported, listed
in Table 3.1. 3D textures are not required but can be optionally supported through the OES texture 3D

extension.
OpenGL 2.0 implements power of two and non-power of two 1D, 2D, 3D textures and cube-

maps. The power and non-power of two textures support all texture wrap modes and can be mip-mapped in
OpenGL 2.0.

OpenGL ES 2.0 supports non-power of two 2D textures, and cubemaps, with the caveat that mip-
mapping and texture wrap modes other than clamp to edge are not supported. Mip-mapping and all OpenGL
ES 2.0 texture wrap modes are supported for power of two 2D textures, and cubemaps.

The OES texture npot extension allows implementations to support mip-mapping and REPEAT and
MIRRORED REPEAT texture wrap modes for non-power of two 2D textures, cubemaps, and also for 3D
textures, if OES texture 3D extension is supported.

Table 3.2 summarizes the disposition of all image types. The only internal formats supported are the
base internal formats: RGBA, RGB, LUMINANCE, ALPHA, and LUMINANCE ALPHA. The format must match
the base internal format (no conversions from one format to another during texture image processing are
supported) as described in Table 3.1. If the texture format does not match the base internal format an
INVALID OPERATION error results Texture borders are not supported (the border parameter must be
zero, and an INVALID VALUE error results if it is non-zero).

Internal Format External Format Type Bytes per Pixel
RGBA RGBA UNSIGNED BYTE 4
RGB RGB UNSIGNED BYTE 3
RGBA RGBA UNSIGNED SHORT 4 4 4 4 2
RGBA RGBA UNSIGNED SHORT 5 5 5 1 2
RGB RGB UNSIGNED SHORT 5 6 5 2
LUMINANCE ALPHA LUMINANCE ALPHA UNSIGNED BYTE 2
LUMINANCE LUMINANCE UNSIGNED BYTE 1
ALPHA ALPHA UNSIGNED BYTE 1

Table 3.1: Texture Image Formats and Types

3.8.1 Copy Texture

CopyTexImage and CopyTexSubImage are supported. The internal format parameter can be any of the base
internal formats described for TexImage2D subject to the constraint that color buffer components can be
dropped during the conversion to the base internal format, but new components cannot be added. For exam-
ple, an RGB color buffer can be used to create LUMINANCE or RGB textures, but not ALPHA, LUMINANCE -

ALPHA, or RGBA textures. Table 3.3 summarizes the allowable framebuffer and base internal format combi-
nations. If the framebuffer format is not compatible with the base texture format an INVALID OPERATION

error results.
An INVALID FRAMEBUFFER OPERATION error will be generated if an attempt is made to execute Copy-

TexImage and CopyTexSubImage, while the object bound to FRAMEBUFFER BINDING is not framebuffer

Rasterization 21

complete.

OpenGL 2.0 Common
UNSIGNED BYTE �
BITMAP –
BYTE –
UNSIGNED SHORT –
SHORT –
UNSIGNED INT –
INT –
FLOAT –
UNSIGNED BYTE 3 3 2 –
UNSIGNED BYTE 3 3 2 REV –
UNSIGNED SHORT 5 6 5 �
UNSIGNED SHORT 5 6 5 REV –
UNSIGNED SHORT 4 4 4 4 �
UNSIGNED SHORT 4 4 4 4 REV –
UNSIGNED SHORT 5 5 5 1 �
UNSIGNED SHORT 5 5 5 1 REV –
UNSIGNED INT 8 8 8 8 –
UNSIGNED INT 8 8 8 8 REV –
UNSIGNED INT 10 10 10 2 –
UNSIGNED INT 10 10 10 2 REV –

Table 3.2: Image Types

Texture Format
Color Buffer A L LA RGB RGBA
A � – – – –
RGB – � – � –
RGBA � � � � �

Table 3.3: CopyTexture Internal Format/Color Buffer Combinations

22 Rasterization

3.8.2 Compressed Textures

Compressed textures are supported including sub-image specification; however, no method for reading back
a compressed texture image is included, so implementation vendors must provide separate tools for creating
compressed images. The generic compressed internal formats are not supported, so compression of textures
using TexImage2D, TexImage3D is not supported.

3.8.3 Texture Wrap Modes

Wrap modes REPEAT, CLAMP TO EDGE and MIRRORED REPEAT are the only wrap modes supported for
texture coordinates. The texture parameters to specify the magnification and minification filters are sup-
ported. Texture priorities, LOD clamps, and explicit base and maximum level specification, auto mipmap
generation, depth texture and texture comparison modes are not supported. Texture objects are supported,
but proxy textures are not supported.

3.8.4 Texture Minification

The OpenGL 2.0 texture minification filters are supported by OpenGL ES 2.0. Mip-mapped non-power of
two textures are optional in OpenGL ES 2.0. If an implementation supports mip-mapped non-power of two
textures, it will export the OES texture npot extension.

3.8.5 Texture Magnification

The OpenGL 2.0 texture magnification filters are supported by OpenGL ES 2.0

3.8.6 Texture Framebuffer Attachment

The texture values are considered undefined if all of the following conditions are true:

• The current FRAMEBUFFER BINDING names an application-created framebuffer object F.

• The texture is attached to one of the attachment points, A, of framebuffer object F.

• TEXTURE MIN FILTER is NEAREST or LINEAR, and the value of FRAMEBUFFER ATTACHMENT -

TEXTURE LEVEL for attachment point A is equal to the base level -or- TEXTURE MIN FILTER is
NEAREST MIPMAP NEAREST, NEAREST MIPMAP LINEAR, LINEAR MIPMAP NEAREST, or LINEAR -

MIPMAP LINEAR, and the value of FRAMEBUFFER ATTACHMENT TEXTURE LEVEL for attachment
point A is within the the inclusive range from level 0 to last mip-level.

3.8.7 Texture Completeness

A texture is said to be complete if all the image arrays and texture parameters required to utilize the texture
for texture application are consistently defined. The definition of completeness varies depending on the
texture dimensionality.

For 2D and 3D textures, a texture is complete in OpenGL ES if the following conditions all hold true:

• the set of mipmap arrays are specified with the same type and the same format.

• the dimensions of the arrays follow the sequence described in the Mimapping discussion of section
3.8.8 of the OpenGL 2.0 specification.

Rasterization 23

For cube map textures, a texture is cube complete if the following conditions all hold true:

• the base level arrays of each of the six texture images making up the cube map have identical, positive,
and square dimensions.

• the base level arrays were specified with the same type and the same format.

Finally, a cube map texture is mipmap cube complete if, in addition to being cube complete, each of the
six texture images considered individually is complete.

For non power of two 2D, 3D textures and cubemaps, on implementations that do not support OES -

texture npot extension, a texture is said to be complete if the following additional conditions all hold
true:

• the minification filter is NEAREST or LINEAR.

• the texture wrap mode is CLAMP TO EDGE

The check for completeness is done when a given texture is used to render geometry.

3.8.8 Manual Mipmap Generation

Mipmaps can be generated manually with the command

void GenerateMipmap(enum target)

where target is TEXTURE 2D, or TEXTURE CUBE MAP. Mipmap generation affects the texture image
attached to target. For cube map textures, INVALID OPERATION is generated if the texture bound to target
is not cube complete.

Mipmap generation replaces texture array levels from level one through the last mip-level with arrays
derived from the base level array. The contents of the derived arrays are computed by repeated, filtered re-
duction of the base level array. No particular filter algorithm is required, though a box filter is recommended
as the default filter. In some implementations, filter quality may be affected by hints.

3.8.9 Texture State

The state necessary for texture can be divided into two categories. First, there are the seven sets of mipmap
arrays (one for the two-dimensional texture target and six for the cube map texture targets) and their number.
Each array has associated with it a width, height (two-dimensional and cubemap only), an integer describing
the internal format of the image, a boolean describing whether the image is compressed or not, and an integer
size of a compressed image.

Each initial texture array is null (zero width, and height, internal format undefined, with the compressed
flag set to FALSE, a zero compressed size, and zero-sized components). The second type of state is given by
two sets of texture properties; each consists of the selected minification and magnification filters, the wrap
modes for s, and t (two-dimensional and cubemap only), and a boolean flag indicating whether the texture
is resident. The value of the resident flag is determined by OpenGL ES and may change as a result of other
OpenGL ES operations, and cannot be queried in OpenGL ES 2.0. In the initial state, the value assigned to
TEXTURE MIN FILTER is NEAREST MIPMAP LINEAR, and the value for TEXTURE MAG FILTER is LINEAR.
s, and t wrap modes are all set to REPEAT.

24 Rasterization

3.8.10 Texture Environments and Texture Functions

The OpenGL 2.0 texture environments are no longer supported. The fixed function texture functionality is
replaced by programmable fragment shaders.

OpenGL 2.0 Common
void TexImage1D(enum target, int level, int

internalFormat, sizei width, int border, enum

format, enum type, const void *pixels)

–

void TexImage2D(enum target, int level, enum internalFormat, sizei width,

sizei height, int border, enum format, enum type, const void *pixels)

target = TEXTURE 2D, border = 0 �‡

target = TEXTURE CUBE MAP POSITIVE X, border = 0 �‡

target = TEXTURE CUBE MAP POSITIVE Y, border = 0 �‡

target = TEXTURE CUBE MAP POSITIVE Z, border = 0 �‡

target = TEXTURE CUBE MAP NEGATIVE X, border = 0 �‡

target = TEXTURE CUBE MAP NEGATIVE Y, border = 0 �‡

target = TEXTURE CUBE MAP NEGATIVE Z, border = 0 �‡

target = PROXY TEXTURE 2D –
border > 0 –

void TexImage3D(enum target, int level, enum internalFormat, sizei width,

sizei height, sizei depth, int border, enum format, enum type, const

void *pixels)

target = TEXTURE 3D, border = 0 –
target = PROXY TEXTURE 3D –
border > 0 –

void GetTexImage(enum target, int level, enum format,

enum type, void *pixels)
–

void TexSubImage1D(enum target, int level, int xoffset,

sizei width, enum format, enum type, const void

*pixels)

–

void TexSubImage2D(enum target, int level, int xoffset,

int yoffset, sizei width, sizei height, enum format,

enum type, const void *pixels)

�‡

void TexSubImage3D(enum target, int level, int xoffset,

int yoffset, int zoffset, sizei width, sizei height,

sizei depth, enum format, enum type, const void

*pixels)

–

void CopyTexImage1D(enum target, int level, enum

internalformat, int x, int y, sizei width, int

border)

–

CopyTexImage2D(enum target, int level, enum internalformat, int x, int y,

sizei width, sizei height, int border)

border = 0 �‡

border > 0 –

Rasterization 25

OpenGL 2.0 Common
void CopyTexSubImage1D(enum target, int level, int

xoffset, int x, int y, sizei width)
–

void CopyTexSubImage2D(enum target, int level, int

xoffset, int yoffset, int x, int y, sizei width,

sizei height)

�‡

void CopyTexSubImage3D(enum target, int level, int

xoffset, int yoffset, int zoffset, int x, int y,

sizei width, sizei height)

–

void CompressedTexImage1D(enum target, int level, enum

internalformat, sizei width, int border, sizei

imageSize, const void *data)

–

CompressedTexImage2D(enum target, int level, enum internalformat, sizei

width, sizei height, int border, sizei imageSize, const void *data)

target = TEXTURE 2D, border = 0 �‡

target = TEXTURE CUBE MAP POSITIVE X, border = 0 �‡

target = TEXTURE CUBE MAP POSITIVE Y, border = 0 �‡

target = TEXTURE CUBE MAP POSITIVE Z, border = 0 �‡

target = TEXTURE CUBE MAP NEGATIVE X, border = 0 �‡

target = TEXTURE CUBE MAP NEGATIVE Y, border = 0 �‡

target = TEXTURE CUBE MAP NEGATIVE Z, border = 0 �‡

target = PROXY TEXTURE 2D –
border > 0 –

void CompressedTexImage3D(enum target, int level, enum internalformat, sizei

width, sizei height, sizei depth, int border, sizei imageSize, const

void *data)

target = TEXTURE 3D, border = 0 –
target = PROXY TEXTURE 3D –
border > 0 –

void CompressedTexSubImage1D(enum target, int level, int

xoffset, sizei width, enum format, sizei imageSize,

const void *data)

–

void CompressedTexSubImage2D(enum target, int level, int

xoffset, int yoffset, sizei width, sizei height,

enum format, sizei imageSize, const void *data)

�‡

void CompressedTexSubImage3D(enum target, int level, int

xoffset, int yoffset, int zoffset, sizei width,

sizei height, sizei depth, enum format, sizei

imageSize, const void *data)

–

void GetCompressedTexImage(enum target, int lod, void

*img)
–

void TexParameter{if}[v](enum target, enum pname, T param)

target = TEXTURE 2D,TEXTURE CUBE MAP �
target = TEXTURE 3D –
target = TEXTURE 1D –
pname = TEXTURE MIN FILTER,TEXTURE MAG FILTER �

