
SOLVING THE THREAT OF LSB STEGANOGRAPHY
WITHIN DATA LOSS PREVENTION SYSTEMS

Yunjia Wang

A Thesis Submitted for the Degree of MPhil

at the
University of St Andrews

2017

Full metadata for this item is available in
St Andrews Research Repository

at:
http://research-repository.st-andrews.ac.uk/

Please use this identifier to cite or link to this item:
http://hdl.handle.net/10023/15662

This item is protected by original copyright

http://research-repository.st-andrews.ac.uk/
http://hdl.handle.net/10023/15662

Solving the threat of LSB Steganography within Data

Loss Prevention Systems

Yunjia Wang

This thesis is submitted in partial fulfilment for the degree of MPhil/PhD

at the

University of St Andrews

26 January 2017

 pg. 2

Abstract

With the recent spate of data loss breaches from industry and commerce, especially with the large

number of Advanced Persistent Threats, companies are increasing their network boundary security.

As network defences are enhanced through the use of Data Loss Prevention systems (DLP), attackers

seek new ways of exploiting and extracting confidential data. This is often done by internal parties in

large-scale organisations through the use of steganography. The successful utilisation of

steganography makes the exportation of confidential data hard to detect, equipped with the ability of

escaping even the most sophisticated DLP systems. This thesis provides two effective solutions to

prevent data loss from effective LSB image steganographic behaviour, with the potential to be applied

in industrial DLP systems.

Keywords:

Data Loss Prevention (System); Steganography; Steganalysis; Histogram.

 pg. 3

Acknowledgements

First and Foremost, I would like to express my gratitude and sincere appreciation to my supervisor

Ishbel Duncan, for your consistent aid in directing me throughout the all year. I could not have gotten

through this year without you and you will forever be in my thoughts.

To Blair Fyffe, I would like to thank him for his consistent support the proof reading throughout this

thesis.

Finally, I have to thank School of Computer Science and the University of St.Andrews for their teaching

and support both academic and enjoyable life. Moreover, I would like to thank all friends in St Andrews

for their support along the way.

Thank You

 pg. 4

Declaration
1. Candidate’s declarations:

I, Yunjia Wang, hereby certify that this thesis, which is approximately 34983 words in length, has been

written by me, and that it is the record of work carried out by me, or principally by myself in

collaboration with others as acknowledged, and that it has not been submitted in any previous

application for a higher degree.

I was admitted as a research student in January, 2016 and as a candidate for the degree of MPhil in

January, 2017; the higher study for which this is a record was carried out in the University of St

Andrews between 2016 and 2017.

 Signature of candidate ___

26 January 2017

2. Supervisor’s declaration:

I hereby certify that the candidate has fulfilled the conditions of the Resolution and Regulations

appropriate for the degree of ……… in the University of St Andrews and that the candidate is qualified

to submit this thesis in application for that degree.

Signature of supervisor__

26 January 2017

 pg. 5

3. Permission for publication: (to be signed by both candidate and supervisor)

In submitting this thesis to the University of St Andrews I understand that I am giving permission for

it to be made available for use in accordance with the regulations of the University Library for the time

being in force, subject to any copyright vested in the work not being affected thereby. I also

understand that the title and the abstract will be published, and that a copy of the work may be made

and supplied to any bona fide library or research worker, that my thesis will be electronically accessible

for personal or research use unless exempt by award of an embargo as requested below, and that the

library has the right to migrate my thesis into new electronic forms as required to ensure continued

access to the thesis. I have obtained any third-party copyright permissions that may be required in

order to allow such access and migration, or have requested the appropriate embargo below.

The following is an agreed request by candidate and supervisor regarding the publication of this thesis:

Signature of candidate ___

Signature of supervisor ___

26 January 2017

 pg. 6

Contents
Abstract .. 2

Acknowledgements .. 3

Declaration ... 4

1. Introduction .. 15

1.1. Research Background ... 15

1.2. Glossary ... 18

2. Literature Review ... 20

2.1. Data Loss Prevention .. 20

2.2. Steganography .. 26

2.2.1. General Algorithms ... 26

2.2.2. Advanced Algorithms .. 31

2.2.3. Summary of Spatial Domain Image Steganography .. 50

2.2.4. Frequency Domain and its Stego-Algorithms.. 54

2.3. Steganalysis ... 56

2.3.1. General Detections .. 56

2.3.2. Advanced Detections .. 58

2.3.3. Summary of Steganalysis .. 65

3. Methodology .. 66

3.1. The relevant challenges .. 66

3.1.1. The Diversity of Steganography Algorithms .. 66

3.1.2. The Limitation of Steganalysis Methods ... 67

3.2. Preliminary Investigations .. 68

3.2.1. Network Transmission... 69

3.2.2. Concealment of Data by Concatenation ... 71

3.3. The Research Hypothesis .. 74

3.4. Experimental Architecture ... 75

4. Implementation .. 80

4.1. Developed Tools ... 80

4.1.1. Text Steganography Tool ... 80

4.1.2. Text Steganalysis Tool ... 87

4.2. Experimental Procedure ... 89

4.2.1. Experimental materials and measurement units .. 90

4.2.2. Phase 1: The Implementation of LSB Replacement Algorithm 92

4.2.3. Phase 2: Determine the potential visual Threshold .. 105

 pg. 7

4.2.4. Phase 3: Verify the applicability and reliability of solutions ... 112

4.3. Analysis ... 125

5. Evaluation ... 128

6. Conclusion .. 137

7. Future Works .. 139

Bibliography.. 140

Appendix A ... 145

Appendix B.. 146

Appendix C .. 160

 pg. 8

List of Figures

Figure 1: 2015 Exposed Records by Threat Vector ... 15

Figure 2: Lemonade steganography comparison between without (left) and with (right) a high

temperature environment .. 16

Figure 3: Timeline of the development of the carrier in steganography .. 17

Figure 4: The illustration of Least Significant Bit in the colour channel ... 18

Figure 5: The illustration of Most Significant Bit in the colour channel ... 18

Figure 6: The ranking of top DLP vendors [13] ... 20

Figure 7: The classification of network attacks in 2015. Source: McAfee Labs 2015 [22]. 23

Figure 8: The illustration of LSB replacement algorithm (LSB 1) in the colour channel. 27

Figure 9: The illustration of LSB matching in the colour channel ... 28

Figure 10: The visual comparison between LSB 1 (left) and LSB 6 (right) .. 30

Figure 11: The illustration of Hash-LSB algorithm in the colour channel ... 33

Figure 12: The illustration of PVM algorithm in the embedding procedure [37] 38

Figure 13: The illustration of PVM algorithm in the extraction procedure [37] 38

Figure 14: The description of l-h level and l-m-h level ... 40

Figure 15: The illustration of pixel blocks ... 42

Figure 16: The noise difference histogram between the original cover image and the stego image

(without table) [43] .. 45

Figure 17: The noise different histogram comparison between without (top) and with (down) the

presented stego table [43] .. 46

Figure 18: The resistance results comparison between the LSB matching and new proposed method

[44] .. 47

Figure 19: The equation of Expected Number of Modifications Per Pixel [31] 48

Figure 20: The resistance result comparison in LSB matching and variable n in G-LSB-M [31] 49

Figure 21: The illustration of JPEG compression [58] ... 55

Figure 22: The visual detection comparison between the original image and the stego image 56

Figure 23:The histogram detection comparison between the original image and the stego image

(with a replacement algorithm) .. 57

Figure 24:The illustration of reduction block [50]. ... 61

Figure 25: Ratio of pattern counter comparison between a cover image (a) and the stego image (b)

[50] .. 62

Figure 26: The histogram comparison between the original image and the LSB 1 stego image in

Lena.bmp .. 68

 pg. 9

Figure 27: The details of target PC .. 69

Figure 28: The detail of captured email packets ... 69

Figure 29: The explanation of IP: 216.58.198.197 .. 70

Figure 30:The specific detail of Secure Sockets Layer in the captured packet 70

Figure 31: The command of hiding data by the concatenation method in a Windows system 71

Figure 32: The extracted result of a target file by using the 7zip File Manager 71

Figure 33: The visual comparison between the original image and the merged image 72

Figure 34: The details of experimental files .. 72

Figure 35:The details of experimental files; the secret file is compressed to a zip file 72

Figure 36: The target hex result in Hex Fiend ... 73

Figure 37: The binwalk search result when the secret file was a TXT file .. 74

Figure 38: The binwalk search result when the secret file was a .zip file ... 74

Figure 39: The visual comparison between the original cover image and LSB 3 stego image, in

StABridge.png ... 77

Figure 40: The visual comparison between the original cover image and LSB 3 stego image, in

Lena.png .. 77

Figure 41: The Tools of this project .. 80

Figure 42: The details of process track in system console .. 81

Figure 43: The GUI layout in Steganography Tool .. 82

Figure 44: Details of the developed classes and packages in the steganography tool 82

Figure 45: The code explanation, convert decimal to string, fill the extra 0s until the length meets 8

 .. 83

Figure 46: The code explanation, write an extra line break during reading the secret message. 83

Figure 47: The code explanation, convert the secret message to 8-bit binary format. 84

Figure 48: The code explanation, the equation of quantity of expected replacing pixels 84

Figure 49:The code explanation, the procedure of replace the bits and generate a new pixel 85

Figure 50: The code explanation, the method of obtaining the random position in the cover image. 85

Figure 51: The code explanation, the procedure of re-combine a new pixel 86

Figure 52: The code explanation, the procedure of repaint a stego image from the new pixel matrix.

 .. 86

Figure 53: The visual comparison between the cover image and the LSB 5 stego image, in

StAbaridge.png .. 86

Figure 54: The GUI layout in Steganalysis Tool ... 87

Figure 55: The details of process track in system console .. 88

 pg. 10

Figure 56: The code explanation, the equation of quantity of replaced pixels 88

Figure 57: The code explanation, the method of identify the randomly hidden position 89

Figure 58: The details of experimental secret files ... 90

Figure 59: The methods of reading the cover image and the stego image in MatLab 91

Figure 60: The PSNR result between the cover image and the stego image .. 91

Figure 61: The stego image results in LSB 1, LSB 3 and LSB 5, in Lena.bmp, with very short size data

file. .. 93

Figure 62: The stego image results in LSB 1, LSB 3 and LSB 5, in Mondrian.bmp, with very short size

data file. .. 93

Figure 63: The stego image results in LSB 1, LSB 3 and LSB 5, in Tiger.bmp, with very short size data

file. .. 93

Figure 64: The stego image results in LSB 1, LSB 3 and LSB 5, in Cathedral.jpg, with very short size

data file. .. 94

Figure 65: The stego image results in LSB 1, LSB 3 and LSB 5, in Edinburgh.jpg, with very short size

data file. .. 94

Figure 66: The stego image results in LSB 1, LSB 3 and LSB 5, in Lena.png, with very short size data

file. .. 94

Figure 67: The stego image results in LSB 1, LSB 3 and LSB 5, in Mondrian.png, with very short size

data file. .. 95

Figure 68: The stego image results in LSB 1, LSB 3 and LSB 5, in StABridge.png, with very short size

data file. .. 95

Figure 69: The position of hidden (very short size) message file in the cover image, StABridge.png . 95

Figure 70: The stego image results in LSB 1, LSB 3 and LSB 5, in Lena.bmp, with a small size data file.

 .. 96

Figure 71: The stego image results in LSB 1, LSB 3 and LSB 5, in MondrianTree.bmp, with a small size

data file. .. 96

Figure 72: The stego image results in LSB 1, LSB 3 and LSB 5, in Tiger.bmp, with a small size data file.

 .. 96

Figure 73: The stego image results in LSB 1, LSB 3 and LSB 5, in Cathedral.jpg, with a small size data

file. .. 97

Figure 74: The stego image results in LSB 1, LSB 3 and LSB 5, in Edinburgh.jpg, with a small size data

file. .. 97

Figure 75: The stego image results in LSB 1, LSB 3 and LSB 5, in Lena.png, with a small size data file.

 .. 97

 pg. 11

Figure 76: The stego image results in LSB 1, LSB 3 and LSB 5, in Mondrian.png, with a small size data

file. .. 98

Figure 77: The stego image results in LSB 1, LSB 3 and LSB 5, in StAaBridge.png, with a small size data

file. .. 98

Figure 78: The distortion areas of the stego image in LSB 3 ... 99

Figure 79: The distortion areas comparison in LSB 3, LSB 5 and LSB 8 ... 99

Figure 80: The stego image results in LSB 1, LSB 3 and LSB 5, in Lena.bmp, with a large size data file.

 .. 99

Figure 81: The stego image results in LSB 1, LSB 3 and LSB 5, in Mondrian.bmp, with a large size data

file. .. 100

Figure 82: The stego image results in LSB 3 and LSB 5, in Tiger.bmp, with a large size data file. LSB 1 is

not enough for concealing the secret message .. 100

Figure 83: The stego image results in LSB 3 and LSB 5, in Cathedral.jpg, with a large size data. LSB 1 is

not sufficient to conceal the secret message file. .. 100

Figure 84: The stego image results in LSB 3 and LSB 5, in Edinburgh.jpg, with a large size data. LSB 1 is

not sufficient to conceal the secret message file. .. 101

Figure 85: The stego image results in LSB 1, LSB 3 and LSB 5, in Lena.png, with a large size data file.

 .. 101

Figure 86: The stego image results in LSB 1, LSB 3 and LSB 5, in Mondrian.png, with a large size data

file. .. 101

Figure 87: The stego image results in LSB 3 and LSB 5, in StABridge.jpg, with a large size data. LSB 1 is

not sufficient to conceal the secret message file. .. 102

Figure 88: The stego image results in LSB1, LSB 3 and LSB 5, in Lena.bmp, with a large size data file

with a random embedding algorithm. ... 102

Figure 89: The stego image results in LSB 3 and LSB 5, in Cathedral.jpg, with a large size data in

randomly embedded. LSB 1 is not sufficient to conceal the secret message file. 103

Figure 90: The stego image results in LSB1, LSB 3 and LSB 5, in Mondrian.png, with a large size file

with a random embedding algorithm. ... 103

Figure 91: The stego image results in LSB 3 and LSB 5, in StABridge.png, with a large size data file

with a random embedding algorithm. LSB 1 is not sufficient to conceal the secret message file. ... 103

Figure 92: The stego image visual result in LSB 5, with a large size of data in vertically embedded. 104

Figure 93: The stego image visual result in LSB 5, with a large size of data file with a random

embedding algorithm . .. 104

 pg. 12

Figure 94: The PSNR distribution of experimental images, embedded a very short size data file. (20

bytes) .. 108

Figure 95: The PSNR distribution of experimental images, embedded a small size data file. (42 KB)108

Figure 96: The PSNR distribution of experimental images, embedded a large size data file. (119 KB)

 .. 109

Figure 97: The MSE distribution of experimental images, embedded a very short size data file. (20

bytes) .. 111

Figure 98: The MSE distribution of experimental images, embedded a small size data file. (42 KB). 111

Figure 99: The MSE distribution of experimental images, embedded a large size data file. (119 KB)

 .. 112

Figure 100: The visual comparison between the original image and the stego image in LSB 1 113

Figure 101: The histogram comparison between the cover image and stego image in LSB 1 113

Figure 102: The extracted result from the stego image by using the stego key 114

Figure 103: The visual comparison between the Original stego image and the Transformed stego

image ... 114

Figure 104: The histogram comparison between the Original stego image and the Transformed stego

image ... 115

Figure 105: The extracted result from the Transformed stego image by using the same stego key . 115

Figure 106: The extracted result after transform back to the previous image format. 116

Figure 107: The visual comparison between the Original stego image and the Modified stego image

 .. 117

Figure 108: The histogram comparison between the Original stego image and the Modified stego

image ... 117

Figure 109: The extracted result from the Modified stego image by using the same stego key 117

Figure 110: The visual comparison between the cover image and the stego image in LSB 2 118

Figure 111: The histogram comparison between the cover image and the stego image in LSB 2 118

Figure 112: The histogram comparison between the Original stego image and the Transformed stego

image ... 119

Figure 113: The comparison of extracted result between the Original stego image and the

Transformed stego image by using the same stego key .. 119

Figure 114: The visual comparison between the Original stego image and the Modified stego image

 .. 120

Figure 115: The histogram comparison between the Original stego image and the Modified stego

image ... 120

 pg. 13

Figure 116: The extracted result in the Modified stego image by using the same stego key 121

Figure 117: The visual comparison between the cover image (Lena.bmp) and the stego image

(Lena.png) in LSB 2 .. 121

Figure 118: The histogram comparison between the cover image (Lena.bmp) and the stego image

(Lena.png) in LSB 2 .. 122

Figure 119: The visual comparison between the Original stego image and the Converted stego image

 .. 122

Figure 120: The histogram comparison between the Original stego image and the Converted stego

image ... 123

Figure 121: Comparison of the extracted result between the Original stego image (LSB 2) and the

Converted stego image (LSB 2) from using the same key .. 123

Figure 122: The visual comparison between the Original stego image (LSB 2) and the Modified stego

image (LSB 2) ... 124

Figure 123: The histogram comparison between the Original stego image and the Modified stego

image ... 124

Figure 124: The extracted result in the Modified stego image by using the same stego key 125

Figure 125: The PSNR comparison between the PDT solution and CMA solution in StABrdige.png with

LSB 1 .. 126

Figure 126: The MSE comparison between the PDT solution and CMA solution in StABridge.png with

LSB 1 .. 126

Figure 127: The PSNR comparison between the PDT solution and CMA solution in StABrdige.png with

LSB 2 .. 126

Figure 128: The MSE comparison between the PDT solution and CMA solution in StABridge.png with

LSB 2 .. 127

Figure 129: The PSNR comparison between the PDT solution and CMA solution in Lena.bmp with LSB

2 .. 127

Figure 130: The MSE comparison between the PDT solution and the CMA solution in Lena.bmp with

LSB 2 .. 127

Figure 131: The experimental image .. 135

Figure 132: Cathedral.jpg.. 136

 pg. 14

List of Tables

Table 1: The comparison of LSB replacement algorithm and LSB matching algorithm 31

Table 2: The details of experimental images .. 90

Table 3: The result of PTR with different LSB replace bits, for a short size data file. 105

Table 4: The result of PTR with different LSB replace bits, for a small size data file. 106

Table 5: The result of PTR with different LSB replace bit, for a large size data file. 106

Table 6: The result of PSNR with different LSB replace bit, for a short size data file. 107

Table 7: The result of PSNR with different LSB replace bit, for a small size data file. 107

Table 8: The result of PSNR with different LSB replace bit, for a large size data file. 107

Table 9: The result of MSE with different LSB replace bit, for a short size data file........................... 109

Table 10: The result of MSE with different LSB replace bit, for a small size data file. 110

Table 11: The result of MSE with different LSB replace bit, for a large size data file. 110

Table 12: The PSNR result in PDT solution with variable replaced bits, in StABridge.png 128

Table 13: The PSNR result in CMA solution with variable replaced bits, in StABridge.png 129

Table 14: The MSE result in PDT solution with variable replaced bits, in StABridge.png 129

Table 15: The MSE result in CMA solution with variable replaced bits, in StABridge.png 130

Table 16: The PSNR result in PDT solution with variable replaced bits, in Edinburgh.jpg 130

Table 17: The PSNR result in CMA solution with variable replaced bits, in Edinburgh.jpg 130

Table 18: The MSE result in PDT solution with variable replaced bits, in Edinburgh.jpg 131

Table 19: The MSE result in CMA solution with variable replaced bits, in Edinburgh.jpg 131

Table 20: The PSNR result in PDT solution with variable replaced bits, in MondrianTree.bmp 132

Table 21: The PSNR result in CMA solution with variable replaced bits, in MondrianTree.bmp 132

Table 22: The MSE result in PDT solution with variable replaced bits, in MondrianTree.bmp 132

Table 23: The MSE result in CMA solution with variable replaced bits, in MondrianTree.bmp......... 132

Table 24: The PSNR result in PDT solution with variable replaced bits, in Lena.bmp 133

Table 25: The PSNR result in CMA solution with variable replaced bits, in Lena.bmp 133

Table 26: The MSE result in PDT solution with variable replaced bits, in Lena.bmp 134

Table 27: The MSE result in CMA solution with variable replaced bits, in Lena.bmp 134

Table 28: The PSNR and MSE results in the experimental images after executing the PDT solution 136

Table 29: The PSNR and MSE result in Cathedral.jpg image after executing the PDT solution 136

 pg. 15

1. Introduction

1.1. Research Background
In today’s digital economy, company information is stored and transferred in digital formats. The

rapidly developing Internet era has entirely changed company business models, primarily by making

it both easier and faster to transfer information. However, nothing is safe on the Internet. Companies

constantly fall victim to data loss, and high-profile data leakage involving sensitive personal and

corporate data are frequent [1]. According to the Risk Based Security Data Breach QuickView

incidents, there were 3930 incidents reported during 2015 exposing 736 million records [2].

Generally, data loss mainly comes from malicious attacks, which come in the form of either internal

attacks and external attacks. External attacks represent a compromise, often of servers, which are

subjected to malicious attacks from outside of the company network boundaries. External attacks are

blocked as much as possible with the use of firewalls and security patching, combined with ethical

hacking to address potential issues. Another large threat comes in the form of the internal attack.

These stem from intentional (staffs transferring data on purpose by, for example, email or USB) or

unintentional accidents to malicious exploitations of company data, often exported though the

network or USB devices. Vormetric Data Security indicates that globally, around 89% of respondents

felt their organization has suffered a risk from an insider attack, with 34% classifying themselves as

feeling extremely vulnerable to attacks in the future [3]. Similarly, Risk Based Security, a cyber-security

company, stated 49% of threat vectors were from “inside the organization” activities [2], as show in

Figure 1:

Figure 1: 2015 Exposed Records by Threat Vector

For an enterprise, all forms of data loss (whether leakage, disappearance or damage) could cause a

variety of consequences, at the cost of not only financial but also reputational damage. However, due

to Data Loss Prevention systems, these risks and threats are greatly mitigated. Data Loss Prevention

systems, better known as DLP systems, protect and monitor confidential enterprise data in three

different states: data at rest, data at endpoints, and data in motion [4]. Any data breach which is

 pg. 16

caused by malicious behaviours will be flagged and blocked in this system. Nevertheless, there is no

all-encompassing silver bullet. For instance, If the secret data is attached in cover file images through

steganography, it will escape DLP defence systems monitoring and consequently this is a major

concern.

Steganography is an ancient science for hiding the information in the communication. The inspiration

and source of steganography came from the natural animal or plant world [5], where an organism’s

abilities of camouflage and impersonation often significantly improve its chances of life and success.

This “art” originated in Greek, meaning “covered writing” [6]. In early steganography, for example, the

secret message was written on a man’s shaved head, this message was hidden naturally after his hair

had grown back [7]. During the World War I and II, the application of invisible ink also utilized the

concept of steganography [7]. A similar basic example is commonly known as lemonade

steganography, which is demonstrated in Figure 2 below. Firstly, a juice was squeezed from a lemon.

Then the juice was used as ink to write the secret message on paper and at this point the writing would

be invisible to the naked eyes. However, this writing will reappear once this paper is placed in a high

temperature environment.

Figure 2: Lemonade steganography comparison between without (left) and with (right) a high temperature
environment

So far, steganography is defined as a technique for concealing information [8], and it is applied in the

area of the computers and networks widely. In Figure 3 below, the chronological timeline of the

development of the different carrier within steganography has been listed [5]. Unlike in cryptography,

the steganography has unique features against relevant detections, e.g. higher resistance and

imperceptibility [9]. Hence, the detection of steganography is often regarded as a problem worth

researching.

 pg. 17

Figure 3: Timeline of the development of the carrier in steganography

Moreover, security often goes against user experience. Higher security results in lower user flexibility.

For companies, absolute network segregation is a way to protect the confidential data in some cases,

but it will bring more inconvenience to the employees. Although, the majority of existing steganalyses

(solutions) can be used to identify the corresponding steganography algorithms, the implementation

of these solutions are not reliable in DLP systems due to the limitation of each steganalyses method

and the diversity of steganography algorithms (this will be discussed in Section 3). Also, many images

are normally sent in normal company network traffic. Therefore, an adaptive solution is necessary.

This thesis examines spatial image steganography, and presents a novel approach to prevent the data

loss threat, with the potential to be applied within industrial DLP systems. A research hypothesis is

presented, which is that by slightly modifying the pixel values of spatial domain images, secret

messages hidden inside cover images will be destroyed, while the quality of the image will be

preserved. On the condition that there is no visible distortion of the image, two effective solutions are

presented and verified. One is an adapted solution, called Presentation Domain Transform (PDT),

which uses the irreversible JPEG compression procedure to affect the original pixels’ value. The other

is a novel solution, named Chrominance Modification Algorithm (CMA), which performs random

manipulations in the chrominance value to change the associated pixel value. In the second chapter,

the literature will be reviewed. The methodology and implementation to prove the reliability and

applicability of presented solutions are described in the third and fourth chapters respectively. The

evaluations of these solutions are compared to verify the most effective one in the fifth chapter.

Finally, the conclusion and future work chapter complete this thesis.

 pg. 18

1.2. Glossary
Prior to reviewing the existence literature, the relevant terminologies will be explained in this sub-

section.

Data Loss Prevention Systems

In this thesis, Data Loss Prevention (DLP) is defined as a protection system that prevents potential data

breaches [10].

Steganography

Steganography is an ancient art for hiding secret messages under the carrier (cover). In this thesis, the

secret message was hidden in digital images. The relevant hiding algorithms will be discussed in the

next Literature Review section.

Steganalysis

Steganalysis is a reversing technique of steganography, which is used to prove the existence of a secret

message in the cover image. The relevant detection methods will be introduced in the next Literature

Review section.

Least Significant Bit (LSB)

The range of colour intensity which can be represented in 8-bit binary form is from 0 to 255. The LSB

of a colour pixel is often defined as the 8th bit in the colour channel. As illustrated in Figure 4 below:

Figure 4: The illustration of Least Significant Bit in the colour channel

Most Significant Bits (MSB)

The MSB is often defined as the 1st bit in the colour channel [11]. As illustrated in Figure 5 below:

Figure 5: The illustration of Most Significant Bit in the colour channel

 pg. 19

Robustness

The quality of steganographic algorithms can be examined by three factors: robustness, embedding

capacity and the visual quality in the steganographic image. Robustness is the ability of an algorithm

to defend against systems that endeavour to examine the potential hidden data [12].

Histogram

In this thesis, the histogram is used to examine the frequency of colour intensity in the target image,

and this is called an image histogram. The distribution in an image histogram represents the amount

of each colour value in the target image.

 pg. 20

2. Literature Review

Prior to presenting the solution in the thesis, the relevant literature was thoroughly researched and

reviewed from three aspects; Data Loss Prevention, Steganography and Steganalysis.

2.1. Data Loss Prevention

Data loss prevention (DLP) is a protection system that prevents the occurrence of data breaches. It

can also be seen as a strategy for making sure that confidential data cannot be transmitted out of the

company network boundary by either an insider employee or outsider competitors [10], whether

accidentally or maliciously. However, with the occurrence of increasing data breaches, computer

security vendors have to develop correspondingly sophisticated protection software to govern these

risks. Hence, the term DLP is also used to describe the software protection products that help the

company to keep their confidential data under their control as well as out of the public domain. So

far, there are a lot of security vendors that support the deployment of DLP systems. The top companies

that provide this were ranked in “SelectHub” according to their popularity [13], as shown in Figure 6:

Figure 6: The ranking of top DLP vendors [13]

Case Studies

Although the protection systems are deployed within the enterprise, many data loss incidents still

continually occur. As reported in many online articles, the most infamous data breaches in the UK

have been listed [14], such as:

 pg. 21

1. The “Three Mobile” event, 2016. [14]

The customer upgrade database was accessed illegally using an employee’s login identification.

Although the company announced the financial information was safe and was not accessed, the

corresponding customer personal information was still at risk.

2. The “Tesco Bank” event, 2016. [14]

In early November, the British supermarket giant, Tesco, was subject to criminal activity, causing up

to 40,000 customer’s data records to be compromised, and almost half of them had money stolen

from their personal online bank account. Also, Tesco had to shut down all of their online banking

operations; the customers could not perform any online transactions until the situation was under

control.

