

National Aeronautics and Space Administration

SWOT - Surface Water and Ocean Topography Mission

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

SWOT Applications Working Group SAWG meeting 7 July 2015, 5:45pm

Diapositive 1

Add UKSA logo? ANDRAL; 11/04/2014

SWOT Applications Working Group (SAWG)

Leads

- <u>SWOT Applications Leads</u>, NASA M. Srinivasan, C. Peterson, CNES – A. Andral, M. Dejus
- 5. <u>Ocean Lead, NASA</u> Yi Chao, RSS
- 6. <u>Hydrology Lead, NASA</u> Ed Beighley, Northeastern U.
- 7. <u>Ocean Lead, CNES</u>– Rosemary Morrow, LEGOS
- 8. <u>Hydrology Lead, CNES</u>– J-F. Cretaux, LEGOS

Team

- 1. Bob Arnone, USM at Stennis SC
- 2. Sylvain Biancamaria, LEGOS
- 3. Phil Callahan, Caltech JPL
- 4. Jessica Hausman, PODAAC JPL
- 5. Faisal Hossain, U. Washington
- 6. Laurence Houpert, CNES
- 7. Gregg Jacobs, NRL
- 8. Alexander Kurapov, U. Oregon
- 9. Robert Leben, U. Colorado
- 10. Pierre-Yves Le Traon, Ifremer-Mercator Ocean
- 11. Dennis Lettenmaier, U. Washington
- 12. Delwyn Moller, RSS
- 13. Steve Nerem, U. Colorado
- 14. Tamlin Pavelsky, U. North Carolina
- 15. Robert Saint-Jean, CSA
- 16. Guy Schumann, UCLA

SWOT Applications Products

SWOT mission is implementing an applications approach at the project level, supported by NASA HQ, by CNES and by the science leads.

- SWOT Applications Plan
- SWOT Early Adopter Program Guide
- "SWOT 101" presentation
- 1st User Workshop report online
- SWOT User Survey (in review)
- Applications Traceability Matrix (in development)
- Hydrology & ocean data latency graphics

Applications web pages;

NASA/JPL <u>http://swot.jpl.nasa.gov/applications</u>, AVISO <u>http://www.aviso.altimetry.fr/swot</u>

This document has been reviewed and determined not to contain export controlled technical data.

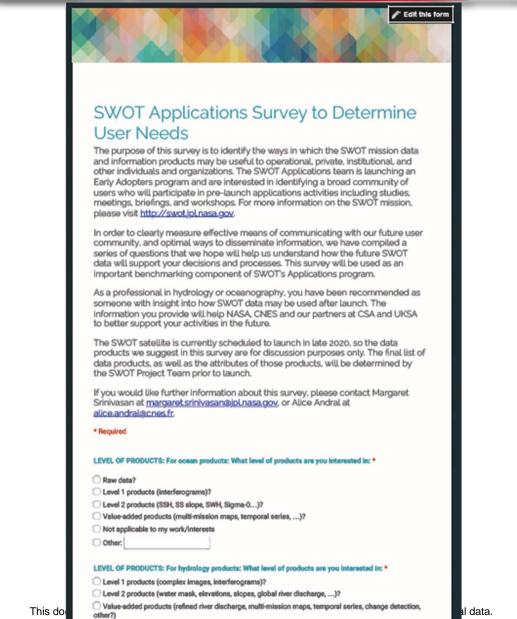
SAWG Meeting Discussion Topics

- User database SAWG & SDT inputs needed
- User survey Finalize for online posting & distribution, format (Google doc? Survey Monkey? Other?)
- Traceability Matrix; comments, discussion, refinement
- Early Adopter implementation: proposed process, options/discussion, user database inputs
- Data latency graphics: hydrology, floods, ocean
- NRT data products assessing user needs, useful feedback to Project
 - Pre-summing & OBP considerations (issues summary from SAWG-SDT members?)
 - Contributions from SAWG?