26 Rasterization

OpenGL 2.0 Common
pname = TEXTURE WRAP S,TEXTURE WRAP T �
pname = TEXTURE WRAP R –
pname = TEXTURE BORDER COLOR –
pname = TEXTURE MIN LOD,TEXTURE MAX LOD –
pname = TEXTURE BASE LEVEL,TEXTURE MAX LEVEL –
pname = TEXTURE LOD BIAS –
pname = DEPTH TEXTURE MODE –
pname = TEXTURE COMPARE MODE –
pname = TEXTURE COMPARE FUNC –
pname = TEXTURE PRIORITY –
pname = GENERATE MIPMAP –

void GetTexParameter{if}v(enum target, enum pname, T

*params)
�

void GetTexLevelParameter{if}v(enum target, int level, enum

pname, T *params)
–

void BindTexture(enum target, uint texture)

target = TEXTURE 2D,TEXTURE CUBE MAP �
target = TEXTURE 3D –
target = TEXTURE 1D –

void DeleteTextures(sizei n, const uint *textures) �
void GenTextures(sizei n, uint *textures) �
boolean IsTexture(uint texture) �
boolean AreTexturesResident(sizei n, uint *textures,

boolean *residences)
–

void PrioritizeTextures(sizei n, uint *textures, clampf

*priorities)
–

void Enable/Disable(enum cap)

cap = TEXTURE 2D,TEXTURE CUBE MAP –
cap = TEXTURE 3D –
cap = TEXTURE 1D,TEXTURE 3D –

void TexEnv{if}[v](enum target, enum pname, T param) –
void GetTexEnv{if}v(enum target, enum pname, T *params) –
void GenerateMipmap(enum target) �

n Texturing with 2D images is a critical feature for entertainment, presentation, and engineering
applications. Cubemaps are also important since they can provide very useful functionality such
as reflections, per-pixel specular highlights etc. These features can also be implemented using 2D
textures. However more than 1 texture unit will be needed to do this (eg. dual paraboloid environment
mapping). Cubemaps allow efficient use of the available texture image units in hardware and are
therefore added to OpenGL ES 2.0. 3D textures are also very useful for rendering volumetric effects,
and have been used by quite a few games on the desktop and are therefore optionally supported.

1D textures are not supported since they can be described as a 2D texture with a height of one.
Texture objects are required for managing multiple textures. In some applications packing multiple
textures into a single large texture is necessary for performance, therefore subimage support is also
included. Copying from the framebuffer is useful for many shading algorithms. A limited set of for-
mats, types and internal formats is included. The RGB component ordering is always RGB or RGBA

Rasterization 27

rather than BGRA since there is no real perceived advantage to using BGRA. Format conversions
for copying from the framebuffer are more liberal than for images specified in application memory,
since an application usually has control over images authored as part of the application, but has little
control over the framebuffer format. Unsupported CopyTexture conversions generate an INVALID -
OPERATION error, since the error is dependent on the presence of a particular color component in
the colorbuffer. This behavior parallels the error treatment for attempts to read from a non-existent
depth or stencil buffer.
Texture borders are not included, since they are often not completely supported by full OpenGL
implementations. All filter modes are supported since they represent a useful set of quality and speed
options. Edge clamp and repeat wrap modes are both supported since these are most commonly
used. Texture priorities are not supported since they are seldom used by applications. Similarly, the
ability to control the LOD range and the base and maximum mipmap image levels is not included,
since these features are used by a narrow set of applications. Since all of the supported texture
parameters are scalar valued, the vector form of the parameter command is eliminated.
Auto mipmap generation has been removed since we can use the GenerateMipmap call to generate
the mip-levels of a texture. There is no reason to support two different methods for generating mip-
levels of a texture.
Compressed textures are important for reducing space and bandwidth requirements. The OpenGL
2.0 compression infrastructure is retained. q

28 Rasterization

3.9 Color Sum

The Color Sum function is subsumed by the fragment shader, and therefore is not supported.

3.10 Fog

The Fog fixed fragment function can be implemented by the fragment shader. Fog is therefore no longer
supported.

OpenGL 2.0 Common
void Fogf[v](enum pname, T param) –
void Fogi[v](enum pname, T param) –
void Enable/Disable(FOG) –

3.11 Fragment Shaders

OpenGL ES 2.0 supports programmable fragment shader only and replaces the following fixed function
fragment processing:

• The texture environments and texture functions are not applied.

• Texture application is not applied.

• Color sum is not applied.

• Fog is not applied.

A fragment shader is a binary or an array of strings containing source code for the operations that are
meant to occur on each fragment that results from rasterizing a point, line segment or triangle/strip/fan. The
language used for fragment shaders is described in the OpenGL ES shading language.

Chapter 4

Per-Fragment Operations and the
Framebuffer

The framebuffer consists of a set of pixels arranged as a two-dimensional array. The height and width of
this array may vary from one OpenGL ES implementation to another. For purposes of this discussion, each
pixel in the framebuffer is simply a set of some number of bits. The number of bits per pixel may also vary
depending on the particular OpenGL ES implementation or context.

Further there are two classes of framebuffers: the default framebuffer supplied by the window-system-
provided and application-created framebuffer objects. Every OpenGL ES context has a single default
window-system-provided framebuffer. Applications can optionally create additional non-displayable frame-
buffer objects. (For more information on application-created framebuffer objects see section 4.4)

Corresponding bits from each pixel in the framebuffer are grouped together into a bitplane; each bitplane
contains a single bit from each pixel. These bitplanes are grouped into several logical buffers. These are
the color, depth, and stencil buffers. The color buffer actually consists of a number of buffers, and these
color buffers serve related but slightly different purposes depending on whether it is bound to the default
window-system-provided framebuffer or to an application-created framebuffer object.

For the default window-system-provided framebuffer, the color buffers are: the front buffer, and the
back buffer. Typically, the contents of the front buffers are displayed on a color monitor or LCD panel while
the contents of the back buffers are invisible. All color buffers must have the same number of bitplanes.
Further, an implementation or context may not provide depth, or stencil buffers.

For application-created framebuffer objects, the color buffers are not visible, and consequently the
names of the color buffers are not related to a display device. The name of the color buffer of an application-
created framebuffer object is COLOR ATTACHMENT0. The names of the depth and stencil buffers are DEPTH -

ATTACHMENT and STENCIL ATTACHMENT. For more information about the buffers of an application-created
framebuffer object, see section 4.4.2. To be considered framebuffer complete (see section 4.4.4), all color
buffers attached to an application-created framebuffer object must have the same number of bitplanes. Depth
and stencil buffers may optionally be attached to application-created framebuffers as well.

Color buffers consist of R, G, B, and, optionally, A unsigned integer values. The number of bitplanes
in each of the color buffers, the depth buffer, and the stencil buffer is dependent on the currently bound
framebuffer. For the default framebuffer, the number of bitplanes is fixed. For application-created frame-
buffer objects, however, the number of bitplanes in a given logical buffer may change if the state of the
corresponding framebuffer attachment or attached image changes.

29

30 Per-Fragment Operations and the Framebuffer

4.1 Per-Fragment Operations

All OpenGL 2.0 per-fragment operations are supported, except for occlusion queries, logic-ops, alpha test
and color index related operations. Depth and stencil operations are supported, but a selected config is not
required to include a depth or stencil buffer with the caveat that an OpenGL ES 2.0 implementation must
support at least one config with a depth bit depth of 16 or higher and a stencil bit depth of 8 or higher.

4.1.1 Pixel Ownership Test

The first test is to determine if the pixel at location (xw, yw) in the framebuffer is currently owned by this
OpenGL ES context. If it is not, the window system decides the fate the incoming fragment. Possible results
are that the fragment is discarded or that some subset of the subsequent per-fragment operations are applied
to the fragment. This test allows the window system to control the behavior of OpenGL ES, for instance,
when an OpenGL ES window is obscured.

While an application-created framebuffer object is bound to FRAMEBUFFER, the pixel ownership test
always passes. The pixels of application-created frambuffer objects are always owned by OpenGL ES,
not the window system. Only while the window-system-provided framebuffer named zero is bound to
FRAMEBUFFER does the window system control pixel ownership.

4.1.2 Alpha Test

Alpha test is not supported since this can be done inside a fragment shader.

4.1.3 Stencil Test

StencilFuncSeparate and StencilOpSeparate take a face argument which can be FRONT, BACK or FRONT -
AND BACK and indicates which set of state is affected. StencilFunc and StencilOp set front and back stencil
state to identical values.

StencilFunc and StencilFuncSeparate take three arguments that control where the stencil test passes or
fails. ref is an integer reference value that is used in the unsigned stencil comparison. func is a symbolic con-
stant that determines the stencil comparison function; the eight symbolic constants are NEVER, ALWAYS,
LESS, LEQUAL, EQUAL, GEQUAL, GREATER, or NOTEQUAL.

StencilOp and StencilOpSeparate take three arguments that indicate what happens to the stored stencil
value if this or certain subsequent tests fail or pass. sfails indicates what action is taken if the stencil test
fails. The symbolic constants are KEEP, ZERO, REPLACE, INCR, DECR, INVERT, INCR WRAP and
DECR WRAP. These correspond to keeping the current value, setting to zero, replacing with the refer-
ence value, incrementing with saturation, decrementing with saturation, bit-wise inverting it, incrementing
without saturation, and decrementing without saturation.

4.1.4 Blending

Blending works as defined in the OpenGL 2.0 specification. The only difference is that BlendEquation
and BlendEquationSeparate only support the FUNC ADD, FUNC SUBTRACT and FUNC REVERSE SUBTRACT

modes for RGB and alpha.

OpenGL 2.0 Common
void Enable/Disable(SCISSOR TEST) �

Per-Fragment Operations and the Framebuffer 31

OpenGL 2.0 Common
void Scissor(int x, int y, sizei width, sizei height) �

void Enable/Disable(SAMPLE COVERAGE) �
void Enable/Disable(SAMPLE ALPHA TO COVERAGE) �
void Enable/Disable(SAMPLE ALPHA TO ONE) –
void SampleCoverage(clampf value, boolean invert) �

void Enable/Disable(ALPHA TEST) –
void AlphaFunc(enum func, clampf ref) –

void Enable/Disable(STENCIL TEST) �
void StencilFunc(enum func, int ref, uint mask) �
void StencilFuncSeparate(enum face, enum func, int ref,

uint mask)
�

void StencilOp(enum fail, enum zfail, enum zpass) �
void StencilOpSeparate(enum face, enum fail, enum zfail,

enum zpass)
�

void Enable/Disable(DEPTH TEST) �
void DepthFunc(enum func) �

void Enable/Disable(BLEND) �
void BlendFunc(enum sfactor, enum dfactor) �
void BlendFuncSeparate(enum srcRGB, enum dstRGB, enum

srcAlpha, enum dstAlpha)
�

void BlendEquation(enum mode) �‡

void BlendEquationSeparate(enum modeRGB, enum modeAlpha) �‡

void BlendColor(clampf red, clampf green, clampf blue,

clampf alpha)
�

void Enable/Disable(DITHER) �

void Enable/Disable(INDEX LOGIC OP) –

void Enable/Disable(COLOR LOGIC OP) –
void LogicOp(enum opcode) –

void BeginQuery(enum target, uint id) –
void EndQuery(enum target) –
void GenQueries(sizei n, uint *ids) –
void DeleteQueries(sizei n, uint *ids) –

n Scissor is useful for providing complete control over where pixels are drawn and some form of
window/drawing-surface scissoring is typically present in most rasterizers so the cost is small. Alpha
testing can be implemented in the fragment shader, therefore the API calls to do the fixed function

32 Per-Fragment Operations and the Framebuffer

alpha test are removed. Stenciling is useful for drawing with masks and for a number of presentation
effects. Depth buffering is essential for many 3D applications and the specification should require
some form of depth buffer to be present. Blending is necessary for implementing transparency,
color sums, and some other useful rendering effects. Dithering is useful on displays with low color
resolution, and the inclusion doesn’t require dithering to be implemented in the renderer. Masked
operations are supported since they are often used in more complex operations and are needed to
achieve invariance. q

4.2 Whole Framebuffer Operations

All whole framebuffer operations are supported except for color index related operations, drawing to differ-
ent color buffers, and accumulation buffer.