3. The “Sage” insider access event, 2016. [14]

In Sage Group plc, a FTSE-100 firm in the UK, an insider illegally accessed a large volume of users’ data

putting them at risk. This event will become one of the most important data breach cases in the UK’s

history if the affected scale is confirmed.

4. The “Mumsnet” event, 2014. [14]

Mumsnet, one of the UK’s largest website for parents, suffered from the Heartbleed SSL attack due to

software vulnerabilities. This allowed up to 1.5 million users’ data to be accessed freely by hackers.

Although nothing was leaked that was financial, the reputation of the brand has been called into

question.

5. The “Sony PlayStation Network” event, 2011. [14]

This damage was referred to as the largest data breach in history at the time, with almost 77 million

users’ data affected. Incredibly, both personal details or transaction records were dropped (removed)

from the database due to this outsider attack. The company’s system was offline for 23 days, and

subsequently the influences and repercussions were felt worldwide.

Data breaches are a very common phenomenon with the majority of companies having suffered this

threat. Besides UK companies, these problems still exist in internationally well-known IT companies,

even if they have good security groups within their company, such as Snapchat, Facebook, Apple. As

the report has shown:

1. Getting Scammed and Leaking Employee Data in Snapchat. [15]

In 2016, their official blog identified employee information having been compromised, though the

users’ data was safe. The main reason behind the compromise was from a phishing email that was

presented as being sent by the CEO, but actually imitated by a hacker. Neither the security system,

 pg. 22

nor the employees identified its non-authenticity. Afterwards, the employee data was completely

exposed on a website.

However, a similar data breach occurred in Snapchat before. In late 2013, due to system vulnerabilities

caused by their security group, up to 4.6 million accounts had been disclosed and the data could be

downloaded directly from SnapchatDB.info [16].

2. Data breach - exposing 6 million users in Facebook. [17]

As the giant of the world’s social networking, Facebook did not escape from having a data loss incident

and being breached. The official announcement stated that almost 6 million users’ information was

exposed to an unauthorized viewer due to system bugs in 2012.

3. The infamous celebrity breach in Apple – iCloud hack

In 2014, almost 500 private nude pictures of various celebrities were exposed from the iCloud server

and disclosed on various websites. The security of cloud services has been called into question,

bringing security to the forefront of everyone’s minds.

Although Apple has denied the security breach, the verification procedures of iCloud were

subsequently increased, and “two-step verification” checking has been activated to protect

customers’ stored online data [18][19].

Consequently, data breaches frequently feature prominently in the news. No company seems to be

immune to this phenomena, whether large or small. These malicious behaviours are normally caused

by two vectors seen in the examples above; external attack and internal attack. The external attack

vector is almost always implemented through exploiting the corresponding vulnerabilities, such as SQL

injection, XSS, etc. Confidential data can be exposed completely to any unauthorized viewer once the

relevant attack command has been injected.

In addition, as the statistics from 2015 showed, around 84% of enterprises said that the most common

attack experienced by their company is SQL injection [20]. However, with the constant upgrading of

protection software such as Intrusion Detection Systems (IDS), some vulnerabilities can be repaired

or detected much more quickly. Compared with previous attack incidents, the attacks which involve

exploiting system vulnerabilities have reduced appreciably. From the 2015 statistics, the common

network attack types are now ‘flood attacks’ rather than based on attacking vulnerabilities, as shown

in Figure 7 [22]:

 pg. 23

Figure 7: The classification of network attacks in 2015.
Source: McAfee Labs 2015 [22].

Nowadays, the greatest threat of data loss is that of an internal attack [2]. The malicious actors are

often insider employees as data may be accessed from the company database either intentionally or

unintentionally. As reported by Ernst & Young, the corresponding malicious activities are given as

examples [23]:

- Unsuitable rights assigned to access confidential data.

- Exploitation of limitations in the database’s development environment.

- Betrayal of trust among developers.

- Front office without supervision.

- Employee discontent.

- Trading secret information with insiders.

For the cybersecurity teams in the enterprise, the preventative solutions are becoming increasingly

challenged. Especially, with the rapid development of mobile devices, the data can be quickly accessed

and extracted by physically removing a device, such as an iPhone or an iPad. Although flexibility has

increased significantly, the loss risk has also increased proportionally. The laptop & mobile loss cases

are also very frequent. In addition, with the increasing trend of cloud computing usage, the centralised

storage that is referred to as cloud storage has been widely used by start-ups and medium enterprises

alike resulting in data that is accessible everywhere which makes it much more difficult to track data

storage and access within the enterprise [23]. To sum up the above challenges, the biggest trouble is

that corporate data is not under their control. Prior to preventing data breaches effectively, the

cybersecurity employee has to understand and identify the following fundamental questions [23]:

 pg. 24

1. What is the data being protected?

2. Where is the data?

3. Where does the data need to go/never go?

A Data Loss Prevention systems is an integrated defence system, which is implemented to prevent

potential data breaches both internally and externally. With respect to the movement of enterprise

data, this definition consists of three aspects: Data at Rest (resides in database, or other storage

centres); Data at the Endpoint (resides at an external device, such as laptops, USB); and Data in Motion

(communication traffic, such as email, P2P) [24].

Computer security companies, such as Symantec and McAfee, discuss the implementations of DLP

systems and divide the work into three predominant processes: Discover, Monitor and Protect. The

first step is to discover and locate where the company’s confidential data resides. The following

process is to monitor how this data is being used, who is using it, and where it is going. Finally, the

relevant permissions should be adjusted and corresponding policies set up to prevent any data loss

[25] [26].

With the expansion of enterprises, the complexity of managing traffic rises, especially due to the

amount of endpoint devices which are constantly added to internal networks. Data loss becomes

easier as an attacker can hide data within larger volumes of traffic in the network or in a higher

frequency of resources requests, either in cloud or in database centres. Consequently, an effective

DLP program should adopt appropriate comprehensive techniques to cover all of the organization’s

potential loss models, rather than consider any single part only [27].

From the introduction in the Symantec DLP system white paper, the specific protection procedure is

[25]:

- Explore data in Content-Aware detection

Exploiting a combination of advanced techniques to accurately detect the location of all of the

confidential data, whether at rest, in motion, or in use, and also the type of data and file can be

identified by using a vector machine learning method.

- Monitor and Protect Cloud-Based Email and Storage.

- Ensure the Security in Endpoints

As both modules of endpoint discovery and prevention are enabled by a single scalable agent in the

Symantec DLP system, the specific operation in the module is, for example, to perform a multi-tiered

 pg. 25

local scan either in a laptop or in a desktop, and to monitor the real-time stream and notify the user

with a pop-up window.

- Ensure the Security in Mobile Devices (BYOD)

Extending the monitoring and protection to all of your devices, the Mobile Email module is used to

detect when confidential email is downloaded into mobile devices, also the Mobile Prevent module is

used to monitor the transmission of confidential data via the native mail client, browser, and other

apps.

- Locate and Protect the Unstructured Data

Unstructured data can be controlled through four essential DLP modules, such as Symantec DLP

Network Discover, Network Protect, Data Insight and Data Insight Self-Service Portal. It is possible to

implement the discovery, protection, and management of the confidential data across virtually any

storage system.

- Monitor and Protect the Data in Motion.

A wide range of network protocols can be monitored and protected through three more network

modules. These are Symantec DLP Network Monitor, Network Prevent for Email, and Network Prevent

for Web.

As demonstrated in the above procedure, DLP systems are an integrated defence system, designed

and implemented by multiple function modules. Admittedly, confidential data loss is of utmost

concern to the companies, DLP system offer products with a wide range of functionality and capability

to protect the company’s data. However, none of these produces can detect insider use of

steganography [69].

Laboratory of Cryptography and System Security [68] indicated that globally, a worrying trend is that

of using steganography to send the information over the Internet, and this has been done by some

malwares already, such as Duqu. Not only companies, but countries have been the victim of

steganographic loss. For example, in 2008, sensitive financial information was hidden inside JPEG

images and sent out of US Department of Justice [68]. Hence, data loss and steganography have been

the subject of concern by security researchers.

 pg. 26

2.2. Steganography

2.2.1. General Algorithms

Prior to discussing the image steganography algorithms and steganalysis detections, the basic format

of the digital image should be noted. Jessica Fridrich stated [28]: “Digital images are commonly

represented in four basic formats – raster, palette, transform and vector”. The most popular images

are based on raster, palette and transform, which represents BMP, PNG and JPEG respectively.

The most common image steganography algorithm is the Least Significant Bit (LSB) method. However,

during the long developmental history of steganography, this ‘war’ between the two sides

(steganography and steganalysis) has been continuously progressing for the past decade. The

embedding methods have evolved and upgraded while the detection method (steganalysis) has also

been updated continually, such as LSB, ±1, JPEG, F3, F4 and F5 [67].

Although the algorithms have been classified and proposed in many formats, the categories based on

their algorithms can be divided into two areas; the Spatial Domain and the Transform (Frequency)

Domain. In [29], the difference in the techniques between these two domains is explained. In spatial

domain imagery, the message is embedded into the intensity of the pixel directly through replacing

the LSB value with the cover image. In transform domain imagery, the message is embedded into the

frequency table of the previously transformed image by using the same algorithm. Therefore, for these

two algorithms, the spatial domain techniques change the pixel colour intensity value (RGB) to

implement the message hiding; but in transform domain techniques, the frequency is altered rather

than the intensity of colour.

Whether steganographic techniques are in either the spatial domain or the transform domain, they

have been improved and presented constantly in recent research papers. In this thesis, the research

is focused on the spatial domain imagery as the transform domain imagery is more complicated, and

can be analysed in future research.

The most common algorithm in the spatial domain image is the LSB algorithm, which utilizes colour

redundancy in the human eyes to replace the Least Significant Bits of pixel bytes where hidden data

is stored in a cover image. With the updating of the algorithm, LSB can be classified into four areas

[30]: LSB Replacement, LSB Matching, LSB matching revisited (LSBMR) and LSBMR-based edge-

adaptive (LSBMR-EA). However, LSBMR and LSBMR-EA belong to the extension of the LSBM algorithm

in their classification as they are still very much related to LSB matching. Therefore, in this research,

the LSB algorithm will be classified into two areas to be considered: LSB replacement and LSB matching.

 pg. 27

LSB Replacement Algorithm

LSB replacement algorithm is also called as LSB embedding or LSB substitution algorithm. This

algorithm conceals the data through replacing the LSBs of cover images with embedded message bits

directly. As the illustration in Figure 8 shows:

Figure 8: The illustration of LSB replacement algorithm (LSB 1) in the colour channel.

The colour “Red” has the values [red: 254, green: 0, blue: 0] in an array; this is transformed into a

binary code of [11111110, 00000000, 00000000]. The letter “a” is represented in binary by

“01100001”. Thus, if the user wants to hide the message into the cover image where the background

of this cover image is pure “Red”, the LSB 1 will take the last 1-bit from the colour array, and exchange

it with the data values. The newly generated value could combine a new “Red” that is similar with the

previous “Red”.

(In this case, 3 pixels were picked1 for concealing the letter “a”. Before the embedding, they were, in

binary [11111110, 00000000, 00000000], [11111110, 00000000, 00000000] and [11111110,

00000000, 00000000]; in decimal [254, 0, 0], [254, 0, 0] and [254, 0, 0].

After the embedding, they were updated to: in binary [11111110, 00000001, 00000001], [11111110,

00000000, 00000000] and [11111110, 00000001, 00000000]; in decimal [254, 1, 1], [254, 0, 0] and

[254, 1, 0].)

1 Because each pixel can conceal one character by using the LSB 1 algorithm and the letter consists of 8
characters in binary, thus it requires 3 pixels to implement.

 pg. 28

LSB Matching Algorithm

Unlike the LSB replacement algorithm, LSB matching does not replace the message within the cover

image directly. It embeds the data through comparing the confidential message with LSBs in the cover

image first. If the message bit matches the LSB in the cover image, this pixel will stay the same.

Otherwise, this pixel will be randomly either added or subtracted by 1 [30], as the illustration in Figure

9 shows:

Figure 9: The illustration of LSB matching in the colour channel

Assume the colour “Red” has the values [red: 254, green: 1, blue: 1] in an array. This was transformed

to a binary code of [11111110, 00000001, 00000001]. The letter “a” is “01100001” in binary. If the

user wants to hide the message in the cover image where the background of this cover image is a

single colour, in this case Red in the LSB matching algorithm, the message data (binary bit) will be

compared with the LSB of each pixel in the cover image first rather than being replaced with them

directly. The pixel in the cover image was randomly incremented or decremented by 1 when the

message bit is not the same as the corresponding LSB in the cover image. So, as the display of the

above figure shows, only the fifth and sixth bits were modified (marked by the blue rectangles). The

new generated values should have 4 possibilities, all of them could form a new “Red” that is similar

with the previous Red as well.

(In this case, 3 pixels were picked for concealing the letter “a”. The different fifth and sixth characters

of message data corresponded with the Green and Blue colour channels in the second pixel of the

cover image. It has 4 possibilities due to the randomness of the LSB matching algorithm. Therefore:

 pg. 29

In Result 1: Green minus 1, Blue minus 1, the second pixel is, in binary [11111110, 00000000,

0000000]; in decimal [254, 0, 0].

In Result 2: Green plus 1, Blue plus 1, the second pixel is, in binary [11111110, 00000010, 00000010],

in decimal [254, 3, 3].

In Result 3: Green minus 1, Blue plus 1, the second pixel is, in binary [11111110, 00000000, 00000010];

in decimal [254, 0, 3].

In Result 4: Green plus 1, Blue minus 1, this pixel is, in binary [11111110, 00000010, 00000000]; in

decimal [254, 3, 0]).

The extraction procedure of both algorithms

During the process of extraction data, in the LSB replacement algorithm, the last n bit of each pixel

will be chosen from the target image according to the specific stego-key (which includes the exchange

bit and the location of exchanged pixel). Next, these single characters can be recombined into the 8-

bits binary codes, and the plaintext can be transformed from these binary codes.

However, in the LSB matching algorithm, only the last bit of each pixel will be chosen from the target

image due to their random manipulation during the embedding process. Then perform the same work

flow as the replacement algorithm to recombine and transform the message from these picked bits.

The difference between LSB replacement and LSB matching

During the process of embedding data, in the LSB replacement algorithm, the data is replaced with

the LSB of the cover image directly. Normally, the last bit of each colour channel in the cover image is

used for concealing the message data, we called it “LSB 1” or “1-bit LSB”. However, with a constant

increase in data size, the maximum bits available within “LSB 1” is occasionally not enough to hide all

of the data. Generally, in order to digest large volumes of data, it is easier to utilize more colour bits

to take part in the replacement, and this is called “LSB n”. The integer n can be determined by the

sender according to the size of the message data and cover image (LSB 2, takes the last 2-bits; LSB 3,

takes the last 3-bits; etc.). With an increasing n, the quality of the image will be degraded. As Figure

10 conveys, the LSB 1 algorithm and the LSB 6 algorithm for hiding the same message on a cover image

have very different results with the LSB 6 producing an image of a noticeably reduced quality.

 pg. 30

Figure 10: The visual comparison between LSB 1 (left) and LSB 6 (right)

In the LSB matching algorithm, only the last bit of the RGB pixel in the cover image will be changed

only when the message bit does not match, also the changed result will match the message data

completely whether by adding or subtracting 1 as there are only ‘0’ and ‘1’ in binary code. For example,

if the pixel in the cover image is 11111110 (254), and the bit of the message is 1, using the LSB

replacement algorithm, the message bit will be replaced with this pixel directly to obtain the new pixel

value 11111111; the message is stored in the last bit in the pixel. In the LSB matching algorithm, this

pixel will be added or subtracted by 1 randomly as the last bit of this pixel is ‘0’ which does not match

with the message bit ‘1’. However, whether adding (the result of new pixel will be 11111111) or

subtracting (the result of new pixel will be 11111101), the message will be stored in the last bit as well.

From this example, in an LSB 1 replacement, all of the changed bits are based on: when even, add 1,

and when odd, subtract 1. This regularised modification will make this algorithm easily recognised by

histogram detection [31]. Instead, in the LSB matching algorithm, the random operations can make

these new pixel values distributed more evenly in the histogram rather than using a set pattern.

Notably, the LSB matching algorithm can only be used in the last bit of the RGB value in the cover

image, otherwise the message data would not be stored in the cover image correctly.

In the process of extracting the data, in the LSB replacement algorithm, the receiver needs a stego key

which contains the value of replaced bit n and the length (size) of message bits (in binary form). The

message can be extracted in binary form through this stego key, then the plaintext can be displayed

after transforming into text form. However, in the LSB matching algorithm, the key consists of the

length (size) of the message bits (in binary form) as only the last bit has changed during the embedding

process, otherwise the extracted result will be unreadable. Finally, the message can be extracted in

binary form directly according to the key’s length and the plaintext can be displayed after further

conversion.

 pg. 31

(NB: In these cases, the replaced / matched pixels start from the coordinate (0,0) in the cover image.

Other situations are not considered as the key is required to import the location of changed pixels.)

Evaluation (LSB replacement & LSB matching)

Comparing these two algorithms, the LSB replacement algorithm has a greater embedding capacity,

although the quality of image can be reduced with the increase of replaced bits n. The robustness is

lower due to its constant modification (even add 1, odd subtract 1), the stego image can be identified

by histogram detection, especially when the embedding message has a large volume size. During the

extraction process, the stego key consists of two parameters. The length (size) of the binary message

bit is an essential parameter; the second parameter is the value of replaced bits n, otherwise the

extraction data will be unreadable.

Instead, in the LSB matching algorithm, although it has lower space for concealing the message data

as only the last bit can be used, the random manipulation (of pixel placement) can increase the

robustness, so that the stego image cannot be identified easily even in histogram detection. Also

during the extraction process, the stego key only needs to contain the length (size) of binary message

bit.

A summary of the difference and evaluation is shown in the Table 1:

 Embedding Space Robustness Stego Key

LSB replacement Higher Lower N, Length of message

LSB matching Lower Higher Length of message

Table 1: The comparison of LSB replacement algorithm and LSB matching algorithm

(NB: In this table, the “Higher” and “Lower” is only relative to each other)

In the next sub-section, the relevant advanced algorithms, improvements in both the LSB replacement

and the LSB matching will be introduced.

2.2.2. Advanced Algorithms

“FPGA Hardware of the LSB Steganography Method.” By Mohd, Abed etc.[32]

Firstly, three different measurement units were mentioned to measure the imperceptibility of

Steganography, they were Mean Squared Error (MSE), Bit Error Rate (BER), and Peak Signal-to-Noise

 pg. 32

Ratio (PSNR). A higher value of MSE indicates dissimilarity (difference) between the compared images.

The value of PSNR indicates the quality of image, with a higher value indicating a better quality.

Next, a new algorithm was proposed by Mohd et al, which is concealing confidential data in spatial

domain images through manipulating the pixel bit values in the cover image. Unlike the LSB

replacement algorithm, this algorithm is based on the combination of LSB 2 and LSB 3 rather than

modifying the constant bit(s) in each colour channel. The data is embedded into the pixel with 2 bits

in the red channel, 3 bits in the green channel and 3 bits in the blue channel. Thus, it is also called LSB

2/3. The benefit of this algorithm is that a complete character can be embedded in each individual

pixel. Also the measurement results of MSE and PSNR are between the LSB 2 and the LSB 3, there

have:

In MSE, LSB 2 < LSB 2/3 < LSB 3

In PSNR, LSB 3 < LSB 2/3 < LSB 3.

In the conclusion a set of images including the famous “Lena”, were tested with the LSB 2/3 algorithm

to verify its performance. The resultant stego image not only has a good image quality, but also

requires relatively lower memory for computation.

“A Secure Image Steganography Based on RSA Algorithm and Hash-LSB Technique.” By

Kumar and Sharma [33]

In order to enhance the security of steganography, a comprehensive method was proposed by Kumar

and Sharma, which was a combination of cryptography and steganography. The authors

recommended implementing the RSA algorithm and Hash-LSB technique at the same time.

In their proposed system, the confidential data has to be converted to cipher text using the RSA

algorithm to enhance the secrecy of the message before the embedding process, then the novel

insertion technique Hash-LSB which is derived from the LSB replacement algorithm was implemented.

In the Hash-LSB algorithm, the position of the LSB in the cover image for concealing the confidential

data was determined through a hash function, as shown in the equation below. “Where K is the

position of RGB within the pixel, p denotes the position of each hidden image pixel and n is the number

of bits of LSB, which is 4 for this present case”.

K = p % n

 pg. 33

During the embedding process, the confidential data is converted into binary form. Each 8 bits of the

message data is embedded in the LSB of the cover image pixel directly in the sequence of 3, 3 and 2

independently (3 bits in red, 3 bits in green and 2 bits in blue) as “the chromatic influence of blue colour

to the human eye is more than red and green colours”. Also, it means that each pixel can be embedded

a complete character in binary form, as shown in Figure 11:

Figure 11: The illustration of Hash-LSB algorithm in the colour channel

In this case, the sequence of 3, 3 and 2 was implemented to embed the message in the LSB of the RGB

pixel respectively. The position can be obtained from the above equation, the value of K = 1, 2, 3 in

red channel, K =4, 1, 2 in Green channel, and K =3, 4 in Blue channel. Therefore, the 1-byte message

data “11110101” was split to “111” in the Red channel with position 1,2,3; “011” in the Green channel

with position 1,2,4; and “01” in the Blue channel with position 3,4.

In the final part, they calculated and compared the results of PSNR and MSE between LSB with RSA

and Hash LSB with RSA. The Hash LSB has a higher PSNR value and a significantly lower MSE, meaning

that the stego image has a good quality and a small dissimilarity.

“A proposed Method for Image Steganography using Edge Detection.” By Arora and

Anand[29]

Arora and Anand proposed an alternative spatial domain embedding technique by implementing the

image edge detection. The system model is divided into four phases: edge detection, randomization

of edge pixels, embedding of confidential data and extracting confidential data.

The embedding process is implemented in three steps. Firstly, the image edge will be detected through

scanning in a 3 x 3 pixels window, the edge pixels are in an array (Array_Cover). Secondly, in order to

enhance the security of steganography, the sorting approach is implemented to randomize these

pixels in Array_Cover. Meanwhile, the confidential data is stored into another Array (Array_Message).

Thirdly, according to the details of the Array_Message, the LSB replacement algorithm is executed

 pg. 34

between the binary value of Array_Message and the blue component of Array_Cover, to generate a

new Array (Array_Stego). The new stego image will be made from the Array_Stego.

With this method, an advantage comes from utilising the principle of Image Edge Detection to increase

the message embedding capacity in the cover image. As the edge areas are harder to detect changes

than the smooth areas using human eyes only, this means that more data can be stored in the edge

areas without increasing the possibility of image distortion. However, the disadvantages are obvious

as well, because in the extraction process, the receiver is required to possess a symmetric key for the

randomization value for Array_Stego, otherwise, the replaced edges cannot be identified.

“A Novel Approach for Data Hiding using LSB on Edges of a Grayscale Cover Images.” By

Chaturvedi[34]

A novel approach was proposed by Chaturvedi to conceal data in a Grayscale Cover Image through

LSB replacement algorithm on Edge Detection, which is called EG-LSB. In order to extract edges, two

parameter values (Mean and Standard Deviation) were used and they were assigned to the first two

pixels in the cover image, and then using the edge detection algorithm all of the edge pixel values

were obtained. Unlike Arora, S and Anand, S’ s algorithm [29], this method did not use the

randomization method to locate the positions for embedding data. Instead, it utilised a horizontal

scanning method, pixel by pixel to determine the positon of the edge areas. The LSB 2 algorithm will

be implemented in this pixel once its edge value is ‘1’. Moreover, the embedding process was not

started at the first point as the first two pixels were reserved to hide the information of these

parameters, Mean and Standard deviation. Otherwise, during the data extraction process, the receiver

cannot obtain the same edge array to extract the message.

As shown in the following pseudocode:

(Assuming the size of cover image is M * N, the value of i and j indicate the current coordinate value

of pixel. 0 <= i <=M, 0 <= j <= N)

for i = 1; i < = M; i ++

 for j = 1; j <= N; j ++

 if (Edge (Cover Image (i, j)) == 1)

 execute LSB 2 in cover image (i, j)

 end

end

 pg. 35

Thus, in the EG-LSB algorithm, all of the first row and the first column pixels are reserved and the rest

of pixels is used to embed the secret data, each 2 bits of data is replaced by 2 bits in the LSB of the

cover image if this pixel is identified in the edge areas.

In their conclusion, the comparison between the EG-LSB algorithm and the LSB replacement algorithm

was evaluated, and the measurement unit PSNR was set to a reference to verify the newly generated

stego image. As the experimental results proved, the quality of images using EG-LSB is better than the

LSB, although the value of PSNR has a slight increase.

“A steganography method for images by pixel-value differencing.” By Wu and Tsai [35]

There are various ways to determine the areas of edges and smoothness in the images. Besides the

several regular edge detection algorithms, the method of Pixel Value Differencing (PVD) is a good

mechanism to distinguish these parameters as well. This was first proposed in 2002.

Wu and Tsai proposed a new steganographic method for grayscale images using Pixel Value

Differencing. In a grayscale image, each pixel contains 8 bits grey-values, totalling 256 grey-values

which indicates the colour from 0 (Dark) to 255 (White). In the PVD method, the cover image will be

split into a number of non-overlapping two-pixel blocks. Then, these blocks will be categorized

according to the difference of the two pixel values. A higher difference value indicates this block is

located in the edge areas, whereas a lower difference value indicates the area is smooth. In this

method, the same principle was used to conceal the data as mentioned in [29], the tolerance in the

edge parts is more than smooth parts, thus, more data will be embedded into the edge areas.

During the embedding process, the pixels in the cover image will be scanned in a “zigzag” manner,

and split into non-overlapping two-pixel blocks. The difference d can be computed from two

consecutive pixels in each block. Assume those two pixels are 𝑝𝑖 and 𝑝𝑖+1, and the value of these pixels

are 𝑔𝑖 and 𝑔𝑖+1. So, d = |𝑔𝑖+1. - 𝑔𝑖|. Using the value of d to classify boundaries into a number of

contiguous ranges, the value of the lower bound 𝑙𝑖and the value of upper 𝑢𝑖can be obtained according

to their Difference Range Table. Next, the number of bits n which is going to be embedded in this block

is calculated by the equation n = log2 (𝑢𝑖 - 𝑙𝑖 +1). The n bit(s) data is taken from the secret data and

converted into a decimal format. A new difference d’ is calculated from the value of d and 𝑙𝑖. Finally,

the new grayscale pixel can be obtained through a new function which works on the new difference

value d’. The stego image can be generated from these new pixel values in the cover image.

 pg. 36

In conclusion, Wu and Tsai listed the different experimental results which was based on the different

ranges width. The stego image not only has a very good result in both PSNR and MSE, but also can

escape the detection from some advanced steganalysis methods, such as the RS attack detection [47].

“Colour Image Steganography Based on Pixel Value Differencing in Spatial Domain.” By

Mandal and Das [36]

Subsequently, various image steganography approaches which are based on the PVD method have

been proposed. In 2012, the authors used the PVD algorithm on a spatial domain colour image. Unlike

the algorithm in [35], the pixel value is separated and stored into three different colour matrixes: Red

matrix, Green matrix and Blue matrix. Each block’s pixel is stored related to each colour matrix

respectively, from the beginning until the end. The value of difference d is computed for each block of

two consecutive non-overlapping pixels, assume the pixels are 𝑝𝑖 and 𝑝𝑖+1, d = |𝑝𝑖 – 𝑝𝑖+1|. Then, the

optimal range 𝑅𝑖 can be obtained through their Difference Range Table 2 , and the amount of

confidential data ‘n’ which will be embedded into the cover image is computed.