[Company Name]

SWOT User Database

						Applied Research		
Country	Organization	Applications Area	Potential users	Early Adopter Pl	SWOT Contact	Торіс	Relevant URL	E-Mail Address
IYDROLOGY: river disch	arge, reservoir storage, flooding	, agricultural impacts,						
		Lakes, rivers, wetland water levels, basin					mip.fr/en/soa/hydrologie/hydrowe	
rance	LEGOS	management			J.F. Cretaux		b/	
	USDA-FAS (Pecad), Dept. of	Reservoir & lake monitoring, crop estimation			C. Birkett		http://www.pecad.fas.usda.gov/cr	
J.S. J.S.	Agriculture FMGlobal	Flooding, disasters			E. Beighley		opexplorer/global_reservoir/	
	rividiobal	agencies with interests around large river			L. Deigniey			
J.S.	USGS	basins,						
Brazil	CPRM	Companhia de Pesquisa de Recursos Mineirais, Brazil. Geology, Geosciences, GIS		Daniel Medeiros Moreira	Stéphane Calman			
01 d211	UEA, Universidade Estadual	Civil Engenieering, Water management,			Stéphane Calman			
Brazil	do Amazonas	hydrology		Joecila Santos da Silva	otopnano oannan			
					Stéphane Calman			
				Rita de Casia Cerqueira Conde				
				de Piscoya and Fabricio Viera				
Brazil	ANA	Agência Nacional de Águas in Brazil G-REALM program i.e. the Lake Monitor,	Prime Stakeholder USDA/FAS, i)	Alvez NASA/GSFC (PI: Jim Tucker)				
		Reservoir & lake monitoring, crop estimation		with ESSIC/UMD (PI: C.Birkett)				
			water resources/regional security, ii)					
	NASA/GSFC, NASA/USDA,		climate change investigators, iii)				http://www.pecad.fas.usda.gov/cr	
J.S.	UMD		ecology/conservation groups, iv)				opexplorer/global_reservoir/	
DCEAN, COASTAL								
urope	Copernicus/MyOcean			Pierre-Yves Le Traon				
rance	Mercator	ocean forecasting		Pierre-Yves Le Traon				
	LEGOS	ocean			R. Morrow			
					R. WOITOW			
J.S.	NOAA-STAR	applications for weather & climate (sea level rise, arctic sea ice, bathymetry					http://www.star.nesdis.noaa.gov/s	od/lsa/
J.S.	NOAA-NGDC						http://www.ngdc.noaa.gov/mgg/ar	nouncements/annour
U.S.	NOAA, MMS, NMFS, NMML	MMS and NOAA National Marine Fisheries						
		Service conducted studies on Sperm Whale						
		and deepwater acoustics in the Gulf of Mexico; NMML tracks Stellar sea lions in the						
J.S.	Navy/NRL	coastal, estuarian, ocean conditions, polar			Gregg Jacobs			
		rosoarch			01065 100055			
J.S.	OSCAR						http://www.oscar.noaa.gov	
U.S.	NGO/Environmental	Seaturtle.org researchers use NRT altimetry					http://seaturtle.org/stat/	
		to study migratory routes of Hawksbill turtles in relation to surface eddy fields. Monterey	(also MBARI?)					
		Bay Aquarium researchers tag tuna using U.S.						
		Navy MODAS model and TOPEX/Poseidon						
J.S.		Hudson Strait, Canada - tidal issues		G. Han, Env. Canada				
	New Zealand Ministry of	Aquaculture, Bluefin Tuna tagging	fisheries, marine researchers					
	Fishing	Aquatartare, Diaenin runa tagging	namenea, marme researchers					
U.S.	Gulf of Mexico Coastal Ocean	1					http://gcoos.org/products/index.ph	p/model-resources/ss
	Observing System (GCOOS)							
U.S.	BOEM	environmental activities and conducting	GOM Region's Office of Environment		Bob Leben		http://www.boem.gov/Lagrangian-	Study/
		studies associated with mineral extraction carried out in the GOM OCS	(OEnv)					
		carried out in the GOM OCS						
WEATHER, CLIMATE: dr	ought							
	ECMWF							
		Research on needs/applications developing	local water, agriculture, community					
	IRD (French research inst)	countries	support agencies?					
	,							


7/6/15 Page 1 of 2 [Company Name]