OpenGL 2.0 Common
void DrawBuffer(enum mode) –
void IndexMask(uint mask) –
void ColorMask(boolean red, boolean green, boolean

blue, boolean alpha)
�

void Clear(bitfield mask) �
void ClearColor(clampf red, clampf green, clampf blue,

clampf alpha)
�

void ClearIndex(float c) –
void DepthMask(boolean flag) �
void ClearDepth(clampd depth) –
void ClearDepthf(clampf depth) �
void StencilMask(uint mask) �
void StencilMaskSeparate(enum face, uint mask) �
void ClearStencil(int s) �

void ClearAccum(float red, float green, float blue,

float alpha)
–

void Accum(enum op, float value) –

n Multiple drawing buffers are not exposed; an application can only draw to the default buffer, so
DrawBuffer is not necessary. The accumulation buffer is not used in many applications, though it is
useful as a non-interactive antialiasing technique. q

4.3 Drawing, Reading, and Copying Pixels

ReadPixels is supported with the following exceptions: the depth and stencil buffers cannot be read from and
the number of format and type combinations for ReadPixels is severely restricted. Two format/type combi-
nations are supported: format RGBA and type UNSIGNED BYTE for portability; and one implementation-
specific preferred format/type combination queried using the tokens IMPLEMENTATION COLOR READ -

FORMAT and IMPLEMENTATION COLOR READ TYPE. The preferred format/type combination queried may
depend on the read surface bound to the current OpenGL ES context. If FRAMEBUFFER BINDING is non-
zero, the pixel values are read from the buffer attached as the COLOR ATTACHMENT0 attachment to the

Per-Fragment Operations and the Framebuffer 33

currently bound framebuffer object. CopyPixels and ReadBuffer are not supported. Read operations return
data from the default color buffer.

OpenGL 2.0 Common
void ReadBuffer(enum mode) –
void ReadPixels(int x, int y,sizei width, sizei height,

enum format, enum type, void *pixels)
�‡

void CopyPixels(int x, int y, sizei width, sizei height,

enum type)
–

n Reading the color buffer is useful for some applications and also provides a platform independent
method for testing. Pixel copies can be implemented by reading to the host and then drawing to the
color buffer (using texture mapping for the drawing part). Image copy performance is important to
many presentation applications, so CopyPixels may be revisited in a future revision. Drawing to and
reading from the depth and stencil buffers is not used frequently in applications (though it would be
convenient for testing), so it is not included. ReadBuffer is not required since the concept of multiple
drawing buffers is not exposed. q

4.4 Framebuffer Objects

As described in chapters 1 and 2, OpenGL ES renders into (and reads values from) a framebuffer. OpenGL
ES defines two classes of framebuffers: window-system-provided framebuffers and application-created
framebuffers.

By default, OpenGL ES uses the window-system-provided framebuffer. The storage, dimensions,
allocation, and format of the images attached to this framebuffer are managed entirely by the window-
system. Consequently, the state of the window-system-provided framebuffer, including its images, can
not be changed by OpenGL ES, nor can the window-system-provided framebuffer itself, or its images, be
deleted by OpenGL ES.

The routines described in the following sections, however, can be used to create, destroy, and modify
the state and attachments of application-created framebuffer objects.

Application-created framebuffer objects encapsulate the state of a framebuffer in a similar manner to
the way texture objects encapsulate the state of a texture. In particular, a framebuffer object encapsulates
state necessary to describe a collection of color, depth, and stencil logical buffers. For each logical buffer, a
framebuffer-attachable image can be attached to the framebuffer to store the rendered output for that logical
buffer. Examples of framebuffer-attachable images include texture images and renderbuffer images.

By allowing the images of a renderbuffer to be attached to a framebuffer, OpenGL ES provides a mech-
anism to support off-screen rendering. Further, by allowing the images of a texture to be attached to a
framebuffer, OpenGL ES provides a mechanism to support render to texture.

4.4.1 Binding and Managing Framebuffer Objects

The operations described in chapter 4 affect the images attached to the framebuffer object bound to the target
FRAMEBUFFER. By default, framebuffer bound to the target FRAMEBUFFER is zero, specifying the default
implementation-dependent framebuffer provided by the windowing system. When the framebuffer bound
to target FRAMEBUFFER is not zero, but instead names an application-created framebuffer object, then the
operations described in chapter 4 affect the application-created framebuffer object rather than the default
framebuffer.

34 Per-Fragment Operations and the Framebuffer

The namespace for framebuffer objects is the unsigned integers, with zero reserved by OpenGL ES to
refer to the default framebuffer. A framebuffer object is created by binding an unused name to the target
FRAMEBUFFER. The binding is effected by calling

void BindFramebuffer(enum target, uint framebuffer);

with target set to FRAMEBUFFER and framebuffer set to the unused name. The resulting framebuffer
object is a new state vector and has one color attachment point, plus one each for the depth and stencil
attachment points.

BindFramebuffer may also be used to bind an existing framebuffer object to target. If the bind is
successful no change is made to the state of the bound framebuffer object and any previous binding to target
is broken. The current FRAMEBUFFER binding can be queried using GetIntegerv(FRAMEBUFFER BINDING).

While a framebuffer object is bound to the target FRAMEBUFFER, OpenGL ES operations on the target
to which it is bound affect the images attached to the bound framebuffer object, and queries of the target to
which it is bound return state from the bound object. In particular, queries of the values specified in table
6.30 (Implementation Dependent Pixel Depths) are derived from the currently bound framebuffer object.
The framebuffer object bound to the target FRAMEBUFFER is used as the destination of fragment operations
and as the source of pixel reads such as ReadPixels.

In the initial state, the reserved name zero is bound to the target FRAMEBUFFER. There is no application
created framebuffer object corresponding to the name zero. Instead, the name zero refers to the window
system provided framebuffer. All queries and operations on the framebuffer while the name zero is bound
to the target FRAMEBUFFER operate on this default framebuffer. On some implementations, the properties of
the default window system provided framebuffer can change over time (e.g., in response to window system
events such as attaching the context to a new window system drawable.)

Application created framebuffer objects (i.e., those with a non-zero name) differ from the default win-
dow system provided framebuffer in a few important ways. First and foremost, unlike the window system
provided framebuffer, application created framebuffers have modifiable attachment points for each logical
buffer in the framebuffer. Framebuffer attachable images can be attached to and detached from these at-
tachment points. Also, the size and format of the images attached to application created framebuffers are
controlled entirely within the OpenGL ES interface, and are not affected by window-system events, such as
pixel format selection, window resizes, and display mode changes.

Additionally, when rendering to or reading from an application created framebuffer object,

• The pixel ownership test always succeeds. In other words, application-created framebuffer objects
own all of their pixels.

• There are no visible color buffer bitplanes. This means there is no color buffer corresponding to the
back, or front color bitplanes.

• The only color buffer bitplanes are the ones defined by the framebuffer attachment point named
COLOR ATTACHMENT0.

• The only depth buffer bitplanes are the ones defined by the framebuffer attachment point DEPTH -

ATTACHMENT.

• The only stencil buffer bitplanes are the ones defined by the framebuffer attachment point STENCIL -

ATTACHMENT.

Per-Fragment Operations and the Framebuffer 35

• There is no multisample buffer so the value of the implementation-dependent state variables SAMPLES
and SAMPLE BUFFERS are both 0

Framebuffer objects are deleted by calling

void DeleteFramebuffers(sizei n, uint *framebuffers);

framebuffers contains n names of framebuffer objects to be deleted. After a framebuffer object is
deleted, it has no attachments, and its name is again unused. If a framebuffer that is currently bound to
the target FRAMEBUFFER is deleted, it is as though BindFramebuffer had been executed with the target of
FRAMEBUFFER and framebuffer of zero. Unused names in framebuffers are silently ignored, as is the value
zero.

The command

void GenFramebuffers(sizei n, uint *framebuffers);

returns n previously unused framebuffer object names in framebuffers. These names are marked as used,
for the purposes of GenFramebuffers only, but they acquire state and type only when they are first bound,
just as if they were unused.

4.4.2 Attaching Images to Framebuffer Objects

Framebuffer-attachable images may be attached to, and detached from, application-created framebuffer
objects. In contrast, the image attachments of the window-system-provided framebuffer may not be changed
by OpenGL ES.

A single framebuffer-attachable image may be attached to multiple application-created framebuffer ob-
jects, potentially avoiding some data copies, and possibly decreasing memory consumption.

For each logical buffer, the framebuffer object stores a set of state which defines the logical buffer’s
attachment point. The attachment point state contains enough information to identify the single image
attached to the attachment point, or to indicate that no image is attached. The per-logical buffer attachment
point state is listed in table 6.33

There are two types of framebuffer-attachable images: the image of a renderbuffer object, and an image
of a texture object.

4.4.3 Renderbuffer Objects

A renderbuffer is a data storage object containing a single image of a renderable internal format. OpenGL
ES provides the methods described below to allocate and delete a renderbuffer’s image, and to attach a
renderbuffer’s image to a framebuffer object.

The name space for renderbuffer objects is the unsigned integers, with zero reserved for OpenGL ES.
A renderbuffer object is created by binding an unused name to RENDERBUFFER. The binding is effected by
calling

void BindRenderbuffer(enum target, uint renderbuffer);

36 Per-Fragment Operations and the Framebuffer

with target set to RENDERBUFFER and renderbuffer set to the unused name. If renderbuffer is not zero,
then the resulting renderbuffer object is a new state vector, initialized with a zero-sized memory buffer, and
comprising the state values listed in table 6.32. Any previous binding to target is broken.

BindRenderbuffer may also be used to bind an existing renderbuffer object. If the bind is successful, no
change is made to the state of the newly bound renderbuffer object, and any previous binding to target is
broken.

While a renderbuffer object is bound, OpenGL ES operations on the target to which it is bound affect
the bound renderbuffer object, and queries of the target to which a renderbuffer object is bound return state
from the bound object.

The name zero is reserved. A renderbuffer object cannot be created with the name zero. If renderbuffer
is zero, then any previous binding to target is broken and the target binding is restored to the initial state.

In the initial state, the reserved name zero is bound to RENDERBUFFER. There is no renderbuffer object
corresponding to the name zero, so client attempts to modify or query renderbuffer state for the target
RENDERBUFFER while zero is bound will generate errors.

Using GetIntegerv, the current RENDERBUFFER binding can be queried as RENDERBUFFER BINDING.
Renderbuffer objects are deleted by calling

void DeleteRenderbuffers(sizei n, const uint *renderbuffers);

where renderbuffers contains n names of renderbuffer objects to be deleted. After a renderbuffer
object is deleted, it has no contents, and its name is again unused. If a renderbuffer that is currently
bound to RENDERBUFFER is deleted, it is as though BindRenderbuffer had been executed with the target
RENDERBUFFER and name of zero. Additionally, special care must be taken when deleting a renderbuffer if
the image of the renderbuffer is attached to a framebuffer object. Unused names in renderbuffers are silently
ignored, as is the value zero.

The command

void GenRenderbuffers(sizei n, uint *renderbuffers);

returns n previously unused renderbuffer object names in renderbuffers. These names are marked as
used, for the purposes of GenRenderbuffers only, but they acquire renderbuffer state only when they are first
bound, just as if they were unused.

The command

void RenderbufferStorage(enum target, enum internalformat, sizei width, sizei height);

establishes the data storage, format, and dimensions of a renderbuffer object’s image. target must be
RENDERBUFFER. internalformat must be color-renderable, depth-renderable, or stencil-renderable. width
and height are the dimensions in pixels of the renderbuffer. If either width or height is greater than MAX -

RENDERBUFFER SIZE, the the error INVALID VALUE is generated. If OpenGL ES is unable to create a
data store of the requested size, the error OUT OF MEMORY is generated. RenderbufferStorage deletes any
existing data store for the renderbuffer and the contents of the data store after calling RenderbufferStorage
are undefined.

An OpenGL ES implementation may vary its allocation of internal component resolution based on any
RenderbufferStorage parameter (except target), but the allocation and chosen internal format must not be a
function of any other state and cannot be changed once they are established. The actual resolution in bits of
each component of the allocated image can be queried with GetRenderbufferParameteriv.

Per-Fragment Operations and the Framebuffer 37

Attaching Renderbuffer Images to a Framebuffer

A renderbuffer can be attached as one of the logical buffers of the currently bound framebuffer object by
calling

void FramebufferRenderbuffer(enum target, enum attachment, enum renderbuffertarget, uint
renderbuffer);

target must be FRAMEBUFFER. An INVALID OPERATION error is generated if the current value of
FRAMEBUFFER BINDING is zero when FramebufferRenderbuffer is called. attachment should be set to
one of the attachment points COLOR ATTACHMENT0, DEPTH ATTACHMENT or STENCIL ATTACHMENT. ren-
derbuffertarget must be RENDERBUFFER and renderbuffer should be set to the name of the renderbuffer
object to be attached to the framebuffer. renderbuffer must be either zero or the name of an existing ren-
derbuffer object of type renderbuffertarget, otherwise INVALID OPERATION is generated. If renderbuffer
is zero, then the value of renderbuffertarget is ignored.

