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1 Introduction 
The purpose of the SDAV institute is to provide tools and expertise in scientific data management, 
analysis, and visualization to DOE’s application scientists.  Our goal is to actively work with application 
teams to assist them in achieving breakthrough science, and to provide technical solutions in the data 
management, analysis, and visualization regimes that are broadly used by the computational science 
community.  Over the last 5 years members of our institute worked directly with application scientists and 
DOE leadership-class facilities to assist them by applying the best tools and technologies at our disposal.  
We also enhanced our tools based on input from scientists on their needs.  Many of the applications we 
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have been working with are based on connections with scientists established in previous years.  However, 
we contacted additional scientists though our outreach activities, as well as engaging application teams 
running on leading DOE computing systems.   

Our approach is to employ an evolutionary development and deployment process: first considering the 
application of existing tools, followed by the customization necessary for each particular application, and 
then the deployment in real frameworks and infrastructures.  The institute is organized into three areas, 
each with area leaders, who keep track of progress, engagement of application scientists, and results.  The 
areas are: (1) Data Management, (2) Data Analysis, and (3) Visualization.  This report is organized along 
these areas.  However, often there are multiple technologies from these areas that are applied to a single 
application need.  These are described on a case-by-case basis in the appropriate sections. This final 
report for the SDAV Institute covers the 5-year period from February 2012 to February 2017.   

This report covers activities in all SDAV institutions listed next. Laboratories: Argonne National 
Laboratory (ANL), Lawrence Berkeley National Laboratory (LBNL), Lawrence Livermore National 
Laboratory (LLNL), Los Alamos National Laboratory (LLNL), Oak Ridge National Laboratory (ORNL), 
Sandia National Laboratory (SNL). Universities: Georgia Institute of Technology, North Carolina State 
University, Northwestern University, Ohio State University, University of Oregon, Rutgers University, 
University of California at Davis, University of Utah. Industry: Kitware. 

2 Executive Summary 
This report is organized into sections and subsections, each covering an area of development and 
deployment of technologies applied to scientific applications of interest to the Department of Energy.  
Each sub-section includes: 1) a summary description of the research, development, and deployment 
carried out, the results and the extent to which the stated project objectives were met; 2) significant 
results, including major findings, developments, or conclusions; 3) products, such as publications and 
presentations, software developed, project website(s), technologies or techniques, inventions, awards, etc., 
and 4) conclusions of the projects and future directions for research, development, and deployment in this 
technology area. 

The institute’s web site, http://www.sdav-scidac.org/, contains in addition to publications, highlights, 
outreach and awards, the home pages for all the tools developed by members of the institutes and used by 
a variety of scientific applications.  These home pages are extensive, and contain user guides, download 
instructions, and methods to communicate with developers and users.  Rather than replicating this 
information in this report, we provide concise information on the problem areas each of the tools address, 
the approach for providing solutions to these problems, and the use of the tools by the scientific 
community. 

We provide next a summary of key achievements, organized according to the structure of this report.  We 
start with the Data Management area (section 3.1), followed by Data Analysis area (section 3.2), and 
ending with the Visualization area (section 3.3). 

A key technology in the Data Management area is I/O frameworks (section 3.1.1).  I/O can be a major 
bottleneck when running large scale computations (simulations, analysis, visualization) on large parallel 
machines.  When each processor reads/writes data independently from other processors, this overwhelms 
the I/O system with too many concurrent I/O operations, resulting in poor utilization of I/O resources and 
thus long I/O times. I/O frameworks intercept I/O operations, keep the data in memory when possible, 
and thus isolate the I/O from computation. This allows computation to continue while the I/O framework 
can combine I/O from multiple nodes into larger I/O operations and schedule read/write operations 
independently of the computation.  This approach has proven to achieve from 10 to 100 fold 
improvements using one of SDAV’s I/O frameworks, called ADIOS. ADIOS has been used with a large 
variety of scientific applications, about 15 different simulation codes so far.  Another approach is to 
exploit the topology of the system interconnect, thus reducing the cost of global synchronization.  This 
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approach, taken by the GLEAN framework, showed multi-fold improvement over existing 
implementations.  Another key technology for understanding the effect of I/O on the global efficiency of 
a running code is to monitor I/O operations with little interference.  SDAV has been using such a tool, 
called Darshan, and improving it over the years to provide accurate I/O characterization. It is being used 
as a standard tool on all major DOE supercomputing facilities. 

Another advantage of capturing I/O operations, is that this allows the data to stay in memory for a period 
of time, and therefor enable operations over the data before it is written out to disk. This is one method for 
enabling in situ processing.  Several activities can take place while data is still in memory.  One is 
enabling coupling of codes while data is still in memory while two or more codes are running 
concurrently on different node allocation on supercomputers.  Such a tool is DataSpaces, which facilitates 
data exchange and transformation between codes while the data is still in memory.  Another in situ 
activity provided by the FlexPath tool is scheduling and streaming data.  Naturally, these tools can be 
embedded in an I/O framework, and indeed they were integrated into ADIOS. Other activities that can be 
performed in situ processing is in “on-the-fly” analysis while data is still being generated (e.g. the first 
few time steps of a simulation), visualizing data in situ, generating indexes in situ, etc.  These techniques 
have shown to enable scientific computations and explorations that were previously impossible (see 
section 3.1.2). 

An important challenge for scientists dealing with large volumes of data is to identify important structures 
and patterns in the data.  For example, repeated searching for a pattern from trillions of particles in a 
plasma simulation or billions of particles in a cosmology simulation is prohibitive because each search 
can take many minutes.  Indexing the data (a one-time cost) so that it may be searched multiple times is 
essential.  The challenge is to have an indexing method that allows the index to be built quickly with a 
single run over the data, consume limited space to store, and enable very efficient searching for patterns 
of interest to our scientist partners.  Such an index capability that runs in parallel over the data, called 
FastQuery, was developed by SDAV and has shown to be highly efficient (and provably optimal) for 
scientific data (section 3.1.3).  As an example, it has been used to search over a trillion particles in 10 
seconds for a magnetic reconnection application.  Over the SDAV period it was enhance to handle 
multiple popular file formats (including HDF5 and PnetCDF), was embedded into the ADIOS framework, 
and was extended to work with AMR data.   

Another aspect of data indexing is to first compress the data (both lossy and lossless compression), and 
then develop effective indexing over the compressed data.  Such tools, called ALACRITY and ISOBAR, 
are described in section 3.1.4, and shown to achieve compression as low as 55% of the original data, and 
having low space overhead for the index (less than 25% of original data), while achieving 28-35 fold 
search improvement over uncompressed indexes. 

In section 3.1.5, we describe work in support of popular parallel I/O tools and file formats that serve a 
significant fraction of I/O requirements from DOE applications.  In support of the HPC software stack, 
SDAV has maintains and improved the ROMIO MPI-IO implementation, which is available on every 
DOE supercomputing platform.  The most impressive improvement was the redesign the ROMIO internal 
data structures to reduce memory utilization in previously worst case scenarios to only 1.1% of its 
original size. Furthermore, working with IBM to tune the ROMIO algorithms, the performance improved 
by as much as 15 fold. In addition, one of the parallel file formats that uses MPI-IO internally, Parallel 
netCDF (PnetCDF), was developed by SDAV. It is an efficient parallel implementation of the classic 
netCDF format used by several scientific communities, most notably the climate research community.  
PnetCDF is available on all production DOE supercomputer facilities.  SDAV also provides support for 
an innovative file structure, based on a hierarchical multi-resolution data format.  The data format is a 
referred to as z-ordering space filling method, which lends itself to extract the data at different resolutions 
with minimal overhead. The software, called PIDX, is available as a library, installed on all DOE 
supercomputing facilities, and provides fast querying at the desired resolution for data analytics and 
remote streaming. It has been shown to be able to stream data at a sustained data transfer rate equal to 
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80% of the nominal I/O bandwidth of the hardware, which is extremely important for visualization tools 
running remotely. 

Data Analysis (Section 3.2) is the process of discovering interesting features and patterns in data.  This 
process usually requires the transformation of the data in order to highlight the features of interest, 
including selection of subsets of the data based on features, summarization, statistical methods, 
representation of topological features, and tracking evolution of patterns over time and space.  In SDAV, 
we have a collection of tools that use such techniques.  Section 3.2.1 describes techniques for accelerating 
visual analysis and exploration.  These include special data structures that provided nearly linear scaling 
of the calculation of distance fields (a technique to visually represent 2D and 3D isosurfaces).  This 
technique has been used on up to 350 million triangles for astrophysics, climate, combustion, cosmology, 
and fusion applications.  In addition, such techniques have been enhanced to run in situ in order to enable 
sophisticated volume feature exploration in large-scale data.  Another visual exploration method is to 
track the trajectory of particles over time.  Such a tool, running in parallel, called Ultravis-P, was 
developed and used since the beginning of SDAV.  However, since it is often better to see the trajectory 
in the context of the spatial-temporal volume, a new trajectory-based flow feature tracking method was 
developed for joint particle/volume datasets.  It was used for spatio-temporal particle track visualization 
of combustion and atmospheric datasets. 

Another class of data analysis methods focus on identification and tracking of topological features in data 
(section 3.2.2). One such tool, called MSCEER, leverages Morse-Smale complexes to explore surface 
interactions of materials and was applied to multiple domains, including analysis of clean combustion and 
design of battery materials.  Another topology-based tool was designed for the exploration high-
dimensional spaces.  The tool, called ND2AV, helps the visual and analytical exploration of problems that 
have a large number of parameters, as is common in many scientific areas.  Recently, it has been applied 
to high energy density physics, and to nuclear reactor safety problems.  

Flow field analysis and visualization techniques are described in section 3.2.3.  They are used for a wide 
variety of spatio-temporal analysis tasks for a range of science applications.  As the volume of data from 
simulations increases, it is essential that such techniques be accelerated by parallel computation methods.  
Such techniques were developed in SDAV, and have been shown to scale linearly.  Furthermore, lower 
levels of precision can be processed in real time, and full precision can now be processed in the order of 
only 10 seconds for large scale datasets.  Another activity for scalable stream surface computation was 
integrated into a library called OSUFlow, and was integrated into the VTK framework.   

Related to flow field analysis is the ability to track the temporal history of features in space (section 
3.2.4). A specialized tool, called TALASS, was designed to show the progression of particle tracks over 
time and was applied to many areas, including turbulent combustion research, astronomical simulations, 
weather analysis, and plasma physics. Another activity took the approach of controlling the execution of a 
plasma-based particle acceleration code (called WARP) from the VisIt tool, so that scientists can drive 
analysis in situ, while data is still in memory.  This resulted in the ability, for the first time, of the 
scientists to observe in real-time the progression of the accelerator wake-field in 3D. 

As data volumes increase, visual data exploration tools need to be improved to make best use of 
processing technologies.  These activities are described in section 3.2. The two primary visualization 
frameworks, VisIt and ParaView, used by scientific communities well before SciDAC-3, needed to be 
enhanced to take advantage of multi-core and many-core architectures.  Some of the enhancements could 
be made internally to each framework.  However, it was the goal of SDAV to share a common framework 
for taking advantage of multi/many core architectures, reducing the long-term maintenance cost of these 
tools and ensuring new developments are available in both toolsets. This activity led to a remarkable 
achievement in the visualization area: a single framework, called VTK-m (see section 3.3.2), now 
provides multi/many core operators to the two main parallel visualization tools provided by the institute. 
This achievement required to cooperation of SDAV researchers from five DOE laboratories and Kitware 
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(which provides support for VTK) as well as NVIDIA, and the integration of three different projects with 
VTK.  The three existing projects that were integrated into VTK-m are: Piston which focused on efficient 
and portable algorithms, Dax which provided a top-down framework that simplified development, and 
EAVL which provided advanced data structures. The ingenuity and persistence of the VTK-m developers 
led to the single framework described above and thus eliminated much duplication of effort.  This enables 
very large scale analysis and visualization, such as taking advantage of GPUs to find cosmology halo 
centers performed on a half-trillion particle simulation run on 16,384 nodes.  This led to the ability for the 
first time to measure concentration-mass relation from a single simulation volume over such an extended 
mass range.   

The details of complementary work to have VisIt and ParaView interoperate with VTK-m is described in 
section 3.3.1. These sections also describe other scaling activities.  Examples of VisIt accomplishments 
include: accelerating AMR visualization for FastMath applications, developing special crack-free 
isosurface extraction for ice sheet simulations, and extracting and visualizing features from one trillion 
particles for a magnetic reconnection application.  Similarly, examples of ParaView accomplishments 
include: providing in situ analysis with CosmoTools, visualizations of helium bubbles and tungsten 
cavities, and extracting, tracking, and visualizing vortex dynamics for a superconductor simulation. 