Also, the data is not embedded into all of the blocks in this method, the different thresholds are set

for each colour matrix as the reference. Next, the value of n in each colour matrix is used to determine

whether the message data can be embedded in this block through comparison with the related

references. Such as: In the Red matrix, if n <= 5,3 then execute the next step, otherwise, no data will

be embedded in this block. In the Green matrix, if n <=3, execute the next step, otherwise, no data

will be embedded in this block. However, in the Blue matrix, whatever the n’s value is, execute the

next step directly. The pseudo code was shown in below:

In Red:

If n <= 5

 LSBfunction();

In Green:

If n <= 3

 LSBfunction();

In Blue:

 LSBfunction();

2 as same as the previous Difference Range Table in paper [12].
3 The authors defined the reference value 5 in the red matrix, and 3 in the green matrix.

 pg. 37

Here, pick n bit(s) of data from the secret data and convert them into a decimal value b. The new

difference value d’ can be computed from the equation: d’ = 𝑙𝑖 + b, also the new pixel (𝑝𝑖′, 𝑝𝑖+1′) (after

the data embedding) can be generated through the function of the original PVD method. The previous

pixel (𝑝𝑖, 𝑝𝑖+1) is replaced by this new pixel (𝑝𝑖′, 𝑝𝑖+1′) and will generate a new block. In the final step,

in order to keep the information whether n bits or n-1 bits have been embedded, the relevant add or

subtract operation is executed from the value of LSB in 𝑝𝑖 and 𝑝𝑖+1, which then generates the new

stego-image.

In the final part of this paper, the evaluation of this algorithm was presented which compared the

original PVD method and this method through calculating the value of PSNR. In this method, although

the algorithm can be executed for both the grayscale images and colour images, the value of PSNR has

a trivial decrease.

“Colour Image Steganography based on Pixel Value Modification Method Using Modulus

Function.” By Nagaraj, Vijayalakshmi and Zayaraz [37]

One more colour image steganographic algorithm was proposed in 2013, which was based on using a

modulus function to implement the method of Pixel Value Modification (PVM). Unlike other

steganography algorithms, the confidential data is not converted to binary form in this case. Also, the

value of the cover image pixel can be implemented the embedding process in decimal from directly

without any conversions.

During the process of embedding the data, the cover image is separated into three different colour

matrices to store the related colour pixels, from the first to the last. The confidential data is converted

into base 3 with values of (0, 1 ,2) rather than in binary form; it is called d. Then, all the values within

the different colour matrices execute the function modulo 3, and the result is recorded as, say, f. Next,

the value of f and d is used to evolve a new value of this pixel. For example, in the red colour matrix,

assume the value of this pixel is 𝑃𝑟, if f = d, 𝑃𝑡 will stay the same value as previously. If f < d, Pr will

increase by 1 to obtain the new value 𝑃𝑟′; if f > d, the new value 𝑃𝑟′ can be generated through

decreasing by 1. Other colour matrixes follow the same rules to obtain the new value through

modifying the pervious value. Finally, the new pixel can be combined from those matrices, to generate

a stego-image.

As shown in Figure 12, converting the secret data d into base 3 gives the value of “10212….”. The value

of an individual pixel is, R: 226, G: 137, B: 126. Using the modulus function to calculate the result of f

 pg. 38

respectively, then combining the result (0,2,1) with the converted secret data d (in this example only

the top three values were used, 1, 0, 2) and the result is the new pixel, R:226, G:136, B:127.

Figure 12: The illustration of PVM algorithm in the embedding procedure [37]

During the procedure of data extraction, the data can be extracted directly using modulo 3 in the value

of each colour channel. As shows in Figure 13, the data (1, 0, 2) can be calculated through modulus 3

directly from the new value, R:226, G:136, B 127.

Figure 13: The illustration of PVM algorithm in the extraction procedure [37]

The evaluation was listed comparing both the values of Payload (embedded capacity) and PSNR with

the original PVD. This method has an outstanding quality and capacity, but also has an efficient

computation time as the procedure of the conversion of the binary form in cover image has been

eliminated.

“A Novel Image Steganography Method with Adaptive Number of LSB Modification Based

on Private Stego-Keys.” By Jain and Ahirwal [38]

A novel LSB substitution algorithm based on the utilization of private keys was proposed for grayscale

images. In this method two private keys were mentioned; the first key (𝐾1) is used in both the

 pg. 39

procedures of the data embedding and extraction, and the second key (𝐾2) is used to verify the

integrity of the confidential data for the receiver.

Firstly, the private 𝐾1 consists of five different grey value ranges that are selected from the range 0 ~

255 randomly, say 𝐾1:< 𝑆1 – 𝐸1, 𝑆2 – 𝐸2, 𝑆3 – 𝐸3, 𝑆4– 𝐸4, 𝑆5– 𝐸5 >. Where, 𝑆1 indicates the first range

of the start value; 𝐸1indicates the first range of the end value. The difference D can be obtained by

equation: D = 𝐸𝑖– 𝑆𝑖 (1 <= i <=5). The value of D is a reference to confirm the correctness in each

range, because the difference of two consecutive ranges cannot be less than 32, also anyone range

cannot overlap others.

Next, n bits of the secret data can be determined for insertion into each pixel. Firstly, according to the

details of 𝐾1 , the related number of pixels can be counted in each range from the cover image,

denoted by <𝑁1, 𝑁2, 𝑁3, 𝑁4, 𝑁5>. Then by sorting by value, the largest range can have 5 bits of data

replaced, the second largest can be embedded in 4 bits data and so on.

For example, assume the counting of pixel in each range is < 𝑁1= 250, 𝑁2= 430, 𝑁3= 90, 𝑁4 = 3500, 𝑁5

= 100 >, then after sorting these ranges, the order is: 𝑁4 > 𝑁2> 𝑁1> 𝑁5 > 𝑁3. Therefore, the first range

𝑆1 – 𝐸1 can replace 3 bits of the message data in the pixel, the second range 𝑆2 – 𝐸2 is 4 bits, the third

range 𝑆3 – 𝐸3 is 1 bit, the fourth range 𝑆4– 𝐸4 is 5 bits and the fifth range 𝑆5– 𝐸5 is 2 bits.

The LSB substitution algorithm will be executed subsequently, the related bit(s) will be replaced with

message data in each pixel. However, the newly generated pixel has to meet one of these ranges,

meaning that the new value cannot exceed the boundary (end value) of the range, otherwise, one

more adjusting algorithms will be used for modifying the value to fall within the range.

Finally, the signature 𝐾2 is confirmed to verify the integrity of the message through a simple XOR

method with a random key of 140 bits, and this is appended with the message.

In conclusion, the evaluation of this method was listed through comparison with other algorithms,

such as LSB 4 and other adaptive methods. In the grayscale image, their proposed method not only

has a superb image quality with the highest PSNR value, but it also has the largest embedding capacity

than all the others. However, the major drawback is the security issue that occurs from the

transmission of both private keys.

 pg. 40

“Adaptive data hiding in edge areas of image with spatial LSB domain systems.” By Yang,

Weng, Wang and Sun [39]

A derived algorithm from the original PVD method was implemented for concealing data in edge areas.

In this method, the Pixel Value Differences are still used to determine the position of edge areas and

smooth areas. Three levels are defined to identify the different ranges, the Lower level, the Middle

level and the Higher level. The LSB substitution algorithm is executed on all of two consecutive pixels;

the value of a replaced bit n is subject to the classification of the level as a higher level can be

embedded with more characters.

The colour intensity range [0, 255] is divided into two different categories, which are called lower-

higher (l-h) level and lower-middle-higher (l-m-h) level, as shown in Figure 14.

Figure 14: The description of l-h level and l-m-h level

Hence, under l-h level, 𝑅1 ∈ [0, 15], 𝑅2 ∈ [16, 255]; under l-m-h level, 𝑅1 ∈ [0, 15], 𝑅2 ∈ [16, 31], 𝑅3 ∈

[32, 255]. The length of range |R| can be obtained, for example, in l-h level, |𝑅1| = 16, |𝑅2|= 240.

Then, the value of replaced bit n can be calculated by the below equation:

n ≤ 𝑙𝑜𝑔2|𝑅|

For each different level, the number of n has a different result. In l-h level, 𝑛1 = 4, 𝑛2 = 7. In l-m-h level,

𝑛1 =4, 𝑛2 =4 and 𝑛3 =7. In the last step, in order to avoid the distortion in a stego image, the adjusting

phase is executed to reduce the value of this n. Finally, in the division of l-h level, 𝑛1 = 2, 𝑛2 = 3. In the

division of l-m-h level, 𝑛1 =3, 𝑛2 =4 and 𝑛3 =5.

During the embedding procedure, every two non-overlapping pixels are scanned in a raster way

(horizontal direction scanning) from the cover image, all of the pairs of pixels are stored into different

blocks, and the differences d in these blocks can be gathered. Next, all of the blocks are defined into

relative levels due to the value of d, and the number of replaced bits n can be confirmed for each pixel.

By using the LSB substitution algorithm, to pick the corresponding n bit data from the message, and

replacing it with the cover image to generate the new block. The new pixel difference d’ in this new

 pg. 41

block must belong to the same level with previous difference d in the division. Otherwise, an adjusting

algorithm will be executed to alter the new block to fall within the previous level, then the stego image

can be generated from all of these new blocks.

In their conclusion, the quality of the stego-images was evaluated through the comparison of PSNR

that is based on the variable n. As their report showed, with a decrease in the value n, the result of

PSNR rises significantly. In the division of l-h level, the best image quality is when 𝑛1=2 and 𝑛2=4

(represent by 2-4). Also, the results in the original PVD, l-m-h division (3-4-5) and l-h division (3-4) were

compared, the quality of stego-image is in the sequence: l-h > l-m-g > PVD.

“Image Data Hiding Method Based on Multi-Pixel Differencing and LSB substitution

Methods.” By Jung, Ha and Yoo [40]

In 2008, one more derived algorithms from the original PVD method was proposed by Jung, Ha, and

Yoo, which was based on the combination of the optimized Multi-Pixel Differencing (MPD) and LSB

replacement methods. Unlike previous Pixel-Differences algorithms, in this method, the blocks are

collected into groups of four consecutive non-overlapping pixels from the grayscale cover image, and

the pixel value is sorted from the lowest to the highest. Assume a block consists of pixels with 𝑝𝑖, 𝑝𝑖+1,

𝑝𝑖+2, and 𝑝𝑖+3, the grey value of them are 𝑔0, 𝑔1, 𝑔2 and 𝑔3 respectively, also the sequence is 𝑔3 > 𝑔2

> 𝑔1 > 𝑔0.

During the embedding procedure, the differences d in each pixel-pair of four consecutive non-

overlapping pixels are computed first, as shown in equation below:

𝑑𝑖 = | 𝑔𝑖 - 𝑔0|, Where i ∈ [1, 2]

In the second step, the areas between edge and smooth will be categorized through comparing the

sum of differences D in the block with a defined threshold. Where the sum D = 𝑑1 + 𝑑2+ 𝑑3, and the

threshold value is set at T.4 If D < T, then this block is in the smooth areas, otherwise, it is defined in

the edge areas.

Next, the n bits of confidential data can be confirmed to be embedded into 𝑔𝑖 by using the LSB

replacement algorithm, where i ∈ [1, 2]. Two cases should be considered:

4 The Author defined this threshold value, which is 6.

 pg. 42

- Case 1: if this block is located in the smooth areas, pick 9 bits of data from the confidential

message, also execute LSB 3 algorithm to replace the corresponding pixel in the cover image,

and generate a new block.

- Case 2: if this block is defined in the edge areas, the number of n can be computed with a

defined range Table5 by equation: n = 𝑙𝑜𝑔2(𝑢𝑖 − 𝑙𝑖 + 1). u indicates the upper bound, and i

denotes the lower bound.

Then, the value of new difference d’ can be computed by equation: 𝑑𝑖’ = 𝑑𝑖 + 𝑏𝑖 for each 𝑔𝑖, where

𝑏𝑖 is the decimal value for the embedded confidential message bits, and i ∈ [1, 2]. Finally, the optimize

function is executed in the edge block, and then a new block will be obtained, and the stego-image

can be generated from these new blocks.

In the conclusion, this algorithm was evaluated through comparing the value of PSNR and embedded

capacity with the LSB 2, original PVD and MPD. As the report showed, the largest embedding capacity

is in their optimized algorithm, although the PSNR is the lowest in all four of them.

“Image Steganography using Pixel-Value Differencing.” By Hanling, Guangzhi and Caiqiong [41]

In 2009, another algorithm based on Pixel Value Differencing steganography method was presented

by Hanling, Guangzhi and Caiqiong. The amount of the insertion bits refers to the depth distribution

of the cover image, the message data in the edge area can be concealed more than in the smooth

areas. However, unlike the other PVD methods, this method is only modifying one target pixel for each

block rather than all of the pixels.

During the embedding procedure, the pixel blocks are gathered by using raster-scan in the cover

image, each block consists of four non-overlapping pixels, one target pixel and three neighbouring

pixels.

Figure 15: The illustration of pixel blocks

5 The Author also defined this range Table, where 𝑅1[0, 7], 𝑅2[8, 15], 𝑅3[16, 31], 𝑅4[32, 63], 𝑅5[64, 127] and

𝑅6[128, 255].

 pg. 43

Therefore, assume, in this block, the four pixels are 𝑝𝑡 (target pixel), 𝑝𝑢 (the upper of 𝑝𝑡), 𝑝𝑙 (the left

of 𝑝𝑡), and 𝑝𝑙𝑢 (the upper-left of 𝑝𝑡) as shown in the Figure 15 above. The corresponding grey values

are denoted as 𝑔𝑡, 𝑔𝑢, 𝑔𝑙 and 𝑔𝑙𝑢 respectively. Next, the differences d between the Maximum and

Minimum in this block can be computed through the equation below:

d = Max(𝑔𝑢, 𝑔𝑙, 𝑔𝑙𝑢) - Min(𝑔𝑢, 𝑔𝑙, 𝑔𝑙𝑢)

then, the amount of insertion bits ‘n’ can be obtained from the value of d, as shows in formula below:

If d ∈ [0, 1], n = 1

If d ∈ (1, +), n = 𝑙𝑜𝑔2d

In order to avoid the distortion in the stego images, n will be set 4 when the value of 𝑙𝑜𝑔2d > 4; picking

the corresponding n bits from confidential data and converting them to decimal form, denoted in b.

Then, the new pixel 𝑔𝑡’ can be calculated by the equation:

𝑔𝑡’ = 𝑔𝑡 - 𝑔𝑡mod 2𝑛 + b

Finally, before generating the stego-image, in order to reduce the Embedding Error between 𝑔𝑡 and

𝑔𝑡 ’ within a defined range6, an optimal adjustment process will be executed to alter the newly

generated pixel.

In their conclusion, the evaluation of this method was compared with Chang’s [61] method and Park’s

[62] method respectively through calculating the PSNR and Embedding Capacity. This novel method

not only has a highest PSNR, but can also embed the most data out of the three techniques.

“High payload steganography mechanism using hybrid edge detector.” By Chen, Chang and

Le [42]

The hybrid edge detection mechanism was presented to locate the position of edge areas and be used

with the LSB replacement algorithm to conceal secret data in the grayscale image. The authors

implemented the relevant edge detection experiment based on three different detection algorithms,

such as Fuzzy Edge Detector, Canny Edge Detector and Hybrid Edge Detector. Through comparing the

amount of edge pixels to state the reason of using hybrid detection to conceal data, as in the edge

transforming rates, the order was denoted as Hybrid > Canny > Fuzzy.

During the embedding procedure, there are three phases:

6 The author defined this range to (-2𝑛 < 𝑔

𝑡
< 2𝑛).

 pg. 44

- Phase 1: using a hybrid detection algorithm to generate an edge image from the original

grayscale cover image.

- Phase 2: dividing the edge image into a set of blocks, and assume each block contains N pixels,

from 𝑝1to 𝑝𝑁. Also, in each block, the first pixel (𝑝1) is used to store the edge information of remaining

pixels (besides 𝑝1) in this block by using the LSB replacement algorithm.

For instance, assume a block contains four pixels, A =[𝑝1, 𝑝2, 𝑝3, 𝑝4], where N =4. If 𝑝2 and 𝑝4 are both

located in edge areas only, the edge information (besides 𝑝1) is defined to “101”. Then this value ‘101’

will be replaced into 𝑝1 through the LSB substitution algorithm. Generally, in order to increase the

embedding capacity and protect the quality of stego image, the N is suggested to be set as [3,5].

- Phase 3: according to the edge information, the replaced bit n can be considered respectively,

as the edge areas can be embedded more data than smooth areas in the image. However, in order to

avoid causing the distortion in the stego image, the n is set to [3,5] in edge areas and [1,2] in smooth

areas. Then, the corresponding n bits LSB replacement algorithm will be executed in the remaining

pixel (beside 𝑝1) for each block, if the pixel is located in the edge areas, the range of n will be picked

as [3,5], otherwise, [1,2] will be chosen.

In their conclusion, the comparison between this method and original LSB replacement method was

evaluated, the proposed method has a higher Embedding Capacity and better PSNR value. Especially

in the original LSB replacement algorithm, the stego image has an appreciable distortion since the

replaced bits n is up to 5 or 6. However, for the proposed method, the quality of stego image is kept

consistent, even if the value of replaced bit n is up to 5 in edge areas. Also, the evaluation showed that

n was optimal on [3,5] in edge area, [1,2] in smooth area. Otherwise, the stego image will be caused

perceptible distortion.

“A New LSB Matching Steganographic Method Based on Steganographic Information

Table.” By Qiudong and Liu [43]

A novel LSB matching algorithm based on Steganographic information table was presented. In the

beginning of this paper, the limitations of LSB Matching algorithm were analysed, although the LSB

matching has a higher robustness in human visual detection and its histogram change is more

imperceptible than the result of the LSB replacement algorithm. The histogram of the stego image is

still distorted from the cover image if the embedding rate is too high a value, and the peak value has

a significant smoothness over the cover image. In this proposed method, the previous limitation of

 pg. 45

LSB matching algorithm is improved by using a steganographic information table to reserve all of the

histogram characters.

In the original LSB matching algorithm, the resultant differential noise between the cover image and

stego image has an obvious ‘ragged’ distribution in the histogram, as shown from the paper’s Figure

16 [43],

Figure 16: The noise difference histogram between the original cover image and the stego image (without
table) [43]

In order to generate a stable noise histogram between the cover image and the stego image as much

as possible, the ‘Steganographic information record table’ was presented to record the result of pixel

changes during the algorithm embedding procedure. In this table, all operations where the pixel was

changed would be recorded dynamically step by step. The table will be accomplished after all of the

confidential data are embedded into the cover image.

In this proposed method, during the embedding procedure, if the bit of message is equal to the LSB

of the cover image, this pixel will stay the same in the cover image. Otherwise, it will be added or

subtracted by one according to the resultant differential noise in the ‘Steganographic information

record table’, which guarantees to reduce the difference of noise histogram to the lowest in each time

operation.

In the conclusion, the noise histogram result between original LSB matching and new improved

proposed method was compared, as shown in Figure 17. Although the proposed method has a

negligible difference between the cover image and stego image, the computation time is very large as

the steganographic information table has to update constantly in each time injection operation during

the embedding procedure.

 pg. 46

Figure 17: The noise different histogram comparison between without (top) and with (down) the presented
stego table [43]

“LSB Matching Revisited.” By Mielikainen [44]

For the LSB matching algorithm, there are only a few detections proposed before 2006. However, in

order to improve the original LSB matching algorithm for increasing the robustness in these

detections, a new matching method based on two pixels at a time was presented which updated the

original LSB matching algorithm.

The new method is used in the grayscale image. During the insertion procedure, the minimum unit is

a pair of bits either in the cover image (two pixels) or the confidential data (two bits), and which would

be picked to execute relevant operations each time in the embedding operation. Also, this new

embedding algorithm cannot be embedded on saturated pixels, such as when the value is 255, or 0,

which is the same as the original LSB matching algorithm. The specific operation is shown by the below

pseudocode:

NB: two confidential message data denoted as 𝑀𝑖and 𝑀𝑖+1; two cover image pixels are referred as to

𝑝𝑖 and 𝑝𝑖+1. 𝑝𝑖′ and 𝑝𝑖+1
′ indicate the new pixel value in the stego-image. Also, the function F (𝑝𝑖 ,

𝑝𝑖+1) can be evolved by the equation below:

F (𝑝𝑖 , 𝑝𝑖+1) = LSB(⌊
𝑝𝑖

2
⌋ + 𝑝𝑖+1)

(NB: ⌊….⌋ indicates the largest integer less or equal to the value that is in these two brackets.)

if 𝑀𝑖 = 𝐿𝑆𝐵(𝑝𝑖)

 if 𝑀𝑖+1 ! = 𝐹(𝑝𝑖 , 𝑝𝑖+1)

 𝑝𝑖+1
′ = 𝑝𝑖+1 ± 1

 else

 pg. 47

 𝑝𝑖+1
′ = 𝑝𝑖+1

end

𝑝𝑖
′ = 𝑝𝑖 - 1

else

 if 𝑀𝑖+1 ! = F (𝑝𝑖 – 1, 𝑝𝑖+1)

 𝑝𝑖
′ = 𝑝𝑖 - 1

 else

 𝑝𝑖
′ = 𝑝𝑖 + 1

 end

𝑝𝑖+1
′ = 𝑝𝑖+1

end

In their conclusion, the robustness was compared between the original LSB matching algorithm and

this proposed method through implementing the relevant LSB matching detection in both algorithms

with 1,000 images. As the result shows, this new method has a relatively lower probability of detection

curve, as shown in Figure 18:

Figure 18: The resistance results comparison between the LSB matching and new proposed method [44]

 pg. 48

“A Generalization of LSB Matching.” By Yang, Cheng and Zeng [31]

A novel LSB matching algorithm that generalized the LSB matching and LSB matching revisits was first

proposed in 2008, and called the generalised LSB matching scheme (G-LSB-M). Also, in this paper, the

concept of the Expected Number of Modification Per Pixel (ENMPP) has been proposed to identify the

resistance in relevant steganalysis. As shown in Figure 19:

Figure 19: The equation of Expected Number of Modifications Per Pixel [31]

The embedding procedure was compared in the G-LSB-M with other algorithms. In the original LSB

matching algorithm, the pixel can be added or subtracted randomly by one while the message data

does not match with this pixel. The considered unit is every single pixel, and the value of ENMPP is

0.5.7

However, in the LSB matching revisits algorithm, each time the embedding picks two bits of the

message data, it compares them with two LSB pixels in the cover image; the operation on the pixel,

whether added or subtracted, depends on the algorithm’s regulation table. Thus, the implementation

units are up to a pair either in the cover image or in the secret message; the value of ENMPP is

decreased to 0.375.

In this new G-LSB-M algorithm, the value of ENMPP was reduced again through increasing the

consideration unit, which extended up to 3. Three bits are embedded in a ternary pixel array, the

relevant operations of each pixel, whether added or subtracted, depends on its algorithm regulation

function as well. The value of ENMPP was verified to be 1/3. Therefore, the new method G-LSB-M can

generate a more secure stego image with a higher robustness for detection through reducing the value

of ENMPP.

In their conclusion, the resistance is verified through implementing 5000 images in different LSB

matching detections. As the experiment showed, the G-LSB-M algorithm has a lower probability of

positive detection especially with the value of consideration unit (both in the cover image and the

secret image) increasing, the value of probability of detection will be reduced. This is shown in Figure

20:

7 This value was computed by author in his paper, as well as the 0.375 in LSB matching revisits algorithm.

 pg. 49

Figure 20: The resistance result comparison in LSB matching and variable n in G-LSB-M [31]

(NB: in this Figure 20, the n indicates the value of the considered unit)

“Lossless Data Hiding Scheme Based on LSB Matching.” By Quan and Zhang [45]

In 2013, another simple reversible LSB matching algorithm was proposed through implementing the

concept of parity feature to a pair subset in the cover image. This new algorithm not only can be

applied with a lower implementation complexity, but also can be executed in multiple cover files, such

as image, video and audio.

Prior to discussing the embedding procedure, a secret key K was defined, and it will be shared between

the sender and receiver for the process of data extraction. The cover image can be divided into two

equal subsets (A and B) due to the information in K. In the subset A, the corresponding embedding

message pair is defined as (2k, 2k+1). Instead, the corresponding message pair is defined as (2k-1, 2k)

in the subset B.

During the embedding procedure, the pixel can only be modified when the message bit does not

match (equal) the LSB of cover image. The relevant operation whether added or subtracted is

considered by the position of this pixel. If the pixel is in the subset A, the odd pixel value 2k +1 is

decreased by one, and the even pixel 2k is increased by one. Instead, in the subset B, the odd pixel

value 2k -1 is increased by one and the even pixel value 2k is decreased by one, as shown in the

pseudocodes below:

(Assume: 𝑀𝑖 indicates the embedding message bit; 𝑝𝑖 indicates the value of target pixel; 𝑝𝑖′ indicates

the value of stego-image pixel)

 pg. 50

if 𝑀𝑖 != LSB (𝑝𝑖)

 if 𝑀𝑖 = 1

 if 𝑝𝑖 A (subset)

 𝑝𝑖’ = 𝑝𝑖 + 1

 else

 𝑝𝑖’ = 𝑝𝑖 - 1

 else

 if 𝑝𝑖 A (subset)

 𝑝𝑖’ = 𝑝𝑖 - 1

 else

 𝑝𝑖’ = 𝑝𝑖 + 1

end

The resistance and quality were compared between this algorithm and the generalized LSB matching

algorithm. As the experiment result displayed, the proposed algorithm has a higher quality in the

stego-image as the value of PSNR and MSE are stable around 51.45 and 0.5 respectively. Moreover,

for this new algorithm, the resistance in RS detection (RS detection will be explained later) has a

significant increase, only with a quite low probability of detection.

2.2.3. Summary of Spatial Domain Image Steganography

According to the explanation of the algorithms above, a summary was concluded as below:

Algorithm

Name
Principle Benefits Drawbacks Author

LSB 2/3

Red channel exchanges 2

bits, Green and Blue channel

exchange 3 bits separately.

Good quality in stego

image, and lower

memory for

computation during

the embedding

procedure.

Only work on

colour image

Mode, Abed

et al.

Hash-LSB

Message is encrypted, then

perform hash function to

identify the exchange bits in

each colour channel.

Stego image has good

quality and small

dissimilarity. Message

is more secure as

encrypted by RSA.

Only work on

colour image.

Kumar and

Sharma.

 pg. 51

Randomization

edge detection

Use edge detection to sort

the edge pixels through 3 * 3

pixels windows, randomize

these pixels and perform LSB

algorithm

More data can be

stored in edge areas

without image

distortion, edge areas

are harder to be

detected than the

smooth areas.

A symmetric

key is required

in the

extraction, as

the edge

pixels were

randomized.

Arora and

Anand.

EG-LSB

Identify edge pixel by using

horizontal scanning method,

perform LSB 2 in edge pixels,

reserve first two pixels to

store the Mean and Standard

Deviation.

Good image quality in

stego image, and the

measurement unit

PSNR is better than

LSB replacement

algorithm.

 Chaturvedi.

Pixel Value

Difference.

(PVD)

The image is split into a

number of non-overlapping

two-pixel blocks, according

to the difference value in

each block, to identify the

exchange bit.

Very good

measurement unit

result in both PSNR

and MSR, even the

stgeo image can

escape the detection

of RS attack.

Only works on

grayscale

image.

Wu and Tsai.

Colour Pixel

Value

Differencing.

The same as PVD, but the

pixel value is separated and

stored into three different

colour matrixes (RGB),

according to the value

difference in each block in

each colour, to identify the

exchange bit

Improved the original

PVD algorithm, to

make it can work on

both grayscale and

colour image.

Measurement

unit PSNR has

a trivial

decrease.

Mandal and

Das.

Pixel Value

Modification.

(PVM)

All the pixel value within the

different colour matrices

perform the function modulo

3, according to the result, to

identify the exchange bit.

The stego image has a

better quality and

embedding capacity

than PVD algorithm,

and the computation

time is lower.

Only works on

colour image.

Nagaraj,

Vijayalakshmi

and Zayaraz.

 pg. 52

LSB

modification

based on

private stego-

keys

Two keys are defined, one is

used in embedding and

extraction procedure; the

other is used to verify the

data integrity. The exchange

bit is identified by the range

of colour value difference.