If renderbuffer is not zero and if FramebufferRenderbuffer is successful, then the renderbuffer named
renderbuffer will be used as the logical buffer identified by attachment of the framebuffer currently bound
to target. The value of FRAMEBUFFER ATTACHMENT OBJECT TYPE for the specified attachment point is
set to RENDERBUFFER and the value of FRAMEBUFFER ATTACHMENT OBJECT NAME is set to renderbuffer.
All other state values of the attachment point specified by attachment are set to their default values listed
in table 6.33. No change is made to the state of the renderbuffer object and any previous attachment to the
attachment logical buffer of the framebuffer object bound to framebuffer target is broken. If, on the other
hand, the attachment is not successful, then no change is made to the state of either the renderbuffer object
or the framebuffer object.

Calling FramebufferRenderbuffer with the renderbuffer name zero will detach the image, if any, iden-
tified by attachment, in the framebuffer currently bound to target. All state values of the attachment point
specified by attachment in the object bound to target are set to their default values listed in table 6.33.

If a renderbuffer object is deleted while its image is attached to one or more attachment points in the cur-
rently bound framebuffer, then it is as if FramebufferRenderbuffer had been called, with a renderbuffer of
0, for each attachment point to which this image was attached in the currently bound framebuffer. In other
words, this renderbuffer image is first detached from all attachment points in the currently bound frame-
buffer. Note that the renderbuffer image is specifically not detached from any non-bound framebuffers.
Detaching the image from any non-bound framebuffers is the responsibility of the application.

Attaching Texture Images to a Framebuffer

OpenGL ES supports copying the rendered contents of the framebuffer into the images of a texture object
through the use of the routines CopyTexImage2D, and CopyTexSubImage2D. Additionally, OpenGL ES
supports rendering directly into the images of a texture object.

To render directly into a texture image, a specified image from a texture object can be attached as one
of the logical buffers of the currently bound framebuffer object by calling one of the following routines,
depending on the type of the texture:

void FramebufferTexture2D(enum target, enum attachment, enum textarget, uint texture, int level);

The target must be FRAMEBUFFER. An INVALID OPERATION is generated if the current value of
FRAMEBUFFER BINDING is zero when FramebufferTexture2D is called. attachment must be one of the
attachment points of the framebuffer.

38 Per-Fragment Operations and the Framebuffer

If texture is zero, then textarget, and level are ignored. If texture is not zero, then texture must either
name an existing texture object with an target of textarget, or texture must name an existing cube map tex-
ture and textarget must be one of: TEXTURE CUBE MAP POSITIVE X, TEXTURE CUBE MAP POSITIVE Y,
TEXTURE CUBE MAP POSITIVE Z, TEXTURE CUBE MAP NEGATIVE X, TEXTURE CUBE MAP NEGATIVE -

Y, or TEXTURE CUBE MAP NEGATIVE Z. Otherwise, INVALID OPERATION is generated.
level specifies the mipmap level of the texture image to be attached to the framebuffer and must be 0.

Otherwise, INVALID VALUE is generated.
For FramebufferTexture2D, if texture is not zero, then textarget must be one of: TEXTURE 2D, TEXTURE -

CUBE MAP POSITIVE X, TEXTURE CUBE MAP POSITIVE Y, TEXTURE CUBE MAP POSITIVE Z, TEXTURE -

CUBE MAP NEGATIVE X, TEXTURE CUBE MAP NEGATIVE Y, or TEXTURE CUBE MAP NEGATIVE Z.
If texture is not zero, and if FramebufferTexture2D is successful, then the specified texture image will

be used as the logical buffer identified by attachment of the framebuffer currently bound to target. The
value of FRAMEBUFFER ATTACHMENT OBJECT TYPE for the specified attachment point is set to TEXTURE

and the value of FRAMEBUFFER ATTACHMENT OBJECT NAME is set to texture. Additionally, the value of
FRAMEBUFFER ATTACHMENT TEXTURE LEVEL for the named attachment point is set to level. If texture is
a cubemap texture then, the value of FRAMEBUFFER ATTACHMENT TEXTURE CUBE MAP FACE the named
attachment point is set to textarget. All other state values of the attachment point specified by attachment
are set to their default values listed in table 6.33. No change is made to the state of the texture object, and
any previous attachment to the attachment logical buffer of the framebuffer object bound to framebuffer
target is broken. If, on the other hand, the attachment is not successful, then no change is made to the state
of either the texture object or the framebuffer object.

Calling FramebufferTexture2D with texture name zero will detach the image identified by attachment,
if any, in the framebuffer currently bound to target. All state values of the attachment point specified by
attachment are set to their default values listed in table 6.33.

If a texture object is deleted while its image is attached to one or more attachment points in the currently
bound framebuffer, then it is as if FramebufferTexture2D had been called, with a texture of 0, for each
attachment point to which this image was attached in the currently bound framebuffer. In other words, this
texture image is first detached from all attachment points in the currently bound framebuffer. Note that the
texture image is specifically not detached from any other framebuffer objects. Detaching the texture image
from any other framebuffer objects is the responsibility of the application.

4.4.4 Rendering When an Image of a Bound Texture Object is Also Attached to the Frame-
buffer

Special precautions need to be taken to avoid attaching a texture image to the currently bound framebuffer
while the texture object is currently bound and enabled for texturing. Doing so could lead to the creation
of a ”feedback loop” between the writing of pixels by the OpenGL ES’s rendering operations and the
simultaneous reading of those same pixels when used as texels in the currently bound texture. In this
scenario, the framebuffer will be considered framebuffer complete, but the values of fragments rendered
while in this state will be undefined. The values of texture samples may be undefined as well.

Specifically, the values of rendered fragments are undefined if all of the following conditions are true:

• an image from texture object T is attached to the currently bound framebuffer at attachment point A,
and

• the texture object T is currently bound to a texture unit U, and

Per-Fragment Operations and the Framebuffer 39

• the current programmable vertex and/or fragment processing state makes it possible to sample from
the texture object T bound to texture unit U

while either of the following conditions are true:

• the value of TEXTURE MIN FILTER for texture object T is NEAREST or LINEAR, and the value of
FRAMEBUFFER ATTACHMENT TEXTURE LEVEL for attachment point A is the base level for the texture
object T, or

• the value of TEXTURE MIN FILTER for texture object T is one of NEAREST MIPMAP NEAREST,
NEAREST MIPMAP LINEAR, LINEAR MIPMAP NEAREST, or LINEAR MIPMAP LINEAR, and the value
of FRAMEBUFFER ATTACHMENT TEXTURE LEVEL for attachment point A is within the the range of
mip levels specified, for the texture object T.

We consider it possible to sample from the texture object T bound to texture unit U if the active fragment
or vertex shader contains any instructions that might sample from the texture object T bound to U if even
those instructions might only be executed conditionally.

4.4.5 Framebuffer Completeness

A framebuffer object is said to be framebuffer complete if all of its attached images, and all framebuffer
parameters required to utilize the framebuffer for rendering and reading, are consistently defined and meet
the requirements defined below. The rules of framebuffer completeness are dependent on the properties of
the attached images, and on certain implementation-dependent restrictions. A framebuffer must be complete
to effectively be used as the destination for OpenGL ES framebuffer rendering operations and the source
for OpenGL ES framebuffer read operations.

The internal formats of the attached images can affect the completeness of the framebuffer, so it is useful
to first define the relationship between the internal format of an image and the attachment points to which it
can be attached.

• The following internal formats are color-renderable: RGB565, RGBA4, and RGB5 A1. No other for-
mats, including compressed internal formats, are color-renderable.

• An internal format is depth-renderable if it is one of the sized internal formats that has a depth-
renderable internal format value of DEPTH COMPONENT16. No other formats are depth-renderable.

• An internal format is stencil-renderable if it is one of the sized internal formats that has a stencil-
renderable internal format value of STENCIL INDEX8. No other formats are stencil-renderable.

Framebuffer Attachment Completeness

If the value of FRAMEBUFFER ATTACHMENT OBJECT TYPE for the framebuffer attachment point attachment
is not NONE, then it is said that a framebuffer-attachable image, named image, is attached to the framebuffer
at the attachment point. image is identified by the state in attachment as described in section 4.4.2.

The framebuffer attachment point attachment is said to be framebuffer attachment complete if the value
of FRAMEBUFFER ATTACHMENT OBJECT TYPE for attachment is NONE (i.e., no image is attached), or if all
of the following conditions are true:

• image is a component of an existing object with the name specified by FRAMEBUFFER ATTACHMENT -

OBJECT NAME, and of the type specified by FRAMEBUFFER ATTACHMENT OBJECT TYPE.

40 Per-Fragment Operations and the Framebuffer

• The width and height of image must be non-zero.

• If attachment is COLOR ATTACHMENT0, then image must have a color-renderable internal format.

• If attachment is DEPTH ATTACHMENT, then image must have a depth-renderable internal format.

• If attachment is STENCIL ATTACHMENT, then image must have a stencil-renderable internal format.

Framebuffer Completeness

In this subsection, each rule is followed by an error enum in bold.
The framebuffer object target is said to be framebuffer complete if it is the window-system-provided

framebuffer, or if all the following conditons are true:

• All framebuffer attachment points are framebuffer attachment complete. FRAMEBUFFER INCOM-
PLETE ATTACHMENT

• There is at least one image attached to the framebuffer. FRAMEBUFFER INCOMPLETE MISS-
ING ATTACHMENT

• All attached images have the same width and height. FRAMEBUFFER INCOMPLETE DIMEN-
SIONS

• The combination of internal formats of the attached images does not violate an implementation-
dependent set of restrictions. FRAMEBUFFER UNSUPPORTED

The enums in bold after each clause of the framebuffer completeness rules specifies the return value of
CheckFramebufferStatus that is generated when that clause is violated. If more than one clause is violated,
it is implementation-dependent as to exactly which enum will be returned by CheckFramebufferStatus.

Performing any of the following actions may change whether the framebuffer is considered complete or
incomplete.

• Binding to a different framebuffer with BindFramebuffer.

• Attaching an image to the framebuffer with FramebufferTexture2D or FramebufferRenderbuffer.

• Detaching an image from the framebuffer with FramebufferTexture2D or FramebufferRenderbuffer.

• Changing the width, height, or internal format of a texture image that is attached to the framebuffer
by calling TexImage2D, CopyTexImage2D and CompressedTexImage2D.

• Changing the width, height, or internal format of a renderbuffer that is attached to the framebuffer by
calling RenderbufferStorage.

• Deleting, with DeleteTextures or DeleteRenderbuffers, an object containing an image that is attached
to a framebuffer object that is bound to the framebuffer.

Although OpenGL ES defines a wide variety of internal formats for framebuffer-attachable images, such
as texture images and renderbuffer images, some implementations may not support rendering to particular
combinations of internal formats. If the combination of formats of the images attached to a framebuffer
object are not supported by the implementation, then the framebuffer is not complete under the clause

Per-Fragment Operations and the Framebuffer 41

labeled FRAMEBUFFER UNSUPPORTED. There must exist, however, at least one combination of internal
formats for which the framebuffer cannot be FRAMEBUFFER UNSUPPORTED.

Because of the implementation-dependent clause of the framebuffer completeness test in particular, and
because framebuffer completeness can change when the set of attached images is modified, it is strongly
advised, though is not required, that an application check to see if the framebuffer is complete prior to
rendering. The status of the framebuffer object currently bound to target can be queried by calling

enum CheckFramebufferStatus(enum target);

If target is not FRAMEBUFFER, INVALID ENUM is generated. If CheckFramebufferStatus generates an
error, 0 is returned.

Otherwise, an enum is returned that identifies whether or not the framebuffer bound to target is com-
plete, and if not complete the enum identifies one of the rules of framebuffer completeness that is violated.
If the framebuffer is complete, then FRAMEBUFFER COMPLETE is returned.

Effects of Framebuffer Completeness on Framebuffer Operations

If the currently bound framebuffer is not framebuffer complete, then it is an error to attempt to use the
framebuffer for writing or reading. This means that rendering commands such as DrawArrays, DrawEle-
ments, any command that reads the framebuffer such as ReadPixels and CopyTexSubImage will generate the
error INVALID FRAMEBUFFER OPERATION if called while the framebuffer is not framebuffer complete.

4.4.6 Effects of Framebuffer State on Framebuffer Dependent Values

The values of the state variables listed in table 6.30 (Implementation Dependant Pixel Depths) may change
when a change is made to FRAMEBUFFER BINDING, to the state of the currently bound framebuffer object,
or to an image attached to the currently bound framebuffer object.

When FRAMEBUFFER BINDING is zero, the values of the state variables listed in table 6.30 are imple-
mentation defined.

When FRAMEBUFFER BINDING is non-zero, if the currently bound framebuffer object is not framebuffer
complete, then the values of the state variables listed in table 6.30 are undefined.

When FRAMEBUFFER BINDING is non-zero and the currently bound framebuffer object is framebuffer
complete, then the values of the state variables listed in table 6.30 are completely determined by FRAMEBUFFER -

BINDING, the state of the currently bound framebuffer object, and the state of the images attached to the
currently bound framebuffer object.

4.4.7 Mapping between Pixel and Element in Attached Image

When FRAMEBUFFER BINDING is non-zero, an operation that writes to the framebuffer modifies the image
attached to the selected logical buffer, and an operation that reads from the framebuffer reads from the image
attached to the selected logical buffer.