SDAV also provided a tool that facilitates the development of specialized analysis and visualization on 
distributed-memory machines.  This tool, called DIY (Do-It-Yourself), provides a programming model 
and runtime for block-parallel analytics for building parallel analysis routines.  It decomposes data into 
blocks, assigns the blocks to processors, and supports communication between blocks.  Over the past 5 
years, DIY was enhanced to use a special internal structure that balances the computation on the 
processors, thus achieving great efficiency, as high as 50 times faster than the previous version.  Because 
of the high efficiency of the tool, it was used to developed specialized libraries that require a high degree 
of computation, including libraries to compute parallel Voronoi and Delaunay tessellations of particle 
datasets, N-body simulations, molecular dynamics codes, and LIDAR point clouds. DIY is shaping up to 
be the solution for inter-node parallelism within VTK, while VTK-m addresses intra-node parallelism. 

SDAV activities include flow visualization methods, described in section 3.3.3.  These tools allow 
researchers to analyze and visualize particles paths and are needed in applications such as in ocean, 
climate (ice flow), combustion, and fusion.  This section describes new methods to compute the shrink 
and stretch lines which are found by evaluating the associated eigenvectors, methods to increase accuracy 
for uncertainty in particle tracing, in situ identification of salient flow features, and techniques for 
accelerating flow visualization on GPUs.   

Volume rendering is a powerful tool for visualizing complex 3D flow fields. SDAV provides such tools 
to the scientific community (see section 3.3.4) and enhanced these tools based on user needs and 
advanced architectures.  This section describes tools that were developed and enhanced to support 
specific needs of the scientific communities we interacted with.  For example, techniques were developed 
in VisIt in cooperation with NVIDIA to avoid copying data between the CPU and the GPU, which led to 
a highly efficient new compositing algorithm.  Other work was to develop rendering algorithms for AMR 
that are applicable to climate modeling, fusion simulations, and astrophysics simulations, among others.  
Another special rendering method was developed for an advanced illumination method for interactive 
visualization of 3D unstructured-grid data. This 3D visualization enhancement is timely as unstructured 
grids are becoming increasingly popular for a variety of scientific simulation applications.  In addition, 
SDAV has been developing and employing a tool that is optimized for parallel particle rendering, called 
vl3. During the SciDAC-3 period, it evolved to render very large AMR datasets, to support large-scale ray 
casting volume rendering, and was coupled to molecular simulation code (LAMMPS) to provide in situ 
visualization of large-scale atomistic data. 

More recently, we have tackled a difficult area that aims to represent visually the uncertainty of ensemble 
simulations.  Specifically, given a set of related simulations where initial parameters may vary or different 
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models are run (referred to as ensembles), the problem is how to best represent the uncertainty.  To 
support this capability, a new operator was developed in VisIt, called “Statistical Trends”. It allows for a 
user to apply different statistical functions to look for trends in data over time.  In addition, a new method 
was developed for determining the uncertainty in the models by comparing each ensemble to a Bayesian 
Model Average.  This method helps to determine where the simulation outputs produce viable 
distributions.  This work was used to determine uncertainty in climate simulations as well as groundwater 
simulations of uranium seepage. 

Finally, the SDAV institute’s productivity deserves special mention, not only in terms of tools developed 
and applied to a large number of application domains, but also culminating in 451 papers published over 
the 5 year period, and over 60 tutorials given in major conferences and other venues (see section 4.3).  
Most of the tools are installed and used routinely on DOE’s leadership-class computing facilities: ALCF, 
OLCF, and NERSC (see section 4.2 for details).  The 38 highlights shown on the SDAV web site (see: 
http://www.sdav-scidac.org/highlights.html) provide an insight into the breadth of technologies as applied 
to a large variety of scientific applications. 

 

3 SDAV Achievements 
SDAV has multiple technologies that fall into the following categories: I/O Frameworks, In Situ 
Processing, Indexing/Compression, Statistics and Data Mining, Analysis and Visualization Frameworks, 
Analysis and Visualization Libraries, and Multi-/Many-core Visualization Libraries.  The technologies 
that fall into each category are available through our web site (http://sdav-scidac.org/toolkit.html) along 
with documentation, user guides, and points-of-contact information.  These technologies (frameworks, 
tools, libraries) are referred to throughout this report without introductory materials because these were 
provided in previous reports, and are readily available at the SDAV web site). 

All the publications mentioned in this report are can be found on the SDAV web site (http://sdav-
scidac.org/publications.html), and in the Appendix. 

3.1 Data Management 
The data management activities within the SDAV Institute have generated new technologies and 
frameworks for I/O management, in situ processing, code-coupling, indexing, compression, parallel I/O, 
and file formats. These have significantly improved DOE application scientists’ ability to efficiently 
manage their data, in a variety of science applications, including fusion science, climate, cosmology, and 
combustion. 

3.1.1 I/O Frameworks 
3.1.1.1 ADIOS (ORNL) 
Our research was focused on the following areas: integration of in situ analytics and visualization into 
Input/Output (I/O) frameworks, high-level query interface for large datasets, and enhancement of writing 
and reading data in large scale simulations. In all three areas we have had great results that were 
published at various conferences. We have worked extensively with the Rutgers and Georgia Tech teams 
to research and develop in situ processing capabilities, and integrated our tools (DataSpaces, FlexPath and 
ADIOS) to provide a framework for users. We have worked together with the LBNL and NCSU teams to 
design a query interface for finding and reading the data of interest in large datasets. We integrated our 
tools (FastBit, ALACRITY and ADIOS) and developed the indexing and querying capability for the I/O 
framework. We have improved traditional file-based I/O as well by using information about the network 
topology of the LCF machines (Mira and Titan) and by aggregating write and read operations spatially 
and temporally that decrease the load on file servers.  

During the five years of this project, the ORNL team has regularly released the ADIOS software that 
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made our research results available to the users. Our products included a unified API for staging and file 
I/O, a staging solution, a visualization schema, and an I/O-skeleton application generator with 
standardized measurement; a new aggregated read method that scaled up better than the original method, 
a staged writing tool used by applications for asynchronous I/O, and spatial aggregation for output; a 
transformation layer providing various lossless compression and local data reorganization techniques, 
integrated visualization routines using EAVL/VTK-m, and extensions to support Adaptive Mesh 
Refinement; improved topology-aware I/O on Bluegene/Q and Titan, wide-area-network staging; 
Python/Numpy interface and tools; the Query and Indexing interface, supporting three implementations 
based on FastBit, ALACRITY and on simple min/max statistics, a recovery tool for damaged datasets, 
and staging I/O at the full scale of Titan; lossy compression with ZFP (Peter Lindstrom at LLNL), and 
temporal aggregation for improved output I/O overhead. 

The team has also been interacting with many applications and scientists using DOE resources over the 
project period and helped them integrating ADIOS into their applications for their data processing needs: 
XGC (SciDAC EPSI project, C.S. Chang, PPPL), PIConGPU (Michael Bussman, HZRD), 
SPECFEM3D_GLOBE (Jeroen Tromp, Princeton Univ.), RTM (Pierre-Yves Aquilanti, Total E&P 
Research & Technology USA, LLC), LAMMPS (Steve Plimpton, Sandia), OpenFOAM (Yi Wang, 
FM Global), QMCPack (Paul Kent, ORNL), BoxLib/LMC (Marc Day, LBNL), Warp (Remi Lehe, 
LBNL), Qlg2q (Min Soe, RSU), Chombo (Brian Van Straalen, LBNL), S3D (Jackie Chen, Sandia), 
Chimera (Bronson Messer, ORNL), AWP-ODC (Yifeng Cui, UCSD), M3D-K (Gou Yong Fu, PPPL), 
Fine/Turbo (Mathieu Gontier, Numeca), GTS (Stephane Ethier, PPPL), GTC-P (William Tang, PPPL), 
Pixie3D (Luis Chacon, LANL).  

Moreover ADIOS with DataSpaces and FlexPath was used in in situ coupled applications and staging I/O. 
These included nuclear waste disposal (EFRC-WastePD project, Wolfgang Windl, OSU), combustion 
(Jackie Chen, Sandia), fusion (SciDAC-EPSI, C.S. Chang, PPPL), subsurface modeling (Mary Wheeler, 
Univ. Texas), replica exchange (Emilio Gallicchio, CUNY) and fluid flow using FEM + AMR (Baskar 
Ganapathysubramanian, Iowa State Univ.). 

For the great number of applications using ADIOS with great improvements to their I/O needs, the ORNL 
team received an R&D 100 Award in 2013. The ADIOS software is available at the OLCF software 
website, along with GitHub. We have over ten collaborating institutions contributing to the ADIOS code-
base, and are constantly adding new features while retaining rigorous testing and Quality Assurance. 
ADIOS releases can be found at the ORNL website: https://www.olcf.ornl.gov/center-projects/adios/. 

3.1.1.2 GLEAN (ANL) 
GLEAN facilitates simulation-time data analysis and I/O acceleration. It takes application, analysis, and 
system characteristics into account to accelerate I/O and to interface with running simulations for in situ 
analysis and co-analysis with zero or minimal modifications to the existing application code base. For 
I/O, GLEAN fully exploits the topology of the system interconnects and algorithms to reduce the global 
synchronization for improved performance.  

GLEAN components and algorithms are routinely used by the HACC Cosmology science application for 
production science runs on the various DOE Supercomputing computing systems, including at ALCF and 
OLCF. The GLEAN I/O is used as part of the HACC I/O CORAL benchmark. This benchmark is used in 
the DOE CORAL project performance evaluations.  We have worked closely with IBM to incorporate 
GLEAN’s topology-aware data movement, reduced synchronization algorithms, and I/O aggregator 
placement heuristics in the IBM Blue Gene/Q ROMIO implementation of MPI-IO. This has been 
integrated by IBM and has resulted in multi-fold improvement over the existing implementation. 
Furthermore, topology aware I/O mechanisms of GLEAN has resulted in multi-fold improvements for the 
WRF I/O benchmark (Weather Research and Forecasting Model – often used by weather/climate 
scientists) on the ALCF Blue Gene/Q system as well as on the NERSC Edison system.  
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Our work in I/O acceleration has resulted in several publications and is part of a Gordon Bell Finalist in 
2013. For in situ analysis, we have formulated coupling of in situ analysis together with an application as 
a mathematical optimization problem taking into account the system resource characteristics and the 
characteristics of the application and the various analytics. This has been tested on the Blue Gene/Q 
system with the LAMMPS and FLASH simulation, and has resulted in an optimal in situ workflow for 
the applications. This has also resulted in publications at Supercomputing 2015 and 2016. Additionally, 
GLEAN technology was a critical component of the best paper award given at 21st ACM Symposium on 
High-Performance Parallel and Distributed Computing (HPDC) 2013.  

In conclusion, topology-aware I/O is critical in order to achieve scalable performance on leadership 
supercomputing systems. For in situ analytics, we demonstrated that one needs to carefully co-schedule 
these with simulations taking into account resource characteristics, application characteristics, and the 
objectives of the analytics. These two areas need more research so as to account for future system 
characteristics as well as to meet the goals of new applications and analysis. 

3.1.1.3 Darshan (ANL) 
Darshan is a lightweight I/O characterization tool that transparently captures I/O access pattern 
information from scientific applications. Darshan can be used to tune applications for increased scientific 
productivity or to gain insight into trends in large-scale computing systems.  

As part of the SDAV project, Darshan has evolved to provide seamless support for a variety of computing 
platforms, including IBM BG/P, IBM BG/Q, Cray XE, Cray XC, and Linux clusters. The Darshan 
development team has produced frequent production-quality software releases, culminating most recently 
in the latest release in November 2016. Darshan is now poised for future deployment on pre-exascale and 
exascale systems, notably by adopting a modular architecture that enables rapid integration of 
instrumentation for upcoming data libraries and system services. A regression test suite has also been 
created and is executed nightly on production infrastructure at ANL for ongoing validation as new 
capabilities are added.  

Darshan is used at the majority of the world's large-scale computing facilities, including officially 
supported installations at the ALCF, OLCF, and NERSC.  The ALCF and NERSC have notably enabled 
Darshan for automatic instrumentation of all production jobs by default.  This broad adoption has enabled 
Darshan to play a critical role in improving the performance of numerous critical applications and 
libraries, including HACC (cosmology), Flash (astrophysics), CESM (climate), and HDF5 (data 
management).  