Compare to LSB 4,

this algorithm has a

superb image quality

with the highest PSNR

value.

Only works on

grayscale

image, and

the major

security issue

that is the

transmission

of both

private keys

Jain and

Ahirwal.

A derived

algorithm

from PVD.

Define three different level

to identify the exchange bit

in edge areas.

Has a better image

quality than original

PVD algorithm.

Yang, Weng,

Wang and

Sun.

Multi-Pixel

Differencing.

(MPD)

Use for consecutive non-

overlapping blocks to collect

the pixels from the image,

according to the difference of

pixels value in each block, to

identify the exchange bit.

Compared to LSB 2,

original PVD and MPD

algorithm, this

algorithm has largest

embedding capacity.

The

measurement

unit PSNR is

the lowest in

all four of

them.

Jung, Ha and

Yoo.

Another

algorithm

based on PVD.

The pixel blocks are gathered

through four non-

overlapping pixels, and

define one target pixel and

three neighbouring pixels in

each block. Only the target

pixel will be exchanged

according to the difference

between the Max value and

Min value in each block.

Good quality in the

stego image.

Compared to

Change’s [61] and

Park’s [62] algorithm,

this algorithm has the

highest PSNR and a

largest embedding

capacity.

Hanling,

Guangzhi and

Caiqiong.

Hybrid edge

detection

algorithm

Edges will be gathered into a

set of blocks uniformly by

using a hybrid detector

algorithm. Reserve the first

pixel to record the

exchanging statement, and

This method has a

higher embedding

capacity and better

PSNR value than

original LSB

Chen, Chang

and Le.

 pg. 53

the rest pixels perform the

LSB algorithm

replacement

algorithm.

Stego

information

Table.

Use a stego information table

to record and consider the

matching manipulation each

time.

Compared to original

LSB matching

algorithm, this

algorithm has a better

PSNR, and reduced

noise in the

histogram as much as

possible

Very large

computation

time during

the

embedding

procedure.

Qiudong and

Liu.

LSB Matching

Revisited

Unlike original LSB matching

algorithm, two pixels are

considered in each matching

manipulation in this new

algorithm.

Improved the

robustness from the

original LSB matching

algorithm,

Only works on

grayscale

image.

Mielikainen.

Generalised

LSB matching

scheme. (G-

LSB-M)

Improved the embedding

manipulation from LSB

matching revisits. The

consideration unit is

increased up to 3. Three bits

are embedded in a ternary

pixel array.

The stego image has a

lower probability of

positive detection

and it has a higher

robustness than LSB

matching revisited

algorithm.

Yang, Cheng

and Zeng.

Lossless data

hiding based

on LSB

matching.

Define and share a secret key

between sender and

receiver. Image is divided

into two equal subsets duo to

the key. Then perform the

relevant matching

manipulation according to

the message bit and target

pixel value.

Compare to G-LSB-M

algorithm, this

method has a higher

quality in both PSNR

and MSE. Also, this

method can be

executed in multiple

cover file, such as

video and audio.

The

transmission

of secret key is

a security

issue.

Quan and

Zhang.

Spatial image steganography algorithms were reviewed within this sub-section. Although the

algorithms are based on different ways to conceal the secret data, all of them utilise the redundancy

 pg. 54

of colour intensity in human eyes. Some algorithms embed the data to the identified edge areas in the

image by using relevant edge detections. Certain algorithms are using the difference of consecutive

non-overlapping pixels to hide data accordingly. Also, some algorithms are implemented based on the

feature of the colour intensity. For example, the author Parvez [46] offered a novel algorithm based

on the Intensity of the colour image; the embedded data can be stored more in the lower colour value

areas due to its negligible influences. As the details of his Distortion Ratio experiment showed, the

difference between the higher intensity and lower intensity has been examined, the change of higher

intensity value colour has an obvious distortion ratio than that of the lower value colour.

Therefore, for all spatial image steganography algorithms, the common principle is based on changing

the pixel value in the cover image to ensure effective data hiding.

2.2.4. Frequency Domain and its Stego-Algorithms

According to the category of image presentation domain, the image can be presented both through

the Spatial domain image and Frequency domain image systems. Normally, the spatial domain image

consists of BMP, PNG and GIF; the frequency domain image predominantly contains JPEG, which is

the most common online transmission image format [28].

For the spatial domain image, the digital content is stored in accordance with the format of the images

colour intensity (colour value), ranged from 0 to 255, which is denoted as [0,255]. Colours are most

frequently represented as additive combinations of RGB (Red, Green, Blue) in each pixel which is the

fundamental unit for the image [57].

In the frequency domain, an image such as a JPEG image is presented as a transform domain, this

format stores the coefficients of the cosines, representing the frequency of a value rather than storing

the colour intensity that is assigned to each pixel. In other words, it means that the frequency domain

image utilizes luminance and chrominance signals instead of RGB to represent an image. This is

referred to as YUV. Y represents luminance, and the chrominance components (U and V) are the

differences, as shown in the formula below [28]:

Y = 0.299R + 0.587G + 0.114B

U = R – Y

V = B – Y

However, in order to adjust all of those components to the same range [0,255] by using 8 bits, the

chrominance components (U and V) are further linearly transformed to Cr and Cb as they fall into the

range [-179, 179], obtaining the YCrCb colour model [28].

 pg. 55

Unlike the spatial domain, a JPEG image has a completely different compression process. As explained

in the following, the procedure can be categorized into six phases [28]:

1. Colour transformation, from RGB to YCrCb. (Although this step is unnecessary as JPEG can also

work directly with the RGB representation). It is typically used because it enables higher

compression ratios at the same fidelity).

2. Divide image into 8 by 8 blocks.

3. Perform DCT (Discrete Cosine Transform) in 8 by 8 blocks.

4. Quantization of the DCT blocks.

5. Entropy coding.

6. Generate the JPEG image.

Thus, the steganography of a frequency domain image, requires an advanced algorithm to embed the

data by using the LSB algorithm under the frequency value of each pixel rather than implementing the

LSB algorithm under the colour intensity directly, such as with the JSTEG, F3, F4, F5 algorithms.

However, the JPEG compression can be seen as a lossy procedure, the part of redundancy data within

the digital information will be lost in the phase of quantization, as shown in Figure 21 below [58].

Therefore, these based-frequency algorithms are often implemented to embed data into the

quantized DCT table after the quantization phase. Furthermore, hiding data before the entropy coding

stage (after the quantization stage) would not affect the data, as the process of “DCT” and

“Quantization” is lossy, and “Entropy Coding” is lossless.

Figure 21: The illustration of JPEG compression [58]

 pg. 56

2.3. Steganalysis

2.3.1. General Detections

Steganalysis is a solution that is implemented to detect the hidden messages in cover files. For image

steganalysis, the common detection mechanism is mainly divided into two ways; visual and histogram

analysis.

Visual detection compares the visual difference between an original image and a stego image.

However, for advanced algorithms, it could utilize image redundant parts effectively, so that the

difference cannot be detected by human eyes directly.

Histogram detection (similarly known as statistics detection) can be represented with a histogram

chart. This chart represents the various values of each of the RGB (red, green and blue) colour values.

The X axis represents the colour’s value, from the minimum 0 to the maximum 255. The Y axis,

represents the frequency of colours value. For example, in a 200 x 200 image, the pixel resolution is

40,000. This means that the amount of RGB variations contains a total of 40,000 pixels for an image,

as shown in the formula below:

R: ∑ 𝑌(𝑥 = 𝑖) = 40,000255
𝑖=0

G: ∑ 𝑌(𝑥 = 𝑖) = 40,000255
𝑖=0

B: ∑ 𝑌(𝑥 = 𝑖) = 40,000255
𝑖=0

Therefore, the generated histogram counts the amount of each RGB colour from 0 to 255, and also

presents the tonal distribution in digital image. The histogram detection compares the distribution of

the value of RGB to distinguish the difference between an original image and a stego image.

Figure 22: The visual detection comparison between the original image and the stego image

 pg. 57

Figure 23:The histogram detection comparison between the original image and the stego image (with a
replacement algorithm)

As shown in above Figures 22 & 23, a comparison can be seen between the original image and a stego

image, the stego image concealed a TXT file with a file size of 100 KB. However, from the visual

detection, it is hard to distinguish the difference, they are almost visually similar. From the histogram

detection, the difference can be found absolutely, the hidden message has changed the colour’s

distribution significantly, as the histogram conveys a more ‘ragged’ result in its output for the stego

image. Also the specific difference value can be obtained from the below formula. “Diff” represents

the total differences, and diffR, diffG, diffB represent the differences in red channel, green channel and

blue channel respectively [43].

diffR : ∑ |𝑌𝑖 − 𝑌′𝑖|255
𝑖=0

diffG : ∑ |𝑌𝑖 − 𝑌′𝑖|255
𝑖=0

diffB : ∑ |𝑌𝑖 − 𝑌′𝑖|255
𝑖=0

Diff = diffR + diffG + diffB.

In the Golfer’s Bridge image in Figure 22, the difference in red is 59826, in green is 59050, in blue is

60478. Thus the total difference “Diff” is 179354.

Algorithms are being continually developed in steganography. The traditional histogram detection was

not good enough due to the various advanced steganography algorithms, such as ‘Steganographic

 pg. 58

information record table’ [43], which causes the embedding noise to be reduced, and makes the new

histogram as much as possible with the original histogram. Therefore, new statistical methods are

continuously being developed to account for better detection algorithms. In the next sub-section, the

advanced steganalysis methods are discussed in more detail.

2.3.2. Advanced Detections

“Reliable Detection of LSB Steganography in Colour and Grayscale Images.” (RS attack) By

Fridrich, Binghamton, Goljan and Du [47]

A new reliable and extremely accurate steganalytic detection was presented for both colour and

grayscale images. The concept of this method is based on the relationship between regular group

pixels and singular group pixels, also it does not require the original cover image to be compared with

the stego image.

During the detection procedure, in the target image, the pixels can be divided into different groups G,

which consist of a constant number of the element n (NB:Number of pixels in each group). The

discrimination function f can be used to distinguish the identification of each group G, as shown in the

formula below: 8

𝑓(𝐺) = 𝑓(X1, X2, … , Xn) = ∑|Xi+1 − Xi|

n−1

i=1

Moreover, in order to set the category of each pixel group, the Flipping Function F was used before

implementing the above discrimination function, the flipping result can be divided into three different

situations due to the features of the LSB algorithm, such as F1, F−1 and F0.

- In F1:0<->1, 2<->3, 4<->5,… 254<->255.

- In F−1: -1<->0, 1<->2, 3<->4,…., 255<->256.

- In F0: F0(x)= x.

State a mask M with the value of [-1, 1], import this M into each pixel group G. For example, G = (39,

38, 40, 41), M = (1, 0, 1, 0), -M = (-1, 0, -1, 0). So:

F𝑚(G) = (F1(39), F0(38), F1(40), F0(41)) = (38, 38, 41, 41)

8 This formula also represents the image smoothness of adjacent pixels

 pg. 59

F−m(G) = (F−1(39), F0(38), F−1(40), F0(41)) = (40, 38, 39, 41)

Next, the specific pixel category can be defined due to the above function f and operation F, as follows:

- Regular groups: G  R  f(F(G)) > f(G)

- Singular groups: G  S  f(F(G)) < f(G)

- Unusable groups: G  U  f(F(G)) = f(G)

Finally, the parameters 𝑅𝑚, 𝑅−𝑚, 𝑆𝑚 and 𝑆−𝑚 can be obtained, where, 𝑅𝑚 and 𝑅−𝑚 indicate the

number of regular groups for mask M; 𝑆𝑚 and 𝑆−𝑚 indicate the number of singular groups for mask

M. In this detection, the concept is based on the relationship between the number of the regular group

and singular group.

In a normal image, there are:

𝑅𝑚  𝑅−𝑚 and 𝑆𝑚  𝑆−𝑚

However, if the image has a message embedded, this relationship will be violated, and will change to:

𝑅−𝑚 - 𝑆−𝑚 > 𝑅𝑚 - 𝑆𝑚

Therefore, in this detection method, based on statistical detection, not only the result is accurate, but

also the implementation process is quite easy as it does not require the cover image for reference.

“Steganalysis for LSB Matching in Images with High-frequency Noise.” By Zhang, Cox and

Doerr [48]

A targeted steganalysis method was proposed to detect the LSM Matching algorithm. The concept is

to calculate the absolute differences between the local extrema, because the maxima will be

decreased and the minima will be increased after executing the LSB Matching algorithm in the image.

Also the neighbouring pixels of these local extrema are affected, an obvious reduction reflected on

the image histogram.

In the LSB Matching algorithm, there is a 50% probability that the pixel LSB will be changed. However,

for an embedding rate p, the probability that pixels will not be modified in the cover image is (1 – p/2).

Hence, the histogram of the stego image can be represented by: (ℎ𝑠 indicates the stego image

histogram; ℎ𝑐 indicates the cover image histogram)

ℎ𝑠(n) = (1 -
𝑝

2
) ℎ𝑐(n) +

𝑝

4
 (ℎ𝑐(n-1) + ℎ𝑐(n+1))

 pg. 60

Also, the local extremum n* can be obtained and defined from this formula, as shown in following

function:

ℎ𝑠(n*) = (1 -
𝑝

2
) ℎ𝑐(n*) +

𝑝

4
 (ℎ𝑐(n*-1) + ℎ𝑐(n*+1))

= ℎ𝑐(n*) -
𝑝

4
 [(ℎ𝑐(n*) - ℎ𝑐(n*-1)) + (ℎ𝑐(n*) - ℎ𝑐(n*+1)) < ℎ𝑐(n*)

However, the absolute differences between the extremum and its neighbours has an appreciable

attenuation in the histogram. The maxima decreases and the minima increases. Thus, the stego

image’s histogram is smoother than that of the original cover image. As the following function

evidenced:

𝐷𝑐 = ∑ |2. ℎ𝑐(𝑛 ∗) − ℎ𝑐(𝑛 ∗ −1) − ℎ𝑐(𝑛 ∗ +1)| 𝑛∗

𝐷𝑠 = ∑ |2. ℎ𝑠(𝑛 ∗) − ℎ𝑠(𝑛 ∗ −1) − ℎ𝑠(𝑛 ∗ +1)| 𝑛∗

In the conclusion, this detection was compared with other steganalysis, Ker’s detection [49] and

Goljan’s [63] detection. This method has the highest probability of detection in spatial images (never-

compressed) in all three of them. However, if the dataset has been JPEG compressed, the testing result

is not as good as expected.

“LSB matching steganalysis based on patterns of pixel differences and random embedding.”

By Lerch-Hostalot and Megias [50]

A novel steganalysis method based on the identification of patterns of pixel differences (PPD) was

proposed in 2012. The main idea is to analyse the differences between neighbouring pixels before and

after injecting random data by using the LSB Matching algorithm. The target image can be identified

through verifying the presentation of the patterns’ distribution.

During the implementation procedure, the patterns of pixel differences d can be created by gathering

all of the pixel value from the cover image. In order to simplify the complexity of pattern differences,

a threshold has been exploited to reduce this value. The threshold regulation is shown as follow:

𝑑(𝑥, 𝑦) = {
𝑆 − 1, if |𝑥 − 𝑦|  𝑆 − 1

|𝑥 − 𝑦|, if |𝑥 − 𝑦|  𝑆 − 1

where, S indicates the number of possible value of the pixel differences, x and y represent the target

pixel and reference pixel respectively.

 pg. 61

In addition, as the experiments proved, pixel pairs from the same direction contain redundant

information whether in the horizontal, vertical or diagonal. Thus, half of the pixel information of each

pair can be neglected due to its intrinsic symmetry, as the example shown in Figure 24:

Figure 24:The illustration of reduction block [50].

(NB: the original 9 (3 x 3) pixels was simplified to 5 pixels. In the horizontal pair, (𝑋22 , 𝑋21) was

neglected; in the vertical pair, (𝑋22, 𝑋32) was neglected; in the diagonal pair (𝑋22, 𝑋11) and (𝑋22, 𝑋31)

were neglected.)

Since the reference pixel can be chosen from any value in the reduction block, the rest of the target

pixels can be defined to the corresponding position information which is related with the reference

pixel; these are, l, ul, ur and r, representing ‘left’, ‘upper left’, ‘upper right’ and ‘right’ respectively. In

these 5 pixels, N represents the array of the rest of target pixels, there are:

N[1] = left;

N[2] = upper left;

N[3] = upper right;

N[4] = right.

Hence, combining the above functions, the pattern of pixel difference can be represented as:

(NB: P indicates the pattern array; b indicates the reference pixel)

P[i] = d(b, N[i]), i=[1,4].

Also the maxima and minima P can be identified according to the different values of the reference

pixel, denoted to 𝑃𝑚𝑖𝑛 and 𝑃𝑚𝑎𝑥.

Finally, an integer M which represents the pattern frequency value can be gathered by mapping these

patterns’ values, the function is as shown below:

M(P, S) = P[1]𝑆3 + P[2]𝑆2 + P[3]𝑆1 + P[4] + 1,

Whether the target image contains a hidden message can be verified through counting the result of

the pattern ratio. In this experiment, in order to compare the different ratio result between the cover

image and the stego image, the random message was embedded into both of them. In the Histogram

 pg. 62

Pattern, both images have the same result. Although the frequency decreases after the random

message is embedded in the cover image, the magnitude is not obvious. However, in the Ratio of

Pattern counters before and after random data embedding, the results of both images are extremely

different. As shown in Figure 25:

Figure 25: Ratio of pattern counter comparison between a cover image (a) and the stego image (b) [50]

(NB: In this case, S was equal to 4. In the stego image, the values of the ratio are much more stable

than in the cover image.)

In this method, the stego image can be identified clearly through injecting random data into the target

image with the LSB matching algorithm. If the Ratio of Pattern has a stable distribution, the target

image can be identified as stego image, otherwise, it is a typical image. Although the computation

process of this analysis method is complicated, it can be used widely to identify other advanced

steganographic algorithms, even in JPEG steganography.

“Steganalysis of additive noise modelable information hiding.” By Harmsen and Pearlman

[51]

Another steganaylsis method based on the identification of additive noise was presented in 2003, and

it can be applied to detect multiple image steganography algorithms, such as LSB replacement, LSB

matching, other frequency-based algorithms. Several theorems have been separately proved to

distinguish the stego image from the cover image, because the stable correlation in the original cover

image can be disturbed due to the injection of the secret data.

During the steganography procedure, the generation of the stego image can be seen as the injection

of (stego) noise to the cover image. Hence, the histogram of the stego image is equal to the

convolution of the cove image histogram and stego noise, as shown in Formula 1:

 pg. 63

ℎ𝑠[n] = ℎ𝑐[n] * 𝑓∆[n]

(NB: Where 𝑓∆[n] is the probability mass function, which indicates the probability that a pixel will be

altered by n after inject the noise. The equation 1 is : 𝑓∆[n] ≜ p(𝑋𝑠 - 𝑋𝑐= n). X indicates the pixel value.)

In order to simplify the process of analysis, the above equation 1 and Formula 1 are evolved to the

frequency domain presentation by using Discrete Fourier Transform (DFT), also the result is defined

to the Histogram Characteristic Function (HCF), which is a representation of the image histogram in

the frequency domain, as shown in the following equation 2.

𝐻𝑠 = 𝐹∆[k]𝐻𝑐[k]  DFT(ℎ𝑠[n]) = DFT(𝑓∆[n]) DFT(ℎ𝑐[n])

The Histogram Characteristic Function Centre of Mass (HCF COM) is defined to the measurement of

the HCF distribution, and the result is useful to identify the existence of the stego noise. As shown in

equation 3 following:

C(H[k]) ≜
∑ 𝑘 |𝐻[𝑘]|𝑘 ∈ 𝒦

∑ |𝐻[𝑖]|𝑖 ∈ 𝒦

(NB: Where, 𝒦 = {0, …
𝑁

2
 - 1} and N is the length of DFT)

After injecting the stego noise to the cover image, the result of HCF COM may reduce or stay the same.

As shown in Formula 2:

C(𝐻𝑠[𝑘]) ≤ C(𝐻𝑐[𝑘])

Therefore, in the detection procedure, the stego image can be identified from HCF COM, the expected

distribution is absolutely lower in the stego image. In their conclusion, this detection method has been

demonstrated in different imagesets, the detected result has a high correct rate, especially in the

identification of the LSB replacement algorithm.

“Steganalysis of LSB Matching in Grayscale Images.” (Ker Detection). By Ker [49]

As Harmsen did not implement his steganalysis on the grayscale image, the limitation was presented

by Andrews D. Ker soon after. Although the original theorem stated that it should be available, the

result of one-dimensional image steganography is far away from the expected result, which is much

bigger. Hence, two novel detections based on the improvement of the HCF were proposed two years

after Harmsen’s publication [51].

 pg. 64

Several pieces of evidence proved the unreliability of HFC in grayscale images, such as unknown

C(𝐻𝑐[𝑘]) 9 and sparse distribution in grayscale image histogram10.

In order to address the problem of unknown C(𝐻𝑐[𝑘]), a downsampling method was considered to

use to gather the pixel, as shown in the follows Equation 1:

𝑝𝑐
′ (i,j) = ⌊∑ ∑

𝑝𝑐(2𝑖+𝑢,2𝑗+𝑣)

4
1
𝑣=0

1
𝑢=0 ⌋ Equation 1

(NB: Where, i and j represent the pixel coordinates in the image)

As the massive experiment proved [49], the distribution between the original HCF COM and

downsampling HCF COM is a linear with a correlation bitrate in 0.9967, which means that both results

are very similar. So, the Equation 2 is as shown below:

C(𝐻𝑐
′[𝑘]) ≈ C(𝐻𝑐[𝑘]), Equation 2

Also, after inject the stego noise (secret data) by using the LSB Matching algorithm, the Equation 3 is

presented:

C(𝐻𝑐[𝑘]) - C(𝐻𝑠[𝑘]) > C(𝐻𝑐
′[𝑘]) - C(𝐻𝑠

′[𝑘]) Equation 3

Therefore, according to the above equations 2 & 3, the Formula 1 can be evolved:

C(H[k]) < C(𝐻′[k])

The LSB Matching algorithm is subject to the above Formula 1, the existence of stego noise can be

proved if the target image meets this theorem. Hence, the first detection method changes the pixel

by using downsampling, and then observes the relationship between HCF COM and downsampling

HCF COM in the target image.

In the second detection method, the problem of sparse histogram distribution in the grayscale image

has been fixed. The two-dimensional adjacency histogram is used instead of the colour intensity

histogram, which indicates how often the pixel values have been observed next to each other in

horizontal direction, making the histogram distribution much closer. This is shown in the following

Equation 4:

ℎ𝑐
2(m, n) = |{(i, j) |𝑝𝑐(i, j) = m, 𝑝𝑐(i, j+1) = n}| Equation 4

Next, the two-dimension HCF COM can be formed by the following Equation 5:

9 During the detection procedure, the cover image may be unknown.
10 In three-dimensional colour image, the distribution is 𝑁3; in one dimensional grayscale image, it is only N.

 pg. 65

𝐶2(𝐻2[k, l]) =
∑ (𝑖+𝑗)|𝐻2[𝑖,𝑗]|𝑛

𝑖,𝑗=0

∑ |𝐻2[𝑖,𝑗]|𝑛
𝑖,𝑗=0

 Equation 5

Finally, the stego noise can be identified by observing the two-dimension HCF COM relationship

between the cover image and stego image. Also, this method can be combined with the above

Formula 1 during the detection process without the related cover image.

2.3.3. Summary of Steganalysis
The development of steganalysis has been continually progressing. New detection methods are

constantly being substituted and are evolving constantly. The majority of reasons for this are:

- The detection result is subject to some parameters, such as the embedding rate. If the

embedding rate is lower, the result will be not as good as expected.

- The limitations of the detection method. For example, some of the methods only work on

grayscale images.

- The long computation time for the detection procedure, especially if a higher complexity

algorithm is used.

So far, there have been some novel steganalysis methods proposed, but most were updated soon

after their development for the above reasons.

 In 2008, a novel detection method based on the grayscale level co-occurrence matrix (GLCM) was

proposed by Abolghasemi et al[52]. By observing the pixel concentration distribution, the stego image

can be distinguished from the cover image as the injection of secret data can affect the distribution

along the diagonal direction in the co-occurring pixel matrix. However, the limitations of this method

were proved soon after. Firstly, this method was only available for grayscale images. Secondly, the

accuracy was not as good as expected. Subsequently, this detection was improved by H.B.Keker in

2011 [53]. Although this new method can be executed for colour images and the result is accurate,

the complexity of computation still exists.

Therefore, the two sides (steganography and steganalysis) are in a constant battle for the most

effective detection methods. However, it is difficult to know which is best due to the diversity of

steganography algorithms, especially for DLP systems. Many other factors need to be considered

when developing DLP systems to prevent the potential risk from the steganography, such as the

computational time.

 pg. 66

3. Methodology

Research Question:

This research aims to investigate an effective solution in DLP systems to prevent the threat of image

steganography.

Objectives:

In order to address the above research question, in this section, the specific methodology will be

described from three aspects.

 Firstly, the challenges / limitations of the DLP system should be analysed, to consider:

- How can the confidential data, embedded in the cover file via Steganography,

bypass the DLP system monitor?

- Why the current steganalysis mechanisms can not detect the existence of

steganography in DLP systems effectively?

 Secondly, the preliminary investigation and research hypothesis will be discussed and analysed.

 Finally, in order to prove the reliability and applicability of the presented solutions, the

architecture of the experiments will be introduced.

3.1. The relevant challenges

Both algorithm and detection mechanisms are under constant evolution and optimisation. Especially,

within a DLP system, some of the reliable steganalysis solutions are not suitable for implementation.

The major challenges stem from two aspects, the diversity of the advanced algorithms and the

limitation of the corresponding steganalysis.

3.1.1. The Diversity of Steganography Algorithms

The rapid development of steganography algorithms is the first challenge. Either in the spatial domain

or in the frequency domain, the sophistication of steganalysis solutions and steganography algorithms

are both advancing in a cat and mouse fashion, rendering many previous algorithms analysis and

solutions obsolete. Often the novel steganography algorithms are one step ahead of steganalysis,

making detection extremely difficult. For example, as mentioned by author Lou [30], the proposed

algorithm has a good resistance to both RS attack and 𝑋2 attack which are the most effective

steganalysis solution so far.

 pg. 67

For a specific algorithm, different parameters can often generate the different stego image matrices

such as the embedding rate according to traditional LSB algorithms. As the statistics from the above

section show [31][38][39][40][41], the probability of detection and embedding rates are inversely

proportional, the imperceptibility of the stego image can be increased by reducing the embedding

rate. Therefore, the most serious challenge is based on the embedding rate during the application of

the corresponding steganographic algorithm. The majority of novel proposed algorithms may bypass

the detection of effective steganalysis when their embedding rate has a low value.

There are many open source tools on the Internet 11 12, for both image and text based steganography.

The complete procedure of steganography that involves the embedding and extracting process can be

implemented by anyone, which means company data can be hidden easily by any internal staff,

including non-technical personnel.

3.1.2. The Limitation of Steganalysis Methods

As discussed previously, steganalysis can be divided into visual detection and statistical detection in

two separate ways. Often, the statistical detection method is the most effective solution to

steganography, and the most common method is the histogram detection.

However, the most important problem is the size of the (stolen or secret) company data (embedding

rate) to be hidden. Detection techniques may display a minute difference in the cover image which

cannot be distinguished by human eyes, or even in histogram charts, especially if this confidential data

is just a few characters. Even for the most effective steganalysis, such as an RS attack, the detection

result may not be reliable when the embedding rate is lower than 0.005 [30]. An example of LSB

replacement algorithms can be seen in Figure 26 below (this is the histogram result between an

original “Lena” image and LSB 1 stego “Lena” image which conceals hidden textual data, “this is for

test !!!”).

11 Text Steganography Tool: http://manytools.org/hacker-tools/steganography-encode-text-into-image/
12 Image Steganography Tool: http://incoherency.co.uk/image-steganography/

http://manytools.org/hacker-tools/steganography-encode-text-into-image/

 pg. 68

Figure 26: The histogram comparison between the original image and the LSB 1 stego image in Lena.bmp

As Figure 26 above represents, there is an insignificant difference between LSB 0 and LSB 1. Therefore,

in industry, DLP systems are faced with serious challenges, particularly in defence steganography.