If the attached image is a renderbuffer image, then the window coordinates (xw, yw) corresponds to the
value in the renderbuffer image at the same coordinates.

If the attached image is a texture image, then the window coordinates (xw, yw) correspond to the value
in the texture base level image at the same coordinates.

42 Per-Fragment Operations and the Framebuffer

Conversion to Framebuffer-Attachable Image Components

When an enabled color value is written to the framebuffer while FRAMEBUFFER BINDING is non-zero, for
each draw buffer the R, G, B, and A values are converted to internal components corresponding to the
internal format of the framebuffer-attachable image attached to the selected logical buffer, and the resulting
internal components are written to the image attached to logical buffer. The masking operations described
by ColorMask, DepthMask and StencilMask, StencilMaskSeparate are also effective.

4.4.8 Errors

The error INVALID FRAMEBUFFER OPERATION is generated if the value returned by CheckFramebuffer-
Status is not FRAMEBUFFER COMPLETE, and any attempts to render to or read from the framebuffer are
made.

The error INVALID OPERATION is generated if GetFramebufferAttachmentParameteriv is called while
the value of FRAMEBUFFER BINDING is zero.

The error INVALID OPERATION is generated if FramebufferRenderbuffer or FramebufferTexture2D is
called while the value of FRAMEBUFFER BINDING is zero.

The error INVALID VALUE is generated if RenderbufferStorage is called with a width or height that is
greater than MAX RENDERBUFFER SIZE.

The error INVALID ENUM is generated if RenderbufferStorage is called with an internalformat that is
not among of the list of supported color, depth or stencil formats.

The error INVALID OPERATION is generated if FramebufferRenderbuffer is called and renderbuffer is
not the name of a renderbuffer object.

The error INVALID OPERATION is generated if FramebufferTexture2D is called and texture is not the
name of a texture object.

The error INVALID VALUE is generated if FramebufferTexture2D is called with a level that is less than
zero.

The error INVALID VALUE is generated if FramebufferTexture2D is called with a level that is greater
than 0.

The error INVALID VALUE is generated if FramebufferTexture2D is called with a level that is greater
than 0.

The error INVALID ENUM is generated if CheckFramebufferStatus is called and target is not FRAMEBUFFER.

The error OUT OF MEMORY is generated if OpenGL ES is unable to create a data store of the required
size when calling RenderbufferStorage.

The error INVALID OPERATION is generated if GenerateMipmap is called with a target of TEXTURE -

CUBE MAP and the texture object currently bound to TEXTURE CUBE MAP is not cube complete.

OpenGL 2.0 Common
void BindRenderbuffer(enum target, uint renderbuffer) �
void DeleteRenderbuffers(sizei n, const uint

*renderbuffers)
�

void GenRenderbuffers(sizei n, uint *renderbuffers) �
void RenderbufferStorage(enum target, enum internalformat,

sizei width, sizei height)
�

Per-Fragment Operations and the Framebuffer 43

OpenGL 2.0 Common
void BindFramebuffer(enum target, uint framebuffer) �
void DeleteFramebuffers(sizei n, const uint *framebuffers) �
void GenFramebuffers(sizei n, uint *framebuffers) �
enum CheckFramebufferStatus(enum target) �
void FramebufferTexture2D(enum target, enum attachment,

enum textarget, uint texture, int level)
�

void FramebufferRenderbuffer(enum target, enum attachment,

enum renderbuffertarget, uint renderbuffer)
�

Chapter 5

Special Functions

5.1 Evaluators

Evaluators are not supported.

OpenGL 2.0 Common
void Map1{fd}(enum target, T u1, T u2, int stride, int

order, T points)
–

void Map2{fd}(enum target, T u1, T u2, int ustride, int

uorder, T v1, T v2, int vstride, int vorder, T

*points)

–

void GetMap{ifd}v(enum target, enum query, T *v) –
void EvalCoord{12}{fd}[v](T coord) –
void MapGrid1{fd}(int un, T u1, T u2) –
void MapGrid2{fd}(int un, T u1, T u2, T v1, T v2) –
void EvalMesh1(enum mode, int i1, int i2) –
void EvalMesh2(enum mode, int i1, int i2, int j1, int

j2)
–

void EvalPoint1(int i) –
void EvalPoint2(int i, int j) –

n Evaluators are not used by many applications other than sophisticated CAD applications. q

5.2 Selection

Selection is not supported.

OpenGL 2.0 Common
void InitNames(void) –
void LoadName(uint name) –
void PushName(uint name) –
void PopName(void) –
int RenderMode(enum mode) –
void SelectBuffer(sizei size, uint *buffer) –

44

Special Functions 45

n Selection is not used by many applications. There are other methods that applications can use to
implement picking operations. q

5.3 Feedback

Feedback is not supported.

OpenGL 2.0 Common
void FeedbackBuffer(sizei size, enum type, float *buffer) –
void PassThrough(float token) –

n Feedback is seldom used. q

5.4 Display Lists

Display lists are not supported.

OpenGL 2.0 Common
void NewList(uint list, enum mode) –
void EndList(void) –
void CallList(uint list) –
void CallLists(sizei n, enum type, const void *lists) –
void ListBase(uint base) –
uint GenLists(sizei range) –
boolean IsList(uint list) –
void DeleteLists(uint list, sizei range) –

n Display lists are used by many applications — sometimes to achieve better performance and some-
times for convenience. The implementation complexity associated with display lists is too large for
the implementation targets envisioned for this specification. q

5.5 Flush and Finish

Flush and Finish are supported.

OpenGL 2.0 Common
void Flush(void) �
void Finish(void) �

n Applications need some manner to guarantee rendering has completed, so Finish needs to be
supported. Flush can be trivially supported. q

46 Special Functions

5.6 Hints

Hints are retained except for the hints relating to the unsupported polygon smoothing and compression of
textures (including retrieving compressed textures) features.

OpenGL 2.0 Common
void Hint(enum target, enum mode)

target = PERSPECTIVE CORRECTION HINT –
target = POINT SMOOTH HINT –
target = LINE SMOOTH HINT –
target = FOG HINT –
target = TEXTURE COMPRESSION HINT –
target = POLYGON SMOOTH HINT –
target = GENERATE MIPMAP HINT �
target = FRAGMENT SHADER DERIVATIVE HINT –

n Applications and implementations still need some method for expressing permissible speed versus
quality trade-offs. The implementation cost is minimal. There is no value in retaining the hints for
unsupported features. The PERSPECTIVE CORRECTION HINT is not supported because OpenGL
ES 2.0 requires that all attributes be perspectively interpolated. q

Chapter 6

State and State Requests

6.1 Querying GL State

State queries for static and dynamic state are explicitly supported. The supported OpenGL ES state queries
can be categorized into simple queries, enumerated queries, texture queries, pointer and string queries, and
buffer object queries.

The values of the strings returned by GetString are listed in Table 6.1.

The VERSION string is laid out as follows:

OpenGL<space>ES<space><version number><space><vendor-specific information>

The SHADING LANGUAGE VERSION string is laid out as follows:

OpenGL<space>ES<space><GLSL><space>ES<space><version number><space><vendor-specific

information>

The version number either of the form major number.minor number or major number.minor num-
ber.release number, where the numbers all have one or more digits. The release number and vendor specific
information are optional. However, if present, then they pertain to the server and their format and contents
are implementation-dependent.

As the specification is revised, the VERSION string is updated to indicate the revision. The string format
is fixed and includes the two-digit version number (X.Y).

Strings
VENDOR as defined by OpenGL 2.0
RENDERER as defined by OpenGL 2.0
VERSION ”OpenGL ES 2.0”
SHADING LANGUAGE VERSION ”OpenGL ES GLSL ES 1.00”
EXTENSIONS as defined by OpenGL 2.0

Table 6.1: String State

47

48 State and State Requests

Client and server attribute stacks are not supported by OpenGL ES 2.0; consequently, the commands
PushAttrib, PopAttrib, PushClientAttrib, and PopClientAttrib are not supported. Gets are supported to allow
an application to save and restore dynamic state.

OpenGL 2.0 Common
void GetBooleanv(enum pname, boolean *params) �
void GetIntegerv(enum pname, int *params) �
void GetFloatv(enum pname, float *params) �
void GetDoublev(enum pname, double *params) –
boolean IsEnabled(enum cap) �
void GetClipPlane(enum plane, double eqn[4]) –
void GetClipPlanef(enum plane, float eqn[4]) –
void GetLightfv(enum light, enum pname, float *params) –
void GetLightiv(enum light, enum pname, int *params) –
void GetMaterialfv(enum face, enum pname, float *params) –
void GetMaterialiv(enum face, enum pname, int *params) –
void GetTexEnv{if}v(enum env, enum pname, T *params) –
void GetTexGen{ifd}v(enum env, enum pname, T *params) –
void GetTexParameter{if}v(enum target, enum pname, T

*params)
�

void GetTexLevelParameter{if}v(enum target, int lod, enum

pname, T *params)
–

void GetPixelMap{ui us f}v(enum map, T data) –
void GetMap{ifd}v(enum map, enum value, T data) –
void GetBufferParameteriv(enum target, enum pname, int

*params)
�

void GetTexImage(enum tex, int lod, enum format, enum

type, void *img)
–

void GetCompressedTexImage(enum tex, int lod, void *img) –
boolean IsTexture(uint texture) �
void GetPolygonStipple(void *pattern) –
void GetColorTable(enum target, enum format, enum type,

void *table)
–

void GetColorTableParameter{if}v(enum target, enum pname, T

params)
–

void GetPointerv(enum pname, void **params) –
void GetString(enum name) �
boolean IsQuery(uint id) –
void GetQueryiv(enum target, enum pname, int *params) –
void GetQueryObjectiv(uint id, enum pname, int *params) –
void GetQueryObjectuiv(uint id, enum pname, uint *params) –
boolean IsBuffer(uint buffer) �
void GetBufferSubData(enum target, intptr offset,

sizeiptr size, void *data)
–

State and State Requests 49

OpenGL 2.0 Common
void GetBufferPointerv(enum target, enum pname, void

**params)
–

boolean IsShader(uint shader) �
boolean IsProgram(uint program) �
void GetProgramiv(uint program, enum pname, int *params) �
void GetAttachedShaders(uint program, sizei maxcount,

sizei *count, uint *shaders)
�

void GetProgramInfoLog(uint program, sizei bufsize,

sizei *length, char *infolog)
�

void GetShaderiv(uint shader, enum pname, int *params) �
void GetShaderInfoLog(uint shader, sizei bufsize, sizei

*length, char *infolog)
†

void GetShaderSource(uint shader, sizei bufsize, sizei

*length, char *source)
†

void GetUniform{if}v(uint program, int location, T

*params)
�

void GetVertexAttrib{if}v(uint index, enum pname, T

*params)
�

void GetVertexAttribPointerv(uint index, enum pname, void

**pointer)
�

void PushAttrib(bitfield mask) –
void PopAttrib(void) –
void PushClientAttrib(bitfield mask) –
void PopClientAttrib(void) –
boolean IsRenderbuffer(uint renderbuffer) �
void GetRenderbufferParameteriv(enum target, enum pname,

int *params)
�

boolean IsFramebuffer(uint framebuffer) �
void GetFramebufferAttachmentParameteriv(enum target, enum

attachment, enum pname, int *params)
�

n There are several reasons why one type or another of internal state needs to be queried by an ap-
plication. The application may need to dynamically discover implementation limits (pixel component
sizes, texture dimensions, etc.), or the application might be part of a layered library and it may need
to save and restore any state that it disturbs as part of its rendering. PushAttrib and PopAttrib can
be used to perform this but they are expensive to implement in hardware since we need an attribute
stack depth greater than 1. An attribute stack depth of 4 was proposed but was rejected because
an application would still have to handle stack overflow which was considered unacceptable. Gets
can be efficiently implemented if the implementation shadows states on the CPU. Gets also allow an
infinite stack depth so an application will never have to worry about stack overflow errors. The string
queries are retained as they provide important versioning, and extension information. q

50 State and State Requests

6.2 State Tables

The following tables summarize state that is present in the OpenGL ES 2.0 specification. The tables also
indicate which state variables are obtained with what commands. State variables that can be obtained using
any of GetBooleanv, GetIntegerv, or GetFloatv are listed with just one of these commands - the one that
is most appropriate given the type of data to be returned. These state variables cannot be obtained using
IsEnabled. However, state variables for which IsEnabled is listed as the query command can also be obtained
using GetBooleanv, GetIntegerv, and GetFloatv. State variables for which any other command is listed as
the query command can be obtained only by using that command.

State appearing in italic indicates unnamed state. All state has initial values identical to those specified
in OpenGL 2.0.