SWOT User Database

		<u> </u>			Fage z or z
	IRSTEA	Irrigation, flooding, river/reservoir		Pierre-Olivier Malaterre	
	Meteo-France			Eric Martin	
	Ifremer	Coastal-ocean, estuarian,			
	INRA	agriculture, forest,			
	INRA				
	Other intl agencies	New Zealand Ministry of Fishing Bluefin Tuna			
	Universities	tagging			
			commerce/marine transporters,		
			insurance, petroleum operators,		
	Industry partners, commercia	l.	recreational boaters. Statistical		
	operators				
	Federal agencies		Forest service		
	State agencies		DWR,		
	Local civic agencies				
	Educational interests	GLOBE Program hydrology	educators, students		
		Weather	agriculture, construction, insurance,		
			tourism, energy, meteorology/weather		
			forecasters, transportation		
	NOAA, NWS		forecasters, transportation		
		Climate Variability & Change	agriculture, construction, insurance,		
			tourism, energy, meteorology/weather		
			forecasters, transportation. Long-term		
	NOAA		climate forecast utilize blended		
	Environment Canada			R. St Jean	
	EPA				
	US Forest Service				
	CESBIO	Carbon & water , drought and floods, water &	argiculture, hazards and risk assesment,	Ahmad Al Bitar	
	ECMWF	weather and rtisk prediction	NWP centers	Patricia de Rosnay	
	SCHAPI	flash floods	civil security		
	AER?				
OCEAN STATE	ALM				
OCEAN STATE			petroleum production operations in the		
			Gulf of Mexico, Indian Ocean (Arabian		
	Edison Chouest Offshore		Sea), Brazil, and Trinidad.		
	Insurance		validation of claims for lost cargo due to	storms at sea	
			Jenifer Clark's Gulfstream, Recreational		
	Private companies, individual	S	boaters		
OTHER: human health, na	ational security				
	Military				
	World Bank				
	USAID				
	WWF?				
	NSIDC	Sea Ice extent		Amanda Leon	
	NASA SERVIR Himalaya Hub			Eric Anderson, NASA Marshall SFC sa.gov	
	Reinsurance	seasenal forecasts			
	nemaulance				

7/6/15 Page 2 of 2

SAWG User Survey

Other:

SWOT Traceability Matrix

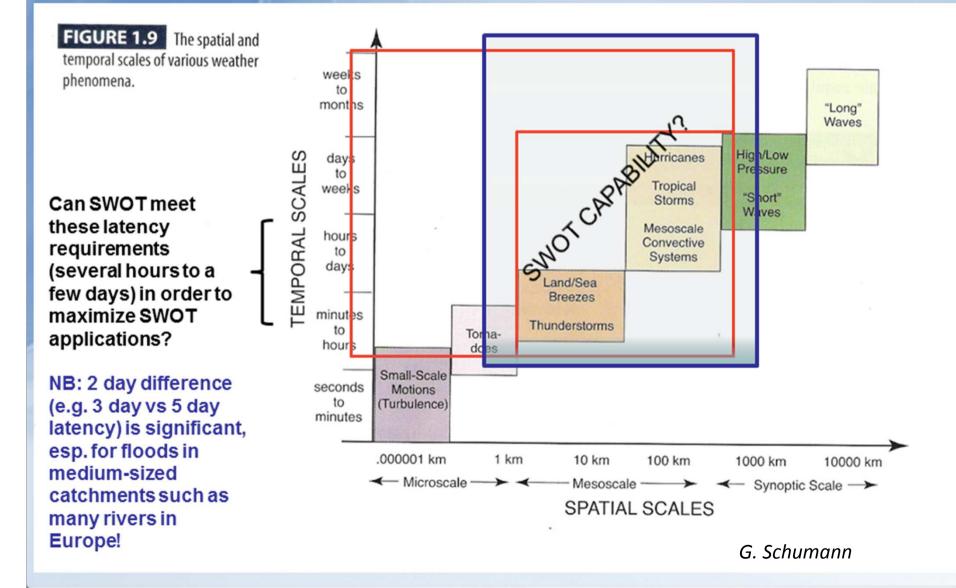
	Application Concept	Application Measurement Requirements	Applied Sciences Category	Potential Host Agency	Mission Data Product	Projected Mission Performance	Application Readiness Level	Ancillary Measurements
How do we prepare for future surface water availability in downstream nations (of regulated upstream basins) at sesonant to annual timescales? Preparation needs to be in the form of policy, making decisions on shortage projections and conjunctive use of groundwater and surface water and annual water budget studies eventually guiding irrigation and drinking water supply decisions.	River basins are increasingly regulated and located in transboundary regions where information on storage change and outflow downstream are fundamentally unavailable (not shared or measured)		Water Management; Agriculture; Drought Management; Resolving Transboundary Water Sharing Issues between nations	Water Resources and Planning (WRP) Division of Institute of Water Modeling (IWM) - Bangladesh; Pakistan Council for Research on Water Resources (PCRWR) and Indus River System Authority (RISSA) Email: smr@iwmbd.org (Mahbubur Rahman for IWW); Naveed Iqbal (naveed_spacian@yahoo.com for PCRWR)	Water Elevation; Water Mask (lake area); Discharge	Upto 45 day latency is tolerable for basins as large as Ganges, Brahmaputra and Indus; Up to 22 day repeat over a reservoir is acceptable; Spatial scale: < 500m; Key requirement is the ability to 'see' simultaneously a large number of reservoirs as a regulated system (which SWOT should be able to do with its wide swath capability)		GPM IMERGE will be useful; Recommended but not necessary will be - LANDSAT/MODIS (Water area) and JASON-3/AltiKa/Sentinel for water heights (in order to cross-check and improve observational frequency)
For dynamically changing river regimes and cross sections in low-gradient and floodplain flow systems with soft river beds, how can flood management agencies 'update' and 'calibrate' their basin-wide	Many river systems frequently undergo a change in course, bathymetry, experience scouring, become more fragmented and impounded. River models need to be frequently updated and calibrated accordingly so that the latest environmental boundary conditions are incorporated. At ungauged locations in most parts of large river basins that are flood prone (e.g. Ganges, Mekong, and Indus) this seasonally changing river morphology/network is mostly unavailable.	22 day repeat or less of the local river network - streamline (how river course may be changing during major flood events) as well as simultaneous width and height of river to build bathymetry above the baseflow (minimum) water level.	Flood Forecasting and Management	Flood Management Division (FMG) of Insitute of Water Modeling (Bangladeshi); Flood Forecasting and Warning Center (FWC) of Bangladesh; Asian Diasater Preparedness Center (ADPC)- Thailand/Mecking River Commission; Email: Arfuzzaman Bhuiyan of FFWC - arik1_budw@ganobc.om; David Ganz of ADPC david.ganz@adpc.net	River streamline (shapefile) from SWOT; River width and height for river reaches	For pre and post-flood season updating and calibration of flood models, latency is not an issue; However, for assimilation on the Hy of changing river dynamics and SWOT river characteristics and for flood disaster response/preparedness, a latency of 3 days or less is required at < 1km spatial scale.		Additional observations from Nadir Altimeters, visible/near-infrared imagery (LANDSAT and MODIS) can provide a support role to address potential SWOT gaps in latency and sampling.
How best to schedule hydropower dam operations for a system of interconnected hydropower dams? (just a suggestion to get started on SWOT's value for hydropower management)			Energy Management	USBR, USACE, TVA; Water and Power Development Board of developing nations			In my opinion this will probably be an ARL < 6 given that it's such a new concept that the community is grappling with	
How do we identify fragmented and regulated freshwater systems to understand the current and projected impact on ecosystem services?			Ecological Forecasting	The nature conservancy; WWF; US Wildlife and Fisheries; Mekong River commission			ARL< 5 (?) Such work is too new (?)	
Diarrhoea and Malaria			Public Health and Air Quality	CDC, WHO				
Monitoring Flood Insurance and Re-			Disaster					
insurance Note: the entries that are italicized are suggestions to get discussion started			Management		1			
	Disaster Mitigation, Ecological							
	Forecasting, Water Management,							
	Agriculture, Energy Management,							

Categories:

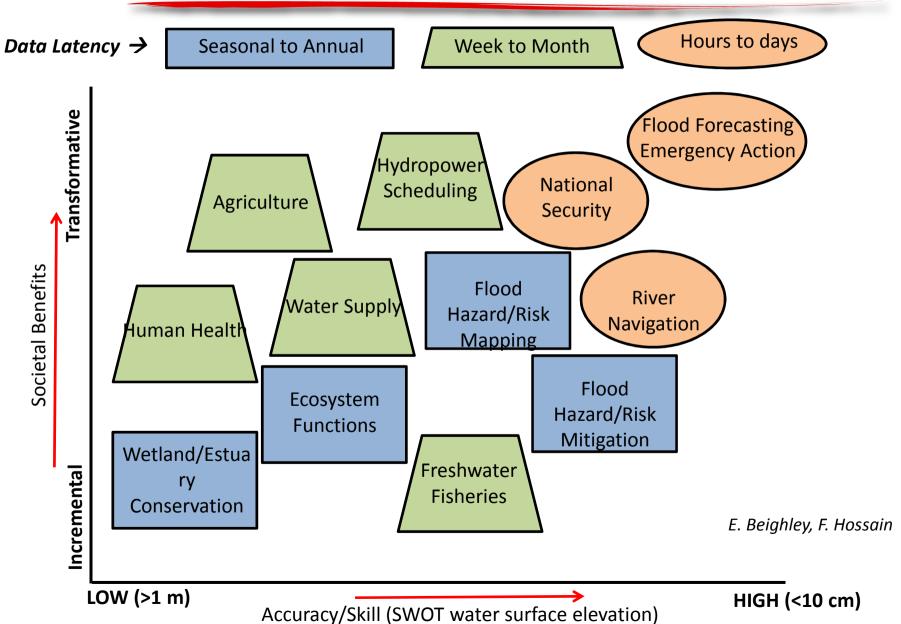
Climate, Energy, Oceans, and Weather

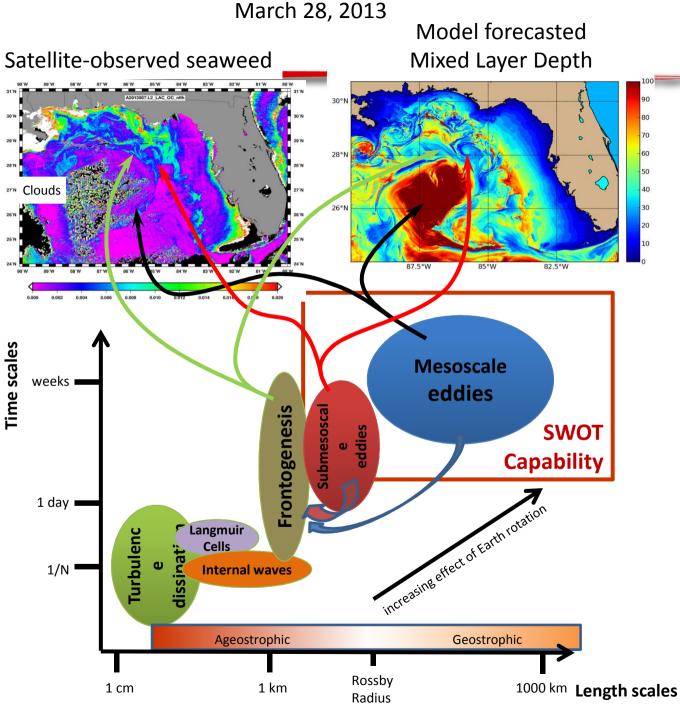
Resource Management

How will hypoxic coastal area forecasts be constructed usin SWOT?	g Integrate river runoff and with coastal models to predict stratification, ventilation and oxygenation.	Observed river water levels and hydrological model forecasts, existing nutrient load predictions, sea surface height for ocean forecasts.	Ecological Forecasting	NOAA	1-km or higher resolution sea surface height with less than 72 hour latency.	Emergency response will be more targeted, reducing resopnse coastlines and search areas.	systems exist, and application of observations must be extended to include SWOT.
How can ocean surface drift prediction be extended using SWOT?	Model forecasts initialized by SWOT observations in the ocean will be used during emergency response such as hazardous spills and search and rescue.	Sea Surface Height in coastal and open oceans.	Water management, Disaster mitigation	ΝΟΑΑ, Νανγ		Emergency response will be more t targeted, reducing resopnse coastlines and search areas.	TRL 5: Forecast systems exist, and application of observations must be extended to include SWOT.
How will SWOT extend longer ocean predictions?	Operational 2 week ocean forecasts are presently constructed. With the emergence of Earth System Prediction Capability across agencies, longer term predictions will be implemented prior to SWOT launch. The ocean forecast skill is presently limited by density of sea surface height observations, which SWOT will address.	s Sea Surface Height in coastal and open oceans. OCLIMENT has been reviewed	Resource management	NOAA, Navy	hour latency.	Emergency response will be more t argeted, reducing resonse coastlines and search areas.	TRL 5: Forecast systems are being implemented, and application of observations must be extended to include SWOT.