With the increase of steganography utilisation, it is very difficult to determine which solution can verify

all algorithms effectively, as unreliable detection is wasting time and money in industry only. Secondly,

within any DLP system, it is impossible for security staff to detect each single image in the company

boundary traffic as they would have to be able to download the original image, and then compare it

to a stego image for possible detection. Thirdly, the most important is the content-aware work

principle in the DLP system. An image file is identified as an image data stream in the network

transmission rather than the text data stream. This can then lead to the successful exportation of

sensitive company information by a malicious actor residing within the organisation, potentially

causing serious reputable and financial damage.

3.2. Preliminary Investigations

In this section, the preliminary investigations will be introduced, which lead to the subsequent

hypothesis and research solutions. These investigations are based on two aspects:

 Network transmission, to discover the (next) destination of an email leaving the

company boundary.

 Concealment of data by concatenation, a simple method for the concealment of data

by using file concatenation in a Windows system and its solution will be discussed.

 pg. 69

3.2.1. Network Transmission
Prior to preventing data loss within an enterprise network, it is necessary to determine the route of

the network stream, and how DLP can identify the content of the transmission stream. As mentioned

in the above DLP system section, the DLP system is an integrated defence system, designed and

implemented by multiple function modules. For example, the vendors may have provided a cloud

service to protect the email transmission, meaning that the vendors could receive and identify the

email content before the email arrives at the target destination. Although a vendor white paper [25]

[26] did not introduce this, it was proved by the following experiments:

(NB: This experiment was implemented on a Windows system, the email service used Googles Gmail,

while the packet capturer was implemented by Wireshark.)

The tested PC IP address was 138.251.207.129, located in the Jack Cole Building of the St Andrews

Computer Science department, as shown in Figure 27 below:

Figure 27: The details of target PC

The network packets were captured by Wireshark after sending a simple email to a Hotmail hosted

email service. Notably, the Wireshark did not capture any mail transfer protocol packets, such as POP

or SMTP. Instead, the packets only contain TLSv1.2 and TCP even after filtering packets from the

source IP 138.251.207.129, as shown in Figure 28 below:

Figure 28: The detail of captured email packets

Several packets were sent to the destination address 216.58.198.197. After tracking this IP address, it

can be determined to belong to Google, Inc, as shown in Figure 29 below:

 pg. 70

Figure 29: The explanation of IP: 216.58.198.197

This is due to St-Andrews utilising Google’s Gmail as their email hosting platform up until 2015. Hence,

this email was sent to the Google server first after it left the St Andrews network boundary. In addition,

the email was sent via web browser, the inside of these packets were encrypted by the TLS protocol,

which has been used for providing confidentiality and data integrity between two applications [54],

the data is therefore unreadable, as shown in Figure 30 below:

Figure 30:The specific detail of Secure Sockets Layer in the captured packet

It should be noted that in Oct 2014, a vulnerability was found in SSL 3.0, so relevant products use the

TLS protocol in Google [55]. For the vendor email service a remote cloud system will receive all of the

email stream once it leaves the company network boundary. During the stream transmission, the data

will be split into different packets depending on the capacity of a packet. Subsequently, this data will

be encrypted in accordance with the transmission algorithm, and transform it to a human unreadable

format. The data can be readable within remote vendor cloud systems; which means that any

confidential data can be monitored and identified before forwarding to the destination address, and

any malicious data leakage can be terminated in the cloud system.

 pg. 71

3.2.2. Concealment of Data by Concatenation

Prior to researching the solutions for the use of steganography algorithms within a DLP system,

another efficient hiding method should be considered and solved. This method combines multiple files

to implement the hiding of a target file. This experiment was implemented in a Windows O/S; the files

were linked by system commands in the Windows “cmd”.

The hiding procedure is divided into three phases:

1. Prepare an image as the cover file,

2. Compress the data to a .zip file.

3. Type in the command “copy /b File1 + File2 File3” in CMD.

- File 1 represents the cover image,

- File 2 represents the secret data file,

- File 3 represents the new generated file, and this file can be defined in any types.

An example of this steganographic technique can be shown in Figure 31 below,

Figure 31: The command of hiding data by the concatenation method in a Windows system

 (NB: The data file has to be linked behind the image file, otherwise, the newly generated image is

unreadable. For more details, refer to Appendix A).

During the extraction procedure, the data can be removed through an unzip on ‘File 3’ directly. For

example, in a Windows system, run the ‘7 zip File Manager’, click the StegoWithZip.png file and the

data will be uncompressed and display the final result, as shown in Figure 32 below.

Figure 32: The extracted result of a target file by using the 7zip File Manager

Therefore, in this method, the merging steganographic technique can be implemented easily and the

result is imperceptible to visual detection, as shown in Figure 33 below.

 pg. 72

Figure 33: The visual comparison between the original image and the merged image

The first consideration is that of memory allocation. Unlike in a steganography algorithm, the size of

the newly generated ‘File 3’ has been increased with the addition of the large data file (‘File 2’), the

size of ‘File 3’ is the combination of the size of both ‘File 1’ and ‘File 2’, as shown in Figure 34 below.

Instead, in steganography, the size of generated stego image can be the same as the original cover

image.

Figure 34: The details of experimental files

An obvious result was produced in the example from Figure 34 above, the data file was a TXT file

rather than .zip file, because the zip compression will reduce the size of file so significantly that the

compared result is therefore negligible. Normally, in order to decrease the file size, the data file is

compressed to a .zip file, which reduces the overall file size as much as possible. This is shown in Figure

35 below:

(NB: where ‘File 1’ is the above StA.png, and the data.txt (‘File 2’) is compressed to data.7z.)

Figure 35:The details of experimental files; the secret file is compressed to a zip file

Secondly, the most important vulnerability is to break the previous format signature. The file signature

is also referred to as a magic number, which is used to identify or verify the content of a file. Every file

has the different hex signature according to their different file extension [56]. For the most popular

image files, such as BMP, PNG and JPEG (JPG), the hex signature are as follows:

- BMP: starts with “42 4D”, the end hex digits are not defined.

 pg. 73

- PNG: starts with “89 50”, the end is “60 82”.

- JPEG (JPG): starts with “FF D8”, the end is “FF D9”.

However, with the merging of the data files behind these images, the end part of file signature will be

extended according to the linked data file extension, until all of the content of data file has been

represented, as shown in Figure 36 below.

Figure 36: The target hex result in Hex Fiend

From this example, the result file is a PNG image generated by the combination of a PNG image with

a .zip data file. The original PNG end signature is “60 82”, yet more hex data demonstrates the linked

file contains the newly generated end signature value of “00 00”.

Therefore, a second vulnerability or limitation is the identification of the hex signature. Some effective

tools are recommended to implement the corresponding identification. One of which includes

checking the hex signature, which can be done by using some open source tools, such as WinHex, Hex

Fiend, and how the content can reflect the file’s properties. In the example above, Figure 36, the

screenshot results from the software “Hex Fiend” on a Mac system and the malicious data can be

identified easily due to its file extension. However, for JPEG and PNG images, they both contain a

definite signature either at the start or at the end. When it comes to a BMP image, the end part of the

 pg. 74

signature is not defined, so that the identification is often unreliable in BMP image by using these hex

editor tools.

Another effective tool that has been used to distinguish the malicious sub-file within a file is “Binwalk”.

According to the different starting signature of each file, the specific sub-file can be identified as well

as the corresponding description. As shown in Figure 37 below, the experiment result was from a BMP

image that was linked a TXT file.

Figure 37: The binwalk search result when the secret file was a TXT file

Also, as shown in Figure 38 below, the experiment result was from a BMP image which was linked to

a .zip file.

Figure 38: The binwalk search result when the secret file was a .zip file

Therefore, for the file concealment method as a steganographic technique, although the

implementation procedure is simple, it can be detected easily through identifying the corresponding

signature within the file. In addition, the excessive file size can be seen as a malicious file directly,

which may be caused by the merging of a large data file.

3.3. The Research Hypothesis

The concept of helping industry by preventing data from being exported with the use of the LSB

algorithm predominantly stems from two aspects:

Firstly, an unsuccessful steganography process can be divided into three features [28]:

“1. Prove the existence of the confidential message.

 2. Extract the confidential message

 3. Destroy the confidential message.”

 pg. 75

Therefore, for the enterprise, there is nothing lost as long as the secret data is not readable. As their

aim is to protect the confidentiality of data, it is unnecessary to prove the existence of confidential

messages or even extract them, even destroying the secret data alone can meet their requirements.

Also, the solutions to protect against corporate loss in a DLP system should be implemented efficiently

and effectively, as many images sent are normal images in network traffic.

Secondly, as the summary of the LSB algorithm in the previously discussed Literature Review section

showed, for the spatial domain image, the algorithms conceal the confidential data by modifying the

value of image pixels, regardless of whether the algorithm is based on edge detection or value

differences. The extraction phase is also based on the intensity of each image pixel and corresponding

stego key. Consequently, on the condition that there is no visible distortion of the image, if some of

the stego image pixel values are randomized, the confidential data can be destroyed and become

unreadable even if extracted by a stego key.

Therefore, the Research Hypothesis to be presented in this thesis is:

 By modifying the pixel values of spatial domain images slightly, secret messages hidden

inside cover images will be destroyed, while the image quality would be preserved.

3.4. Experimental Architecture

In order to verify the correctness of the above hypothesis, some experiments were designed and

implemented to investigate the influences between original pixels and randomized pixels. Two

effective solutions are presented; both are subject to the modification of image pixel value. One is

based on the modification of image chrominance, which is the Chrominance Modification Algorithm

(CMA). The value of RGB in each pixel is affected by changing the value of chrominance. This is in YUV,

where, the value of U and V will be changed, the value of Y is kept constant, rather than changing the

colour intensity directly as luminance is more sensitive for human eyes [28].

The other solution is based on the conversion of the image frequency domain, which is called

Presentation Domain Transform (PDT). The compression of JPEG images is a lossy procedure, the

quantization phase is an irreversible process, even if reverse engineered, the initial value could never

be revealed [28].

 pg. 76

These experiments were divided into two stages. The reliability and applicability of both solutions

need to be verified first, then the results need to be analysed and evaluated. The specific experimental

procedure is described as below:

Required Tools

In order to enhance the transparency of the experiments as well as deeply understand the

experimental procedure, two tools were developed in Java with JRE System Library “JaveSE-1.7”. One

tool is based on data hiding and the other tool is based on data extraction.

Algorithm

The LSB algorithm was executed in the embedding process. Similar to the majority of online open-

source software, the algorithm (LSB 1) can be implemented through replacing data of the last bit of

each pixel value with each message bit. In addition, in the developed tool, the replacement bit(s) in

each pixel is controllable, from LSB 1 to LSB 8, to implement multiple bits embedded to increase the

data hiding capacity. This implementation also can be used as a reference tool to detect the quality

threshold that represents the image distortion for the traditional LSB algorithm.

Measure Threshold

With the constant increase of data size, the maximum bits available within LSB 1 is sometimes not

enough to hide all of the data. Generally, in order to digest a large volume of data, increasing the

number of bits replaced is an easier way to implement data hiding, although the image distortion

becomes appreciable with the increase in replaced bits.

Therefore, the threshold of the traditional LSB algorithm should be measured for understanding its

limitation further. As described by Fyffe [64], the visual threshold was identified at 3 bits LSB (LSB 3)

through experimentation with 25 men and 25 women ranging from 20 - 60 years old. The subject

viewed multiple visual examples of images with and without embedded hidden data.

Notably, as mentioned above, luminance is more sensitive for human eyes. Hence, the threshold result

may not be very exact if an answer is given using visual detection only. The visual comparison between

the original cover image and the stego image in “StAndrews Bridge.png” and “Lena.png”, with both

images containing 100 KB of embedded data from a TXT file using the LSB 3 algorithm is shown in

Figures 39 and 40. The data was embedded from the upper left corner of the image, and down the

vertical direction. Obviously, in Figure 39, the stego image has appreciable blur, from the left side,

especially in the sky part of the image. However, under same conditions with the same algorithm, the

visual difference is negligible in Lena.png.

 pg. 77

Figure 39: The visual comparison between the original cover image and LSB 3 stego image, in StABridge.png

Figure 40: The visual comparison between the original cover image and LSB 3 stego image, in Lena.png

Therefore, due to the influence of pixel intensity, the identification of a threshold is unreliable if the

detection statistics is only from human visibility. In the next section, in order to enhance the credibility

of the results, the threshold will be identified by using corresponding measurement units.

Measurement Units and Tools

Two measurement units will be used to verify the quality of image in the next sections; there are the

Peak Signal-to-Noise Ratio (PSNR) and the Mean Squared Error (MSE). As mentioned before, the

quality of images and MSE are inversely proportional, the higher value of MSE indicates a dissimilarity

 pg. 78

between the compared images. However, the value of PSNR indicates the quality of an image, with a

higher value indicating a better quality.

Firstly, these measurement units will be used to identify the threshold of the LSB algorithm, through

calculating the value between the original cover image and n bit (n [1, 8]) LSB stego image. The

significant point of detection can be seen as the threshold.

Next, these units can also be used to evaluate the performance of two presented solutions, to verify

which one is better.

In addition, an online histogram tool [59] is selected to measure the distribution of the image colour

intensity.

Experimental Structure

Prior to implementing the experiment, the relevant preparatory works were performed:

 Use different n to execute n bit(s) LSB algorithm in several cover images and use three

different size TXT files as the secret (embedded) file. The cover images were selected from

different frequency domain and spatial domain images.

 Collect all of the generated stego images and determine the threshold of LSB algorithms

through statistical measurement. A histogram result is recorded for analysing the distribution

change for the different sizes of embedding data.

In order to verify the applicability of presented solutions, the entire experimental procedure is divided

into three phases.

- Phase 1: Pick all of imperceptible stego images in which the replaced bit n is under the range

of the algorithm threshold, and implement presented solutions to these stego images

respectively.

- Phase 2: Verify the applicability and reliability of these solutions through comparing data

extraction results between the original stego image and a processed stego image.

- Phase 3: Identify the efficiency of these solution through benchmarking (measurement units).

In this experimental procedure, in order to confirm the distortion level of stego images using

the LSB algorithm, the threshold should be researched first as the main risk often comes from

the target image which is under this threshold. Otherwise, the distorted image will be

identified malicious, and be blocked by defence system. Then, these images will be used to

 pg. 79

examine the applicability of the solutions by observing the data extracted result after

implementing the relevant solutions. If the result is unreadable and there is not a noticeable

distortion in the image, it would prove the usability of these solutions and research hypothesis.

Finally, accordingly through benchmarking the different solutions, the most effective solution

will be identified.

Analysis

The evaluation of both solutions will be analysed through comparison with different parameters, such

as histograms, PSNR and MSE. Finally, all of the results will be combined to verify the performance of

each solution, and determine which one is the most effective solution for DLP systems to prevent the

application of steganography.

 pg. 80

4. Implementation

In this section, the implementation of the project will be explained from three separate aspects:

- Firstly, the developmental procedure of the utility tools will be introduced. The implementation

of the core algorithm, LSB replacement, will also be explained in this part.

- Secondly, the specific experimental processes will be described. The reliability of the hypothesis

and the applicability of the solutions will be verified.

- Thirdly, in order to determine and analyse the effect of the solutions on the image, the relevant

measurement units will be computed.

4.1. Developed Tools

This project, developed in the Java programming language, consists of two different tools. The fulfilled

text based steganography and steganalysis – embedding / extracting a secret text into a cover image,

see Figure 41 below.

Figure 41: The Tools of this project

4.1.1. Text Steganography Tool

Class Description

In this tool, the program consists of four packages: FileProcess, MainPage, SteganProcess and

UIDesign.

The FileProcess package contains two java classes: ReadFile and WriteFile, the responsibility of which

are file processing.

- The ReadFile class is implemented for reading in the cover image and the confidential (hidden)

data.

- The WriteFile class focuses on saving the stego key in a user-defined directory.

The MainPage package is the main function of this tool lies, and presented in the Main class.

 pg. 81

The SteganProcess package, which is responsible for the procedure of data embedding, consists of

four java classes: ArrangeData, Exchange, GenerateImage and ProcessFlow.

- In the ArrangeData class, the decimal numbers are converted to binary. In order to collect the

data precisely during extraction manipulation, it should be noticed that the length of the

converted binary must be equal to 8 bits in the embedding procedure. Otherwise, the program

will fill 0s automatically in the front of each binary number until this length requirement is

met.

- In the Exchange class, the n bit(s) LSB in the cover image will be replaced by the corresponding

n bits in the secret message. The value of n is pre-set by the users. The binary representation

of the stego image will be calculated based on the user input variables, and stored in an

ArrayList. In addition, this class also contains two types of replacement methods, one is in the

horizontal or vertical direction, while the other is in random positions.

- In the GenerateImage class, the stego image will be generated from the newly generated

ArrayList.

- The ProcessFlow class controls the work flow of the complete data embedding process. The

status of each step will be printed on the system console (as shown in Figure 42), to make it

convenient for the users to keep track of the system progress.

Figure 42: The details of process track in system console

In the package of UIDesign, two classes - ButtonFrame and MyFrame are developed to build the GUI

for this tool.

- In the ButtonFrame class, the specific buttons are placed in the bottom of the GUI, and aligned

using the GridLayout.

- In the MyFrame class, the integral layout of this application is designed by using the method

of BorderLayout. The screenshot of the final application GUI is shown in Figure 43:

 pg. 82

Figure 43: The GUI layout in Steganography Tool

Combining the above descriptions, this tool contains 9 java classes in total, as shown in Figure 44

below:

Figure 44: Details of the developed classes and packages in the steganography tool

Procedure Description

The work flow of the data embedding process can be divided into eight steps, there are:

- Step 1: Import cover image.

The user can select one cover image from the local directory. Three cover image formats are supported

in this program - JPEG, BMP and PNG. The (R, G, B) value (0 to 255) of each pixel of the imported image

are stored in an ArrayList named “cover_image_list”.

 pg. 83

- Step 2: Convert decimal presentation of the image into binary form.

Each item in the cover_image_list will then be converted from decimal into binary. After the

conversion, each item in the list will be padded with extra 0s in the left side until its length reaches 8.

The converted result will be saved into an ArrayList name “image_binary_list”. As shown in Figure 45:

Figure 45: The code explanation, convert decimal to string, fill the extra 0s until the length meets 8

- Step 3: Import confidential data.

The secret data will be imported in this step (only TXT format is allowed in this tool). In order to extract

the data precisely in the steganalysis process, a “line break” symbol must be added to each end of the

rows of the secret data (shown in Figure 46). All information can be saved in decimal form and stored

into an ArrayList called “data_list”.

Figure 46: The code explanation, write an extra line break during reading the secret message.

- Step 4: Convert the formatted secret data into binary form.

The data will firstly be split into single characters, and then converted from string to binary form. The

result of this conversion will be stored in an ArrayList named “data_binary_list”. Again, extra 0s are

inserted in front of each item (pixel) until the length of the binary value meets 8, in Figure 47 below:

 pg. 84

Figure 47: The code explanation, convert the secret message to 8-bit binary format.

- Step 5: Split the data binary list into a single character

In this step, in order to execute the data replacement operation more conveniently during the

embedding process, the generated ArrayList of binary strings will be split into single digits and stored

in the ArrayList called “single_data_binary_list”.

- Step 6: Execute LSB algorithm

In this step, the replacing procedure is implemented. According to the requirements of the user, the

number of replacing bits n can be selected from the range of [1,8]. The format of the generated stego

image can be set to PNG, BMP or JPEG, although the JPEG format is not a good option for concealing

data by using LSB algorithm.

During the replacing process, the quantity of pixels to be replaced will be calculated, as shown in Figure

48:

Figure 48: The code explanation, the equation of quantity of expected replacing pixels

where, the variables “key” and “insertList” represent the number of replace bit “n” and

“single_data_binary_list” separately. The variable “rows” is calculated to determine the quantity of

pixels to be replaced from the cover image (the quantity of RGB in the cover image).

According to the value of “rows”, the corresponding data will be extracted from “image_binary_list”.

And then the execute n (key) bit replacement operation is applied with the data list

“single_data_binary_list” to recombine a new pixel, as shown in Figure 49 below:

 pg. 85

Figure 49:The code explanation, the procedure of replace the bits and generate a new pixel

Finally, these stored data elements will be re-combined from the character form to the 8-bit binary

form, and returned to “ProcessFlow”.

In addition, in this class, two functions can be chosen; there are “changeXY” and “changeRandom”. If

the data is to be embedded in either the horizontal or vertical direction, the function of “changeXY”

will be called. Instead, if the data is to be embedded randomly, the second function “changeRandom”

will be executed.

The random procedure is almost the same as the function of “changeXY”. According to the value of

variable “rows”, the relative quantity of cover image pixels will be extracted by using the random

method before implementing the replacement with the corresponding data. Also in order to record

the position of these random pixels, an ArrayList named “random_index” is used to store them and

print to a “random_indext.txt” file, as shown in Figure 50:

Figure 50: The code explanation, the method of obtaining the random position in the cover image.

- Step 7: Generate stego image

In this step, the colour of the stego image will be combined and stored into an ArraryList named

“myColor” according to the new pixel information from the above step, as shown in Figure 51:

 pg. 86

Figure 51: The code explanation, the procedure of re-combine a new pixel

Subsequently, the stego image can be drawn from the “myColor”, also the image format can be chosen

from the one of BMP, JPEG and PNG, as shown in Figure 52:

Figure 52: The code explanation, the procedure of repaint a stego image from the new pixel matrix.

Moreover, the stego image can be displayed in a separate window, as shown in Figure 53:

Figure 53: The visual comparison between the cover image and the LSB 5 stego image, in StAbaridge.png

 pg. 87

- Step 8: Release the stego key

Lastly, the stego key will be printed to a user-defined path. It contains two parameters; value of n and

the character length of the embedded data, where, n denotes the number of bits of replaced data in

each pixel.

4.1.2. Text Steganalysis Tool

This program consists of four packages, “AnalysisProcess”, “FileProcess”, “MainPage” and “UIDesign”.

Besides the package “AnalysisProcess”, the functionalities of other packages are the same as the

above Text_Steganography_Tool. Also the GUI is the same, as shown in Figure 54:

Figure 54: The GUI layout in Steganalysis Tool

The package of “AnalysisProcess” is the core operation for extracting the secret data from the stego

image and it contains four different class files, CollectData, CombineStr, ProcessFlow and

TransformData.

- In the CollectData class, the extraction of embedded data is executed according to the

gathered pixel from the stego image and the detail of the key. The final data is stored in 8-bit

binary form.

- In the CombineStr class, the data will be re-combined from character to 8-bit binary form.

- In the ProcessFlow class, the complete extracting data procedure is implemented. As with the

ProcessFlow in Text_Steganography_Tool, the status of each step will be printed out on the

system console (as shown in Figure 55), to make it convenient for the users to keep track of

the system progress:

 pg. 88

Figure 55: The details of process track in system console

- In the TransformData class, the extracted data will be transformed from the 8-bit binary form

to the human readable plaintext.

During the extraction process, the work flow can be divided into five steps and the specific procedure

is described as follows:

- Step1: import stego image and extract pixel data

The stego image will be imported, the file format can be selected in a range of [PNG, BMP, JPEG], and

all of the RGB information is gathered into an ArrayList named “image_list” in 8-bit binary form.

According to the previous stego image generation method, two functions will be considered to

describe the horizontal direction or vertical direction of data manipulation.

- Step2: analyse the key and extract corresponding information

The information of stego key will be read, the replaced bit n and the character length of embedding

data will be extracted and stored, which are referred to the variables “KeyOfIndex” and ”KeyOfSize”

separately in this case.

- Step3: extract the replaced pixels according to their quantity.

In this step, according to the details of the stego key, the quantity of replaced pixels can be

determined, and these pixels will be stored in an ArrayList named “changed_data_list” in the 8-bit

binary form, as shown in Figure 56,

Figure 56: The code explanation, the equation of quantity of replaced pixels

 pg. 89

However, for the random embedding, the extraction process will more complicated. The system needs

the sequence information of randomly embedded pixels. Hence, one more randomness pixel

information file is required, which is generated while embedding data by using the randomness

method. The detail of these pixels will be gathered to an ArrayList named “random_key_list”.

Subsequently, the replaced pixels will be extracted and stored to “changed_data_list” in an 8-bit

binary form according to these random sequences, as shown in Figure 57:

Figure 57: The code explanation, the method of identify the randomly hidden position

- Step 4: extract the specific embedded data

The specific embedded data can be extracted in character form according to the detail of replaced

pixels “changed_data_list” and value of replaced bits n. All of these characters will be re-combined

into a new ArrayList in 8-bit binary form.

- Step 5: transform the embedded data to plaintext.

According to the information from step 4, the final embedded data can be transformed to the human

readable plaintext, and printed out to “extract_out.txt” file, which is located in the “OutFile” file in

this program.

4.2. Experimental Procedure

As mentioned from the Methodology section, the entire experimental procedure is divided into three

phases:

 Phase 1, the n bit LSB algorithm will be implemented with different integers in a range of [1 …

8], and the cover image can be selected from the image database. The specific stego image

result will be selectively displayed.

 Phase 2, identify the potential threshold (of human visual detection) by analysing the

distribution of the measurement units (see below).

 Phase 3, according to the threshold result from Phase 2, the stego image, will be selected from

the range of n that is under the threshold, to verify the applicability and reliability of two

proposed solutions.

 pg. 90

In this section, the experimental procedure is further discussed below. Prior to implementing the

experiment, the corresponding experimental materials are described, and specific equations of

measurement units are introduced for the analysis.

4.2.1. Experimental materials and measurement units

Cover Images Database

In total, there are eight images to be investigated according to their different background colours and

image resolution in the experiments. Lena and ModrianTree are typical images frequently used in

image processing and image stenography examples. The other images are selected randomly from the

website of the research university.

(NB: The large resolution images are filled in red)

Image type Size Resolution Bit depth

Lena.bmp Bitmap 768 KB 512 * 512 24

ModrianTree.bmp Bitmap 3.97 MB 1447 * 959 24

Tiger.bmp Bitmap 225 KB 320 * 240 24

Cathedral.jpg JPEG 14.9 KB 253 * 450 24

Edinburgh.jpg JPEG 68.2 KB 615 * 410 24

Lena.png PNG 602 KB 512 * 512 32

Modrian.png PNG 18.1 KB 1024 * 768 32

StABridge.png PNG 399 KB 534 * 408 32

Table 2: The details of experimental images

Confidential Data

There are three different sizes of text files (.txt) to be used as the confidential data. The sizes are 20

bytes, 42 KB and 119 KB respectively, as shown in Figure 58:

Figure 58: The details of experimental secret files

Measurement Units

Three measurement units are used to identify the threshold as well as verify the viability of the

proposed solutions. There are PTR, PSNR and MSE.

 pg. 91

PTR denotes the “Pixel Transformed Rate”, it represents the replaced (embedded) rate after

implementing the LSB algorithm in the cover image. The specific equation derived and presented by

this thesis is shown below:

𝑃𝑇𝑅 =
𝐵𝑖𝑡_𝑜𝑓_𝑚𝑒𝑠𝑠𝑎𝑔𝑒

𝑛 ∗ 𝐵𝑖𝑡_𝑜𝑓_𝑖𝑚𝑔
=

𝐴_𝑐ℎ𝑎𝑟 ∗ 8

𝑀 ∗ 𝑁 ∗ 𝐵𝐵𝑃 ∗ 𝑛

Where n denotes n bit LSB algorithm, M and N denote the width and height of this image respectively,

bpp denotes the Bit Per Pixel, which gives the resolution of the image. For example, in a colour image,

each pixel has 24 bits consisting of three colour channels, Red, Green and Blue. A_char denotes the

number of characters in the secret data file (including the space and other characters or symbols).