State Queriable Minimum Get
Value

Begin/end object – – –
Previous line vertex – – –
First line-vertex flag – – –
First vertex of line loop – – –
Line stipple counter – – –
Polygon vertices – – –
Number of polygon vertices – – –
Previous two triangle strip vertices – – –
Number of triangle strip vertices – – –
Triangle strip A/B pointer – – –
Quad vertices – – –
Number of quad strip vertices – – –

Table 6.4: GL Internal begin-end state variables

State and State Requests 51

State Queriable Minimum Get
Value

CURRENT COLOR – – –
CURRENT INDEX – – –
CURRENT TEXTURE COORDS – – –
CURRENT NORMAL – – –
Color associated with last vertex – – –
Color index associated with last vertex – – –
Texture coordinates associated with last ver-
tex

– – –

CURRENT RASTER POSITION – – –
CURRENT RASTER DISTANCE – – –
CURRENT RASTER COLOR – – –
CURERNT RASTER INDEX – – –
CURRENT RASTER TEXTURE COORDS – – –
CURRENT RASTER POSITION VALID – – –
EDGE FLAG – – –

Table 6.5: Current Values and Associated Data

52 State and State Requests

State Queriable Minimum Get
Value

CLIENT ACTIVE TEXTURE – – –
VERTEX ARRAY – – –
VERTEX ARRAY SIZE – – –
VERTEX ARRAY STRIDE – – –
VERTEX ARRAY TYPE – – –
VERTEX ARRAY POINTER – – –
NORMAL ARRAY – – –
NORMAL ARRAY STRIDE – – –
NORMAL ARRAY TYPE – – –
NORMAL ARRAY POINTER – – –
FOG COORD ARRAY – – –
FOG COORD ARRAY STRIDE – – –
FOG COORD ARRAY TYPE – – –
FOG COORD ARRAY POINTER – – –
COLOR ARRAY – – –
COLOR ARRAY SIZE – – –
COLOR ARRAY STRIDE – – –
COLOR ARRAY TYPE – – –
COLOR ARRAY POINTER – – –
SECONDARY COLOR ARRAY – – –
SECONDARY COLOR ARRAY SIZE – – –
SECONDARY COLOR ARRAY STRIDE – – –
SECONDARY COLOR ARRAY TYPE – – –
SECONDARY COLOR ARRAY POINTER – – –
INDEX ARRAY – – –
INDEX ARRAY STRIDE – – –
INDEX ARRAY TYPE – – –
INDEX ARRAY POINTER – – –
TEXTURE COORD ARRAY – – –
TEXTURE COORD ARRAY SIZE – – –
TEXTURE COORD ARRAY STRIDE – – –
TEXTURE COORD ARRAY TYPE – – –
TEXTURE COORD ARRAY POINTER – – –

Table 6.6: Vertex Array Data

State and State Requests 53

State Queriable Minimum Get
Value

VERTEX ATTRIB ARRAY ENABLED � False GetVertexAttrib
VERTEX ATTRIB ARRAY SIZE � 4 GetVertexAttrib
VERTEX ATTRIB ARRAY STRIDE � 0 GetVertexAttrib
VERTEX ATTRIB ARRAY TYPE � FLOAT GetVertexAttrib
VERTEX ATTRIB ARRAY NORMALIZED � False GetVertexAttrib
VERTEX ATTRIB ARRAY POINTER � NULL GetVertexAttribPointer
EDGE FLAG ARRAY – – –
EDGE FLAG ARRAY STRIDE – – –
EDGE FLAG ARRAY POINTER – – –
ARRAY BUFFER BINDING � 0 GetIntegerv
VERTEX ARRAY BUFFER BINDING – – –
NORMAL ARRAY BUFFER BINDING – – –
FOG COORD ARRAY BUFFER BINDING – – –
COLOR ARRAY BUFFER BINDING – – –
SECONDARY COLOR ARRAY BUFFER -

BINDING
– – –

TEXTURE COORD ARRAY BUFFER -

BINDING
– – –

ELEMENT ARRAY BUFFER BINDING � 0 GetIntegerv
VERTEX ATTRIB ARRAY BUFFER -

BINDING
� 0 GetVertexAttrib

Table 6.7: Vertex Array Data contd.

State Queriable Minimum Get
Value

BUFFER SIZE � 0 GetBufferParameteriv
BUFFER USAGE � STATIC DRAW GetBufferParameteriv
BUFFER ACCESS – – –
BUFFER MAPPED – – –
BUFFER MAP POINTER – NULL –

Table 6.8: Buffer Object State

54 State and State Requests

State Queriable Minimum Get
Value

COLOR MATRIX – – –
MODELVIEW MATRIX – – –
PROJECTION MATRIX – – –
TEXTURE MATRIX – – –
VIEWPORT � see 2.11.1 GetIntegerv
DEPTH RANGE � 0,1 GetFloatv
COLOR MATRIX STACK DEPTH – – –
MODELVIEW STACK DEPTH – – –
PROJECTION STACK DEPTH – – –
TEXTURE STACK DEPTH – – –
MATRIX MODE – – –
NORMALIZE – – –
RESCALE NORMAL – – –
CLIP PLANE{0-5} – – –
CLIP PLANE{0-5} – – –

Table 6.9: Transformation State

State Queriable Minimum Get
Value

FOG COLOR – – –
FOG INDEX – – –
FOG DENSITY – – –
FOG START – – –
FOG END – – –
FOG MODE – – –
FOG – – –
SHADE MODEL – – –

Table 6.10: Coloring

State and State Requests 55

State Queriable Minimum Get
Value

LIGHTING – – –
COLOR MATERIAL – – –
COLOR MATERIAL PARAMETER – – –
COLOR MATERIAL FACE – – –
AMBIENT (material) – – –
DIFFUSE (material) – – –
SPECULAR (material) – – –
EMISSION (material) – – –
SHININESS (material) – – –
LIGHT MODEL AMBIENT – – –
LIGHT MODEL LOCAL VIEWER – – –
LIGHT MODEL TWO SIDE – – –
LIGHT MODEL COLOR CONTROL – – –
AMBIENT (lighti) – – –
DIFFUSE (lighti) – – –
SPECULAR (lighti) – – –
POSITION (lighti) – – –
CONSTANT ATTENUATION – – –
LINEAR ATTENUATION – – –
QUADRATIC ATTENUATION – – –
SPOT DIRECTION – – –
SPOT EXPONENT – – –
SPOT CUTOFF – – –
LIGHT{0-7} – – –
COLOR INDEXES – – –

Table 6.11: Lighting

56 State and State Requests

State Queriable Minimum Get
Value

POINT SIZE – – –
POINT SMOOTH – – –
POINT SPRITE – – –
POINT SIZE MIN – – –
POINT SIZE MAX – – –
POINT FADE THRESHOLD SIZE – – –
POINT DISTANCE ATTENUATION – – –
POINT SPRITE COORD ORIGIN – – –
LINE WIDTH � 1.0 GetFloatv
LINE SMOOTH – – –
LINE STIPPLE PATTERN – – –
LINE STIPPLE REPEAT – – –
LINE STIPPLE – – –
CULL FACE � False IsEnabled
CULL FACE MODE � BACK GetIntegerv
FRONT FACE � CCW GetIntegerv
POLYGON SMOOTH – – –
POLYGON MODE – – –
POLYGON OFFSET FACTOR � 0 GetFloatv
POLYGON OFFSET UNITS � 0 GetFloatv
POLYGON OFFSET POINT – – –
POLYGON OFFSET LINE – – –
POLYGON OFFSET FILL � False IsEnabled
POLYGON STIPPLE – – –

Table 6.12: Rasterization

State Queriable Minimum Get
Value

MULTISAMPLE – – –
SAMPLE ALPHA TO COVERAGE � False IsEnabled
SAMPLE ALPHA TO ONE – – –
SAMPLE COVERAGE � False IsEnabled
SAMPLE COVERAGE VALUE � 1 GetFloatv
SAMPLE COVERAGE INVERT � False GetBooleanv

Table 6.13: Multisampling

State and State Requests 57

State Queriable Minimum Get
Value

TEXTURE 1D – – –
TEXTURE 2D – – –
TEXTURE 3D – – –
TEXTURE CUBE MAP – – –
TEXTURE BINDING 1D – – –
TEXTURE BINDING 2D � 0 GetIntegerv
TEXTURE BINDING 3D – 0 –
TEXTURE BINDING CUBE MAP � 0 GetIntegerv
TEXTURE CUBE MAP POSITIVE X – – –
TEXTURE CUBE MAP NEGATIVE X – – –
TEXTURE CUBE MAP POSITIVE Y – – –
TEXTURE CUBE MAP NEGATIVE Y – – –
TEXTURE CUBE MAP POSITIVE Z – – –
TEXTURE CUBE MAP NEGATIVE Z – – –
TEXTURE WIDTH – – –
TEXTURE HEIGHT – – –
TEXTURE DEPTH – – –
TEXTURE BORDER – – –
TEXTURE INTERNAL FORMAT – – –
TEXTURE RED SIZE – – –
TEXTURE GREEN SIZE – – –
TEXTURE BLUE SIZE – – –
TEXTURE ALPHA SIZE – – –
TEXTURE LUMINANCE SIZE – – –
TEXTURE INTENSITY SIZE – – –
TEXTURE DEPTH SIZE – – –
TEXTURE COMPRESSED – – –
TEXTURE COMPRESSED IMAGE SIZE – – –
TEXTURE BORDER COLOR – – –
TEXTURE MIN FILTER � NEAREST MIPMAP LINEAR GetTexParameteriv
TEXTURE MAG FILTER � LINEAR GetTexParameteriv
TEXTURE WRAP S � REPEAT GetTexParameteriv
TEXTURE WRAP T � REPEAT GetTexParameteriv
TEXTURE WRAP R – – –
TEXTURE PRIORITY – – –
TEXTURE RESIDENT – – –
TEXTURE MIN LOD – – –
TEXTURE MAX LOD – – –
TEXTURE BASE LEVEL – – –
TEXTURE MAX LEVEL – – –
TEXTURE LOD BIAS – – –
DEPTH TEXTURE MODE – – –
TEXTURE COMPARE MODE – – –
TEXTURE COMPARE FUNC – – –
GENERATE MIPMAP – – –

Table 6.14: Texture Objects

58 State and State Requests

State Queriable Minimum Get
Value

ACTIVE TEXTURE � TEXTURE0 GetIntegerv
TEXTURE ENV MODE – – –
TEXTURE ENV COLOR – – –
TEXTURE LOD BIAS – – –
TEXTURE GEN {STRQ} – – –
EYE PLANE – – –
OBJECT PLANE – – –
TEXTURE GEN MODE – – –
COMBINE RGB – – –
COMBINE ALPHA – – –
SRC{012} RGB – – –
SRC{012} ALPHA – – –
OPERAND{012} RGB – – –
OPERAND{012} ALPHA – – –
RGB SCALE – – –
ALPHA SCALE – – –

Table 6.15: Texture Environment and Generation

State Queriable Minimum Get
Value

DRAW BUFFER – – –
INDEX WRITEMASK – – –
COLOR WRITEMASK � True GetBooleanv
DEPTH WRITEMASK � True GetBooleanv
STENCIL WRITEMASK � 1’s GetIntegerv
STENCIL BACK WRITEMASK � 1’s GetIntegerv
COLOR CLEAR VALUE � 0,0,0,0 GetFloatv
INDEX CLEAR VALUE – – –
DEPTH CLEAR VALUE � 1 GetIntegerv
STENCIL CLEAR VALUE � 0 GetIntegerv
ACCUM CLEAR VALUE – – –

Table 6.16: Framebuffer Control

State and State Requests 59

State Queriable Minimum Get
Value

SCISSOR TEST � False IsEnabled
SCISSOR BOX � 0,0,w,h GetIntegerv
ALPHA TEST – – –
ALPHA TEST FUNC – – –
ALPHA TEST REF – – –
STENCIL TEST � False IsEnabled
STENCIL FUNC � ALWAYS GetIntegerv
STENCIL VALUE MASK � 1’s GetIntegerv
STENCIL REF � 0 GetIntegerv
STENCIL FAIL � KEEP GetIntegerv
STENCIL PASS DEPTH FAIL � KEEP GetIntegerv
STENCIL PASS DEPTH PASS � KEEP GetIntegerv
STENCIL BACK FUNC � ALWAYS GetIntegerv
STENCIL BACK VALUE MASK � 1’s GetIntegerv
STENCIL BACK REF � 0 GetIntegerv
STENCIL BACK FAIL � KEEP GetIntegerv
STENCIL BACK PASS DEPTH FAIL � KEEP GetIntegerv
STENCIL BACK PASS DEPTH PASS � KEEP GetIntegerv
DEPTH TEST � False IsEnabled
DEPTH FUNC � LESS GetIntegerv
BLEND � False IsEnabled
BLEND SRC RGB � ONE GetIntegerv
BLEND SRC ALPHA � ONE GetIntegerv
BLEND DST RGB � ZERO GetIntegerv
BLEND DST ALPHA � ZERO GetIntegerv
BLEND EQUATION RGB � FUNC ADD GetIntegerv
BLEND EQUATION ALPHA � FUNC ADD GetIntegerv
BLEND COLOR � 0,0,0,0 GetFloatv
DITHER � True IsEnabled
INDEX LOGIC OP – – –
COLOR LOGIC OP – – –
LOGIC OP MODE – – –