 

3.1.2 In Situ Processing and Code Coupling 
3.1.2.1 DataSpaces (Rutgers) 
The SDAV team at Rutgers University focused on designing, developing, and deploying in-memory data 
staging on leading DOE systems and integrating them with applications. Specifically, the Rutgers team 
focused on designing and implementing programming abstraction models as well as underlying adaptive 
runtime management strategies and developed the DataSpaces tool to support scalable hybrid staging. 
Hybrid staging uses resources (CPU and memory) on nodes running the applications as well as on 
dedicated nodes to stage, reorganize, and manipulate data. It enables multiple codes running on the same 
system that are part of a workflow to exchange and transform data in-memory. The Rutgers team also 
explored the in-memory staging-as-a-service deployment model. The overarching goal of the effort was to 
enable applications to construct more complex end-to-end coupled simulation workflows. Key research 
and development achievements include: 

• Design, development, deployment, dissemination and evaluation of the DataSpaces scalable hybrid 
staging framework on leading DOE systems and its integration with ADIOS 
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• Design, development and evaluation of autonomic runtime mechanisms in DataSpaces for the 
optimization of staging-based in situ (and in transit) workflows, including mechanisms for staging-
based (DART) and point-to-point (DIMES) high-throughput/low-latency asynchronous data 
exchange, task placement and scheduling in hybrid staging, data placement and movement across 
deep memory hierarchies, dynamic code deployment, staging over LANs and WANs, and a service-
based abstraction for staging 

• Integration of DataSpaces with applications to support end-to-end loosely and tightly coupled 
application workflows (including integration of online analytics) in a range of application domains 
including Fusion, Combustion, Subsurface Modeling, Fluid Dynamics, Chemistry, and Material 
Science. 

The DataSpaces-related activities have led to the dissemination of the DataSpaces software, its 
deployment on supercomputing systems at ORNL, ANL and NERSC, and its integration with ADIOS, as 
well as 22 publications, 10 keynotes/plenary presentations, and 16 invited presentations. The Rutgers PI 
served as chair or in another leadership role for 14 conferences/workshops. The project enabled the 
research of 5 Ph.D. students (2 graduated) and 1 Postdoc. 
The project demonstrated that staging can effectively address data-related challenges at very large scales 
and can efficiently enable coupled simulations and novel in situ application workflows across a range of 
applications areas. 
 

3.1.2.2 FlexPath (GTech) 
Over the 5-year period Georgia Tech (GT) has made a number of contributions to the state of the art in In 
Situ Processing and Code Coupling.  The core of these efforts have been in creating the FlexPath 
(originally FlexIO) data staging transport for ADIOS.  Flexpath is a type-based publish/subscribe 
infrastructure for coupling high-end scientific applications with their online analytics services. Flexpath's 
pub/sub approach makes possible runtime configurability, scalability, and also fault tolerance, as the 
pub/sub abstraction allows for the decoupling of diverse analytics components, permits multiple 
subscribers or publishers to share a single data stream, and suppresses communications for cases in which 
there are no subscribers to certain data streams (e.g., those not of current interest). These properties 
contrast with the typical assumptions made by communication infrastructures like MPI, where the domain 
of executing processes is initialized at launch and cannot grow or shrink for the remainder of the 
execution.  This technical contribution is achieved by using direct connections between interacting 
components, including the scatter-gather or MxN communications needed across different 
communicating internally parallelized analytics components.  

Architecturally, FlexPath is built using EVPath, an event transport middleware layer that is released as 
open source software for the developer community. Specifically, it is designed to allow for the easy 
implementation of overlay networks, with active data processing, routing and management at all points in 
the overlay. During the duration of the SDAV project, Georgia Tech created and/or tuned three pluggable 
EVPath transports to make use of new networking technologies.  These transports include a raw 
InfiniBand transport that directly used the Verbs interface.  Another transport was based upon NNTI, the 
RDMA transport developed at Sandia National Laboratories to support the TRIOS system and capable of 
running across both Infiniband and the uGNI interconnect for Cray machines.  Lastly, to leverage industry 
commitment to a unified communication interface, GT developed an EVPath transport based upon the 
emerging ‘libfabric’ interface that supports many current and emerging RDMA networks. 

Flexpath is deployed for use across a range of high end machines, including ORNL's Titan machine, 
Infiniband clusters, and commodity scientific computing engines. It has been a part of official ADIOS 
releases since 2013.  Flexpath has been used for code coupling or in situ processing with a variety of 
scientific applications, including LAMMPS, GTS, S3D, Maya and PIConGPU.  We also created 
Flexpath-enabled visualization plugins for VisIt.  In 2014, the Georgia Tech SDAV team was involved in 
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a demo at SuperComputing 2014 in New Orleans  that  involved  the  A*STAR  Computational  Resource  
Centre  in  Singapore  and  a  trans-oceanic  InfiniBand  link,  demonstrating  SDAV  technology  
capability on  a  global  scale. In the GT-led demo using FlexPath, the Sandia-led molecular dynamics 
code LAMMPS ran in Singapore, sent data to an analysis workflow hosted at GT, the output of which 
was then delivered to a VisIt-based display in New Orleans.  In addition, GT supported the hosting of SC 
demonstrations in 2014, 2015, and 2016 for experimental fusion data processing, developed at ORNL and 
LBNL, and automated tumor labeling in images, developed at Stony Brook.    All three of these ADIOS-
based demonstrations utilized transports that depended on one of GT’s SDAV software stacks, EVPath. 

Additionally, motivated by end scientists' requests for development of a scalable/portable way to access 
their data on end devices, Georgia Tech created a new staging method for ADIOS, utilizing the in-line 
indexing and analysis methods that already existed, but based with storage in cloud environments like 
Amazon's EC2. This "SciBox" project offers the ability to bridge to an interesting array of scientific 
analysis and visualization usage scenarios that are not yet well understood from a platform perspective. 

3.1.3 Indexing 
3.1.3.1  FastQuery and Indexing (LBNL) 
Over the past five years, FastQuery indexing and querying software has been extended in a number of 
ways to meet the applications’ demand [Lin2013a]. It has been shown to scale well in extracting 
information from massive amounts of data stored in scientific file formats such as HDF5 and ADIOS-BP.  
Our work has produced more than 20 technical publications.  In this brief summary we highlight its uses 
in three DOE science applications: plasma physics simulation, ice sheet modeling, and particle accelerator 
design modeling. 

Magnetic reconnection is an important mechanism that releases enormous energy as field lines break and 
reconnect in plasmas. To understand this phenomenon, plasma physicists run large-scale simulations and 
track the trajectories of trillions of plasma particles through a magnetic field. However, they are 
particularly interested in a relatively small numbers of highly energetic particles (still in the millions) at 
the intersections of magnetic field lines.  Locating these particles from the trillions of particles was a 
challenge for the physicists.  FastQuery software was able to index more than a trillion particles in about 
10 minutes and then locate those particles in a few seconds [Byn2012a].  This capability to locate the 
“interesting” particles in seconds gave the physicists a new way to analyze magnetic reconnection.  

In ice sheet modeling, an important task is to identify the icebergs that are breaking away from the ice 
sheet. This is known as the ice calving problem. The existing approach goes through each cell of the ice 
sheet model repeatedly, which can be very time consuming.  We divided the ice calving problem into two 
steps, first to identify cells with thick ice, and then to connect these cells into connected regions.  The 
regions of ice that are not connected to the ice sheet are labeled as icebergs. FastQuery could easily 
handle the first step, but we had to develop the algorithm for the second of identifying connected regions 
in adaptive mesh refinement (AMR) data.  We developed an efficient parallel connected component 
labeling algorithm.  Overall, we were able to accelerate the ice calving calculation by a factor of 6 
[Dev2016a, Zha206a, Zou2016a]. 

In working with accelerator design software, FastQuery was used to track particles that stray away from 
the center of the particle accelerator.  These particles are known as halo particles among the accelerator 
designers.  In this case, FastQuery indexed billions of particles over about 800 time steps to support the 
user queries.  The query results revealed an unexpected increase in the number of halo particles, which 
gave the designers a chance to correct the problem and reduce the number of halo particles [Chi2014a]. 

In conclusion, responding to scientists’ needs, led us to enhance the FastQuery software and turn it into a 
powerful parallel search engine that was used on many problems in various scientific domains.  We 
expect in the future to apply this tool to additional scientific domains, which inevitably will have 
unforeseen challenges. 
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3.1.4 In situ data compression 
3.1.4.1 Analytics-driven data layout optimizations and Compression (NCSU)  
Over the 5-year period, we have been working on a number of issues that address scientific data indexing, 
compression and storage layout problems. Moreover, in addition to focusing on mainstream uniform 
mesh data, we have also addressed Adaptive Mesh Refinement (AMR) data. 

In the domain of indexing and query, we first developed ALACRITY [Jen2012a]. It produces an inverted 
index and index metadata, by exploiting floating point number representation. It performs at speeds 
suitable for in-situ processing (150-225MB/s), while maintaining a small data footprint (data+index < 
125% original data). Based on ALACRITY, we have developed DIRAQ [Lak2013a], a parallel, scalable, 
in situ indexing technique. It enables smarter group-level index aggregation, which not only improves 
later query performance by generating less-fragmented indexes, but also achieves increased end-to-end 
write throughput due to overall data compression.   

For compression, we developed a hybrid compute-I/O interleaving for in-situ parallel lossless 
compression technique, ISOBAR technology [Sch2012]. It can reduce the total time-to-disk by 12-46%, 
according to tests over real scientific data. Moreover, we have extended our earlier work on ALACRITY 
encoding [Jen2013a], by integrating inverted index compression and data reduction, resulting in a full-
precision, query-optimized data representation that is 55-90% of the original data (for FLASH, S3D, 
XGC, GTS datasets). This includes a light-weight index that is 5-20% of the original data. 

Regarding storage layout, we've developed MLOC [Gon2012a, Gon2012b], which provides flexible, 
interchangeable data layout optimizations for heterogeneous access patterns, allowing users to match data 
access patterns to their particular needs. Based on MLOC, we've developed a run-time multi-level data 
layout optimization framework (PARLO) [Gon2013a], which is integrated with ADIOS to achieve high-
performance in situ data layout optimization at runtime. Moreover, we have extended ADIOS to include a 
generic, user-transparent data transformation framework that allows end users to apply in situ data 
transformations without changing their existing application [Boy2014a]. 

Moreover, we have studied various indexing, storage layout and I/O issues for AMR data. We have 
developed an indexing and querying framework to facilitate large-scale AMR data scientific discovery 
and exploration [Zou2016a]. It has an AMR-specific hybrid index methodology which captures both 
spatial and value aspects of the AMR data, and enables efficiently processing queries that have both a 
spatial selection and value constraints. We have also developed an in situ storage layout optimization 
method for AMR spatio-temporal read accesses [Tan2016a]. This work enables automatic selection from 
a set of candidate layouts based on a performance model, and reorganize the data before writing to 
storage. Moreover, in order to facilitate runtime AMR data sharing across scientific applications, we have 
developed AMRZone [Zha2016a]. It enables efficient in-transit AMR data analytics, by constructing a 
virtual and distributed staging space to avoid accessing data over a file system. 

Given the rapidly growing volume of scientific data, data access latency reduction can greatly improve 
the performance of applications.  According to our experience, data indexing, compression and storage 
layout can help to significantly reduce data access latency, by decreasing data size and facilitating specific 
queries.  

 

3.1.5 Parallel I/O and file formats 
3.1.5.1 PIDX (UUtah) 
Over the lifetime of the project, we have developed a new capability implemented in the PIDX library. It 
involves a data movement and I/O infrastructure that has unique scaling properties on DOE 
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supercomputers while allowing fast querying for data analytics remote streaming. The PIDX library has 
been installed and used on other supercomputers to demonstrate its effectiveness on a broader range of 
hardware platforms. In general, the PIDX library enables HPC applications to write distributed multi-
dimensional data directly into a hierarchical multi-resolution data format with minimal overhead. 
Production read/write of restart dumps and remote streaming has been demonstrated at the exhibit floor of 
the Supercomputing conference for the last three years. For example, three installations at the DOE booth, 
the Utah booth, and the KAUST booth have shown direct use and remote monitoring of distributed 
processing including the Mira supercomputer at Argonne, Shaheen II at KAUST and the CHPC in Salt 
Lake City. In addition, a server at Lawrence Livermore National Laboratory was used to give real time 
access to petascale climate modeling data housed on NASA storage. These demonstrations have shown 
the complete workflow of a simulation running and rendering data live at a remote site (in this case SC 
exhibit floor) during its execution.  

The most recent work include scaling runs on the entire MIRA machine (up 768k cores) while achieving 
a sustained data transfer equal to 80% of the nominal I/O bandwidth of the hardware. The PIDX library is 
now available to the general public (webpage http://www.cedmav.com/research/project/15-pidx.html) 
with an open source release accessible via the following GIT repository https://github.com/sci-
visus/PIDX.  

To complement the deployment of the I/O library for simulation, the team has deployed plug-in 
components that make it easy to use the file format in practice. This includes the VisIt distribution which 
now integrates a ViSUS reader that allows one to directly read files generated by the PIDX library. 
Moreover, the VisIt tool can directly take advantage of the multiresolution nature of the data format and 
by default loads a coarse version of an input to allow access to data that is potentially too large to fit in 
memory. 