This document has been reviewed and determined not to contain export controlled technical data.

TRL 5: Forecast


SWOT Traceability Matrix


How will marine operators use SWOT data to improve their operations?	The high-resolution ocean circulation information can be highly beneficial to optimizing their operations in both coastal and open ocean environments. In particular, the SWOT data will lead to improved safety of navigations in Canadian northern waters, improved offshore operations (reducing downtimes, better iceberg management, and improved safety) off eastern Canada, and better emegnecy responses (e.g. search and rescue, responses to oil spills).	Sea Surface Height in coastal and open oceans.	Maritime operations	Transport Canada Canadian Coast Guard Canadian lee Service Maritime Shipping Industry	10-km or higher resolution sea surface height with less than 72 hour latency.		ARL 6	RADARSAT
data combine with other oceanographical data provide critical information for intergrated ecosystem management and for optimized and safe operations at sea?	Physical ocean conditions, as an integrated part of the marine ecosystem, can influence nutrient and plankton transport, survival and mortality of egg and larvae, fish habitats and migration. The higher resolution SWOT data can be combined with other oceanographic data (e.g. ocean color, ocean temperature, winds and waves) to provide critical information for integrated ecosystem management and for optimized and afe operations at sea, supporting for healthy and productive marine ecosystems and sustainable fisheries in Canadian waters.	Sea Surface Height in coastal and open oceans.	Ecosystems and fisheries	Environment Canada Department of fisheries and oceans	10-km or higher resolution sea surface height with less than 72 hour latency.		ARL 5	RADARSAT, Sentinel, MODIS, LANDSAT
How will SWOT data improve the monitoring and the understanding of global and regional sea level trends for coastal zone planning and management?	SWOT data will help us understand small-scale ocean processes critical for understanding global climate change, which will lead to improved coupled climate models for the prediction of climate variability and change and for climate change adaptation.	Sea Surface Height in coastal and open oceans.	Climate Change Adaptation	Environment Canada	10-km or higher resolution sea surface height	Data latency of up to several weeks /months is acceptable	ARL 5	RADARSAT, Sentinel, MODIS, LANDSAT
How will SWOT data improve	The SWOT data can be assimilated into coupled atmosphere-ice- ocean models to improve weather and marine forecasts in coastal zones for better emergency preparedness (storm surge warning, flood warning, tsuanimi warning) and responses (e.g. search and rescue, responses to oil spills).	Sea Surface Height in coastal and open oceans.	Weather and Marine Forecasts	Environment Canada Department of fisheries and oceans	10-km or higher resolution sea surface height with less than 72 hour latency.		ARL 5	RADARSAT, Sentinel, MODIS, LANDSAT
How do we measure water elevation of large lakes and reservoirs or extent and volume estimation in small lakes, delta lakes and prairie potholes?	Canada-US Great Lakes and large Northern Lakes are so large that they can be considered as "Internal Oceans". Monitoring these lakes present a challenge due to their very large size. Prairie potholes are small temporary lakes which dry-up during summer time. A better understanding understanding of their dynamics would benefit agriculture.	Storage change of very large and very small reservolrs; discharge estimates upstream and downstream of reservoirs.	Hydrology	Environment Canada Agriculture and Agri-food Canada Agricultural Insurance companies	Water Elevation; Water Mask (lake area); Discharge	Upto 45 day latency is tolerable for large basins. Up to 22 day repeat over a reservoir is acceptable. Spatial scale: < 500m Key requirement is the ability to 'see' simultaneously a large number of reservoirs as a regulated system (which SWOT should be able to do with its wide swath capability)		RADARSAT, Sentinel, MODIS, LANDSAT
hydraulics) using SWOT data	flows into frozen rivers in the North! Flood warning, flood	Storage change of reservoirs; discharge estimates upstream and downstream of reservoirs. Slope evaluation, flow measurement.	Hydrology Natural hazards	Environment Canada Public Safety Canada	River width and height for river reaches.	For pre and post-flood season updating and calibration of flood models, latency is not an issue; However, for assimilation on the fly of changing river dynamics and SWOT river characteristics and for flood disaster response/preparedness, a latency of 3 days or less is required at < 1km spatial scale.	ARL 5	RADARSAT, Sentinel, MODIS, LANDSAT
In large rivers, how do we measure point estimation of flow?	SWOT will provide ways to obtain slope measurements of large rivers. For validation purpose, how do we compare these measurements with data collected on-site (point estimation of flow)?	Discharge estimates upstream and downstream of reservoirs. Slope evaluation, flow measurement. Maybe more science then applications?	Hydrology	Environment Canada	River streamline (shapefile) from SWOT. River width and height for river reaches.	Latency is not an issue	ARL 3 ?	RADARSAT, Sentinel, MODIS, LANDSAT
How do we evaluate the changing topographical features like: Snow depth for large regions of Canada (particularly relevant in sparsely vegetated areas and over marine and freshwater ice), Changes in glacier height and, Arctic ice monitoring?	Although a secondary objective of the SWOT mission, the KaRIn sensor should provide an evaluation of ice freeboard (floating ice thickness). In some areas, measurements may provide an evaluation of wet- snow thickness.	Snownack thickness	Climate changes Water volume estimation Permafrost melting	Environment Canada Public Safety Canada Hydro Power Industry Arctic regions civil engineering	Water Elevation	Latency of a few weeks is not an issue	ARL 3 ?	RADARSAT, Sentinel, MODIS, LANDSAT