Table 6.17: Pixel Operations

60 State and State Requests

State Queriable Minimum Get
Value

UNPACK SWAP BYTES – – –
UNPACK LSB FIRST – – –
UNPACK IMAGE HEIGHT – – –
UNPACK SKIP IMAGES – – –
UNPACK ROW LENGTH – – –
UNPACK SKIP ROWS – – –
UNPACK SKIP PIXELS – – –
UNPACK ALIGNMENT � 4 GetIntegerv
PACK SWAP BYTES – – –
PACK LSB FIRST – – –
PACK IMAGE HEIGHT – – –
PACK SKIP IMAGES – – –
PACK ROW LENGTH – – –
PACK SKIP ROWS – – –
PACK SKIP PIXELS – – –
PACK ALIGNMENT � 4 GetIntegerv
MAP COLOR – – –
MAP STENCIL – – –
INDEX SHIFT – – –
INDEX OFFSET – – –
RED SCALE – – –
GREEN SCALE – – –
BLUE SCALE – – –
ALPHA SCALE – – –
DEPTH SCALE – – –
RED BIAS – – –
GREEN BIAS – – –
BLUE BIAS – – –
ALPHA BIAS – – –
DEPTH BIAS – – –

Table 6.18: Pixels

State and State Requests 61

State Queriable Minimum Get
Value

COLOR TABLE – – –
POST CONVOLUTION COLOR TABLE – – –
POST COLOR MATRIX COLOR TABLE – – –
COLOR TABLE FORMAT – – –
COLOR TABLE WIDTH – – –
COLOR TABLE RED SIZE – – –
COLOR TABLE GREEN SIZE – – –
COLOR TABLE BLUE SIZE – – –
COLOR TABLE ALPHA SIZE – – –
COLOR TABLE LUMINANCE SIZE – – –
COLOR TABLE INTENSITY SIZE – – –
COLOR TABLE SCALE – – –
COLOR TABLE BIAS – – –

Table 6.19: Pixels (cont.)

State Queriable Minimum Get
Value

CONVOLUTION 1D – – –
CONVOLUTION 2D – – –
SEPARABLE 2D – – –
CONVOLUTION – – –
CONVOLUTION BORDER COLOR – – –
CONVOLUTION BORDER MODE – – –
CONVOLUTION FILTER SCALE – – –
CONVOLUTION FILTER BIAS – – –
CONVOLUTION FORMAT – – –
CONVOLUTION WIDTH – – –
CONVOLUTION HEIGHT – – –

Table 6.20: Pixels (cont.)

62 State and State Requests

State Queriable Minimum Get
Value

POST CONVOLUTION RED SCALE – – –
POST CONVOLUTION GREEN SCALE – – –
POST CONVOLUTION BLUE SCALE – – –
POST CONVOLUTION ALPHA SCALE – – –
POST CONVOLUTION RED BIAS – – –
POST CONVOLUTION GREEN BIAS – – –
POST CONVOLUTION BLUE BIAS – – –
POST CONVOLUTION ALPHA BIAS – – –
POST COLOR MATRIX RED SCALE – – –
POST COLOR MATRIX GREEN SCALE – – –
POST COLOR MATRIX BLUE SCALE – – –
POST COLOR MATRIX ALPHA SCALE – – –
POST COLOR MATRIX RED BIAS – – –
POST COLOR MATRIX GREEN BIAS – – –
POST COLOR MATRIX BLUE BIAS – – –
POST COLOR MATRIX ALPHA BIAS – – –
HISTOGRAM – – –
HISTOGRAM WIDTH – – –
HISTOGRAM FORMAT – – –
HISTOGRAM RED SIZE – – –
HISTOGRAM GREEN SIZE – – –
HISTOGRAM BLUE SIZE – – –
HISTOGRAM ALPHA SIZE – – –
HISTOGRAM LUMINANCE SIZE – – –
HISTOGRAM SINK – – –

Table 6.21: Pixels (cont.)

State and State Requests 63

State Queriable Minimum Get
Value

MINMAX – – –
MINMAX FORMAT – – –
MINMAX SINK – – –
ZOOM X – – –
ZOOM Y – – –
PIXEL MAP I TO I – – –
PIXEL MAP S TO S – – –
PIXEL MAP I TO {RGBA} – – –
PIXEL MAP R TO R – – –
PIXEL MAP G TO G – – –
PIXEL MAP B TO B – – –
PIXEL MAP A TO A – – –
PIXEL MAP x TO y SIZE – – –
READ BUFFER – – –

Table 6.22: Pixels (cont.)

State Queriable Minimum Get
Value

ORDER – – –
COEFF – – –
DOMAIN – – –
MAP1 x – – –
MAP2 x – – –
MAP1 GRID DOMAIN – – –
MAP2 GRID DOMAIN – – –
MAP1 GRID SEGMENTS – – –
MAP2 GRID SEGMENTS – – –
AUTO NORMAL – – –

Table 6.23: Evaluators

State Queriable Minimum Get
Value

SHADER TYPE � – GetShaderiv
DELETE STATUS � False GetShaderiv
COMPILE STATUS † False GetShaderiv
INFO LOG LENGTH † 0 GetShaderiv
SHADER SOURCE LENGTH † 0 GetShaderiv

Table 6.24: Shader Object State

64 State and State Requests

State Queriable Minimum Get
Value

CURRENT PROGRAM � 0 GetIntegerv
DELETE STATUS � False GetProgramiv
LINK STATUS � False GetProgamiv
VALIDATE STATUS � False GetProgramiv
ATTACHED SHADERS � 0 GetProgramiv
INFO LOG LENGTH � 0 GetProgramiv
ACTIVE UNIFORMS � 0 GetProgamiv
ACTIVE UNIFORM MAX LENGTH � 0 GetProgramiv
ACTIVE ATTRIBUTES � 0 GetProgramiv
ACTIVE ATTRIBUTES MAX LENGTH � 0 GetProgramiv

Table 6.25: Program Object State

State Queriable Minimum Get
Value

VERTEX PROGRAM TWO SIDE – – –
CURRENT VERTEX ATTRIB � 0,0,0,1 GetVertexAttributes
VERTEX PROGRAM POINT SIZE – – –

Table 6.26: Vertex Shader State

State Queriable Minimum Get
Value

PERSPECTIVE CORRECTION HINT – – –
POINT SMOOTH HINT – – –
LINE SMOOTH HINT – – –
POLYGON SMOOTH HINT – – –
FOG HINT – – –
GENERATE MIPMAP HINT � DONT CARE GetIntegerv
TEXTURE COMPRESSION HINT – – –
FRAGMENT SHADER DERIVATIVE HINT – – –

Table 6.27: Hints

State and State Requests 65

State Queriable Minimum Get
Value

MAX LIGHTS – – –
MAX CLIP PLANES – – –
MAX COLOR MATRIX STACK DEPTH – – –
MAX MODELVIEW STACK DEPTH – – –
MAX PROJECTION STACK DEPTH – – –
MAX TEXTURE STACK DEPTH – – –
SUBPIXEL BITS � 4 GetIntegerv
MAX 3D TEXTURE SIZE – – –
MAX TEXTURE SIZE � 64 GetIntegerv
MAX CUBE MAP TEXTURE SIZE � 16 GetIntegerv
MAX PIXEL MAP TABLE – – –
MAX NAME STACK DEPTH – – –
MAX LIST NESTING – – –
MAX EVAL ORDER – – –
MAX VIEWPORT DIMS � see 2.11.1 GetIntegerv
MAX ATTRIB STACK DEPTH – – –
MAX CLIENT ATTRIB STACK DEPTH – – –
Maximum size of a color table – – –
Maximum size of the histogram table – – –
AUX BUFFERS – – –
RGBA MODE – – –
INDEX MODE – – –
DOUBLEBUFFER – – –
ALIASED POINT SIZE RANGE � 1,1 GetFloatv
SMOOTH POINT SIZE RANGE – – –
SMOOTH POINT SIZE GRANULARITY – – –
ALIASED LINE WIDTH RANGE � 1,1 GetFloatv
SMOOTH LINE WIDTH RANGE – – –
SMOOTH LINE WIDTH GRANULARITY – – –
MAX CONVOLUTION WIDTH – – –
MAX CONVOLUTION HEIGHT – – –
MAX ELEMENTS INDICES – – –
MAX ELEMENTS VERTICES – – –
SAMPLE BUFFERS � 0 GetIntegerv
SAMPLES � 0 GetIntegerv
COMPRESSED TEXTURE FORMATS � – GetIntegerv
NUM COMPRESSED TEXTURE FORMATS � 0 GetIntegerv
SHADER BINARY FORMATS � – GetIntegerv
NUM SHADER BINARY FORMATS � 0 GetIntegerv
SHADER COMPILER � False GetBooleanv
QUERY COUNTER BITS – – –
EXTENSIONS � – GetString
RENDERER � – GetString
SHADING LANGUAGE VERSION � – GetString
VENDOR � – GetString
VERSION � – GetString

Table 6.28: Implementation Dependent Values

66 State and State Requests

State Queriable Minimum Get
Value

MAX TEXTURE UNITS – – –
MAX VERTEX ATTRIBS � 8 GetIntegerv
MAX VERTEX UNIFORM VECTORS � 128 GetIntegerv
MAX VARYING VECTORS � 8 GetIntegerv
MAX COMBINED TEXTURE IMAGE -

UNITS
� 8 GetIntegerv

MAX VERTEX TEXTURE IMAGE UNITS � 0 GetIntegerv
MAX TEXTURE IMAGE UNITS � 8 GetIntegerv
MAX TEXTURE COORDS – – –
MAX FRAGMENT UNIFORM VECTORS � 16 GetIntegerv
MAX DRAW BUFFERS – – –
MAX RENDERBUFFER SIZE � 1 GetIntegerv

Table 6.29: Implementation Dependent Values (cont.)

State Queriable Minimum Get
Value

RED BITS � – GetIntegerv
GREEN BITS � – GetIntegerv
BLUE BITS � – GetIntegerv
ALPHA BITS � – GetIntegerv
INDEX BITS – – –
DEPTH BITS � 16 GetIntegerv
STENCIL BITS � 8 GetIntegerv
ACCUM BITS – – –
IMPLEMENTATION COLOR READ TYPE � – GetIntegerv
IMPLEMENTATION COLOR READ -

FORMAT
� – GetIntegerv

Table 6.30: Implementation Dependent Pixel Depths

State and State Requests 67

State Queriable Minimum Get
Value

LIST BASE – – –
LIST INDEX – – –
LIST MODE – – –
Server attribute stack – – –
ATTRIB STACK DEPTH – – –
Client attribute stack – – –
CLIENT ATTRIB STACK DEPTH – – –
NAME STACK DEPTH – – –
RENDER MODE – – –
SELECTION BUFFER POINTER – – –
SELECTION BUFFER SIZE – – –
FEEDBACK BUFFER POINTER – – –
FEEDBACK BUFFER SIZE – – –
FEEDBACK BUFFER TYPE – – –
CURRENT QUERY – – –
Current error code(s) � NO ERROR GetError
Corresponding error flags � – –

Table 6.31: Miscellaneous

State Queriable Minimum Get
Value

RENDERBUFFER BINDING � 0 GetIntegerv
RENDERBUFFER WIDTH � 0 GetRenderbufferParameteriv
RENDERBUFFER HEIGHT � 0 GetRenderbufferParameteriv
RENDERBUFFER INTERNAL FORMAT � RGBA4 GetRenderbufferParameteriv
RENDERBUFFER RED SIZE � 0 GetRenderbufferParameteriv
RENDERBUFFER GREEN SIZE � 0 GetRenderbufferParameteriv
RENDERBUFFER BLUE SIZE � 0 GetRenderbufferParameteriv
RENDERBUFFER ALPHA SIZE � 0 GetRenderbufferParameteriv
RENDERBUFFER DEPTH SIZE � 0 GetRenderbufferParameteriv
RENDERBUFFER STENCIL SIZE � 0 GetRenderbufferParameteriv

Table 6.32: Renderbuffers State Variables

68 State and State Requests

State Queriable Minimum Get
Value

FRAMEBUFFER BINDING � 0 GetIntegerv
FRAMEBUFFER ATTACHMENT OBJECT -

TYPE
� NONE GetFramebufferAttachmentParameteriv

FRAMEBUFFER ATTACHMENT OBJECT -

NAME
� 0 GetFramebufferAttachmentParameteriv

FRAMEBUFFER ATTACHMENT -

TEXTURE LEVEL
� 0 GetFramebufferAttachmentParameteriv

FRAMEBUFFER ATTACHMENT -

TEXTURE CUBE MAP FACE
� +ve X face GetFramebufferAttachmentParameteriv

Table 6.33: Framebuffer State Variables

Appendix A

Deleting Shared Objects

This section clarifies how object deletion works for texture, buffer, framebuffer and renderbuffer objects.
This section will only refer to texture objects but the same rule applies to buffer, renderbuffer and frame-
buffer objects.