Future developments of the PIDX project will involve effective use of reduced precision and compression 
techniques to minimize the data movements. In addition, recent tests show that the PIDX library can also 
take advantage of novel hardware like the burst buffer, although more work is needed to reach a 
production quality deployment. We are also working towards extending the PIDX framework to support 
particle data. 

3.1.5.2 ROMIO (ANL) 
The ROMIO MPI-IO implementation, provided on virtually every HPC platform and used internally by 
HDF5 and PnetCDF, continues to provide the foundation of the HPC I/O software stack. 

The fundamentals of ROMIO have been well-tested over 15 years.  In SciDAC-3 we focused on 
improving ROMIO’s behavior at scale.   

• Very large data descriptions were overflowing internal MPICH and ROMIO data structures and 
overwhelming some operating system routines.  We audited the code for overflow conditions and 
devised workarounds for the operating system issues.  

• ROMIO internal data structures could in some cases consume large amounts of memory.  We 
experimented with compressing those data structures.  The work demonstrated dramatic reduction 
(1.1% of original size) in peak memory overhead with a trade-off of 25% higher CPU time to process 
these data structures. 

• We worked in collaboration with IBM to better tune ROMIO at the large scales of our Mira Blue 
Gene /Q machine.   We also worked with applications to make better use of the MPI-IO interfaces 
ROMIO provided.  These tuning and algorithmic tweaks improved performance in some cases by as 
much as a factor of 15.  

The ROMIO team have conducted numerous tutorial at major conferences (such as Super Computing), 
and wrote multiple papers on major improvements to the system, its use by other tools, such as MPI and 
Parallel-NetCDF, and its effect on various scientific application codes [see recent publications: Lat2017a, 
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Luo2015a, Sny2015a, Ham 2014a]. 

Storage systems continue to increase in complexity, with larger numbers of devices and new software and 
hardware components.  ROMIO continues to provide an abstraction layer to hide these complexities.   As 
new concepts such as burst buffers and I/O forwarding shift from research topics to deployed components 
on supercomputers, ROMIO must continue to evolve to meet this new landscape.  Ongoing open research 
issues are how to build upon ROMIO’s strengths while minimizing overhead at growing core-counts, how 
to carry out background I/O while not disturbing computational science applications, and identifying 
additional programming models which would benefit from ROMIO’s proven algorithms. 

 

3.1.5.3 Parallel netCDF (NWU) 
Parallel netCDF (PnetCDF) is an I/O library that supports parallel data access to netCDF files. NetCDF, 
developed at Unidata, defines a self-describing and portable file format and a set of application 
programming interfaces (APIs) for storing and accessing scientific data. However, its APIs do not support 
parallel I/O to files in the classic netCDF file format. Starting from version 4.0, NetCDF chose HDF5 as 
the underneath mechanism to add parallel I/O feature, but the file format must be in the HDF5 format. To 
support parallel I/O for the classic format which is being used by the majority of user communities that 
use NetCDF in climate, geoscience, and others, PnetCDF was developed to enable parallel I/O to the 
netCDF files in classical formats with high performance on large-scale parallel computers. 

For the past five years, the PnetCDF software has been continuously released to the public as open 
source, through five major releases, the last of which was in December 2016. Many important features 
based on user requests and performance enhancement have been developed and incorporated into the 
software, including support for C++ and Fortran 90, a new set of non-blocking APIs, a request-
aggregation technique to enhance performance, and a new extended classic file format, named CDF-5. 
The CDF-5 format supports definitions and access of large variables with more than 2 billion elements.  

Collaboration between PnetCDF developers and the netCDF team at Unidata has continued since 2015 
with the focus of developing a software component in the netCDF library to enable it to read/write CDF-5 
file format, in both sequential and parallel. Because netCDF has a much larger user group across different 
disciplines, such collaboration significantly leverages the broader impact of PnetCDF. The CDF-5 feature 
has been made available in a release of netCDF in January 2016. 

We also established collaboration with the PIO (Parallel I/O) library developer team at the UCAR. The 
PIO library is used by the CESM and ACME projects, two major earth and climate system modeling 
frameworks funded by DOE. This collaboration involves developing new APIs in the PIO library based 
on user requests and performance/bug tracing in the underneath MPI-IO library. 

We have initiated a collaboration with the System Software Research Team, led by Dr. Yutaka Ishikawa, 
at the RIKEN Advanced Institute for Computational Science in Japan. The purpose of this work is to 
investigate the I/O software and storage system performance on the K computer. We have developed a 
PnetCDF I/O module for a production real-time climate simulation application named SCALE developed 
by the climate scientists at RIKEN. 

In the past five years, the PnetCDF library building process was improved and now supports various 
vendor compilers. The library is available on all DOE production parallel machines at ANL, ORNL, 
NERSC, etc. We plan to continue the PnetCDF development and maintain the established collaboration 
by reaching out to more application domain scientists and explore the opportunities for improving and 
expanding the PnetCDF library to support high-performance computing, data analysis, and parallel I/O. 
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3.2 Data Analysis 
The data analysis activities of the SDAV Institute have yielded a number of novel algorithms and 
software tools that support numerous DOE SciDAC application scientists in fields including astrophysics, 
climate, combustion, climate, cosmology, fusion, and development of nano-materials.  These include 
tools for visual exploration, topological data representation, flow field analysis, and feature-driven 
exploration. 

3.2.1 Visual Analysis and Exploration Techniques 
3.2.1.1 Large-Scale Volumetric Feature Exploration (UCD) 
Distance fields play a critical role in visualizing and analyzing complex data and have applications in 
feature extraction, computer graphics, data indexing, and compression, and they can be used as 
“importance” fields to direct analysis and reduce data, especially in large volume datasets. We have 
developed a highly efficient parallel distance field construction algorithm to make it usable for large-scale 
in situ applications. Experimental studies on Hopper, a Cray XE6 supercomputer, using a large geometric 
model consisting of 350 million triangles demonstrate an overall parallel efficiency at 75.26% from 1024 
to 8192 CPU cores. Studies on Hopper using a temperature isosurface from a turbulent combustion 
simulation demonstrate perfect parallel efficiency from 4320 to 34560 CPU cores. We have achieved the 
most scalable parallel distance field calculations. Such high efficiency is achieved with a new distributed 
spatial data structure, which we call parallel distance tree to manage the level sets of data and facilitate 
surface tracking over time, resulting in significantly reduced computation and communication costs for 
calculating the distance to the surface of interest from any spatial locations. The resulting technology can 
benefit many SciDAC application areas such as astrophysics, climate, combustion, cosmology, and 
fusion. A paper reporting this work was published in IEEE Transactions on Visualization and Computer 
Graphics [Yu2015a]. 

In addition to the distance field work, we have also developed volume feature extraction techniques for 
large-scale data that can function on a standard desktop PC. Such techniques allow researchers to reduce 
data based on their domain knowledge. Since it's still commonly desired by scientists to use their desktop 
PCs for data visualization and analysis tasks, an in situ data preparation solution to support interactive 
feature extraction from large-scale volume data is needed. We have developed an in situ supervoxel 
generation method, together with a new hybrid feature extraction technique which combines GPU-
accelerated clustering with the multi-resolution advantages of supervoxels in order to handle large-scale 
datasets on standard desktop PCs, which usually have limited memory and bandwidth capacity. The 
method is based on a user-driven uncertainty-based refinement approach to keep extraction results at the 
desired level of detail. We demonstrate the effectiveness and interactivity of this technique with a number 
of application specific examples. A paper reporting this work has been presented at LDAV 2015 
(receiving a best paper honorable mention) [Xie2015a]. 

Technologies like these have a broad impact on a variety of SciDAC research areas and can help to 
achieve the goal of enabling sophisticated volume feature exploration in large-scale data. Our work opens 
future research directions that involve developing polished visualization software packages that 
incorporate these techniques. 

 

3.2.1.2 Visual Analysis of Large-Scale Trajectory Data (UCD) 
We have developed new analytical means of exploring particle and trajectory data commonly found in 
SciDAC applications. First, we developed Ultravis-P for interactive visual analysis of trajectory data 
derived from 3D vector fields or large-scale particle simulations. It is composed of a powerful back-end 
engine for parallel clustering/classifying curves and a light-weight, front-end user interface for interactive 
analysis. Our parallel regression-model based clustering/classification algorithm can use a combination of 
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GPUs and CPUs. On GPU clusters such as Dirac at NERSC and Lens at ORNL, the parallel algorithm 
demonstrates scalable performance with millions of trajectories. We have used this system to analyze 
particles' behavior in turbulent combustion simulations [Wei2012b]. We have also added functionality for 
analyzing trajectory data derived from fusion simulations according to their geometric properties 
[Sau2013a]. 

Furthermore, we have also explored how interactions between particle/trajectory-based data and field-
based data can enhance this type of analytical exploration. We have introduced a new trajectory-based 
flow feature tracking method for joint particle/volume datasets. This method utilizes the indexed 
trajectories of corresponding Lagrangian particle data to efficiently track features over large jumps in 
time. As a result, this method is especially useful for situations where the volume data is either temporally 
sparse or too large to efficiently track a feature through all intermediate timesteps. We tested our method 
using combustion and atmospheric datasets. A paper reporting this work has been presented at IEEE 
SciVis 2014 conference [Sau2014a] and was also invited to be presented at ACM SIGGRAPH 2015. 

To further enhance this type of analysis, we have also developed a joint Eulerian-Lagrangian framework 
aimed at supporting operations that utilize both particle and volume data simultaneously. More 
specifically, the data organization schemes developed allow one to quickly query, sample, and operate 
with both reference frames in a large-scale setting and, if necessary, in an out-of-core manner. We have 
demonstrated the effectiveness of this new framework using a number of large-scale datasets provided by 
SciDAC science projects in cosmology, combustion, and fusion. A paper reporting this work was 
published in IEEE Transactions on Visualization and Computer Graphics [Sau2016a]. 

Recently, we have expanded this joint analysis to explore spatio-temporal features in both a particle and 
volume reference frame. Users begin with a feature of interest in one reference frame as a spatio-temporal 
origin and can extend analysis temporally into the opposing reference frame. This allows users to extract 
and explore features describing the interplay between both particle and volume data in space and time. 
This work also explores new ways of visually presenting such a feature to a user. A paper describing this 
work has recently been accepted by the PacificVis 2017 conference and will appear in IEEE Transactions 
on Visualization and Computer Graphics.  

Alternatively, in a joint effort with scientists and Princeton Plasma Physics Laboratory (PPPL), we have 
been exploring the use of histograms to capture the velocity decomposition of particle data. This has 
important applications to Lagrangian-based flow data analysis since traditional visualization techniques 
are often subject to a trade-off between visual clutter and loss of detail, especially in a large scale setting. 
We showed that the use of 2D velocity histograms can alleviate these issues. We demonstrate our design 
with an interactive system to visualize the velocity decomposition of particle data from fusion 
simulations.  We consider both a post-hoc setting with an on-the-fly sampling scheme and an in situ 
setting to maintain interactivity in extreme scale applications. A paper presenting our design and case 
studies published in the 2015 LDAV Symposium (receiving a best paper honorable mention) [Neu2015a]. 

We have also extended this work in developing new ways to explore time-varying properties of the 2D 
histograms. This is done by stacking the histograms over time into a 3D volume and using isosurfacing 
techniques to explore time-varying properties of the captured distributions. In this case, the isosurface 
represents a boundary between histogram bins with higher/lower frequency of samples compared to the 
isovalue. Furthermore, improvements have been made to the system’s ability to select groups of 
trajectories based on features in the histogram distributions. A paper reporting this work was published by 
IEEE Transactions on Visualization and Computer Graphics [Neu2016a]. We are currently working on 
deploying a polished visualization software to scientists at PPPL and plan to conduct a thorough usability 
study. Such a study will help us improve the system and answer fundamental questions about user 
perception and understanding of this new technology. 
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3.2.2 Topological Methods 
3.2.2.1 Topologika: Topological Techniques for Scientific Feature Extraction (UUtah) 
Over the last five years we have been developing a number of topologically based analysis techniques to 
extract and track features in a broad class of scientific applications.  Some of these techniques are part of 
different software infrastructures (MSCEER, ND2AV, TALASS) discussed in more details below. Other 
techniques are aimed at developing new application use cases and research prototypes targeted at 
individual scientific applications. Over the duration of the SDAV institute we have seen these techniques 
mature from the first in situ and in-transit analysis approaches [Ben2012b] to massively parallel 
implementations [Lan2014a] able to process an order of magnitude more information than previous 
approaches at less than 1% of the overall simulation costs. Simultaneously, these techniques have become 
accepted in the scientific main stream, leading to numerous publications in application focused journals 
[Gro2012a,  Gro2013a] as well as open source code releases [Bre2016b] and integration into community 
tools, i.e. VisIt. 

Topological analysis is the focus of an application partnership with a team from the BES office concerned 
with the analysis of first principle molecular dynamics simulations. This has already led to a joint 
publication [Bha2016a] with multiple others currently in submission. Finally, we have explored extending 
structural analysis to vector fields [Bha2014a, Bha2014b].  