As mentioned in the above Methodology sections, PSNR and MSE are the measurement units that

represent the correlation between the original image and the current image. The quality of image can

be indicated by the value of PSNR directly as they are proportional. Instead, the MSE is inversely

proportional as it indicates dissimilarity of images. The equations are shown in the formula below [65]

[66]:

𝑀𝑆𝐸 =
∑ [𝐼1(𝑚, 𝑛) − 𝐼2(𝑚, 𝑛)]2

𝑀,𝑁

𝑀 ∗ 𝑁

𝑃𝑆𝑁𝑅 = 10 𝑙𝑜𝑔10(
𝑅2

𝑀𝑆𝐸
)

Both equations can be implemented in MATLAB directly and the specific process is as below:

- Import both images; original cover image and generated stego image, as shown in Figure 59:

Figure 59: The methods of reading the cover image and the stego image in MatLab

- Call the corresponding functions directly, as shown in Figure 60:

Figure 60: The PSNR result between the cover image and the stego image

 pg. 92

Experiment Presentation Summary

Cover Hidden Data Algorithm
Embedding

Method

Measurement

Units
Tools

From image

set.

dataLarge.txt,

dataSmall.txt,

dataTest.text.

LSB 1 ~ 8
Vertical,

Randomness
PTR, MSE, PSNR.

Developed

Tools,

MatLab

In the experiments, the relevant manipulations are implemented by the developed tools, whether in

the embedding procedure or in the extraction procedure. The measurement units PSNR and MSE are

computed by MATLAB directly through its built-in functions.

4.2.2. Phase 1: The Implementation of the LSB Replacement Algorithm

The implementation was based on the size of confidential data, the algorithm was chosen from LSB 1

to LSB 8 in vertical way to implement the data replacement, and the cover images are selected from

the cover image database. In this sub-section, the results of newly generated stego images were

displayed for human visual detection (comparison). Also, in order to compare the visual difference

between the vertical embedding and random embedding, the relevant randomness replacement

manipulations were performed with a large size data file, and the result of newly generated stego

images were displayed in the end of this sub-section.

(NB: In this sub-section, only the results of LSB 1, LSB 3 and LSB 5 will be shown for brevity, and the rest

of the image results can be found in Appendix B)

 pg. 93

In dataTest.txt file, (20 bytes)

Lena.bmp

Figure 61: The stego image results in LSB 1, LSB 3 and LSB 5, in Lena.bmp, with very short size data file.

MondrianTree.bmp

Figure 62: The stego image results in LSB 1, LSB 3 and LSB 5, in Mondrian.bmp, with very short size data file.

Tiger.bmp

Figure 63: The stego image results in LSB 1, LSB 3 and LSB 5, in Tiger.bmp, with very short size data file.

 pg. 94

Cathedral.jpg

Figure 64: The stego image results in LSB 1, LSB 3 and LSB 5, in Cathedral.jpg, with very short size data file.

Edinburgh.jpg

Figure 65: The stego image results in LSB 1, LSB 3 and LSB 5, in Edinburgh.jpg, with very short size data file.

Lena.png

Figure 66: The stego image results in LSB 1, LSB 3 and LSB 5, in Lena.png, with very short size data file.

 pg. 95

Mondrian.png

Figure 67: The stego image results in LSB 1, LSB 3 and LSB 5, in Mondrian.png, with very short size data file.

StABridge.png

Figure 68: The stego image results in LSB 1, LSB 3 and LSB 5, in StABridge.png, with very short size data file.

From the above experimental images (Figures 61 - 68), the variation that is caused by the LSB

algorithm is not appreciable, as the embedding data is quite small, only 20 bytes. By inspecting the

experimental result of LSB 8 on StABridge.png closely, at the top left hand corner of the image, some

small bold “black point pixels” can be viewed. This is caused by the injection of the secret data, as

shown in Figure 69 below:

Figure 69: The position of hidden (very short size) message file in the cover image, StABridge.png

 pg. 96

In dataSmall.txt file, (42 KB)

Lena.bmp

Figure 70: The stego image results in LSB 1, LSB 3 and LSB 5, in Lena.bmp, with a small size data file.

MondrianTree.bmp

Figure 71: The stego image results in LSB 1, LSB 3 and LSB 5, in MondrianTree.bmp, with a small size data file.

Tiger.bmp

Figure 72: The stego image results in LSB 1, LSB 3 and LSB 5, in Tiger.bmp, with a small size data file.

 pg. 97

Cathedral.jpg

Figure 73: The stego image results in LSB 1, LSB 3 and LSB 5, in Cathedral.jpg, with a small size data file.

(NB: An appreciable variation can be viewed from the left side of image, particularly in the

experimental image result of LSB 5 in Figure 73.)

Edinburgh.jpg

Figure 74: The stego image results in LSB 1, LSB 3 and LSB 5, in Edinburgh.jpg, with a small size data file.

Lena.png

Figure 75: The stego image results in LSB 1, LSB 3 and LSB 5, in Lena.png, with a small size data file.

 pg. 98

Mondrian.png

Figure 76: The stego image results in LSB 1, LSB 3 and LSB 5, in Mondrian.png, with a small size data file.

StABridge.png

Figure 77: The stego image results in LSB 1, LSB 3 and LSB 5, in StAaBridge.png, with a small size data file.

(NB: Some variations can be viewed from the left side of image, particularly in the experimental

image result of LSB 5 in Figure 77.)

From the above experimental images, compared with the result of embedding a “testing” file, the

variation can be distinguished easily. By inspecting the left side of the image, the affected areas, which

are caused by the injection of embedding data, have been pixelated/distorted with the increase in

replaced bits in the LSB algorithm. This can be seen on the top left corner of Figure 73 above in the

right hand side image. Particularly, the visual result is obvious in the bright (background) images, such

as “StABridge.png”. In the result of LSB 3, this area becomes “smooth”; in the result of LSB 5, this area

is extremely visible; in the result of LSB 8, this area is substituted by “Black” colour, as show in Figures

78 & 79 below:

 pg. 99

Figure 78: The distortion areas of the stego image in LSB 3

Figure 79: The distortion areas comparison in LSB 3, LSB 5 and LSB 8

In dataLarge.txt file, (119 KB)

Lena.bmp

Figure 80: The stego image results in LSB 1, LSB 3 and LSB 5, in Lena.bmp, with a large size data file.

 pg. 100

MondrianTree.bmp

Figure 81: The stego image results in LSB 1, LSB 3 and LSB 5, in Mondrian.bmp, with a large size data file.

Tiger.bmp

Figure 82: The stego image results in LSB 3 and LSB 5, in Tiger.bmp, with a large size data file. LSB 1 is not
enough for concealing the secret message

Cathedral.jpg

Figure 83: The stego image results in LSB 3 and LSB 5, in Cathedral.jpg, with a large size data. LSB 1 is not
sufficient to conceal the secret message file.

 pg. 101

Edinburgh.jpg

Figure 84: The stego image results in LSB 3 and LSB 5, in Edinburgh.jpg, with a large size data. LSB 1 is not
sufficient to conceal the secret message file.

Lena.png

Figure 85: The stego image results in LSB 1, LSB 3 and LSB 5, in Lena.png, with a large size data file.

Mondrian.png

Figure 86: The stego image results in LSB 1, LSB 3 and LSB 5, in Mondrian.png, with a large size data file.

 pg. 102

StABridge.png

Figure 87: The stego image results in LSB 3 and LSB 5, in StABridge.jpg, with a large size data. LSB 1 is not
sufficient to conceal the secret message file.

From the above experimental images, the area of variation is intensively distributed in the stego

image. There is a significant variation as the size of the embedding file is up to 119 KB. Again, the

appreciable difference can be viewed from the left side of the image. The visual result is extremely

obvious in the bright (background) colour images. Particularly, in the higher replaced bit LSB algorithm.

In Randomness (with large size data), (119 KB)

Unlike the vertical replacement, the replaced positon was not picked one by one from the beginning

of the image (top left corner). The system will compute the amount of required pixels according to the

specific algorithm and the length of confidential data, then the position of these pixels will be chosen

randomly from the cover image. The corresponding replacement manipulations are executed in these

collected pixels.

Lena.bmp

Figure 88: The stego image results in LSB1, LSB 3 and LSB 5, in Lena.bmp, with a large size data file with a
random embedding algorithm.

 pg. 103

Cathedral.jpg

Figure 89: The stego image results in LSB 3 and LSB 5, in Cathedral.jpg, with a large size data in randomly
embedded. LSB 1 is not sufficient to conceal the secret message file.

Mondrian.png

Figure 90: The stego image results in LSB1, LSB 3 and LSB 5, in Mondrian.png, with a large size file with a
random embedding algorithm.

StABridge.png

Figure 91: The stego image results in LSB 3 and LSB 5, in StABridge.png, with a large size data file with a
random embedding algorithm. LSB 1 is not sufficient to conceal the secret message file.

 pg. 104

From the above experimental images, unlike the horizontal or vertical embedded result, the visual

difference is relatively reduced as the area of variation is averagely distributed in the stego image. As

shown in Figure 92 & 93 below, the visual result is compared in StABridge.png with the algorithm LSB5

between the horizontal embedding and randomness embedding.

Figure 92: The stego image visual result in LSB 5, with a large size of data in vertically embedded.

Figure 93: The stego image visual result in LSB 5, with a large size of data file with a random embedding
algorithm .

 pg. 105

4.2.3. Phase 2: Determine the potential visual Threshold

As the size of the embedding data increases the affected areas of the image become more visually

evident. These areas have become distorted, with the application of replaced bits during the

embedding process, especially with the embedding of large data files. Thus, the stego algorithm can

be seen as a procedure that injects noise into the cover image [51].

The quality of a stego image is inversely proportional to the volume of injected noise. By looking for

the existing distortion, the stego image that is injected and the associated noise can be distinguished

from the cover image. Fyffe [64] presented good literature references to describe and verify the

human visual based perception for steganography as well as a discussion on stego images, LSB

algorithms and detection via distortion rates, especially when the replaced bits exceed more than

LSB3. However, this result cannot be seen as the identification of the LSB algorithm threshold in the

steganographic technique. The identification result of distortion can be affected by various factors,

including the colour intensity of image background and the distribution of embedded data, as

mentioned in the above sub-section. Therefore, the value of the detection threshold should be

identified by combining more factors, such as the relevant image measurement units, rather than the

boundary of imperceptible distortion (noise) within human visual perception only.

As shown in the Tables 3 – 5 below, the Pixel Transfers Rates (PTR) value was calculated based on the

LSB algorithm under the different conditions, such as the replaced bits variable and different secret

data files. The value of PTR undergoes a significant decrease when there is an increase of replaced bits

n. Therefore, the measurement unit PTR is proportional to the size of embedded data, but it is

inversely proportional to the replaced bit n.

PTR for Images with Different LSB replacements for a very short secret message (20 bytes)

 LSB 1 LSB 2 LSB 3 LSB 4 LSB 5 LSB 6 LSB 7 LSB 8

Lena.bmp 0.02% 0.01% 0.006% 0.005% 0.004% 0.003% 0.0029% 0.0025%

ModrianTree.bmp 0.0038% 0.0019% 0.0013% 0.0009% 0.0008% 0.0006% 0.0005% 0.0004%

Tiger.bmp 0.069% 0.034% 0.023% 0.017% 0.014% 0.012% 0.009% 0.008%

Cathedral.jpg 0.047% 0.023% 0.016% 0.012% 0.01% 0.008% 0.007% 0.006%

Edinburgh.jpg 0.021% 0.011% 0.007% 0.005% 0.004% 0.0035% 0.003% 0.0026%

Lena.png 0.02% 0.01% 0.006% 0.005% 0.004% 0.003% 0.0029% 0.0025%

StABridge.png 0.024% 0.012% 0.008% 0.006% 0.005% 0.004% 0.0035% 0.003%

Table 3: The result of PTR with different LSB replace bits, for a short size data file.

 pg. 106

PTR for Images with Different LSB replacements for a small size message (42 KB)

LSB 1 LSB 2 LSB 3 LSB 4 LSB 5 LSB 6 LSB 7 LSB 8

Lean.bmp 40.61% 20.30% 13.54% 10.15% 8.12% 6.77% 5.80% 5.08%

ModrianTree.bmp 7.67% 3.84% 2.56% 1.92% 1.53% 1.28% 1.09% 0.96%

Tiger.bmp

69.30% 46.20% 34.65% 27.72% 23.10% 19.80% 17.32%

Cathedral.jpg 93.49% 46.75% 31.16% 23.37% 18.70% 15.58% 13.36% 11.69%

Edinburgh.jpg 42.21% 21.11% 14.07% 10.55% 8.44% 7.04% 6.03% 5.28%

Lena.png 40.61% 20.30% 13.54% 10.15% 8.12% 6.77% 5.80% 5.08%

StABridge.png 48.86% 24.43% 16.29% 12.21% 9.77% 8.14% 6.98% 6.10%

Table 4: The result of PTR with different LSB replace bits, for a small size data file.

PTR for Images with Different LSB replacements for a large size message (119 KB)

LSB 1 LSB 2 LSB 3 LSB 4 LSB 5 LSB 6 LSB 7 LSB 8

Lean.bmp 97.49% 48.74% 32.50% 24.37% 19.50% 16.25% 13.93% 12.19%

ModrianTree.bmp 18.42% 9.21% 6.14% 4.60% 3.68% 3.07% 2.63% 2.30%

Tiger.bmp

83.19% 66.55% 55.46% 47.54% 41.59%

Cathedral.jpg

74.83% 56.12% 44.89% 37.41% 32.07% 28.06%

Edinburgh.jpg

50.68% 33.78% 25.34% 20.28% 16.89% 14.48% 12.67%

Lena.png 97.49% 48.74% 32.50% 24.37% 19.50% 16.25% 13.93% 12.19%

StABridge.png

58.65% 39.10% 29.32% 23.46% 19.55% 16.76% 14.66%

Table 5: The result of PTR with different LSB replace bit, for a large size data file.

Next, as shown in Table 6 – 8 below, the PSNR is presented with different LSB algorithms, which have

been implemented with the very short data file (20 bytes), small size data file (42 KB) and large size

data file (119KB) respectively. Normally, the PSNR represents the quality of image after injection of

the noise. Here, this value denotes the quality of the stego image, and it shows a regular decrease

through increasing replaced bits n.

 pg. 107

Images in Different LSB algorithm with a short size data (20 bytes)， PSNR

 LSB 1 LSB 2 LSB 3 LSB 4 LSB 5 LSB 6 LSB 7 LSB 8

Lean.bmp 87.8966 84.1428 80.565 74.8188 70.7913 64.3026 56.635 54.4044

ModrianTree.bmp 95.5743 92.15 86.843 81.5995 77.8044 71.644 65.8269 64.6837

Tiger.bmp 83.1823 78.6807 74.7833 68.8821 64.1296 56.5398 55.5495 55.455

Cathedral.jpg 84.7147 80.0609 77.7599 70.1228 65.6962 63.2659 53.3547 57.9495

Edinburgh.jpg 87.9423 83.8223 79.0867 75.6801 70.2106 65.0496 59.5871 58.0296

Lena.png 87.8966 84.1428 80.565 74.8188 70.7913 64.3026 56.635 54.4044

Modrian.png 92.0814 86.3932 81.0704 74.9505 70.9872 65.3621 59.0501 53.8722

StABridge.png 87.5334 83.4737 79.3998 74.9614 69.9242 64.7897 55.2974 59.3559

Table 6: The result of PSNR with different LSB replace bit, for a short size data file.

Images in Different LSB algorithm with a Small size data (42 KB)， PSNR

 LSB 1 LSB 2 LSB 3 LSB 4 LSB 5 LSB 6 LSB 7 LSB 8

Lean.bmp 55.0502 50.5015 46.7445 41.7662 37.0966 31.3968 27.1656 23.1781

ModrianTree.bmp 62.3016 57.7675 54.0163 49.2764 44.2707 38.0667 34.0729 31.6379

Tiger.bmp 45.1958 41.4377 36.5983 31.4848 25.8304 21.5112 22.3038

Cathedral.jpg 51.4481 46.9013 43.1292 38.4403 33.3533 27.5782 22.5752 19.9057

Edinburgh.jpg 54.8853 50.3406 46.5321 41.6851 36.6524 31.1613 26.0346 22.0725

Lena.png 55.0502 50.5015 46.7445 41.7662 37.0966 31.3968 27.1656 23.1781

Modrian.png 59.774 54.0478 49.3926 44.5531 39.4495 33.8858 28.639 22.7656

StABridge.png 54.2641 49.7087 45.9368 41.2664 36.2349 30.5299 25.6643 20.2394

Table 7: The result of PSNR with different LSB replace bit, for a small size data file.

Images in Different LSB algorithm with a Large size data (100 KB)， PSNR

LSB 1 LSB 2 LSB 3 LSB 4 LSB 5 LSB 6 LSB 7 LSB 8

Lean.bmp 51.2448 46.7001 42.9225 37.9999 33.3183 27.6487 22.239 17.1854

ModrianTree.bmp 58.491 53.9527 50.203 45.4608 40.4743 34.4072 30.1762 27.8316

Tiger.bmp

32.8255 27.7445 22.2494 17.7332 16.4262

Cathedral.jpg

39.3308 34.6137 29.5077 23.5822 18.648 15.8614

Edinburgh.jpg

46.5208 46.6918 37.8154 32.8547 27.3779 22.2979 18.5529

Lena.png 51.2448 46.7001 42.9225 37.9999 33.3183 27.6487 22.239 17.1854

Modrian.png 55.879 50.2433 45.6369 40.8125 35.6901 30.1468 24.9079 19.2195

StABridge.png

45.8939 42.119 37.4525 32.3639 26.7355 21.7479 16.2661

Table 8: The result of PSNR with different LSB replace bit, for a large size data file.

 pg. 108

According to the details of the above Tables 6 – 8, the corresponding PSNR distribution charts can be

generated, as shown in Figure 94 – 96 below. Appreciably, a linear decrease can be viewed with the

increasing replaced bits. Also the value of PSNR depends on the size of injected noise (data).

Figure 94: The PSNR distribution of experimental images, embedded a very short size data file. (20 bytes)

Figure 95: The PSNR distribution of experimental images, embedded a small size data file. (42 KB)

50

60

70

80

90

100

LSB 1 LSB 2 LSB 3 LSB 4 LSB 5 LSB 6 LSB 7 LSB 8

PSNR, a short size data

Lean.bmp ModrianTree.bmp Tiger.bmp Cathedral.jpg

Edinburgh.jpg Lena.png Modrian.png StABridge.png

15

25

35

45

55

65

LSB 1 LSB 2 LSB 3 LSB 4 LSB 5 LSB 6 LSB 7 LSB 8

PSNR, small size data

Lean.bmp ModrianTree.bmp Tiger.bmp Cathedral.jpg

Edinburgh.jpg Lena.png Modrian.png StABridge.png

 pg. 109

Figure 96: The PSNR distribution of experimental images, embedded a large size data file. (119 KB)

However, it is difficult to identify the threshold of an LSB replacement algorithm from the distribution

of PSNR due to its linear change. Although, these charts demonstrate that the quality of image has

been reduced towards the higher LSB end with the increase of replaced bits n, a significant difference

is hard to identify. Thus, the second measurement unit was implemented to identify this threshold.

As shown in Tables 9 – 11 below, the MSE is presented with different LSB algorithms, which were

implemented with a very short data (20 bytes), a small size data (42 KB) and a large size of data (119

KB) respectively. The MSE represents the difference between the cover image and the stego image

and is inversely proportional to the replaced bits n.

Images in Different LSB algorithm with very short size message (20 bytes)， MSE

 LSB 1 LSB 2 LSB 3 LSB 4 LSB 5 LSB 6 LSB 7 LSB 8

Lean.bmp 0.0001 0.0003 0.0006 0.0021 0.0054 0.0241 0.1411 0.2359

ModrianTree.bmp 1.80E-05 3.96E-05 1.35E-04 4.50E-04 0.0011 4.50E-03 1.70E-02 0.0221

Tiger.bmp 3.13E-04 8.81E-04 0.0022 0.0084 0.0251 0.1442 0.1812 0.1852

Cathedral.jpg 2.20E-04 6.41E-04 0.0011 0.0063 0.0175 0.0307 0.3003 0.1043

Edinburgh.jpg 1.04E-04 2.70E-04 8.02E-04 0.0018 0.0062 0.0203 0.0715 0.1024

Lena.png 1.06E-04 2.51E-04 5.71E-04 0.0021 0.0054 0.0241 0.1411 0.2359

Modrian.png 4.03E-05 1.49E-04 5.08E-04 0.0021 0.0052 0.0189 0.0809 0.2666

StABridge.png 1.15E-04 2.92E-04 7.47E-04 0.0021 0.0066 0.0216 0.192 0.0754

Table 9: The result of MSE with different LSB replace bit, for a short size data file.

10

20

30

40

50

60

LSB 1 LSB 2 LSB 3 LSB 4 LSB 5 LSB 6 LSB 7 LSB 8

PSNR, Large size data

Lean.bmp ModrianTree.bmp Tiger.bmp Cathedral.jpg

Edinburgh.jpg Lena.png Modrian.png StABridge.png

 pg. 110

Images in Different LSB algorithm with Small size message (42 KB)， MSE

 LSB 1 LSB 2 LSB 3 LSB 4 LSB 5 LSB 6 LSB 7 LSB 8

Lean.bmp 0.2033 0.5793 1.376 4.3297 12.6888 47.1416 124.8889 312.8001

ModrianTree.bmp 0.0383 0.1087 0.2579 0.7681 2.4323 10.1488 25.4561 44.5957

Tiger.bmp 1.9656 4.67 14.2313 46.1955 169.8421 459.1533 382.5622

Cathedral.jpg 0.4659 1.3272 3.1635 9.3122 30.0436 113.568 359.385 664.5241

Edinburgh.jpg 0.2111 0.6012 1.445 4.4114 14.0552 49.7685 162.0401 403.4895

Lena.png 0.2033 0.5793 1.376 4.3297 12.6888 47.1416 124.8889 312.8001

Modrian.png 0.0685 0.256 0.7479 2.2791 7.3812 26.5764 88.9567 343.9684

StABridge.png 0.2436 0.6954 1.6573 4.8578 15.4735 57.5563 176.46 615.3696

Table 10: The result of MSE with different LSB replace bit, for a small size data file.

Image in Different LSB algorithm with Large size message (119 KB)， MSE

 LSB 1 LSB 2 LSB 3 LSB 4 LSB 5 LSB 6 LSB 7 LSB 8

Lean.bmp 0.4882 1.3902 3.3177 10.306 30.2869 111.7404 388.3093 1.24E+03

ModrianTree.bmp 0.092 0.2617 0.6206 1.8493 5.8298 23.5699 62.44 107.1327

Tiger.bmp 33.9258 109.3019 387.3826 1.10E+03 1.48E+03

Cathedral.jpg 7.5857 22.4754 72.8299 285.0088 887.7255 1.69E+03

Edinburgh.jpg 1.4488 3.4986 10.7534 33.6985 118.9304 383.0841 907.3879

Lena.png 0.4882 1.3902 3.3177 10.306 30.2869 111.7404 388.3093 1.24E+03

Modrian.png 0.168 0.6148 1.7758 5.393 17.5417 62.8633 210.0325 7.78E+02

StABridge.png 1.6737 3.9919 11.6903 37.7299 137.8901 434.8029 1.54E+03

Table 11: The result of MSE with different LSB replace bit, for a large size data file.

According to the details of the above Tables 9 – 11, the corresponding MSE distribution charts are

generated, as shown in Figure 97 – 99. However, this distribution is not similar to the PSNR’s; the

change is not regular and can be divided into three phase:

- Phase 1, from LSB 1 to LSB 3, the distribution is horizontal across the X axis.

- Phase 2, from LSB 3 to LSB 4, there is a negligible rise.

- Phase 3, after the LSB 4, there is a significant increase.

(NB: The distribution of LSB 8 may be affected by image background intensity.)

 pg. 111

Figure 97: The MSE distribution of experimental images, embedded a very short size data file. (20 bytes)

Figure 98: The MSE distribution of experimental images, embedded a small size data file. (42 KB)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

LSB 1 LSB 2 LSB 3 LSB 4 LSB 5 LSB 6 LSB 7 LSB 8

MSE, a short size data

Lean.bmp Modrian.bmp Tiger.bmp Cathedral.jpg

Edinburgh.jpg Lena.png Modrian.png StABridge.png

0

100

200

300

400

500

600

700

LSB 1 LSB 2 LSB 3 LSB 4 LSB 5 LSB 6 LSB 7 LSB 8

MSE, small size data

Lean.bmp Modrian.bmp Tiger.bmp Cathedral.jpg

Edinburgh.jpg Lena.png Modrian.png StABridge.png

 pg. 112

Figure 99: The MSE distribution of experimental images, embedded a large size data file. (119 KB)

Therefore, according to the above distribution charts, the PSNR chart presents the reduction of image

quality with the increase of replaced bits n, which means the stego image is becoming more distorted.

In the MSE charts, due to its irregular distribution, the difference value in LSB 3 and LSB 4 can be seen

as the turning point in the overall profiles. Combined with the result a thesis investigating human

perception of LSB steganography[64], the threshold of the LSB replacement algorithm can be

identified by relevant measurement units as well as by human perception, near to LSB 3.

(NB: There are some distribution results for the random position data embedding, for the relevant

details please check the section, Appendix C).

4.2.4. Phase 3: Verify the applicability and reliability of solutions

Experiment 1:

Cover Image Secret Data Algorithm

StABridge.png dataTest.txt (20 bytes) LSB1

As shown in Figure 100 below, a visual comparison is made between the original PNG image (left) and

stego LSB-1 PNG image after embedding data (right).

0

200

400

600

800

1000

1200

1400

1600

1800

LSB 1 LSB 2 LSB 3 LSB 4 LSB 5 LSB 6 LSB 7 LSB 8

MSE, large size data

Lean.bmp Modrian.bmp Tiger.bmp Cathedral.jpg

Edinburgh.jpg Lena.png Modrian.png StABridge.png

 pg. 113

Figure 100: The visual comparison between the original image and the stego image in LSB 1

The colour frequency histograms between the two images above were compared. The distribution, in

this example, was almost identical as the size of embedded data was negligible, as shown in Figure

101 below:

Figure 101: The histogram comparison between the cover image and stego image in LSB 1

Next, embedded data was extracted from the above stego image according to its Key information (LSB

1), and the secret data can be read accurately, as shown in Figure 102 below:

 pg. 114

Figure 102: The extracted result from the stego image by using the stego key

Solution 1: Presentation Domain Transformation (PDT)

Converting the stego image to a frequency domain, which is from a PNG file format to a JPEG. The

visual and histogram chart between the original stego image (PNG in left) and the newly converted

stego image (JPEG in right) are compared to establish differences and variations, as shown in Figures

103 & 104 below. Although under visual comparison the images appear identical, the colour frequency

distribution has been changed under the conversion as seen in the histogram comparison and is noted

by the red circles in the chart.

Figure 103: The visual comparison between the Original stego image and the Transformed stego image

 pg. 115

Figure 104: The histogram comparison between the Original stego image and the Transformed stego image

The same key (LSB 1) is used to extract the embedded data from the newly generated image (.jpg),

presented in the frequency domain, as shown in the Figure 105 below. Saving the image in JPEG format

can destroy the embedded message due to the manipulation of the JPEG (frequency domain)

compression.

Figure 105: The extracted result from the Transformed stego image by using the same stego key

 pg. 116

In addition, due to the lossy compression, saving this image back to the spatial domain (e.g. BMP,

PNG) will not recover the message, as shown in Figure 106:

Figure 106: The extracted result after transform back to the previous image format.

Solution 2: Chrominance Modification Algorithm (CMA)

The modified stego image can be generated from the original stego image due to the CMA algorithm.

This newly generated image has a negligible difference in colour intensity as its value is affected

through changing the value of chrominance. As shown in Figures 107 & 108 below, the comparison of

both the visual and histogram chart between the original stego image (left) and the newly modified

stego image (right) is established to look for the differences and variations. As with the PDT solution,

although under visual comparison the images appear identical, the colour frequency distribution has

been changed under the conversion and is noted by the red rectangles in the blue frequency chart of

the histograms in Figure 108.

 pg. 117

Figure 107: The visual comparison between the Original stego image and the Modified stego image

Figure 108: The histogram comparison between the Original stego image and the Modified stego image

By using the same key (LSB 1) to extract the embedded data from the newly modified stego image,

the data is unreadable, as shown in the Figure 109 below.