SPATIAL VS TEMPORAL SCALES OF FLOODS

SWOT Hydrology Applications

Present altimeter capability allows us to forecast mesoscale eddies to a limited extent

SWOT will enable forecasts of submesoscale eddies

Forecasting mesoscale and submesoscale eddies will enable forecasting frontal effects

G. Jacobs

NRT Products Roadmap

Objectives:

- Connect user needs with Project objectives and mission capabilities
- Optimize opportunities to consider mission design impacts, architecture, software systems to support applied uses of data, where possible and feasible*
- Develop and/or support tools (within mission objectives) that will
 - promote awareness of SWOT mission capabilities to the appropriate user communities
 - provide access to the information products resulting from SWOT mission data
 - feed back information to the Project from users for feasibility analysis

Considerations:

- Project: What are the mission system constraints & flexibilities (flight architecture, mission system design) that affect/support the development of NRT data products?
- What are the user constraints?
 - Latency = access to data + computing power
 - What processing schemes will support this?
 - What applications are is enabled with what latency (i.e., 72-hr vs 24-hr, etc).
 - Data extraction & manipulation what are the system constraints & flexibilities?
 - What tools are required to achieve these objectives?
- What are the archiving options (PODAAC?)

*Timing may not support October timeframe

NRT Products Roadmap

Methodology:

- Identify users:
 - Who are they?
 - What is their application?
 - What is their current data source & system?
 - What are latency requirements (desires)?

Tools:

User database User survey Traceability matrix

- Create graphics to illuminate: lists of applications vs latency requirements
- Identify potential processing schemes that will support this.
- Identify 1 or 2 feasible pathways to achieve NRT SWOT data for a given (or few) users
- What's useful for the applications community (taking the constraints on flight & mission systems into account)?

Other factors...

- Begin with Jason-type ocean products initially (for actual production)
- Flight & mission system architectures, and system designs that will impact NRT development.
- Identify a process/outline
- 'Solid pathway' by January 2016 PDR
- What do we know?
- Where are the gaps in our knowledge?

NRT Products Roadmap

Outline:

- Ocean—
 - Ocean circulation: factors =
 - Coastal region/impacts: factors =
- Hydrology—link science to developing world water problems
 - Drought factors: Regional? Format for GIS (to stack w other data)?
 - Groundwater factors:
 - Reservoir management factors:
 - River discharge factors:
- Identify who is doing what: user database
- Identify the need (application): traceability matrix
- Identify required data products that will address: what are modeling & prediction paradigms?
- What are the project infrastructure elements (flight, design) that can be enhanced or manipulated to achieve this?*
- How do we get there and what is the Project role?
- Early Adopter role?

*Timing may not support October timeframe

Additional information

This document has been reviewed and determined not to contain export controlled technical data.