Going forward there are three clear directions to pursue: a) the continued shift towards in situ analysis 
will require concerted research and software development efforts to create the corresponding algorithms 
and implementations. These efforts will also provide a great opportunity to collaborate more closely with 
ongoing efforts in the exascale research project as well as run time focused projects; b) as topological 
techniques are becoming more accepted there will be continuous need to modify and adapt both the 
approach as well as the implementations to new research areas and simulation codes. Prime examples are 
the new MPAS grids of the high resolution climate models but opportunities also exists in molecular 
dynamics, biology, healthcare, etc.; c) a number of research areas in applications such as particle physics 
and turbulent flow can benefit significantly from topological techniques but will require the development 
of new approaches.  

3.2.2.2 MSCEER: Morse-Smale Complex Extraction Exploration and Reasoning (UUtah) 
One of the specific tools resulting from the five years of work is MSCEER, a set of software libraries and 
tools for data analysis and visualization based on the specific topological construct of the Morse-Smale 
Complex. This tool has been effective in the analysis of a number of scientific domains ranging from 
clean combustion [Gyu2014a] to the design of battery materials [Bha2016a, Gyu2015a, Gyu2015b]. The 
latter application, for example, has been driven by the representation of Ion Diffusion with DFT (Density 
Functional Theory) models. The work uses ab initio molecular dynamics (AIMD) simulations, which are 
increasingly useful in modeling, optimizing, and synthesizing materials in energy sciences. The solved 
Schrodinger’s equation and the generation of the electronic structure of the simulated atoms as a scalar 
field is ideal for topological analysis based on the computation of the Morse-Smale complex. The discrete 
nature of the Morse-Smale complex computation used in the MSCEER allows analyzing first-principles 
battery materials simulations with no loss of precision. We consider a carbon nanosphere structure used in 
battery materials research and employ Morse-Smale decomposition to determine the possible lithium ion 
diffusion paths within that structure. Our approach is novel in that it uses the wave function itself as 
opposed to distance fields, and that we analyze the 1-skeleton of the Morse-Smale complex to reconstruct 
detailed geometric representations of diffusion paths. Furthermore, it is the first application where 
specific motifs in the graph structure of the complete 1-skeleton define features, namely carbon rings with 
specific valence.  

For the application to combustion simulations, Morse-Smale crystals (elements of monotone flow in a 3D 
scalar field) are very well suited to define dissipation elements, a structure that has become widely used to 



 

 17 

understand turbulent flows [Gyu2014a]. Furthermore, the MSCEER libraries have been adapted and 
improved to meet specific requirements of various analysis tasks, such as invariance to mesh orientation 
[Gyu2012b] needed to compute topological elements of combustion simulations, extension to large-scale 
meshes with distributed computation [Gyu2012a], flexible identification and visualization of individual 
elements of the Morse-Smale Complex [Gyu2012c], and incorporating numeric integration of gradient 
trajectories into the robust combinatorial approach [Gyu2014b]. Although developed to solve specific 
problems for domain-specific analysis tasks, these techniques have proven to be applicable across 
domains: for instance, the ability to compute geometrically accurate dissipation elements in combustion 
simulations has been directly applicable to computing accurate Bader volumes in the study of battery 
materials. 

Future developments in this field include scaling to large models without core techniques as well as 
parallel deployment for in situ processing that can lead to scientific insight together with massive data 
reduction. 

3.2.2.3 ND2AV: N-Dimensional Data Analysis and Visualization (UUtah) 
Over the 5-year period we have seen a rapidly growing interest in high dimensional analysis and 
visualization techniques. In particular, many scientific applications are interested in exploring and 
understanding high dimensional parameter spaces in areas ranging from high energy density physics to 
nuclear reactor safety. We have developed a suite of generic tools to support these activities that are 
applicable to virtually all high dimensional data. These include, distortion guided visualization 
[Liu2014a] and its application to multi-variate volume rendering [Liu2014b], subspace-based 
visualization [Liu2015a] and a new way to identify important viewpoints in high dimensional data 
[Liu2016b]. Another line of research has explored the application of these technique to high energy 
physics [Bre2016b] and Nuclear Safety Analysis [Mal2016a, Mal2015a, Mal2015b] in collaboration with 
Lawrence Livermore National Laboratory. In addition, we have contributed well-received surveys of high 
dimensional visualization techniques to the community [Liu2015b].  

In the longer term, the significance of high dimensional techniques will increase, driven by needs in 
uncertainty quantification, risk assessment and sensitivity analysis. This will require more 
computationally efficient techniques that are easily accessible to the scientific community as well as more 
intuitive interpretation of the results.   

 

3.2.3 Flow Field Analysis 
3.2.3.1 Parallelization of Flow Algorithms for Large-Scale Data Analysis (UCD) 
We have been working on the parallelization of flow visualization algorithms, specifically related to 
integral curve methods. Integral-curve-based algorithms are particularly difficult to implement on 
distributed parallel systems, as the communication between processors eventually dominates the 
algorithms, and our results have shown that the computation time is dependent on the complexity of the 
dataset [Cam2012a]. We also worked on methods for representing flow visualization in particle-based 
systems. We have demonstrated new analytics for flow in development of the velocity gradient tensor 
[Obe2012a], and continue to develop new methods based on continuum-mechanics effects [Agr2013a].  
This allows us to give the end-user visual information on the “stretching” of time surfaces in the flow. 

Furthermore, working in conjunction with our colleagues at Lawrence Berkeley National Laboratory and 
the University of Oregon, we have developed new methods to store and visualize flow fields by use of 
flow maps. In general, we showed that a Lagrangian representation for data, where trajectories are kept at 
each data point, rather than vectors, combined with interpolation of trajectories, allows visualization 
algorithms to be more accurate, be faster, and use less memory than existing techniques. More 
importantly, these methods can be used in an in situ environment in a much better way than with existing 
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methods. Our main performance results were presented at the 2014 LDAV Symposium [Agr2014a]. We 
continued to develop new methods for flow visualization based on this new representation that can be 
implemented on large-scale parallel systems with additional results presented at the 2015 SPIE 
Conference [Arg2015a, Arg2015b]. Furthermore, we have adapted these methods to compressible flow 
models and have papers published in IEEE Transactions on Visualization and Computer Graphics 
[Cha2015a, Cha2015b]. Next, we flushed out the differences in this representation, and the bottlenecks 
that are introduced. We have developed methods that utilize curve-based representations as the “data 
structure” for this method, and have worked out the interpolation methods to define pathlines from this 
representation. This work was presented at the 2015 LDAV Symposium [Buj2015b]. 

 

3.2.3.2 VTK/OSUFlow Integration (OSU) 
As part of SDAV’s goal to facilitate large scale flow visualization, our effort was to enhance the 
OSUFlow library with a scalable stream surface computation algorithm, which was published in SC'14 
[Lu2014a].  While several parallel streamline computation algorithms exist, relatively little research has 
been done to parallelize stream surface generation. This is because load-balanced parallel stream surface 
computation is nontrivial, due to the strong dependency in computing the positions of the particles 
forming the stream surface front.  In our algorithm, seeding curves are divided into segments, which are 
then assigned to the processes. Each process is responsible for integrating the segments assigned to it. To 
ensure a balanced computational workload, work stealing and dynamic refinement of seeding curve 
segments are employed to improve the overall performance. This is a joint work between OSU and 
scientists at ANL. We have integrated this algorithm into the OSUFlow library. Another addition to the 
VTK/OSUFlow library is the ability of interactive manipulation of flowlines and flow article. With a 
novel deformation model, we allow the user to minimize occlusions and maximize the ability to identify 
salient flow features [Ton2016a]. 

 

3.2.4 Feature-Driven Data Exploration 
3.2.4.1 TALASS: Topological Analysis of Large-Scale Simulations (UUtah) 
TALASS refers to a software framework to compute, track and explore the spatio-temporal history of 
features in scientific simulations. Over the 5-year period we have broadened the range of applications to 
new feature types, i.e. embedded features on surfaces [Wid2015a], new applications, i.e. halo finding 
[Wid2014a] and new mesh types [Lan2015a]. At the same time we have been hardening the software and 
deployed it to researchers at Sandia National Laboratory. TALASS, originally designed for turbulent 
combustion research [Ben2012a, Wid2012a, Wid2015b] has now been extended to astronomical 
simulations [Wid2014a], weather analysis [Wid2017a], plasma physics [Wid2016a] and health care 
[Wid2016b]. In addition, the software has recently been ported into the ViSUS analysis framework which 
allows it to integrate seamlessly topological-based analysis and tracking with large scale visualization.  

Going forward, TALASS will require continued investments in the software stack to allow its deployment 
to a broader community. Furthermore, there exist a number of interesting opportunities to extent the 
application space into new areas, such as, climate research or health care. 

3.2.4.2 Feature-based Analysis of Plasma-based Particle Acceleration Data (LBNL) 
Computational accelerator modeling aims to understand the fundamental nature of particle acceleration 
under varying conditions. When performing such modeling, accelerator scientists generate vast amounts 
of model output from simulation runs on large-scale HPC resources. The focus of our work has been on 
enabling scientific knowledge discovery using two different approaches.  

The first uses a post-processing approach, and consists of methods for automatic feature detection and 
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classification to first locate interesting features in time-varying model output, then apply machine learning 
methods to locate similar features elsewhere in a data collection. In support of plasma-based accelerator 
modeling efforts, we developed a method and software toolset for automatic detection and classification 
of particle beams and beam substructures due to temporal differences in the acceleration process 
[Rub2014a]. The software implementation, lwfapath, supports both interactive and batch modes of 
operations to support different needs and use scenarios of the accelerator modeling community, and has 
been run at NERSC as well as on desktop-class platforms by accelerator modeling researchers. 

The second uses an in situ approach, where visualization and analysis methods are coupled directly to an 
accelerator modeling code to avoid the complications and cost associated with writing, then reading data 
to/from persistent storage. In support of the WARP code team, we coupled VisIt with WARP to 
implement in situ methods for feature-based data analytics, efficient large-scale data analysis and 
visualization. This work enabled accelerator modeling researchers to see and analyze, for the first time, 
high-resolution 3D simulations and compare them with 2D simulations [Rub2016a]. Prior to this work, 
accelerator scientists were constrained by I/O to study only of 2D simulation models. The new software, 
WarpIV, has been publicly released and is installed at NERSC. 

 

3.3 Visualization 
Our well rounded portfolio of visualization activities aims to provide usable visual data exploration and 
analysis technologies for use by the DOE computational science community. We evolved our two 
primary visualization applications, VisIt and ParaView, to be multi-/many-core aware, deployed these 
applications at DOE supercomputing facilities, and provided direct user support to computational science 
users. We invested in maturing and applying key technologies (PISTON, DAX and EAVL) for achieving 
multi-/many-core capability over a longer time horizon, and leveraged these into a single software 
platform, VTK-m, that will have impact on the broader visualization and analysis community for at least 
the next decade. Finally, we focused on applied development efforts that produce new capabilities, driven 
by science needs that ultimately end up in software distributed to the computational science community.  

3.3.1 VisIt and ParaView 
3.3.1.1 VisIt (LBNL, LLNL, ORNL, UO) 
Over the five-year period, we made many improvements to the VisIt visualization tool, both in support of 
new architectures and in new features for SciDAC stakeholders.  We also made many releases of our 
software, and made sure that VisIt was installed and accessible at the LCFs and NERSC. 

The most important architectural change for VisIt has been the rapid increase in parallelism within a 
compute node.   At the beginning of SDAV, VisIt only supported MPI-parallelism, which we foresaw as a 
problem given architectural trends.  In response, we have pursued two major activities.  First, we have 
added “pthread”-style threaded parallelism to VisIt.  This activity proved to be a promising direction, 
since many VisIt algorithms could be retrofitted for this type of parallelism with (relative) ease.  Of 
course, this style of parallelism will not work on GPUs, and so this development arc was limited to 
improved performance on multi-core CPUs and support for the Xeon Phi.  A second activity has been the 
incorporation of VTK-m into VisIt.  This activity is the “long term” solution for shared-memory 
parallelism within VisIt, but also a much larger effort.  While this activity is far from complete, VisIt is 
now able to interact with VTK-m and make use of its algorithms as they become available.  As additional 
functionality is added to VTK-m, VisIt will be in a position to quickly take advantage.  Going forward, 
porting VisIt algorithms to many-core architectures will essentially involve making a VTK-m 
implementation for that algorithm and then having VisIt invoke that implementation. 