Figure 109: The extracted result from the Modified stego image by using the same stego key

 pg. 118

In addition, the secret data after this modification is still unrecoverable due to the randomness in the

algorithm modification during execution.

Experiment 2:

Cover Image Secret Data Algorithm

StABridge.png dataLarge.txt (119 KB) LSB 2

Firstly, the comparisons between the visual and histogram are established, as seen in Figures 110 &

111. Results show that the visuals are the same, due to the replacement of the lowest bits that cannot

significantly affect the quality of image. The differences, however, can be easily detected by using

histogram detection as the hidden data, in this case, has a large volume.

Figure 110: The visual comparison between the cover image and the stego image in LSB 2

Figure 111: The histogram comparison between the cover image and the stego image in LSB 2

 pg. 119

Solution 1: PDT

Convert the stego image format from PNG to JPEG. Although the images under visual comparison

appear identical, the histogram has a significant difference in the blue colour channel as the converted

JPEG image has a less ragged profile, as shown in Figure 112.

Figure 112: The histogram comparison between the Original stego image and the Transformed stego image

Next, comparing the extracted result between these two images in the Figure 113 below. The results

indicated that the extracted data was still not readable after converting back to the previous image

format.

Figure 113: The comparison of extracted result between the Original stego image and the Transformed stego
image by using the same stego key

 pg. 120

Solution 2: CMA

As shown in Figure 114, the comparison between the stego image and modified stego image can be

established after the execution of the CMA algorithm. Although the difference cannot be distinguished

from the visual detection, it can be found in the colour frequency histogram comparison, see Figure

115.

(NB: This histogram difference is appreciably lower than the converted stego image in solution1.)

Figure 114: The visual comparison between the Original stego image and the Modified stego image

Figure 115: The histogram comparison between the Original stego image and the Modified stego image

The data extracted result is still unreadable due to the change of colour intensity, as shown in Figure

116. Also, this data is unrecoverable because of the randomness in the CMA algorithm.

 pg. 121

Figure 116: The extracted result in the Modified stego image by using the same stego key

Experiment 3:

Cover Image Secret Data Algorithm

Lena.bmp dataSmall.txt (42 KB) LSB 2

As shown in Figure 117 below, there is a visual comparison between the original BMP image (left) and

the stego LSB 1 PNG image after embedding the secret data (right). The difference in visual comparison

is undiscoverable because of the low number of replaced bits in the embedding algorithm and the

bright background colour in the cover image.

Figure 117: The visual comparison between the cover image (Lena.bmp) and the stego image (Lena.png) in LSB
2

 pg. 122

The histogram is affected due to the large volume of data embedded, see Figure 118, a significant

“ragged profile” occurred in the stego image colour distribution.

Figure 118: The histogram comparison between the cover image (Lena.bmp) and the stego image (Lena.png) in LSB 2

Solution 1: PDT

As with the previous experiment, the image under human visual detection is unaffected by

implementing the image presentation conversion, even from the “lossless” image file to the “lossy”.

The comparison of both the visual detection and colour frequency histogram are shown in Figures 119

and 120. Although the images are identical under visual detection, an appreciable difference is

displayed in the histogram detection as the distribution of colour intensity has become extremely

smooth.

Figure 119: The visual comparison between the Original stego image and the Converted stego image

 pg. 123

Figure 120: The histogram comparison between the Original stego image and the Converted stego image

The extracted data is unreadable along with the change of colour intensity in the image. As seen in

Figure 121, the data extracted result has been compared between the original stego image (left) and

the converted stego (right) image by using the same key. Also the data is unrecoverable because of

the lossy compression during the image presentation conversion.

Figure 121: Comparison of the extracted result between the Original stego image (LSB 2) and the Converted
stego image (LSB 2) from using the same key

 pg. 124

Solution 2: CMA

As with the above experiments, the visual and histogram comparison between the stego image and

modified stego image can be established and the difference can be distinguished from the histogram

detection only, as seen in Figure 122 & 123 below.

Figure 122: The visual comparison between the Original stego image (LSB 2) and the Modified stego image (LSB
2)

Figure 123: The histogram comparison between the Original stego image and the Modified stego image

 pg. 125

The data extracted result is unreadable and is unrecoverable due to the randomness of the CMA

algorithm, as shown in Figure 124.

Figure 124: The extracted result in the Modified stego image by using the same stego key

4.3. Analysis
Either the Presentation Domain Transform (PDT) or Chrominance Modification Algorithm (CMA) can

break the insider hiding confidential data of images to prevent potential data loss behaviour. In order

to identify their efficiency, the relevant measurement units were analysed through these three

experiments respectively.

In Experiment 1:

Cover Image Secret Data Algorithm

StABridge.png dataTest.txt (20 bytes) LSB 1

As shown in Figure 125 below, the PSNR is computed by the MATLAB insider library. In the PDT

solution, PSNR = 39.2671; in the CMA solution, PSNR = 43.2133.

 pg. 126

Figure 125: The PSNR comparison between the PDT solution and CMA solution in StABrdige.png with LSB 1

Next, the MSE is compared between these solutions. Where, in the PDT solution, MSE = 7.6979; in the

CMA, MSE = 3.1028, as shown in Figure 126 below:

Figure 126: The MSE comparison between the PDT solution and CMA solution in StABridge.png with LSB 1

Particularly, in the comparison of image differences, an obvious benefit is from the CMA solution,

which reduces to around 50% value of the PDT value. Therefore, by using the CMA solution, the newly

generated image has not only a higher quality, but also a lower difference with the original image.

In Experiment 2:

Cover Image Secret Data Algorithm

StABridge.png dataLarge.txt (119 KB) LSB 2

As shown in Figure 127 & 128 below, the PSNR and MSE is computed respectively. In the PDT solution,

PSNR = 38.4364, MSE = 9.3206; in the CMA solution, PSNR = 43.2020, MSE = 3.1109. Again, the CMA

solution has a better result than PDT, and a significant optimization is reflected in the comparison as

well, which was reduced to around 66% of the PDT value.

Figure 127: The PSNR comparison between the PDT solution and CMA solution in StABrdige.png with LSB 2

 pg. 127

Figure 128: The MSE comparison between the PDT solution and CMA solution in StABridge.png with LSB 2

In Experiment 3:

Cover Image Secret Data Algorithm

Lena.bmp dataSmall.txt (42 KB) LSB 2

As with the above evaluations, a higher image quality can be obtained after executing the CMA

solution, and compared with the PDT solution, it has a negligible difference to the original image, as

shown in Figure 129 to 130.

Figure 129: The PSNR comparison between the PDT solution and CMA solution in Lena.bmp with LSB 2

Figure 130: The MSE comparison between the PDT solution and the CMA solution in Lena.bmp with LSB 2

Consequently, from the above initial comparisons, for these images, a better image can be generated

by using the CMA solution. Although both solutions can generate the images with a relative good

quality, the CMA solution can avoid higher differences in the images.

 pg. 128

5. Evaluation

In order to evaluate which solution is better between PDT and CMA, both solutions should be

implemented in more images. In the following experiments, the images which were used to distinguish

the visual difference from the above Experiment Section Phase 1 were selected randomly, and the

corresponding experimental results are displayed below. Four images are used to execute the relevant

LSB algorithms based on the variable replaced bits n, to prove the reliability of the initial evaluation;

these are StABridge.png, Edinburgh.jpg, MondrianTree.bmp and Lena.bmp.

In StABridge.png

Comparing the PSNR result in Tables 12 & 13, in the PDT solution, the value is not only lower than

CMA, but is also irregular. The quality is reduced towards the end due to the increase of the target

image distortion which is caused by the large volume of embedding data. Also, the average of each

embedded data by using LSB from 1 to 8 is different in PDT, which is subject to the size of the

embedding data and its embedding method (horizontal & randomness in this case.). Instead, in the

CMA solution, the result value is extremely regular, this balance is not broken by the other factors of

data size and embedding method. The average is maintained at 43.20.

StABridge.png, PSNR result in PDT

Stego-
LSB1

Stego-
LSB2

Stego-
LSB3

Stego-
LSB4

Stego-
LSB5

Stego-
LSB6

Stego-
LSB7

Stego-
LSB8

PSNR PSNR PSNR PSNR PSNR PSNR PSNR PSNR

ShortSizeData 39.2671 39.267 39.2667 39.2661 39.2644 39.2567 39.2129 39.2377

SmallSizeData 39.1274 38.9408 38.6779 38.2625 36.3571 32.5495 29.844 34.8547

LargeSizeData 38.4364 37.9593 37.1001 34.1189 29.291 26.3126 32.1319

ShortSizeData Random 39.2674 39.2669 39.2665 39.2662 39.2659 39.2516 39.2163 39.1604

SmallSizeData Random 39.123 38.8875 38.4847 37.3611 34.7773 30.9096 27.041 22.5478

LargeSizeData Random 38.4472 36.3625 35.8581 32.3161 28.0115 23.7552 19.2674

Table 12: The PSNR result in PDT solution with variable replaced bits, in StABridge.png

 pg. 129

StABridge.png, PSNR result in CMA

Stego-
LSB1

Stego-
LSB2

Stego-
LSB3

Stego-
LSB4

Stego-
LSB5

Stego-
LSB6

Stego-
LSB7

Stego-
LSB8

PSNR PSNR PSNR PSNR PSNR PSNR PSNR PSNR

ShortSizeData 43.2133 43.2135 43.2102 43.2087 43.2073 43.2078 43.2114 43.2106

SmallSizeData 43.2041 43.2048 43.2084 43.2054 43.2097 43.209 43.2072 43.2092

LargeSizeData 43.202 43.1926 43.1911 43.1966 43.2012 43.2048 43.1995

ShortSizeData Random 43.2068 43.2094 43.211 43.2091 43.2075 43.2112 43.2115 43.2098

SmallSizeData Random 43.2082 43.2103 43.2015 43.1982 43.2088 43.2046 43.2114 43.2214

LargeSizeData Random 43.1996 43.2013 43.1962 43.2005 43.1988 43.2007 43.2326

Table 13: The PSNR result in CMA solution with variable replaced bits, in StABridge.png

In the following Tables 14 & 15, the MSE result is displayed from implementing both the PDT solution

and the CMA solution respectively. Firstly, the MSE value in PDT is unstable, and the fluctuation in the

result is appreciable. The error difference (MSE) between the original image and the newly generated

image has a significant rise due to the increasing size of embedded data. In addition, this fluctuation

can be affected by the algorithm embedding method (horizontal & randomness). Next, the MSE result

has an extremely low value in the CMA solution, the average is maintained at around 3.1 and does not

appear to be affected by the other factors.

StABridge.png, MSE result in PDT

Stego-
LSB1

Stego-
LSB2

Stego-
LSB3

Stego-
LSB4

Stego-
LSB5

Stego-
LSB6

Stego-
LSB7

Stego-
LSB8

MSE MSE MSE MSE MSE MSE MSE MSE

ShortSizeData 7.6979 7.698 7.6985 7.6996 7.7027 7.7163 7.7946 7.7501

SmallSizeData 7.9496 8.2985 8.8164 9.7013 15.0444 36.1518 67.4038 21.2625

LargeSizeData 9.3206 10.4029 12.6786 25.188 76.5566 151.9923 39.8002

ShortSizeData Random 7.6973 7.6982 7.699 7.6995 7.7 7.7254 7.7884 7.8892

SmallSizeData Random 7.9576 8.4009 9.2175 11.9389 21.6448 52.7373 128.5234 361.6588

LargeSizeData Random 9.2973 15.0257 16.876 38.1482 102.7841 273.878 769.7323

Table 14: The MSE result in PDT solution with variable replaced bits, in StABridge.png

 pg. 130

StABridge.png, MSE result in CMA

Stego-
LSB1

Stego-
LSB2

Stego-
LSB3

Stego-
LSB4

Stego-
LSB5

Stego-
LSB6

Stego-
LSB7

Stego-
LSB8

MSE MSE MSE MSE MSE MSE MSE MSE

ShortSizeData 3.1028 3.1026 3.105 3.1061 3.107 3.1067 3.1042 3.1047

SmallSizeData 3.1094 3.1088 3.1062 3.1084 3.1054 3.1058 3.1072 3.1057

LargeSizeData 3.1109 3.1176 3.1187 3.1147 3.1114 3.1089 3.1126

ShortSizeData Random 3.1074 3.1056 3.1044 3.1058 3.1069 3.1043 3.104 3.1053

SmallSizeData Random 3.1064 3.1049 3.1112 3.1136 3.106 3.109 3.1041 3.097

LargeSizeData Random 3.1126 3.1114 3.115 3.1119 3.1132 3.1118 3.089

Table 15: The MSE result in CMA solution with variable replaced bits, in StABridge.png

In Edinburgh.jpg

Only the horizontal embedding method was implemented to conceal the data during the algorithm

process In the Edinburgh.jpg image. The PDT solution can affect the decrease in the PSNR result,

although the reduction is not appreciable. Instead, in the CMA solution, the PSNR value is maintained

at around 43.20, as shown in Tables 16 & 17 below:

Edinburgh.jpg, PSNR result in PDT

Stego-
LSB1

Stego-
LSB2

Stego-
LSB3

Stego-
LSB4

Stego-
LSB5

Stego-
LSB6

Stego-
LSB7

Stego-
LSB8

PSNR PSNR PSNR PSNR PSNR PSNR PSNR PSNR

ShortSizeData 40.2031 40.203 40.2027 40.2022 40.1995 40.191 40.1736 40.1655

SmallSizeData 40.0351 39.811 39.3725 38.7516 36.2633 32.6194 29.6045 35.5168

LargeSizeData 39.1836 38.3691 37.29 33.5712 29.1961 26.0479 32.8166

Table 16: The PSNR result in PDT solution with variable replaced bits, in Edinburgh.jpg

Edinburgh.jpg, PSNR result in CMA

Stego-
LSB1

Stego-
LSB2

Stego-
LSB3

Stego-
LSB4

Stego-
LSB5

Stego-
LSB6

Stego-
LSB7

Stego-
LSB8

PSNR PSNR PSNR PSNR PSNR PSNR PSNR PSNR

ShortSizeData 43.203 43.2016 43.2017 43.1997 43.2025 43.2005 43.2009 43.2023

SmallSizeData 43.1937 43.1948 43.1919 43.1949 43.1985 43.1929 43.1981 43.1916

LargeSizeData 43.1907 43.1831 43.1863 43.1865 43.1904 43.2027 43.1858

Table 17: The PSNR result in CMA solution with variable replaced bits, in Edinburgh.jpg

 pg. 131

In the MSE comparison, as shown in Tables 18 & 19. The MSE value has a significant rise with the

increasing embedded data size in the PDT solution. This means the difference between the original

image and the newly generated image is increased through LSB 1 to LSB 8. However, in the CMA

solution, the MSE value is stable around 3.11.

Edinburgh.jpg, MSE result in PDT

Stego-
LSB1

Stego-
LSB2

Stego-
LSB3

Stego-
LSB4

Stego-
LSB5

Stego-
LSB6

Stego-
LSB7

Stego-
LSB8

MSE MSE MSE MSE MSE MSE MSE MSE

ShortSizeData 6.2055 6.2055 6.206 6.2067 6.2105 6.2227 6.2477 6.2593

SmallSizeData 6.4502 6.7917 7.5133 8.6681 15.3727 35.5749 71.2253 18.2556

LargeSizeData 7.8472 9.4661 12.136 28.5736 78.2477 161.5429 33.9955

Table 18: The MSE result in PDT solution with variable replaced bits, in Edinburgh.jpg

Edinburgh.jpg, MSE result in CMA

Stego-
LSB1

Stego-
LSB2

Stego-
LSB3

Stego-
LSB4

Stego-
LSB5

Stego-
LSB6

Stego-
LSB7

Stego-
LSB8

MSE MSE MSE MSE MSE MSE MSE MSE

ShortSizeData 3.1102 3.1112 3.1111 3.1125 3.1105 3.1119 3.1117 3.1106

SmallSizeData 3.1168 3.116 3.1181 3.1159 3.1134 3.1174 3.1136 3.1183

LargeSizeData 3.119 3.1244 3.1221 3.122 3.1192 3.1103 3.1225

Table 19: The MSE result in CMA solution with variable replaced bits, in Edinburgh.jpg

In MondrianTree.bmp

In the ModrianTree.bmp image, the PDT solution can cause the quality (PSNR) to reduce with the

increase in embedded data. The change is not appreciable as the size of the target image is relatively

big. The CMA approach still maintains the quality (PSNR) around 43.15. Moreover, in the MSE result

tables, the difference (MSE) has a slow rise with the increase of distortion in the original image in the

PDT solution. Instead, in the CMA solution, this value averages around 3.144, as shown in Tables 20

to 23 below.

 pg. 132

MondrianTree.bmp, PSNR result in PDT

Stego-
LSB1

Stego-
LSB2

Stego-
LSB3

Stego-
LSB4

Stego-
LSB5

Stego-
LSB6

Stego-
LSB7

Stego-
LSB8

PSNR PSNR PSNR PSNR PSNR PSNR PSNR PSNR

ShortSizeData 49.382 49.382 49.3812 49.3799 49.3774 49.3602 49.3386 49.3223

SmallSizeData 49.0966 48.7789 48.1615 47.5428 44.7677 40.7918 38.0238 43.4996

LargeSizeData 48.7208 48.0607 46.8889 45.878 42.5559 37.4933 34.3983 40.5545

Table 20: The PSNR result in PDT solution with variable replaced bits, in MondrianTree.bmp

MondrianTree.bmp, PSNR result in CMA

Stego-
LSB1

Stego-
LSB2

Stego-
LSB3

Stego-
LSB4

Stego-
LSB5

Stego-
LSB6

Stego-
LSB7

Stego-
LSB8

PSNR PSNR PSNR PSNR PSNR PSNR PSNR PSNR

ShortSizeData 43.1565 43.1563 43.1579 43.156 43.1555 43.1573 43.1561 43.1554

SmallSizeData 43.1549 43.1569 43.1553 43.1568 43.1558 43.1551 43.1585 43.1539

LargeSizeData 43.1544 43.1545 43.1568 43.1566 43.1558 43.1558 43.1617 43.1558

Table 21: The PSNR result in CMA solution with variable replaced bits, in MondrianTree.bmp

MondrianTree.bmp, MSE result in PDT

Stego-LSB5
Stego-
LSB1

Stego-
LSB2

Stego-
LSB3

Stego-
LSB4

Stego-
LSB5

Stego-
LSB6

Stego-
LSB7

Stego-
LSB8

MSE MSE MSE MSE MSE MSE MSE MSE

ShortSizeData 0.7497 0.7497 0.7498 0.7501 0.7505 0.7535 0.7572 0.7601

SmallSizeData 0.8006 0.8614 0.993 1.145 2.1692 5.4187 10.2494 2.9048

LargeSizeData 0.873 1.0163 1.331 1.6799 3.6099 11.5812 23.6186 5.7231

Table 22: The MSE result in PDT solution with variable replaced bits, in MondrianTree.bmp

MondrianTree.bmp, MSE result in CMA

Stego-
LSB1

Stego-
LSB2

Stego-
LSB3

Stego-
LSB4

Stego-
LSB5

Stego-
LSB6

Stego-
LSB7

Stego-
LSB8

MSE MSE MSE MSE MSE MSE MSE MSE

ShortSizeData 3.1436 3.1438 3.1426 3.144 3.1443 3.1431 3.1439 3.1444

SmallSizeData 3.1448 3.1433 3.1445 3.1434 3.1441 3.1446 3.1421 3.1455

LargeSizeData 3.1451 3.1451 3.1434 3.1435 3.1441 3.142 3.1399 3.1441

Table 23: The MSE result in CMA solution with variable replaced bits, in MondrianTree.bmp

 pg. 133

However, in this case, the CMA solution is not better than the PDT; the specific explanation can be

found in the MSE tables. Besides the serious distortion to images, the newly generated image has a

tiny difference in the PDT solution, and the differences value can be kept low as 1.

In Lena.bmp

For the below Tables 24 to 27, and as above with the StABridge.png, a better quality image can be

generated by the CMA solution as it has a higher PSNR value and a lower MSE compared with the PDT

solution. This result can be maintained at 43.20 in PSNR and 3.12 in MSE. But the fluctuation can be

caused by the PDT solution, due to the increase in the embedded data size. The PSNR value is then

decreased and MSE value is increased.

Lena.bmp, PSNR result in PDT

Stego-
LSB1

Stego-
LSB2

Stego-
LSB3

Stego-
LSB4

Stego-
LSB5

Stego-
LSB6

Stego-
LSB7

Stego-
LSB8

PSNR PSNR PSNR PSNR PSNR PSNR PSNR PSNR

ShortSizeData 35.6271 35.627 35.627 35.6268 35.6262 35.623 35.6111 35.6158

SmallSizeData 35.5889 35.4922 35.3722 35.1392 34.2232 31.7085 30.0484 33.4555

LargeSizeData 35.5377 35.3511 35.0789 34.5057 32.7534 29.1568 26.6446 31.5906

ShortSizeData Random 35.6272 35.6273 35.6275 35.6265 35.6263 35.6232 35.609 35.6068

SmallSizeData Random 35.5885 35.5133 35.3664 34.8807 33.5634 30.9852 27.4113 23.6067

LargeSizeData Random 35.5312 35.355 35.0192 34.0965 31.8508 28.4506 24.3247 20.3244

Table 24: The PSNR result in PDT solution with variable replaced bits, in Lena.bmp

Lena.bmp, PSNR result in CMA

Stego-
LSB1

Stego-
LSB2

Stego-
LSB3

Stego-
LSB4

Stego-
LSB5

Stego-
LSB6

Stego-
LSB7

Stego-
LSB8

PSNR PSNR PSNR PSNR PSNR PSNR PSNR PSNR

ShortSizeData 43.1766 43.1808 43.1822 43.1798 43.1774 43.1807 43.181 43.1794

SmallSizeData 43.1759 43.1774 43.1816 43.191 43.2053 43.2094 43.2163 43.1685

LargeSizeData 43.178 43.1795 43.1783 43.1945 43.2101 43.2118 43.2155 43.1726

ShortSizeData Random 43.1745 43.1826 43.1758 43.1796 43.1803 43.1822 43.1838 43.1789

SmallSizeData Random 43.1793 43.1795 43.1803 43.1807 43.1811 43.19 43.2054 43.2097

LargeSizeData Random 43.1786 43.1784 43.1758 43.1811 43.1821 43.2028 43.2355 43.2435

Table 25: The PSNR result in CMA solution with variable replaced bits, in Lena.bmp

 pg. 134

Lena.bmp, MSE result in PDT

Stego-
LSB1

Stego-
LSB2

Stego-
LSB3

Stego-
LSB4

Stego-
LSB5

Stego-
LSB6

Stego-
LSB7

Stego-
LSB8

MSE MSE MSE MSE MSE MSE MSE MSE

ShortSizeData 17.7979 17.7982 17.7983 17.7991 17.8017 17.8146 17.8637 17.8443

SmallSizeData 17.9551 18.3593 18.8738 19.914 24.5903 43.8767 64.3038 29.345

LargeSizeData 18.168 18.9659 20.1927 23.0417 34.4939 78.9581 140.8067 45.0837

ShortSizeData Random 17.7974 17.7972 17.7965 17.8004 17.8013 17.814 17.8724 17.8814

SmallSizeData Random 17.9568 18.2706 18.899 21.1352 28.6245 51.8273 118.0192 283.4065

LargeSizeData Random 18.1953 18.9488 20.4718 25.3181 42.4617 92.9019 240.2232 603.4446

Table 26: The MSE result in PDT solution with variable replaced bits, in Lena.bmp

Lena.bmp, MSE result in CMA

Stego-
LSB1

Stego-
LSB2

Stego-
LSB3

Stego-
LSB4

Stego-
LSB5

Stego-
LSB6

Stego-
LSB7

Stego-
LSB8

MSE MSE MSE MSE MSE MSE MSE MSE

ShortSizeData 3.1291 3.1261 3.1251 3.1268 3.1286 3.1262 3.1259 3.1271

SmallSizeData 3.1296 3.1285 3.1255 3.1188 3.1085 3.1056 3.1006 3.135

LargeSizeData 3.1281 3.127 3.1279 3.1163 3.105 3.1038 3.1012 3.132

ShortSizeData Random 3.1306 3.1248 3.1297 3.1269 3.1264 3.1251 3.1239 3.1277

SmallSizeData Random 3.1272 3.127 3.1264 3.1262 3.1259 3.1195 3.1084 3.1053

LargeSizeData Random 3.1277 3.1278 3.1297 3.1258 3.1251 3.1103 3.087 3.0813

Table 27: The MSE result in CMA solution with variable replaced bits, in Lena.bmp

As mentioned in the Literature Review Section above, the pixel value can be changed to implement

data hiding in the cover image. Hence, in the stego image, the change of pixels can affect the

distribution of the embedded data to break the extracted result and make the message unreadable.

Any solutions to protect against corporate loss in a DLP system should be implemented efficiently and

effectively, without reducing the quality of the target image, as many images sent are normal images

in network traffic. This is the reason why these two solutions (PDT & CMA) were presented rather

than an implementation of the image blur or image resize directly.

From the above details, in comparing the two solutions, an irregular result can be generated by using

the PDT solution, whether in the PSNR or in the MSE. The quality reduces and the error differences

between the original image and the newly generated image becomes appreciable with the increase

of original image distortion, caused by a large volume of embedded data.

 pg. 135

However, for the real data loss threats that are caused by steganography, the advanced algorithms

would not cause a serious image distortion, otherwise, the ‘malicious’ images can be identified from

a blacklist image stream by network monitoring tools. In the experiments above, the data output

conveys a wider set of results to represent how the two proposed solutions can break steganographic

images in various ways. (NB: The results of LSB 1 and LSB 2 are extremely close to the other advanced

algorithms.)

Furthermore, both solutions (PDT & CMA) can be implemented easily to prevent the potential data

loss threat through steganography. The CMA solution has a better execution result than the PDT, the

newly generated image can be stably maintained in PSNR around 43.20 (±0.1) and MSE around 3.10

(±0.1).

However, an exception should be analysed, the large resolution image “ModrianTree.bmp”. In this

case, a better result was from the PDT solution rather than the CMA, especially shown in the MSE

Tables. The PDT’s result started from a very small value, almost one quarter of the CMA result. In

order to identify the reasons for the exception, a hypothesis is defined that the influence is caused by

the large resolution of the target image. Subsequently, extra experiments were implemented; five of

the same images with different resolutions were selected from the Internet [60], and implementing

the PDT on these images to verify the possibility of this hypothesis. The relevant images and details

are shown in Figure 131 and Table 28 below.

Figure 131: The experimental image

 pg. 136

Original
Image

Size Resolution
After
PDT

New
Image

Size Resolution PSNR MSE

1.png 77.9KB 320 * 160 1.jpg 14.7KB 320 * 160 39.6229 7.0924

2.png 281KB 640*320 2.jpg 49.6KB 640*320 40.8765 5.3141

3.png 424KB 800 * 400 3.jpg 74.2KB 800 * 400 41.0855 5.0644

4.png 669KB 1024* 512 4.jpg 114KB 1024* 512 41.4569 4.6493

5.png 2.54MB 2048 * 1024 5.jpg 411KB 2048 * 1024 40.9211 5.2072

Table 28: The PSNR and MSE results in the experimental images after executing the PDT solution

From the above table, the MSE did not reduce with the increase of image resolution, the change was

a fluctuation, and it is hard to identify the position of lowest point. Although the image resolution can

affect the result, it is not the unique factor.

 Furthermore, as shown in the left Figure 132 and below Table 29, this

image has a relatively low resolution 253 * 450. Theoretically, the PSNR

and MSE results should be between the value of 1.png and 2.png from the

above Table 29, but both values were out of the expected boundaries,

where the PSNR is 52.8918 and the MSE is 0.3341. Therefore, from these

tests, this hypothesis can be defined as correct, the large image resolution

can improve the generated result, but this is not the only factor that

causes the change. There may be other factors, such as “background

colour intensity” that we will investigate further in the future research.