SWOT^{*} User Survey

Identify the ways the proposed SWOT mission may be useful to operational, private, institutional, and other individuals and organizations.

PRODUCTS

- 1. For ocean products: What level of products are you interested in?:
- 2. For hydrology products: What level of products are you interested in?:

<u>Temporal frequency</u>

How often does the data need to be updated

Data latency

How timely must information be from data collection

Data format

What is the best data format for your application?

SWOT^{*} User Survey (Continued)

DATA VOLUME

DATA ACCESS

How would you prefer to get SWOT^{*} products?

DOMAIN of INTEREST

What is your main domain of interest?

Geographically, what is your region of interest?

USER INFORMATION

What your professional training expertise or experience

• Miscellaneous

What are your priorities

What information do you need to understand /use data?

Survey link: <u>http://swot.jpl.nasa.gov/1stUserWorkshop2015/</u> Username/password (case sensitive): SWOT/SWOTUser15

SWOT^{*} Applications – Focus

 \rightarrow International components and cooperation

- \rightarrow Applications life cycle in step with mission phases
- → Early Adopter Program; user database, survey
- →Focus pillars;
 - Hydrology: developing world water problems, food security (flooding & drought)
 Oceanography: coastal applications (circulation, impacts), marine operations support/open ocean issues
 Climate: regional capabilities, coastal and agricultural impacts

Key Messages

- SWOT is a research mission, not an applications mission
- The SWOT Project will not develop applications, it will develop the right data products that enable the use of SWOT observations/information (by users)
- Data availability and access are critical to success

Objectives

Outreach:

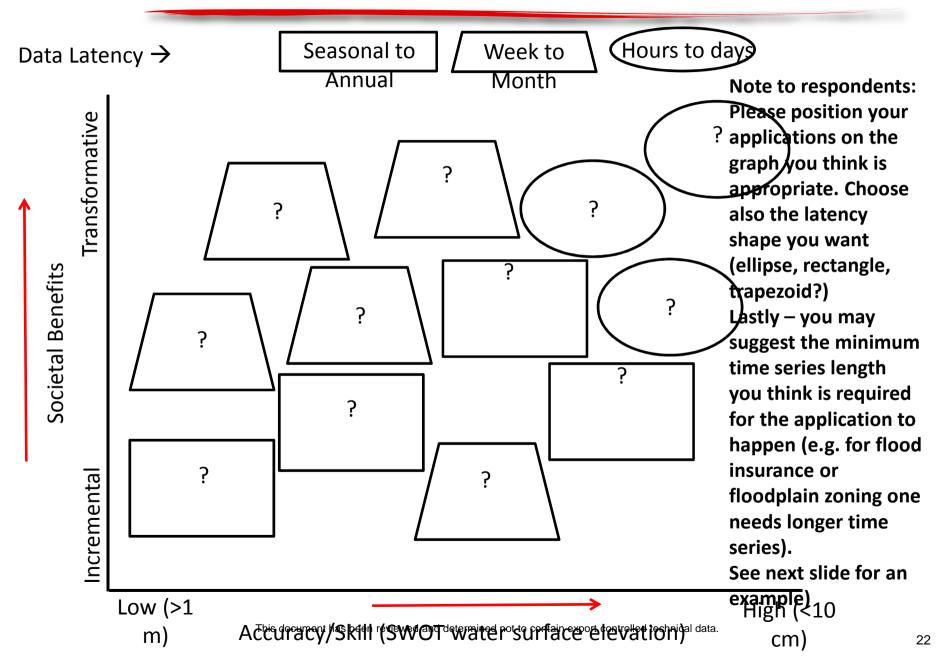
 Inform the stakeholders about SWOT capabilities (website, workshops, publications, meetings), develop communication strategies to target and support requirements of the user community

Improve existing applications

 Sea transport, shipping, fisheries, seasonal meteorology (i.e., ENSO), forecast extreme events (cyclones, storms), monitoring of climatic parameters

Coastal applications

• In particular for coastal management and offshore resource exploitation, mining, continental shelves


Create new environmental services

 Hydrology of inland waters (lakes, reservoirs, major rivers), offer opportunities for water resources management, estuaries, flood risk prevention/mitigation, propagation of disease, health impacts

Open data policy

• Strengthen services with added value in oceanography and create new services for water resources

SWOT (Generic) Applications