In terms of new features for SciDAC stakeholders, there are many activities to report.  VisIt now can read 
SpecFEM3D data (in conjunction with ADIOS), resulting in the ability to visualize their full resolution 
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data from Titan.  VisIt’s support for Adaptive Mesh Refinement (AMR) data has greatly improved, 
especially the type of AMR coming from the FASTMath SciDAC Institute.  In particular, VisIt now has 
production-quality crack-free isosurface extraction, which was used to visualize ice sheets computed 
using the BISICLES climate simulation code. VisIt also now has an FTLE operator, which was added and 
optimized for Linda Sugiyama of MIT.  We also improved infrastructure that benefits many stakeholders, 
in particular our in situ version of the code (LibSim) and substantial improvements to its particle 
advection module.  To publicize these new features the VisIt team was active in outreach, including 
participation in 11 tutorials (5 at SC and 4 at ATPESC). 

These improvements led to many successful usages of the code by SciDAC stakeholders.  Two 
noteworthy examples are for laser back scatter simulations and magnetic reconstruction simulations.  In 
the first example, VisIt was used to visualize 220 billion cell data and correlate multiple, complex, 3D 
phenomenon over time to bring out features of interest at key points in the simulation, such as where back 
scatter phenomenon took place.  In the second example, VisIt was used to visualize 1 trillion particle data 
sets from the VPIC code, in combination with the H5Part and FastQuery systems.  This allowed 
collaborators to explore energetic particle distribution, the formation of flux ropes and, and the alignment 
of the motion of energetic particles with the electric/magnetic fields.   

3.3.1.2 ParaView (LANL, Kitware) 
During the SDAV life-cycle, we had nine ParaView releases before the end of our project. There has been 
many major improvements in these releases. Some highlights include: 

• Support for data parallel frameworks including Dax, Piston and vtkSMP. VTK-m, which unifies all of 
these technologies, will be included in ParaView 5.3. 

• Development of a charting framework with support for symbol and equation rendering for annotation, 
and support for vector graphics output. 

• Refactoring of the VTK and ParaView libraries to allow for the creation of smaller subsets of both 
frameworks. This was driven by the need to derive in situ ParaView libraries that fit the problem. 

• Introduction of ParaView Catalyst, a ParaView based in situ library. Since its release, Catalyst have 
been integrated with DOE codes in many scientific domains, including Climate, CFD, Plasma, HEP, 
and Shock Physics. 

• Numerous improvements to ParaView's visual analytics and quantitative analysis capabilities, 
including support for scatter plot matrices, parallel coordinates and histograms. 

• Development of much improved ParaView and Catalyst User's Guides. 
• Integration with ADIOS for post hoc IO as well as in transit visualization. 
• Integration with DIY2 for the development of distributed algorithms. 
 

We has six VTK major releases over the last 5 years.  These releases included numerous improvements 
and new features in support of DOE needs, including ParaView and VisIt development. Highlights 
include a major rewrite of VTK's rendering engine to obtain large performance improvements (10x - 
100x) on modern graphics cards and software rendering implementations, integration of OpenSWR for 
improved rendering on Intel Xeon Phi processors, integration with VTK-m, and major improvements to 
the VTK pipeline infrastructure for improved parallel processing. 

We have collaborated with and supported various DOE science teams including 

• VPIC: Kinetic plasma simulation, Bill Daughton, LANL, PI. Collaborations included post hoc 
visualization with ParaView and in situ analysis with Catalyst. 

• HACC, Cosmology, Salman Habib, ANL, PI. Collaborations included post hoc visualization with 
ParaView, feature extraction and tracking algorithm development, in situ analysis with CosmoTools. 

• Plasma Surface Interaction (PSI) SciDAC Application Partnership, visualizations of helium bubbles 
and tungsten cavities from LAMMPS simulations using VTK. 
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• MPAS: Climate simulation, post hoc and in situ analysis and visualization, algorithm development 
for feature tracking, 

• CAM-SE: Climate simulation, post hoc analysis and visualization, 
• OSCon - Optimizing SuperConductor Transport Properties through Large-Scale Simulation, SciDAC 

partnership with BES, deploying in ParaView a set of algorithms for extracting, tracking and 
visualizing vortex dynamics in large-scale time-dependent Ginzburg-Landau (TDGL) superconductor 
simulation data. We have also integrated IO functionality to load the simulation data into ParaView. 

In conclusion, we have improved both the ParaView and VTK visualization tools in order to support new 
architecture features at the LCFs and similar machines.  We also customized these tools according the 
specific needs of multiple scientific communities, helping them to achieve greatly improved efficiency, 
adding functionality they requested, and in several cases embedding our tools into their scientific 
frameworks.  The collaboration with the VTK-m effort has been highly successful.  Looking forward, as 
more algorithms are added to VTK-m to take advantage of multi-core and many many-core architectures, 
ParaView will automatically benefit from these new capabilities. 

 

3.3.2 VTK‐m Framework  
3.3.2.1 VTK-m (Sandia, Kitware, ORNL, LLNL, UO) 
When SDAV began in 2012, the scientific visualization community was just beginning to develop 
algorithms and software that run well on multi-core CPUs or many-core accelerators like GPUs. We 
identified 3 key projects addressing scientific visualization on multi/many-core processors: Piston, an 
ASC project lead by LANL, Dax, an ASCR project lead by SNL, and EAVL, an LDRD project lead by 
ORNL. SDAV adopted these products under its umbrella of tools. 

Our evaluation of these tools revealed that each addressed a unique aspect of the problem. Piston focused 
on efficient and portable algorithms. Dax provided a top-down framework that simplified development. 
EAVL provided advanced data structures. Our initial work considered the integration of these tools. 
Although we did manage some forms of integration, the results were suboptimal. The integration was not 
tight enough to realize the full potential and ultimately we were in danger of repeating each other’s code. 

In response, we considered the feasibility of a tighter integration where the code was redesigned under a 
single software project. The plan required each software team to transfer their software technology to a 
new, unified project. Such consolidation of software is rare, but fortunately SDAV was structured to 
include as key personnel the PIs for each of these three projects. This gave us the motivation and 
organization to form a tight collaboration in which we all agreed to put aside our previous software and 
move to a new unified software base. Although much of the development of VTK-m was performed 
under a following ASCR project, this collaboration could never have formed without SDAV, and we 
consider this an important success of SDAV. 

VTK-m version 1.0 was released June 7, 2016. This release includes the integration of the three 
predecessor toolkits, and with it we demonstrated an efficient combination of algorithm implementation, 
performance portability across devices, advanced data models, and high level scientific visualization 
building blocks [Mor2015b, Mor2016b]. More information about VTK-m is available on our web site 
(http://m.vtk.org). 

During the run of SDAV we had two VTK-m code sprints: one in September 2015 at LLNL and one in 
August 2016 at Kitware. Among the two we had many participants that represented work from many 
different organizations including national laboratories (SNL, LANL, ORNL, LBNL, LLNL), universities 
(Oregon, UC Davis), and industry (Kitware, NVIDIA, Intelligent Light). These events allowed us to reach 
out to several interested developers to get them kick started with VTK-m development and also allowed 
us to make progress in several key areas of VTK-m and its algorithms. 
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VTK-m development continues to progress and is currently the only viable solution for DOE’s scientific 
visualization needs on multi- and many-core devices, and we expect much of future DOE research to 
contribute back to the VTK-m library. Furthermore, the DOE Exascale Computing Project (ECP) includes 
the development of several algorithms in VTK-m to replace the single threaded and MPI-only 
counterparts in VTK. 

Next, we describe the progress of the three tools that were integrated into VTK-m: Piston, Dax, and 
EAVL. 

3.3.2.2 Piston (LANL) 
Early PISTON Algorithms.  Our early work under the SDAV Institute focused on the development of 
visualization and analysis operators, such as isosurface, threshold, and cut surfaces, using portable, data-
parallel “primitives” (e.g. scan, transform, and reduce).  These algorithms were described and evaluated 
in our paper [Lo2012a], and have since been ported to VTK-m.  The three projects which merged into 
VTK-m (PISTON, Dax, and EAVL) were described in the paper [Sew2012a], and their integration was 
presented in the papers [Chi2013a] and [Mor2016b]. 

In-Situ Data-Parallelism.  As a precursor to the VTK-m / VTK integration, a ParaView plug-in was 
implemented for PISTON, and prototype in-situ adapters were developed using the Catalyst framework 
for several scientific codes, including the Vector Particle in Cell (VPIC) plasma simulation code, enabling 
them to execute our data-parallel visualization algorithms while the simulation is running. 

Distributed Data Parallelism.  While the VTK-m effort has been focused primarily on improving on-
node, shared-memory performance, we also extended several data-parallel operators to run across nodes 
in distributed memory environments, and implemented algorithms such as isosurface and KD-tree 
construction using them.  This approach was described in a paper [Sew2013a].          

Cosmology Applications.  Over the course of the SDAV project, we applied the data-parallel principles of 
PISTON and VTK-m to deliver new capabilities to the Hardware/Hybrid Accelerated Cosmology Code 
(HACC) in collaboration with the “Computation-Driven Discovery for the Dark Universe” SciDAC 
Application Partnership in High-Energy Physics (Salman Habib, PI).  This work resulted in a number of 
publications highlighting both the visualization and analysis techniques used and the scientific results 
they enabled.  [Sew2015a] presented the algorithmic details of our data-parallel, portable halo and halo 
center finding analysis operators.  These operators enabled halo analysis to be performed on a half-trillion 
particle simulation run on 16,384 nodes of Titan.  The results of this simulation, which was the first time 
that the concentration-mass relation has been measured from a single simulation volume over such an 
extended mass range, were published in [Hei2015a].  We developed innovative new workflows, which 
combine in-situ and off-line analysis, to deal with the large data generated by this simulation.  These 
workflows were evaluated quantitatively in our Supercomputing paper [Sew2015b]. 

Topology / Feature Tracking.  We have also collaborated with topologists to develop data-parallel 
algorithms.  Our research work involved a general and flexible analysis environment which enables 
interactive exploration of feature evolution in time-varying data sets, regardless of the underlying data 
type. In order to demonstrate the generality of this framework, we have extended its applicability to 
several large-scale scientific and non-scientific data sets. For cosmology data, we implemented a data-
parallel, friend-of-friends halo finding algorithm to construct a feature hierarchy for halos, and then 
tracked their evolution through time using our framework, the results of which was presented in the paper 
[Wid2014a]. In the case of plasma surface interaction data, we explored and analyzed the evolution of 
helium bubbles using our framework. We also visualized the evolution of pressure-perturbation events in 
weather data sets to assist the atmospheric scientists to better understand different weather phenomena. 
Finally, for healthcare data, we focused on exploring and analyzing patient progression over time utilizing 
a publically available intensive care unit (ICU) dataset. This work facilitated better predictions of patient 
outcomes, personalized medication, and more targeted interventions, and was published in the paper 
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[Wid2016a].  The groundwork in data-parallel topology laid by the SDAV project also led to the 
development of a data-parallel contour tree algorithm under separate funding, and the resulting paper, 
[Car2016a], was named Best Paper of the Large Data Analysis and Visualization Symposium in 2016.   

3.3.2.3 Dax (Sandia) 
Data Structure Adaptability. Much of the early SDAV work with Dax was in making sure its data 
structures where highly adaptable [Mor2012b]. The initial goal of this work was to improve the interface 
between Dax and the other multi-threaded libraries (PISTON and EAVL) as well as other established 
libraries (like VTK). This work was instrumental when combining the technologies from the three 
projects into a single software product (VTK-m). 

Performance Under Layers of Abstraction. In addition to providing an abstract representation of a device 
(for device portability), Dax used several layers of abstraction to hide the complexities of parallel 
programming [Mor2012b]. These layers of abstraction worked by identifying common patterns in 
scientific visualization algorithm execution [Mor2013b]. This required several optimizations in the 
underlying framework. Of specific importance were geometry creation techniques [May2013a, 
Mil2014a]. 

Integration with Dynamic Libraries. The Dax library makes extreme use of C++ templates to maximize 
the efficiency of the algorithms. However, templates also require all types to be known at compile time, 
which is a problem when interfacing with a more dynamic software like VTK that uses virtual methods so 
that specific types do not need to be known until run time. As part of our work in integrating Dax with 
ParaView, we devised techniques to unroll possible types at run time to call into the appropriate template 
code. 

Scanning Transmission Electron Microscopes (S/TEM). Dax was used to improve the processing in 
scanning transmission electron microscopes (S/TEM). This equipment generates large (10243 or greater) 
volumes that are often difficult to analyze. Dax was incorporated into TomViz (http://tomviz.org/), an 
open, general S/TEM visualization tool and provides streaming interactive contouring that significantly 
beats VTK’s alternative algorithms. 

3.3.2.4 EAVL (ORNL) 
Advanced Data Structures. The EAVL focus was on a next generation data model [Mer2012a, 
Mer2012b]. Development under SDAV included support for quad-trees and higher order meshes in 
support of the scientific codes MADNESS and Chimera. The basic data model from EAVL has been 
ported to VTK-m, and we continue to refine this model. 