The OpenGL 2.0 specification states that after a texture object is deleted, it has no contents or dimen-
sionality, and its name is again unused. However, the EGL specification states that all modifications to
shared context state as a result of executing glBindTexture are atomic. Also, a texture object will not be
deleted until it is no longer bound to any rendering context.

An ambiguity arises because the OpenGL ES specification indicates that texture names are immediately
unused after deletion, but the EGL specification indicates deletion does not actually occur until the texture
is unbound from all contexts. Reading only the OpenGL and OpenGL ES specifications may lead one to
conclude that a call to DeleteTextures marks a name as unused immediately, regardless of whether a texture
object is bound in other contexts, but reading the EGL specification in conjunction with the OpenGL ES
specification may lead one to believe that the name remains used until the texture is explicitly unbound in
all contexts.

A.1 Effect of shared object deletion on object namespace

After DeleteTexture is called, the object names are immediately marked unused. Note that the actual under-
lying object state and data are retained (i.e. the object state is orphaned) and the object remains bound to all
contexts until that object is explicitly unbound by a given context, or the context itself calls DeleteTexture
which does an implicit Bind to object 0.

Let us review the effect on IsTexture in the following scenario:

1. Context 1 binds texture T to the 2D texture target

2. Context 2 binds texture T to the 2D texture target

3. Context 1 deletes texture T

4. Context 1 (or context 2) asks IsTexture(T)

IsTexture will return FALSE.

The used vs. unused state of the texture name T affects whether or not a new object is created on a bind
of texture T. To see this, consider another scenario:

69

70 Deleting Shared Objects

1. Context 1 binds texture T to the 2D texture target

2. Context 2 binds texture T to the 2D texture target

3. Context 1 deletes texture T

4. Context 2 attempts to rebind to texture T to the 2D texture target

When context 2 attempts to rebind to texture T in step 4, context 2 successfully creates and binds a new
uninitialized 2D texture with the name T.

The choice of behaviors also affects the generation of OpenGL ES errors. The OpenGL ES specification
states that it is an error to bind a texture to a target if that texture has already been bound to a target of a
different type. So, consider the following scenario:

1. Context 1 binds texture T as a 2D texture

2. Context 2 binds texture T as a 2D texture

3. Context 1 deletes texture T

4. Context 1 attempts to rebind to texture T as a 3D texture

Context 1 successfully binds texture T to the 3D texture target creating a new uninitialized 3D texture in
the process. Additionally, after step 4, if context 2 were to query its current texture bindings, it would find
out that it is bound to a 2D texture named T, even though the texture named T is now a 3D texture. Further,
if context 2 attempted to rebind texture T to the 2D target, then it would get an error.

A.2 Sharing objects across multiple OpenGL ES contexts

This section defines some of the behavior of OpenGL ES objects which can be shared by multiple contexts.
Objects which can be shared in this manner include:

• textures

• buffer objects

• renderbuffers

• framebuffers

Traditionally, the specification of shared object and multi-context behavior was left to the window-
system. However, this section describes the portions of behavior of shared objects that apply to all OpenGL
ES implementations, regardless of window-system.

Deleting Shared Objects 71

A.2.1 Updates to the state of shared objects

When multiple contexts are bound to a shared object, such as a texture, vertex buffer object etc., care
should be taken to ensure that multiple contexts do not change the state of the shared object simultaneously.
Otherwise, it is undefined which set of state changes made by the various contexts will take precedence.

Further, even if only one context at a time changes the state of the shared object, it is possible that the
other context’s might not observe the changed state until the next time those contexts bind the shared object
again.

Finally, it is guaranteed that outstanding changes to the state of a shared object must be observable by
any context which binds that object.

In other words, if context A and context B, are bound to shared object O, and context A modifies the
state of shared object O, then it is possible that context B will still be using an out of date version of objection
O that does not reflect the state changes until context B rebinds object O. Further, it is guaranteed that the
state changes made by context A will be observable by context B when context B binds object O.

A.2.2 The effect of shared object deletion on object namespace

If multiple contexts are bound to a shared object, such as a texture, vertex buffer object etc., then care
should be taken when deleting that shared object. This is because after deletion of a shared object bound to
multiple contexts the name of the deleted object is immediately marked unused. This in turn means that the
name can immediately be used by any context to create a new object with that name and the name might be
returned by OpenGL ES routines which generate ranges of object names. However, the underlying object
state and data may still be in use by contexts other than the context which deleted the object. These other
contexts might continue using the underlying object, and these other contexts might still contain state which
identifies the named object as being currently bound, until those other contexts make another attempt to
bind the object with that name. Since the name is immediately unused, attempts to bind an object of that
name by any context will create a new object with the specified name.

Appendix B

Acknowledgements

The OpenGL ES 2.0 specification is the result of the contributions of many people, representing a cross
section of the desktop, hand-held, and embedded computer industry. Following is a partial list of the con-
tributors, including the company that they represented at the time of their contribution:

Aaftab Munshi, ATI

Akira Uesaki, Panasonic

Aleksandra Krstic, Qualcomm

Andy Methley, Panasonic

Axel Mamode, Sony Computer Entertainment

Barthold Lichtenbelt, 3Dlabs

Benji Bowman, Imagination Technologies

Bill Marshall, Alt Software

Borgar Ljosland, Falanx

Brian Murray, Freescale

Chris Grimm, ATI

Daniel Rice, Sun

Ed Plowman, ARM

Edvard Sorgard, Falanx

Eisaku Ohbuch, DMP

Eric Fausett, DMP

Gary King, Nvidia

Gordon Grigor, ATI

Graham Connor, Imagination Technologies

Hans-Martin Will, Vincent

Hiroyasu Negishi, Mitsubishi

James McCarthy, Imagination Technologies

Jasin Bushnaief, Hybrid

72

Acknowledgements 73

Jitaek Lim, Samsung

John Howson, Imagination Technologies

John Kessenich, 3Dlabs

Jacob Ström, Ericsson

Jani Vaarala, Nokia

Jarkko Kemppainen, Nokia

John Boal, Alt Software

John Jarvis, Alt Software

Jon Leech, Silicon Graphics / Independent

Joonas Itaranta, Nokia

Jorn Nystad, Falanx

Justin Radeka, Falanx

Kari Pulli, Nokia

Katzutaka Nishio, Panasonic

Kee Chang Lee, Samsung

Keisuke Kirii, DMP

Lane Roberts, Symbian

Mario Blazevic, Falanx

Mark Callow, HI

Max Kazakov, DMP

Neil Trevett, 3Dlabs

Nicolas Thibieroz, Imagination Technologies

Petri Kero, Hybrid

Petri Nordlund, Bitboys

Phil Huxley, Tao Group

Robin Green, Sony Computer Entertainment

Remi Arnaud, Sony Computer Entertainment

Robert Simpson, Bitboys

Stanley Kao, HI

Stefan von Cavallar, Symbian

Steve Lee, SIS

Tero Pihlajakoski, Nokia

Tero Sarkinnen, Futuremark

Timo Suoranta, Futuremark

Thomas Tannert, Silicon Graphics

74 Acknowledgements

Tom McReynolds, Nvidia

Tom Olson, Texas Instruments

Ville Miettinen, Hybrid Graphics

Woo Sedo Kim, LG Electronics

Yong Moo Kim, LG Electronics

Yoshihiko Kuwahara, DMP

Yoshiyuki Kato, Mitsubishi

Young Seok Kim, ETRI

Yukitaka Takemuta, DMP

Appendix C

Document History

Version 2.0.25, updated 2010/11/02

• Include GetShaderSource in the table of program object-related commands in section 2.15.3 (Bug
3753).

Version 2.0.24, updated 2009/04/01

• Fixed token naming in table 6.33 (bug 790).

• Added live link to the extension registry in appendix D.

Version 2.0.23, updated 2008/08/27

• Bump release number to 2.0.23 for public release.

• Flip sign of log2(ε) in computation of precision for GetShaderPrecisionFormat (bug 3667). Duplicate
some additional language from the full spec for the same command.

Version 2.0.22, updated 2008/08/06

• Remove BUFFER ACCESS and BUFFER MAPPED state (bug 3449).

• Minor changes to prototypes and error conditions of ShaderBinary (bug 3673).

• Removed luminance color buffer formats from CopyTexImage conversion table (bug 3695).

• Minor fixes to prototypes and error conditions of framebuffer object commands (bug 3693). Change
initial value of RENDERBUFFER INTERNAL FORMAT to RGBA4 in state table (bug 3693). Use Get-
FramebufferAttachmentParameteriv instead of GetFramebufferParameteriv in state tables.

• Clarify meaning of returned values from GetShaderPrecisionFormat (bug 3667).

Version 2.0.22, updated 2008/07/17

• Rewrote description of GetShaderPrecisionFormat (see section 2.15) to match full spec and clarify
meaning of range and precision values returned (bug 3667).

Version 2.0.22 First version of the Full Specification.

75

Appendix D

OES Extensions

OpenGL ES extensions that have been approved by the Khronos OpenGL ES working group are described
in this chapter. These extensions are not required to be supported by a conformant OpenGL ES implementa-
tion, but are expected to be widely available; they define functionality that is likely to move into the required
feature set in a future revision of the specification.

In order not to compromise the readability of the core specification, OES extensions are not integrated
into the core language; instead, they are made available online in the OpenGL ES Extension Registry.
Extensions are documented as changes to the Specification. The Registry is available on the World Wide
Web at URL

http://www.khronos.org/registry/gles/

D.1 Naming Conventions

To distinguish OES extensions from core OpenGL ES features and from vendor specific extensions, the
following naming conventions are used:

• A unique name string of the form ”GL OES name” is associated with each extension. If the extension
is supported by an implementation, this string will be present in the EXTENSIONS string.

• All functions defined by the extension will have names of the form FunctionOES.

• All enumerants defined by the extension will have names of the form NAME OES.

D.2 Promoting Extensions to Core Features

OES extensions can be promoted to required core features in later revisions of OpenGL ES. When this
occurs, the extension specifications are merged into the core specification. Functions and enumerants that
are part of such promoted extensions will have the OES affix removed.

OpenGL ES implementations of such later revisions should continue to export the name strings of
promoted extensions in the EXTENSIONS string, and continue to support the OES-affixed versions of
functions and enumerants as a transition aid.

76

http://www.khronos.org/registry/gles/

	Overview
	Conventions

	OpenGL Operation
	OpenGL Fundamentals
	Fixed-Point Computation

	GL State
	GL Command Syntax
	Basic GL Operation
	GL Errors
	Begin/End Paradigm
	Vertex Specification
	Vertex Arrays
	Buffer Objects
	Rectangles
	Coordinate Transformations
	Clipping
	Current Raster Position
	Colors and Coloring
	Vertex Shaders
	Loading and Compiling Shader Sources
	Shader Binaries
	Program Objects

	Rasterization
	Invariance
	Antialiasing
	Points
	Point Sprite Rasterization

	Line Segments
	Basic Line Segment Rasterization

	Polygons
	Basic Polygon Rasterization

	Pixel Rectangles
	Bitmaps
	Texturing
	Copy Texture
	Compressed Textures
	Texture Wrap Modes
	Texture Minification
	Texture Magnification
	Texture Framebuffer Attachment
	Texture Completeness
	Manual Mipmap Generation
	Texture State
	Texture Environments and Texture Functions

	Color Sum
	Fog
	Fragment Shaders

	Per-Fragment Operations and the Framebuffer
	Per-Fragment Operations
	Pixel Ownership Test
	Alpha Test
	Stencil Test
	Blending

	Whole Framebuffer Operations
	Drawing, Reading, and Copying Pixels
	Framebuffer Objects
	Binding and Managing Framebuffer Objects
	Attaching Images to Framebuffer Objects
	Renderbuffer Objects
	Rendering When an Image of a Bound Texture Object is Also Attached to the Framebuffer
	Framebuffer Completeness
	Effects of Framebuffer State on Framebuffer Dependent Values
	Mapping between Pixel and Element in Attached Image
	Errors

	Special Functions
	Evaluators
	Selection
	Feedback
	Display Lists
	Flush and Finish
	Hints

	State and State Requests
	Querying GL State
	State Tables

	Deleting Shared Objects
	Effect of shared object deletion on object namespace
	Sharing objects across multiple OpenGL ES contexts
	Updates to the state of shared objects
	The effect of shared object deletion on object namespace

	Acknowledgements
	Document History
	OES Extensions
	Naming Conventions
	Promoting Extensions to Core Features