Figure 132: Cathedral.jpg

Table 29: The PSNR and MSE result in Cathedral.jpg image after executing the PDT solution

Consequently, both solutions are good options to prevent the data loss threat in DLP systems, by

changing the pixel to break potential insider hidden data. Comparing these two solutions, PDT can be

implemented easily and effectively as the target image is compressed to a JPEG image directly, the

pixels would not be loaded and transformed to other forms (such as, binary form) in the system.

Instead, although the implementation of the CMA solution can cause extra computing time, it can

generate a more regular result, and not only does this have a higher quality and lower differences with

the original image and the newly generated stego image, the result would not be affected by other

factors, such as image resolution and image background colour intensity.

Resolution PSNR MSE

253 * 450 52.8918 0.3341

 pg. 137

6. Conclusion

In today’s digital era, data breaches are a common phenomenon for many companies. Whether in

financial or reputational circumstances, it is a serious cost that must be mitigated where possible.

Although DLP systems can protect industry against the occurrence of data breaches, the application

of image steganography can escape the monitoring system, wherein the data bypasses the detection

by a boundary network and is maliciously or accidentally exported out of a company’s systems. Thus,

in order to prevent this kind of transmission, two solutions were presented and verified in this thesis

to be used in the field of steganography; Presentation Domain Transform (PDT) and Chrominance

Modification Algorithm (CMA).

Under PDT, implementing the conversion of image presentation domains prevents potential data

breaches in steganography. The conversion to a JPEG format can affect image pixels, make the image

histogram smoother, while the extracted data will be unreadable due to the lossy compression

process in the generation of the JPEG image. Also the embedded data is unrecoverable even if

converted back to the previous image presentation domain as the quantization process in the jpg

compression is irreversible. Generally, in LSB algorithms, the JPEG image is not used for hiding

messages as its generation can cause the changing of pixels through its two lossy processes, DCT and

Quantization.

Under CMA, implementing the modification of image chrominance prevents the potential data loss

threat in steganography. The random operations (1) in chrominance can cause changes to the pixel

value. The embedded data can be affected due to the fluctuation of pixel values, making the extracted

result unreadable. Also, this extracted data is unrecoverable because of the randomness modification

in this algorithm.

Both solutions use the pixel change to break the embedded data; one utilizes the lossy process

“Quantization” in the JPEG image generation; the other is dependent on the change of image

chrominance. Subsequently, the evaluation of the above solutions was verified. According to the

experimental data, the CMA solution provides a better image which consists of a higher quality (PSNR)

and lower differences (MSE). Furthermore, the generated result is stable, which would not be affected

by other factors. Instead, the generated image from the PDT is not as good as expected, although the

implementation is fast, the result can be affected by multiple factors, such as image resolution and

image background colour intensity.

Consequently, for the boundary network, both solutions can be setup within the DLP system to cause

fluctuation of image pixel values, so that the newly generated images are still good quality images but

 pg. 138

with broken hidden messages, especially if this image has hidden data through the steganography LSB

algorithm. Although the CMA is a better option, the PDT can achieve the same purpose and should be

considered in future work in the research field of steganography.

 pg. 139

7. Future Works

In this thesis, two solutions (PDT & CMA) were originally proposed and implemented within DLP

system. Although both are effective, they are only examined with respect to the applicability of spatial

domain images. However, in real steganography cases, the carrier is often chosen from a wide range,

such as a frequency image (JPEG), voice file, video file and IP packets. Therefore, in future research,

the solutions applicability will be examined in multiple format images. Other formats and carrier

algorithms, especially voice files due to their higher embedding capacity and redundancy, will be

researched to prevent potential data loss through steganography in DLP systems.

 pg. 140

Bibliography

[1] C. Q. Lu, “INFORMATION LEAKAGE & DATA LOSS PREVENTION,” Thesis, University of Waterloo, 2012.

[2] RiskBasedSecurity, “Data Breach QuickView – 2015 Data Breach Trends,” 2015. [Online]. Available:

https://www.riskbasedsecurity.com/2015-data-breach-quickview/. [Accessed: 21-Jan-2017].

[3] VORMETRIC, “Trends and Future Directions in Data Security GLOBAL EDITION,” 2015.

[4] P. Kanagasingham, “Data Loss Prevention,” 2008. [Online]. Available at:

http://www.getadvanced.net/pdfs/SANS%20Institute%20Data_Loss_Prevention.pdf/.

[Accessed: 21-Oct-2016]

[5] E. Zielińska, W. Mazurczyk, and K. Szczypiorski, “Trends in steganography,” Commun. ACM, vol. 57, no.

3, pp. 86–95, Mar. 2014.

[6] C. B. S and P. K. K. Asst, “Least Significant Bit algorithm for image steganography,” Int. J. Adv. Comput.

Technol. Int. J. Adv. Comput. Technol., vol. 34, no. 4.

[7] J. Codr, “Unseen: An Overview of Steganography and Presentation of Associated Java Application C-

Hide.”

[8] F. Huang, Y. Zhong, and J. Huang, “Edge Adaptive Image Steganography based on LSB Matching

Revisited Algorithm,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics), vol. 8389 LNCS, no. 2, pp. 19–31, 2014.

[9] A. Cheddad, J. Condell, K. Curran, and P. Mc Kevitt, “Digital Image Steganography: Survey and Analysis

of Current Methods.”

[10] M. Rouse, “What is data loss prevention (DLP)? - Definition from WhatIs.com,” 2014. [Online].

Available: http://whatis.techtarget.com/definition/data-loss-prevention-DLP. [Accessed: 21-Jan-2017].

[11] A. Khurana and B. M. Mehta, “Comparison of LSB and MSB based Image Steganography,” IJCST, vol. 3,

no. 3.

[12] N. Hamid, “Enhancing the Robustness of Digital Image Steganography Using ECC and Redundancy,” .

December 2014. [Online] Available:

https://www.researchgate.net/publication/249645177_Enhancing_the_Robustness_of_Digital_Image

_Steganography_Using_ECC_and_Redundancy.. [Accessed: 8-Jun-2016].

[13] SelectHub, “Top Data Loss Prevention | Comparison and Reviews 2017 - SelectHub,” 2017. [Online].

Available: https://selecthub.com/categories/data-loss-prevention. [Accessed: 13-May-2016].

[14] J. E Dunn, “The UK’s 15 most infamous data breaches | Security | Techworld,” techworld, 2016.

[Online]. Available: http://www.techworld.com/security/uks-most-infamous-data-breaches-2016-

http://www.getadvanced.net/pdfs/SANS%20Institute%20Data_Loss_Prevention.pdf

 pg. 141

3604586/. [Accessed: 04-Jan-2017].

[15] K. Kokalitcheva, “Snapchat Admits Getting Scammed And Leaking Employee Data | Fortune.com,”

FORTUNE, 2016. [Online]. Available: http://fortune.com/2016/02/29/snapchat-employee-data-

breach/. [Accessed: 21-Jan-2017].

[16] B. Fung, “A Snapchat security breach affects 4.6 million users. Did Snapchat drag its feet on a fix? - The

Washington Post,” The Washington Post, 2014. [Online]. Available:

https://www.washingtonpost.com/news/the-switch/wp/2014/01/01/a-snapchat-security-breach-

affects-4-6-million-users-did-snapchat-drag-its-feet-on-a-fix/?utm_term=.e43d8826653b. [Accessed:

21-Sep-2016].

[17] G. Shih, “Facebook admits year-long data breach exposed 6 million users | Reuters,” TECHNOLOGY

NEWS , 2013. [Online]. Available: http://uk.reuters.com/article/net-us-facebook-security-

idUSBRE95K18Y20130621. [Accessed: 16-May-2017].

[18] L. Kelion, “Apple toughens iCloud security after celebrity breach - BBC News,” BBC News, 2014.

[Online]. Available: http://www.bbc.co.uk/news/technology-29237469. [Accessed: 11-Mar-2016].

[19] BBC, “Apple confirms accounts compromised but denies security breach - BBC News,” BBC News, 2014.

[Online]. Available: http://www.bbc.co.uk/news/technology-29039294. [Accessed: 11-Mar-2016].

[20] Help Net Security, “SQL injection has surfaced as the no. 1 attack in 2015 - Help Net Security,” 2015.

[Online]. Available: https://www.helpnetsecurity.com/2015/12/11/sql-injection-has-surfaced-as-the-

no-1-attack-in-2015/. [Accessed: 21-Jan-2017].

[21] CALYPTIX, “Top 7 Network Attack Types in 2015,” Calyptix Security, 2015. [Online]. Available:

http://www.calyptix.com/top-threats/top-7-network-attack-types-in-2015-so-far/. [Accessed: 07-Jan-

2017].

[22] “McAfee Labs Threats Report: May 2015,” 2015. [Online]. Available:

http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q1-2015.pdf/. [Accessed:19-Mar-

2016]

[23] Ernst&Young, “Data loss prevention Keeping your sensitive data,” October, 2011.

[24] L. L. . Securosis, “Understanding and Selecting a Data Loss Prevention Solution,” pp. 1–26, 2010.

[25] Symantec, “Symantec Data Loss Prevention Solution,” 2015. [Online] Available:

https://www.symantec.com/en/uk/products/information-protection/data-loss-prevention/.

[Accessed: 23-Mar-2016].

[26] McAfee, “McAfee Total Protection for Data Loss Prevention Build a Foundation for Complete Data

Protection,” 2014.

 pg. 142

[27] S. Liu and R. Kuhn, “Data Loss Prevention,” IT Pro, pp. 10–13, 2010.

[28] J. Fridrich, Steganography in Digital Media : Principles, Algorithms, and Applications. Cambridge

University Press, 2009.

[29] S. Arora and S. Anand, “A Proposed Method for Image Steganography using Edge Detection,” Res. Cell

An Int. J. Eng. Sci., vol. 8, pp. 2229–6913, 2013.

[30] D.-C. Lou and C.-H. Hu, “LSB steganographic method based on reversible histogram transformation

function for resisting statistical steganalysis,” Inf. Sci. (Ny)., vol. 188, pp. 346–358, 2012.

[31] X. Li, B. Yang, D. Cheng, and T. Zeng, “A Generalization of LSB Matching,” IEEE Signal Process. Lett., vol.

16, no. 2, 2009.

[32] B. J. Mohd, S. Abed, T. Al-Hayajneh, and S. Alouneh, “FPGA hardware of the LSB steganography

method,” in 2012 International Conference on Computer, Information and Telecommunication

Systems (CITS), 2012, pp. 1–4.

[33] A. Kumar and R. Sharma, “A Secure Image Steganography Based on RSA Algorithm and Hash-LSB

Technique,” Int. J. Adv. Res. Comput. Sci. Softw. Eng., vol. 3, no. 7, pp. 2277–128, 2013.

[34] K. N. Chaturvedi, “A Novel Approach for Data Hiding using LSB on Edges of a Gray Scale Cover Images,”

Int. J. Comput. Appl., vol. 86, no. 7, pp. 975–8887, 2014.

[35] D.-C. Wu and W.-H. Tsai, “A steganographic method for images by pixel-value differencing,” 2003.

[36] J. K. Mandal and D. Das, “Colour Image Steganography Based on Pixel Value Differencing in Spatial

Domain,” Int. J. Inf. Sci. Tech., vol. 2, no. 4, 2012.

[37] V. Nagaraj, V. Vijayalakshmi, and G. Zayaraz, “Color Image Steganography based on Pixel Value

Modification Method Using Modulus Function,” IERI Procedia, vol. 4, pp. 17–24, 2013.

[38] Y. K. Jain and R. R. Ahirwal, “A Novel Image Steganography Method With Adaptive Number of Least

Significant Bits Modification Based on Private Stego-Keys,” Ahirwal Int. J. Comput. Sci. Secur., no. 41,

2010.

[39] C.-H. Yang, C.-Y. Weng, S.-J. Wang, and H.-M. Sun, “Adaptive Data Hiding in Edge Areas of Images With

Spatial LSB Domain Systems,” IEEE Trans. Inf. Forensics Secur., vol. 3, no. 3, pp. 488–497, Sep. 2008.

[40] K.-H. Jung, K.-J. Ha, and K.-Y. Yoo, “Image Data Hiding Method Based on Multi-Pixel Differencing and

LSB Substitution Methods,” in 2008 International Conference on Convergence and Hybrid Information

Technology, 2008, pp. 355–358.

[41] Z. Hanling, G. Guangzhi, and X. Caiqiong, “Image Steganography Using Pixel-Value Differencing,” in

2009 Second International Symposium on Electronic Commerce and Security, 2009, pp. 109–112.

 pg. 143

[42] W.-J. Chen, C.-C. Chang, and T. H. N. Le, “High payload steganography mechanism using hybrid edge

detector,” Expert Syst. Appl., vol. 37, no. 4, pp. 3292–3301, Apr. 2010.

[43] Y. Qiudong and X. Liu, “A New LSB Matching Steganographic Method Based on Steganographic

Information Table,” in 2009 Second International Conference on Intelligent Networks and Intelligent

Systems, 2009, pp. 362–365.

[44] J. Mielikainen, “LSB matching revisited,” IEEE Signal Process. Lett., vol. 13, no. 5, pp. 285–287, May

2006.

[45] X. Quan and H. Zhang, “Lossless data hiding scheme based on lsb matching,” pp. 209–214, 2013.

[46] M. T. Parvez and A. A.-A. Gutub, “RGB Intensity Based Variable-Bits Image Steganography,” in 2008

IEEE Asia-Pacific Services Computing Conference, 2008, pp. 1322–1327.

[47] J. Fridrich, S. Binghamton, M. Goljan, and R. Du, “Reliable Detection of LSB Steganography in Color and

Grayscale Images.”

[48] J. Zhang, I. J. Cox, and G. Doërr, “Steganalysis for LSB Matching in Images with High-frequency Noise.”

[49] A. D. Ker, “Steganalysis of LSB Matching in Grayscale Images,” IEEE Signal Process. Lett., vol. 12, no. 6,

2005.

[50] D. Lerch-Hostalot and D. Megías, “LSB matching steganalysis based on patterns of pixel differences and

random embedding,” Comput. Secur., vol. 32, pp. 192–206, 2013.

[51] J. J. Harmsen and W. A. Pearlman, “Steganalysis of additive noise modelable information hiding.”

[52] M. Abolghasemi, H. Aghainia, K. Faez, and M. A. Mehrabi, “LSB data hiding detection based on gray

level co-occurrence matrix (GLCM),” in 2008 International Symposium on Telecommunications, 2008,

pp. 656–659.

[53] M. Studies, “Steganalysis of LSB Embedded Images Using Gray Level Co-Occurrence Matrix,” January

2011.

[54] M. Rouse, “What is Transport Layer Security (TLS)?,” 2016. [Online]. Available:

http://searchsecurity.techtarget.com/definition/Transport-Layer-Security-TLS. [Accessed: 21-Jan-

2017].

[55] Redhat, “POODLE: SSLv3 vulnerability (CVE-2014-3566) - Red Hat Customer Portal,” 2016. [Online].

Available: https://access.redhat.com/articles/1232123. [Accessed: 19-Dec-2017].

[56] File Signature, “File Signature Database:,” 1999. [Online]. Available:

http://www.filesignatures.net/index.php?page=all&order=EXT&alpha=J. [Accessed: 21-Mar-2016].

[57] A. Miller, “LEAST SIGNIFICANT BIT EMBEDDINGS: IMPLEMENTATION AND DETECTION,” 2012.

 pg. 144

[58] M. Kumar, R. E. Newman Jonathan C L Liu, and R. Y. C Chow José AB Fortes Liquing Yang,

“Steganography and Steganalysis of JPEG Images,” 2011.

[59] J.-L. Lisani, “IPOL Journal · Color and Contrast Enhancement by Controlled Piecewise Affine Histogram

Equalization.” [Online]. Available: http://demo.ipol.im/demo/27/. [Accessed: 26-Sep-2016].

[60] Fandom, “Image - Outer space stars mass effect collector base desktop 2048x1024 hd-wallpaper-

573330.png.” [Online]. Available:

http://robocraft.wikia.com/wiki/File:Outer_space_stars_mass_effect_collector_base_desktop_2048x1

024_hd-wallpaper-573330.png. [Accessed: 11-Jan-2017].

[61] C.C. Chang, H.W. Tseng, “A steganographic method for digital images using side match”, Pattern

Recognition Lett.25, 2004.

[62] Y.R. Park, H.H Kang, S.U. Shin, K.R. Kwon, “An Image Steganographic Using Pixel Characteristics”,

Computational Intelligence and security,Vol.3802,2005

[63] M. Goljan, J. Fridrich, and T. Holotyak, “New blind steganalysis and its implications,” in Security,

Steganography, and Watermarking of Multimedia Contents VIII, ser. Proceedings of SPIE, vol. 6072,

2006, pp. 1–13.

[64] B. Fyffe, “Human Visual Based Perception for Steganography”, School of Computer Science, MSc thesis,

University of St Andrews. 2016.

[65] E. Hernández, C. Uribe, R. Cumplido . “FPGA Hardware Architecture of the Steganographic ConText

Technique”, 18th International Conference on Electronics, Communications and Computers, pp. 123-

128, Puebla, Mexico, 2008.

[66] K. Prasad, V. Jyothsna, S Raju and S. Indraneel, “High Secure Image Steganography in BCBS Using DCT

and Fractal Compression,” International Journal of Computer Science and Network Security, vol. 10

No.4, 2010.

[67] JSTEG: Information Hiding: 4th International Workshop, IH 2001, Pittsburgh,PA, USA.

[68] S.Wendzel, W.Mazurczyk, L.Caviglione and M.Meier, “Hidden and Uncontrolled – On the Emergence of

Network Steganographic Threats.” 2014. [Online]. Available: https://arxiv.org/abs/1407.2029

[69] NITSIG, “INSIDER THREAT RISK MITIGATION VENDORS GUIDE.”, 2015. [Online]. Available:

http://insiderthreatdefense.com/pdfs/Listing%20Of%20Insider%20Threat%20Risk%20Mitigation%20V

endors%20As%20Of%203-23-15.pdf

https://arxiv.org/abs/1407.2029
http://insiderthreatdefense.com/pdfs/Listing%20Of%20Insider%20Threat%20Risk%20Mitigation%20Vendors%20As%20Of%203-23-15.pdf
http://insiderthreatdefense.com/pdfs/Listing%20Of%20Insider%20Threat%20Risk%20Mitigation%20Vendors%20As%20Of%203-23-15.pdf

 pg. 145

Appendix A

Linkage file method can conceal the secret file, as mentioned in above Methodology section. However,

the secret file cannot be linked before the cover image. Otherwise the stego image is unreadable. As

illustrated as follow Figures:

Figure A1: the secret file was concatenated in front of cover image (tiger.bmp)

Figure A2: The stego image cannot be read in the system

Also, in this method, if the secret file is TXT format. After linked the cover image, the data can be

readable directly by observing the hex value, as shown in Figure below:

Figure A3: Human readable data can be found by observing the hex value, if the secret file is TXT format

 pg. 146

Appendix B

Embedded a short size data file:

Lena.bmp:

Figure B1: Stego images from LSB 1 to LSB 8, with a short size data file.

MondrianTree.bmp

Figure B2: Stego images from LSB 1 to LSB 8, with a short size data file.

 pg. 147

Tiger.bmp:

Figure B3: Stego images from LSB 1 to LSB 8, with a short size data file.

Cathedral.jpg

Figure B4: Stego images from LSB 1 to LSB 8, with a short size data file.

 pg. 148

Edinburgh.jpg

Figure B5: Stego images from LSB 1 to LSB 8, with a short size data file.

Lena.png

Figure B6: Stego images from LSB 1 to LSB 8, with a short size data file.

 pg. 149

Mondrian.png

Figure B7: Stego images from LSB 1 to LSB 8, with a short size data file.

StABridge.png

Figure B8: Stego images from LSB 1 to LSB 8, with a short size data file.

 pg. 150

Embedded a small size data file, (42 KB)

Lena.bmp

Figure B9: Stego images from LSB 1 to LSB 8, with a small size data file.

MondrianTree.bmp

Figure B10: Stego images from LSB 1 to LSB 8, with a small size data file.

 pg. 151

Tiger.bmp

Figure B11: Stego images from LSB 2 to LSB 8, with a small size data file. LSB 1 is not enough to conceal the
secret data

Cathedral.jpg

Figure B12: Stego images from LSB 1 to LSB 8, with a small size data file.

 pg. 152

Edinburgh.jpg

Figure B13: Stego images from LSB 1 to LSB 8, with a small size data file.

Lena.png

Figure B14: Stego images from LSB 1 to LSB 8, with a small size data file.

 pg. 153

Mondrian.png

Figure B15: Stego images from LSB 1 to LSB 8, with a small size data file.

StABridge.png

Figure B16: Stego images from LSB 1 to LSB 8, with a small size data file.

 pg. 154

Embedded a large size data file, (119 KB)

Lena.bmp

Figure B17: Stego images from LSB 1 to LSB 8, with a large size data file.

MondrianTree.bmp

Figure B18: Stego images from LSB 1 to LSB 8, with a large size data file.

 pg. 155

Tiger.bmp

Figure B19: Stego images from LSB 4 to LSB 8, with a large size data file. LSB 1, LSB 2 and LSB 3 are not enough
to conceal the secret data file.

Cathedral.jpg

Figure B20: Stego images from LSB 3 to LSB 8, with a large size data file. LSB 1 and LSB 2 are not enough to
conceal the secret data file.

 pg. 156

Edinburgh.jpg

Figure B21: Stego images from LSB 2 to LSB 8, with a large size data file. LSB 1 is not enough to conceal the
secret data file.

Lena.png

Figure B22: Stego images from LSB 1 to LSB 8, with a large size data file.

 pg. 157

Mondrian.png

Figure B23: Stego images from LSB 1 to LSB 8, with a large size data file.

StABridge.png

Figure B24: Stego images from LSB 2 to LSB 8, with a large size data file. LSB 1 is not enough to conceal the
secret data file.

 pg. 158

Embedded a large size data file., with random positions in the cover image, (119 KB)

Lena.bmp

Figure B25: Stego images from LSB 1 to LSB 8, with a large size data file.

Cathedral.jpg

Figure B26: Stego images from LSB 2 to LSB 8, with a large size data file. LSB 1 and LSB 2 are not enough to
conceal the secret data file.

 pg. 159

Mondrian.png

Figure B27: Stego images from LSB 3 to LSB 8, with a large size data file.

StABridge.png

Figure B28: Stego images from LSB 2 to LSB 8, with a large size data file. LSB 1 is not enough to conceal the
secret data file.

 pg. 160

Appendix C

No Measurement Unit Algorithm Embedded Data Size Embedded Method

1 PSNR From LSB 1 to LSB 8 A short size Randomly

Images in Different LSB algorithm with a Short size data file, PSNR

 LSB 1 LSB 2 LSB 3 LSB 4 LSB 5 LSB 6 LSB 7 LSB 8

 PSNR PSNR PSNR PSNR PSNR PSNR PSNR PSNR

Lean.bmp 87.9493 84.5106 79.9778 75.8229 70.2931 65.4612 58.1199 57.6972

Cathedral.jpg 84.9528 80.3904 75.968 71.7981 66.7573 61.9526 55.0434 53.1763

Modrian.png 92.0359 87.2048 81.9155 77.1063 72.4719 67.3686 60.4812 54.9635

StABridge.png 86.9898 83.2955 78.175 74.125 69.468 63.4469 57.7722 54.5356

Table C1: PSNR result in images with variable LSB algorithms, randomly embedded a short size data file.

No Measurement Unit Algorithm Embedded Data Size Embedded Method

2 MSE From LSB 1 to LSB 8 A short size Randomly

Images in Different LSB algorithm with a Short size data, MSE

 LSB 1 LSB 2 LSB 3 LSB 4 LSB 5 LSB 6 LSB 7 LSB 8

 MSE MSE MSE MSE MSE MSE MSE MSE

Lean.bmp 1.04E-04 2.30E-04 6.54E-04 0.0017 0.0061 0.0185 0.1003 0.1105

Cathedral.jpg 2.08E-04 5.94E-04 0.0016 0.0043 0.0137 0.0415 0.2036 0.3129

Modrian.png 4.07E-05 1.24E-04 4.18E-04 0.0013 0.0037 0.0119 0.0582 0.2074

StABridge.png 1.30E-04 3.04E-04 9.90E-04 0.0025 0.0073 0.0294 0.1086 0.2288

Table C2: MSE result in images with variable LSB algorithms, randomly embedded a short size data.

No Measurement Unit Algorithm Embedded Data Size Embedded Method

3 PSNR From LSB 1 to LSB 8 A small size Randomly

Images in Different LSB algorithm with a Small size data file, PSNR

 LSB 1 LSB 2 LSB 3 LSB 4 LSB 5 LSB 6 LSB 7 LSB 8

 PSNR PSNR PSNR PSNR PSNR PSNR PSNR PSNR

Lean.bmp 55.0319 50.5128 46.7616 41.8304 36.786 31.491 26.2654 21.4347

Cathedral.jpg 51.4417 46.8993 43.1348 38.3781 33.2206 27.7671 23.3568 19.5186

Modrian.png 59.6583 53.8652 49.4396 43.8598 39.0328 33.3797 28.3396 22.0956

StABridge.png 54.253 49.7129 45.9108 41.1638 36.021 30.4338 25.4765 20.4336

Table C3: PSNR result in images with variable LSB algorithms, randomly embedded a small size data file.

 pg. 161

No Measurement Unit Algorithm Embedded Data Size Embedded Method

4 MSE From LSB 1 to LSB 8 A small size Randomly

Images in Different LSB algorithm with a Small size data file, MSE

 LSB 1 LSB 2 LSB 3 LSB 4 LSB 5 LSB 6 LSB 7 LSB 8

 MSE MSE MSE MSE MSE MSE MSE MSE

Lean.bmp 0.2041 0.5778 1.3706 4.2662 13.6295 46.1297 153.6544 467.3168

Cathedral.jpg 0.4666 1.3278 3.1594 9.4465 30.9754 108.7356 300.1922 726.4662

Modrian.png 0.0703 0.267 0.7398 2.6736 8.1246 29.8611 95.306 401.3491

StABridge.png 0.2442 0.6947 1.6672 4.9739 16.2547 58.8433 184.2584 588.4631

Table C4: MSE result in images with variable LSB algorithms, randomly embedded a small size data file.

No Measurement Unit Algorithm Embedded Data Size Embedded Method

5 PSNR From LSB 1 to LSB 8 A large size Randomly

Images in Different LSB algorithm with a Large size data file, PSNR

 LSB 1 LSB 2 LSB 3 LSB 4 LSB 5 LSB 6 LSB 7 LSB 8

 PSNR PSNR PSNR PSNR PSNR PSNR PSNR PSNR

Lean.bmp 51.2429 46.7175 42.9293 38.0505 32.9881 27.6771 22.4928 17.6361

Cathedral.jpg 39.3437 34.5689 29.4275 23.9593 19.581 15.7201

Modrian.png 55.8605 50.0709 45.6369 40.0756 35.2311 29.5645 24.5452 18.3155

StABridge.png 45.9027 42.1065 37.3702 32.2217 26.617 21.6426 16.6691

Table C5: PSNR result in images with variable LSB algorithms, randomly embedded a large size data file.

No Measurement Unit Algorithm Embedded Data Size Embedded Method

6 MSE From LSB 1 to LSB 8 A large size Randomly

Images in Different LSB algorithm with a Large size data file, MSE

 LSB 1 LSB 2 LSB 3 LSB 4 LSB 5 LSB 6 LSB 7 LSB 8

 MSE MSE MSE MSE MSE MSE MSE MSE

Lean.bmp 0.4884 1.3846 3.3124 10.1867 32.6792 111.0113 366.2703 1.12E+03

Cathedral.jpg 7.5632 22.7087 74.1874 261.3094 716.117 1.74E+03

Modrian.png 0.1687 0.6397 1.7758 6.3903 19.4971 71.884 228.3293 958.3587

StABridge.png 1.6704 4.0034 11.914 38.9866 141.7042 445.4726 1.40E+03

Table C7: MSE result in images with variable LSB algorithms, randomly embedded a large size data file.