In Situ Applications. One main use case of the EAVL library was its use as a lightweight visualization 
library to be used for in situ visualization in simulations. To ensure EAVL had minimal impact on 
simulations, mechanisms for zero-copy access to simulation host arrays were employed. Using zero-copy 
was often found to be 10x to 200,000x faster than conversion routines. EAVL also provided plotting, 
rendering, and annotation capabilities while less critical dependencies were trimmed (and compiling a 
base EAVL library with no dependencies was possible). Most of this functionality is transferred over to 
VTK-m. 

We also experimented with and developed a set of light weight visualization plugins that are suitable for 
use in data staging environments. Our initial experiments consist of using EAVL and the ADIOS system.  
These were used to run the XGC-1 code on OLCF resources, staging the data to a set of nodes and then 
using visualization plugins developed in EAVL to perform basic data reductions and rendering operations 
of both field and particle data [Pug2014a, Kre2016a]. This work is being ported over to VTK-m 
[Pug2016c]. 

Rendering. EAVL received major rendering infrastructure improvements. This included an overhaul to 
support multiple renderers, in part to remove formerly mandatory rendering dependencies like OpenGL. 
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The new renderers include vector-based ones like Postscript/EPS, necessary for scientists to generate 
publication-quality one- and two-dimensional figures. These also include a ray tracing renderer with 
advanced lighting effects and an accurate direct volume renderer. These could be used with no extra 
software engineering burden in the form of third-part library dependencies, a critical feature for in situ use 
cases. 

Effort was also spent exploring and implementing multi- and many-core accelerated versions of these 
advanced renderers, as particularly the raycasting and volume rendering ones are computationally 
intensive, and in situ use cases place higher performance demands on the visualization infrastructure. A 
major thrust of this exploration was to use common data-parallel primitives to accelerate these renderers 
[Lar2015a, Lar2015b]. These renderers are now available in VTK-m. 

3.3.2.5 DIY: Block-Parallel Library (ANL, LBNL) 
Over the 5 year SciDAC-3 period, we developed a new version of the DIY programming model which 
allows building other parallel analysis libraries on top of it. DIY is a programming model and runtime for 
block-parallel analytics on distributed-memory machines. Its main abstraction is block-structured data 
parallelism: data are decomposed into blocks; blocks are assigned to processors; computation is described 
over these blocks, and communication between blocks is defined by reusable patterns. One of the libraries 
that we built on DIY is Tess, to compute parallel Voronoi and Delaunay tessellations of particle datasets, 
a core part of the analysis of many simulated and measured datasets: N-body simulations, molecular 
dynamics codes, and LIDAR point clouds are just a few examples. However, the algorithms for 
computing these tessellations at scale perform poorly when the input data is unbalanced, such as the case 
in cosmological dark matter simulations. We investigated the use of k-d trees to evenly distribute points 
among processes. Because resulting point distributions no longer satisfy the assumptions of our earlier 
parallel Delaunay algorithm, we developed a new parallel algorithm that adapts to its input.  

Our approach of using the k-d tree has led to very significant results.  We evaluated the new algorithm 
using two late-stage cosmology datasets. The new running times are up to 50 times faster using the k-d 
tree compared with regular grid decomposition. Moreover, in the unbalanced data sets, decomposing the 
domain into a k-d tree is up to five times faster than decomposing it into a regular grid.  

Our work resulted in three major publications and the release of two open-source software libraries. The 
article about DIY was published in the LDAV symposium collocated with IEEE Visualization 2016 
[Mor2016a], and two articles about Tess were published in IEEE/ACM Supercomputing 2014 [Pet2014] 
and 2016 [Mor2016b]. Both the DIY and Tess software are available on Github. 

Conclusion: in situ data processing requires scalable distributed-memory algorithms. Developing such 
algorithms is enabled with DIY’s block-parallel programming model. Decomposing the domain into 
adaptive structures such as k-d trees allows irregular computations to be load-balanced. Libraries such as 
DIY and Tess are critical pieces of the distributed-memory algorithms in VTK-m, and we will continue to 
support the parallel communication needs of VTK-m in future research projects. 
  

3.3.3 Flow Visualization Methods 
3.3.3.1 Parallel Integral Curve System (UUtah) 
Utah working in collaboration with SDAV partners at ORNL and LBNL expanded and hardened VisIt’s 
Parallel Integral Curve System (PICS). The PICS code is an integral part of VisIt’s analysis tools 
allowing researches to analyze and visualize particles paths. As part of SDAV the PICS code was 
expanded to allow for the secondary analysis of the data produced by the system. The original system 
architecture was developed where the integral curves were the finial output for either visualization 
(streamlines or path lines) or analysis (Poincaré maps).  
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However, with growing interest in Lagrange Coherent Structures (LCS) from DOE researchers in ocean, 
climate (ice flow), combustion, fusion, and other applications, there was a need to allow for the secondary 
analysis of the data produced. For instance, a common LCS analysis technique is to compute Finite Time 
Lyapunov Exponents (FTLE). These exponents are based on the eigenvalues computed using the initial 
integral curves. However, other structures are of interest, such as limit cycles and shrink and stretch lines 
which can be found by evaluating the associated eigenvectors.  The analysis of the eigenvectors required 
additional infrastructure with the PICS code. 

In addition to the infrastructure development the LCS operator has been expanded. As noted above, in 
addition to eigenvalues, eigenvectors or their combination are used for limit cycles and shrink and stretch 
lines all of which are part of LCS analysis. Finding limit cycles is an iterative search process that also 
utilizes the PICS system which was added as a new operator within VisIt. The Limit Cycle operator is 
separate from the LCS operator and can be used by any vector field.  Finding shrink and stretch lines is 
based on local min/max FTLE values and was a new addition to the LCS operator. These min/max values 
are used as seed points along with the eigenvalues and are advected using the previously developed 
Integral Curve operator. All of the tools described have been deployed within VisIt and are currently 
being used by DOE and other researchers. 

3.3.3.2 Uncertainty Flow Visualization (OSU) 
Uncertainty Particle Tracing: We have developed several novel pathline tracing algorithms for time-
varying flow data. As the size of simulations continues to increase, it is only possible to store a small 
subset of the time step data in order to save both storage space and analysis time. Computing pathlines 
from the reduced data sets, however, is susceptible to interpolation errors due to the lack of data. In this 
research, we developed a novel data reduction algorithm based on Bezier splines (a numerically stable 
method to represent curves) to increase the data accuracy, and a parametric error modeling with a least 
square fitting approach. Our pathline tracing algorithm utilizes the errors modeled by our approach where 
not only the uncertainty involved is quantified, but the accuracy of the resulting pathlines is also 
improved. This work was published in IEEE Pacific Visualization 2015 [Che2015a]. To ensure a clearer 
understanding of three-dimensional flow features, we have also developed a scalable algorithms for 
parallel stream surface generation [Lu2014a], and a novel domain decomposition algorithm that allows 
large scale parallel computation of streamlines [Bis2016a]. Our work on uncertainty particle tracing and 
visualization of uncertain flow features have been used and evaluated by ANL climate scientists Scott M. 
Collis and Jonathan J. Helmus.  The in situ detection of flow features will have a wide applications on 
DOE’s large scale flow simulations such as detecting magnetic flux vortices in superconductor 
simulations done at ANL. 

In Situ Visualization and Analysis of Flow: We have developed several novel techniques for in situ 
identification of salient flow features. With recent advancements of high performance computing, high-
resolution unsteady flow fields allow in depth exploration of turbulence and its possible causes.  
Performing turbulence analysis, however, involves significant effort to process large amounts of 
simulation data, especially when investigating abnormalities across many time steps. In order to assist 
scientists during the exploration process, we created a visual analytics framework to identify suspected 
spatiotemporal flow abnormity through a comparative visualization so that scientists are able to focus on 
relevant data in more detail. To achieve this, we developed efficient analysis algorithms derived from 
domain knowledge and convey the analysis results through juxtaposed interactive plots. Using our 
integrated visualization system, scientists can visually investigate the detected regions for potential 
candidate features and further explore their associated spatial regions to enhance the understanding of this 
phenomenon. Positive feedback from scientists demonstrate the efficacy of our system in analyzing jet 
engine rotating stall. This work was published in IEEE SciVis 2015 and a special issue of IEEE 
Transactions on Visualization and Computer Graphics [Che2015b]. Our work also won the best paper 
honorable mention in IEEE SciVis 2016 [Dut2016a] 
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3.3.3.3 Flow Visualization on GPUs (LBNL) 
Within the context of scaling flow visualization methods, the key component of which is a parallel 
computation of integral curves, we have focused on a pair of related objectives that aim to produce 
software methods for flow visualization that are of high quality, in production use by the science 
community, and that are suitable for use on both multi-core CPU and many-core GPU platforms.  

Scaling flow visualization methods is a challenge since the method's parallel performance is dependent 
upon several factors: the placement/density/number of seed points (an input parameter), the 
characteristics of the underlying vector field through which curves are computed (input data dependency), 
and various factors related to the computational architecture (faster vs. slower cores, faster vs. slower 
memory, the mechanisms and cost of moving data/memory, and so forth).  

Our efforts have focused on fostering a better understanding of flow visualization performance on various 
platforms, and under varying workload conditions [Chi2014b]. For workloads that are heavy in 
computation, such as high particle density with small integration steps, GPU-based platforms tend to 
perform better. In contrast, workloads that have lower particle density and larger integration steps, which 
place a higher load on data movement, tend to perform better on multi-core CPU platforms and on 
systems with better interconnect fabric. However, CPU-based platforms with high core density and good 
interconnect fabric proved to be competitive with GPU platforms across diverse workloads.  

In the longer term, this type of work can inform how software infrastructure for flow visualization, such 
as VisIt and VTK-m, can take advantage of different architectures to service varying workloads in a post-
processing configuration.  Such adaptivity would be the subject of future work. 

 

3.3.4 Rendering 
3.3.4.1 Advanced Volume Rendering in VisIt (UUtah) 
Over the last five years, we developed a number of techniques to improve the GPU-based volume 
rendering in VisIt through the SLIVR rendering path. We extended VisIt to include a scalable volume 
rendering solution that produces similar quality images to the enhanced GPU volume rendering.  These 
improvements are part of the VisIt release. As the programming model of modern supercomputers 
switches from pure MPI to MPI for inter-node communication, and shared memory and threads for intra-
node communication, the bottleneck in most systems is no longer computation but communication 
between nodes. The Task Overlapped Direct send Tree, TOD-Tree, is a new compositing algorithm for 
Hybrid/MPI parallelism that minimizes communication and focuses on overlapping communication with 
computation. We have extended the TOD-Tree compositing method to take advantage of GPU-Direct for 
GPU-enabled computing resources.  TOD-Tree has three stages: a direct send stage where nodes are 
arranged in groups and exchange regions of an image, followed by a tree compositing stage and a gather 
stage. We have worked closely with NVIDIA to utilize the direct GPU-MPI remote data copy 
mechanism, GPU-Direct, to perform compositing completely on the GPU nodes.  This avoids copying 
data between the CPU and the GPU.  We published and presented a paper at 2015 EuroGraphics Parallel 
Graphics and Visualization [Gro2015a]. 

3.3.4.2  High-End Volume Visualization (UCD) 
Volume rendering is a powerful tool for visualizing complex 3D flow field. We aim to enhance the 
usability of volume visualization by improving both interactivity and rendering quality.  To  enhance  the  
perception  of  complex  flow  structures  and  features,  we  have studied  different aspects  of  volume  
rendering.  For example, we have developed more scalable rendering of AMR data, presented at the 2013 
LDAV Symposium (receiving the best paper award) [Lea2013a], as well as hybrid grid volume data and 
geodesic grid data, both presented at the 2014 LDAV Symposium [Shi2014a, Xie2014a]. These have 
numerous applications to many SciDAC research areas including climate modeling, fusion simulations, 
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and astrophysics simulations. We have also been working on advanced illumination techniques for 
interactive volume visualization that incorporates the more physical light propagation, absorption, and 
scattering within the volumetric medium to more accurately present 3D structure and spatial relationships. 
Papers describing this work was published in ACM SIGGRAPH and IEEE Transactions on Visualization 
and Computer Graphics [Zha2013b and Zha2013c]. All these advancements benefit demanding 3D 
visualization tasks commonly found in SciDAC applications. 

Unstructured grids are increasingly used by large-scale simulations, and a few rendering algorithms have 
been developed by us and others for visualizing unstructured-grid volume data. However, while the 
benefits of using advanced illumination models in volume visualization have been previously 
demonstrated, interactive rendering has only been achieved for regular-grid volume data. In this SciDAC 
project, we have developed an advanced illumination method specifically for interactive visualization of 
3D unstructured-grid data. The basis of the  design  is  a  partial  differential  equation  based  illumination  
model  to  simulate  the  light  propagation, absorption, and scattering. In particular, a two-level scheme is 
introduced to overcome the challenges presented by unstructured grids. Our extensive experimental 
studies show that the added illumination effects such as global shadowing and multiple scattering not only 
lead to a more visually pleasing visualization, but also greatly enhance the perception of the depth 
information and complex spatial relationships for features of interest in 3D flow field data. This 3D 
visualization enhancement is timely as unstructured grids are becoming increasingly popular for a variety 
of scientific simulation applications in the SciDAC community. A paper reporting this work was 
presented at PacificVis 2015 [Shi2015a]. 

In this project period, Min Shih, a PhD student at UCD, over a summer internship successfully 
incorporated an advanced illumination design into a production visualization system at the Argonne 
National Laboratory. Future directions will include expanding the performance and quality of these 
advanced rendering techniques as well as continued implementation into new application areas. 

3.3.4.3 Parallel Particle Rendering and Volume Rendering with vl3 (ANL)  
vl3 is a parallel framework for large-scale data visualization and analysis developed at Argonne National 
Laboratory. Its design is modular to facilitate the development and testing of new algorithms and 
methods, as well as deploying it on varied hardware platforms. vl3 was originally conceived as a parallel 
hardware-accelerated solution for ray casting volume rendering of regular grids [Riz2014a]. 

Under the umbrella of SDAV, vl3 evolved in multiple aspects. Firstly, its data reader and rendering 
modules were extended to support visualization of AMR datasets [Lea2013a]. This work received a Best 
Paper Award at the 3rd IEEE Symposium on Large Data Analysis and Visualization (LDAV), 2013. 
Another significant contribution was the addition of hardware accelerated rendering of point sprites for 
large-scale particle data sets [Riz2014b, Riz2015a]. The new point sprite rendering capabilities, along 
with the existing large-scale ray casting volume rendering algorithm, allowed the ALCF visualization 
team to deliver production-quality visualizations for INCITE projects, including “Parameter Studies of 
Boussinesq Flows”, PI Susan Kurien, and “Cosmological Simulations for Large-Scale Sky Surveys”, PI 
Salman Habib [Hei2014a, Hei2015a]. 

In addition, vl3 was successfully coupled to the LAMMPS molecular simulation code for in situ 
visualization of large-scale atomistic data [Riz2015b, Riz2016a]. We also focused on improving image 
quality of the volume rendering module, developing an algorithm for efficient distributed global 
illumination based on voxel cone tracing [Shi2016a], which received an Honorable Mention Award at 
LDAV 2016. Furthermore, we used vl3 as a modular framework to explore novel remote RAM 
technologies, demonstrating that it is possible to access a large pool of remote memory achieving more 
than 75% of peak network bandwidth with low latencies [Zaw2016a]. Finally, important improvements 
were also made to the mechanism for interactive streaming from vl3 running on a visualization cluster to 
large tiled displays [Jia2015a], which received the Best Poster Award at LDAV 2015. 
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3.3.5 Ensembles, Uncertainty 
3.3.5.1 Ensemble-vis (UUtah) 
University of Utah, working with SDAV partners at ORNL and LLNL, developed prototype tools for 
ensemble analysis and visualization within the VisIt framework. These tools did not move beyond the 
prototype stage because they required major infrastructure changes within VisIt that were not feasible 
given the resources. These infrastructure changes would have made ensembles first class data objects with 
VisIt. That is, an ensemble data set would have been treated exactly like a single data set within VisIt’s 
execution pipeline. Instead, python scripts and tools were developed that automatically handled the 
integration of ensemble data sets that were then reduced into a single data set that fit within 
VisIt’s execution pipeline.  

One of the tools developed allowed for collating ensembles of data and expanded VisIt’s cross mesh field 
evaluations (CMFE) to ensemble data sets.  Using the CMFE combined with VisIt’s powerful expression 
mechanism gave users a way to collate data in a variety ways on a per time step basis. The collating of 
ensemble data is a critical step because the modeling is rarely a linear function of the data, that 
is sum(f(x)) != f(sum(x)). For the modeling, a new operator, “Statistical Trends” was deployed in VisIt 
that allows for a user to apply different statistical functions to look for trends in data over time.  The 
operator complemented the abilities of the CMFE operator as the users could collate on either per time 
step basis or over multiple time steps. Both operators implemented basic statistic functions (min, max, 
mean, variance, slope, residuals). Though these tools had to be used with python scripting within VisIt 
they were successfully used to analyze CMIP-5 climate data and are currently being used by DOE and 
other researchers. 

3.3.5.2 Determining Uncertainty in Ensemble Simulations (UCD) 
We have worked in conjunction with Lawrence Berkeley National Laboratory climate researchers and 
Pacific Northwest National Laboratory groundwater researchers to develop techniques to measure the 
modality of the distributions that arise from ensemble simulations, and have developed methods that can 
be used to visualize “trends” in such simulations. These methods are based upon a known statistical test – 
Hardigan’s Dip Test – but are modified to garner more information from the field. Furthermore, we have 
developed a new method for determining the uncertainty in the models by comparing each ensemble to a 
Bayesian Model Average.  By using ground-truth data we can calculate the Bayesian Model Average, and 
compare the ensembles to this average [Gos2013a].  These methods have the potential to assist in 
analyzing the copious amounts of data that comes from ensemble simulations and can determine where 
the simulation outputs produce viable distributions, and where they don’t. We have utilized these results 
to support climate simulations as well as groundwater simulations of uranium seepage in Rifle Colorado. 
Much of this work was published in IEEE Transactions on Visualization and Computer Graphics 
[Ben2016a, Obe2016a]. 

 

4 Committees 

4.1 Software Infrastructure 
The role of SDAV's Software Infrastructure Committee (SIC) was to inform and aid in the design of 
infrastructure that allows different technologies to interoperate.  The committee drew on experts from the 
SDAV Institute to perform integration and interoperability tasks, and they coordinated with SDAV’s 
Executive Council on decisions as needed.  The technologies used by SDAV already had existing 
software engineering practices, which eased the responsibilities of the SIC, since good practices were 
already being applied. 

SIC activities included releases of software, integration of software, and inventories.  In terms of software 
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releases, SDAV software saw many releases over the past five years, including dozens of releases of 
parallel visualization tools (ParaView, VisIt), I/O Frameworks and monitoring tools (ADIOS, PnetCDF, 
ROMIO, GLEAN, Darshan), indexing and code coupling tools (FastBit, DataSpaces), and data analysis 
Frameworks and tools (PIDX, ViSUS, MSCEER, TALASS, NDDAV) among other software packages. 
These software releases included rigorous testing and integration with SciDAC applications and their 
data. 

SDAV led the way for integration of many of our software technologies.  For example, VisIt and 
Paraview were both integrated with ADIOS, and researchers in the fusion EPSI project were able to use 
this to enable their large-scale science. Similarly, ParaView and PISTON were integrated, and this 
enabled climate applications to understand and visualize their large scale data. Finally, VisIt and EAVL, 
one of the core components of VTK-m were integrated, and this led into our project creating visualization 
services that were used in several fusion SciDAC projects. 

The SIC took inventory of all SDAV software on behalf of the SDAV EC, so that SDAV stakeholders 
could better understand the SDAV portfolio, as well as each package’s role and maturity. The SIC also 
prepared materials for DOE’s Institute-wide inventory, reporting on information for DBScan, FastBit, 
FastQuery, DataSpaces, Darshan, Dax, ImageVis3D, VTK, ParaView, Catalyst, DIY, VisIt, PIDX, 
ViSUS, PISTON, MSCEER, GLEAN, TALASS, NDDAV, HDF5, and UltraVis-P.  Our inventory was 
cataloged on the SDAV web page, each pointing to user guides, download instructions, usage examples, 
etc., enabling potential customers to become familiar with our software projects. 

Many people in SDAV also saw the need for many-core visualization libraries, which are necessary for 
applications running on the LCFs and NERSC. In the first two years of SDAV, the compatibility and 
future of DAX, EAVL, and PISTON was an open question. Ultimately, these packages merged into a new 
package, VTK-m, which is being directly integrated into VisIt, and will be integrated into ParaView via a 
VTK wrapper.  This has been a major outcome from SDAV, and VTK-m has emerged in a manner 
consistent with SIC goals, including paths for interoperability with other packages, and excellent software 
engineering practices. 

4.2 Facilities Deployment 
The Facilities Committee has been tasked with providing the SDAV Institute with access to computing 
cycles at DOE Supercomputing centers and ensuring that SDAV software is installed and available to the 
user community. To provide SDAV members with access at the computing facilities we have focused on 
writing proposals to the LCFs at ANL and ORNL, and to NERSC for allocations on each of the systems. 
Over the 5-year period of SDAV we have secured a total of 41.7 million hours across the three centers. 
These allocations have been oversubscribed to a total usage of 50.1 million hours. The chart below 
summarizes the resources used across the three centers over the 5-year period. As can be seen in the chart, 
the drop in hours used in 2014 was primarily because of a drop in usage at OLCF due to delays 
encountered in securing a renewal for the allocation awarded in 2013. As shown in subsequent years, the 
committee worked to increase resource availability for the remainder of the project. 
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These allocations have provided critical resources for the deployment and testing of SDAV software. 
These include VisIt, ParaView, Darshan, ADIOS, DataSpaces, DIMES, Flexpath, PIDX, ALACRITY, 
Fastbit, VTK, VTK-m, and others. In addition, these allocations have been used for algorithm 
development and scaling studies across a broad range of core SDAV areas, including feature tracking and 
detection; flow visualization; in situ visualization; data indexing and querying. There have been 
significant interactions with several ASCR and INCITE projects, including EXaCT, EPSI, to name a few. 

These allocations have been instrumental in a large number of publications, across a wide range of topics. 
Selected publications include: flow visualization [Ran2016c, Pug2016b, Che2015a, Lu2015a, Lu2014a, 
Wan2013a, Yuc2013a, Car2013a, Lin2013a, Cam2012a, Nou2012a], in situ analysis and visualization 
[Lar2016a, Pug2016c, Ye2015a, Gam2013a, Wan2013a, Ben2012a], queries [Lu2015a, Byn2013a, 
Lin2013a, Byn2012b], visualization tools [Shi2016a, Riz2016a, Zaw2016a ], feature detection and 
tracking [Per2016a], I/O and workflows [Lof2016a, Kum2014b, Kum2014a, Boy2014a, Car2013a, 
Kum2013a, Liu2013a, Ben2012a]. A number of publications from this list have been honored as best 
paper winners and finalists at conferences.  

 

The deployment of SDAV at the LCFs and NERSC is illustrated in the table below. As noted in the 
legend, software is available in one of three ways. Software that is installed and supported as a stand-
alone package are shown in red. Software that is part of other supported tools are shown in green. Finally, 
software that is locally installed, but unsupported by the center, or is part a private tool or applications are 
shown in blue. Additionally, information about all SDAV supported software is available on the SDAV 
website: http://sdav-scidac.org/toolkit.html.  
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4.3 Outreach Activities 
Since the SDAV award we have excelled with community outreach and impact of SDAV research and 
software.  We have maintained updated internal and external SDAV websites, which are used for internal 
communication as well as a public facing site (sdav-scidac.org). The public website consists of general 
information about the institute, with the majority of the content being driven by research highlights, the 
SDAV software toolkit, and publications.  The SDAV Toolkit (sdav-scidac.org/toolkit.html) is a gateway 
to useful software and code-based resources that have been developed through SDAV members.  

Because of SDAV’s high quality research, SDAV PIs were invited to give more than 35 Keynote and 
Plenary Presentations at international research conferences and workshops including the ACM 
Symposium on High-Performance Parallel and Distributed Computing, SIAM Annual Conference, 
Eurographics Symposium on Parallel Graphics and Visualization, the International Parallel and 
Distributed Processing Symposium, and XSEDE.  Additionally, SDAV PIs gave more than 160 invited 
presentations at conferences and workshops.   

SDAV PIs have played leading roles in the organization of more than 45 research conferences and 
workshops, including the IEEE Symposium on Large Data Analysis and Visualization (LDAV) held in 
conjunction with the IEEE Visualization Conference, the Ultra-Scale Visualization Workshop, Workshop 
on Petascale Data Analytics: Challenges and Opportunities and the Parallel Data Storage Workshop held 
multiple times in conjunction with SuperComputing conferences.   All of these meetings brought together 
computational scientists, data management and visualization researchers and practitioners, and industry 
and fostered greater exchange between them.  In addition, SDAV PIs served on hundreds of conference 
and workshop program and paper committees. 

In addition to publishing 451 papers, SDAV members gave more than 80 tutorials on SDAV software, 
which included several well attended tutorials on VisIt, ParaView, ADIOS, Darshan, Romio, Piston, 
DAX, and EAVL.  These tutorials were given in well-established conferences such as SuperComputing, 
and several visualization conferences. 
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Finally, because of their respect in the research community, SDAV PIs have been chosen to serve on 
multiple national and international advisory boards. 
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