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Abstract

We present new evidence on the effects of advanced technologies on employment, skill com-
position, and firm performance in manufacturing firms. Our primary research design focuses
on a technology subsidy program in Finland that induced sharp increases in technology supply
to specific firms. Our data track firms and workers over time and directly measure multiple
technologies and skills. We demonstrate novel text analysis and machine learning methods
to perform matching and to measure specific technological changes. The main finding is that
advanced technologies led to increases in employment and no change in skill composition. To
explain our finding, we outline a theoretical framework that contrasts two types of technological
change: process versus product. We document that firms used new technologies to produce
new types of output rather than replace workers with technologies within the same type of
production. The results are in contrast with the ideas that technologies necessarily replace
workers or are skill biased.
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1 Introduction

A central question in the debate on the future of work is: what are the effects of advanced tech-

nologies on employment and skill demand? Two ideas often dominate the conversation. The first is

that technologies replace workers (e.g., the Luddites; Keynes 1931; Brynjolfsson and McAfee 2014).

The second is that technologies increase the demand for skills and can increase inequality—this is

called the skill-biased technological change hypothesis (e.g., Griliches 1969; Welch 1970; Tinbergen

1975). Current research suggests that advanced technologies such as robots and ICT have been

skill biased (e.g., Katz and Murphy 1992; Krusell et al. 2000; Autor et al. 2003; Acemoglu and

Autor 2011; Lewis 2011; Michaels et al. 2014; Akerman et al. 2015; Acemoglu and Restrepo 2020).

But there is a challenge: both measuring and identifying the effects of technologies are difficult.

This paper presents new evidence on advanced technologies’ effects on work and firm perfor-

mance in manufacturing firms using new large-scale data and quasi-experimental research designs.

The context is manufacturing in Finland, 1994–2018. We focus on new production technologies,

such as computer numerical control (CNC) machines and robots. Our data track firms and workers

over time and directly measure technologies, employment, and skills. The main research design uses

a technology subsidy program as a natural experiment that induced sharp increases in technology

supply to specific firms. The program is part of EU structural funds, one of the world’s largest

industrial policy programs, and it provides direct funding for technology investment. Our design

compares close winners and losers of technology subsidies using an event-study approach. We use

natural language processing (NLP) on the application text data to construct the comparisons of

close winners and losers and to estimate specific technologies’ effects (e.g., Roberts et al. 2020). To

address internal validity, we use a separate regression discontinuity (RD) design based on changes

in the criteria defining a priority for small firms, and to address external validity, we evaluate

technology adoption events without the program (Bessen et al. 2020). Finally, we complement

our quantitative analysis with fieldwork: observing factories and interviewing CEOs, managers,

workers, and subsidy administrators.

The first part of the paper finds results in sharp contrast with the ideas that technologies

necessarily reduce employment or are skill biased. Technology investments induced by the subsidy

program led to a 23% increase in employment, on average. There were no differential changes

in typical measures of skill bias: share of highly educated workers, average years of education,

or production workers’ share of employment. Zooming in to more detailed measures of skill-

composition—education and occupation groups, cognitive performance, and personality—we find

generally zero effects. Several observations support the validity of our findings. The subsidy
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program induced a strong first stage: the firms showed a sharp rise in investments in technologies

after winning technology subsidies. The firms had similar pre-trends in investment, employment,

and skill composition before applying. Our results are robust to controlling for the evaluation texts

of the subsidy applications using NLP and other controls, including industry, firm size, and region

trends. The results also hold when using alternative designs: a matched non-applicant control

group, the RD design, and the event-study design without the subsidy program. Our fieldwork

supports these findings at the factory floor level.

The second part of the paper explains the puzzle that technologies did not replace workers or

increase skill demand. To explain these results, we outline a theoretical framework that contrasts

two types of technological change: process versus product. Process refers to a productivity increase

within an output variety, while product refers to the expansion of new varieties. The framework

builds on Dixit and Stiglitz (1977) and Melitz (2003). The distinction is whether firms use new

technologies to do the same thing at lower costs or to do new things. These two views predict

different effects. The model clarifies that technologies may not necessarily be about changing the

production process in a way that replaces workers or increases the demand for skill but creating

new types of output. For example, automation is a process change, while innovation of new goods

is a product change (Klette and Kortum 2004; Acemoglu and Restrepo 2018).1

We document that the firms used technologies to create new products and services, not replace

workers. Direct evidence shows that technology adoption led to more revenue, new products, and

export growth. Text data from the subsidy program show that 91% of the firms described new

products, response to changing demand, and other similar reasons for technology investment. For

example, the piston manufacturer included in the fieldwork invested in a new CNC machine and

a robot to manufacture new, more effective pistons. Survey data from the EU’s Community Inno-

vation Survey (CIS) corroborate our observations: typical reasons for firms’ process and product

innovations are access to new markets, expanding product selection, and better quality, not primar-

ily to reduce labor costs. We show the results also hold without the subsidy program, indicating

that our results are more general.

To understand when and why we expect process versus product changes, we contrast two types of

manufacturing: mass production (Taylor, 1911; Ford, 1922) versus flexible specialization (Piore and

Sabel 1984; Milgrom and Roberts 1990). Mass production combines standardized products, high

volumes, and process advances, such as automation. In contrast, flexible specialization combines
1The concepts of process and product refer to the uses of technologies rather than physical types of technologies.

Process, which is the idea that technological change lowers production costs, embeds the standard versions of labor
replacement and skill bias. Conversely, product, which is the idea that technological change creates new output
varieties, is present in standard growth models (Romer 1990; Grossman and Helpman 1991; Aghion and Howitt
1992) and in the management literature (Utterback and Abernathy 1975; Porter 1985).
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specialized products, low volumes, and product advances. While the two ideas—labor replacement

and skill bias—are widely accepted and used in the body of literature, researchers also recognize

that not all technological changes are labor replacing or skill biased. Most importantly, Piore

and Sabel (1984) have argued that a different set of technology–labor relations emerge in flexible

manufacturing, most visible in the context of technologically advanced small- and medium-sized

enterprises specializing in customized production.2 In the Finnish context, small and large manu-

facturing firms produce specialized products in small batches and in a changing environment.3 The

low production volumes, scope for specialization, and need for adaptation make it less profitable to

commit to the long-production runs of mass production and the fixed costs of process advances. In

contrast, our findings may not apply to non-specialized commodities, such as cement or steel, or in

high-volume assembly, where costs are critical. At the same time, a large body of literature docu-

ments that manufacturing has evolved from mass production to flexible and specialized production

(Dertouzos et al. 1989; Berger 2013).4

Two descriptive facts help position our findings into a broader context. First, the backdrop

of our study is that the overall direction of manufacturing, including our treatment and control

groups, is toward greater skill demand, which is seen in, for example, the rising share of educated

workers. Because the skill trends are consistent with the rest of the world (e.g., Acemoglu and

Autor 2011), we could have expected to find that new technologies were driving them at the firm

level—but we did not. Our findings point to explanations for these skill trends other than direct

effects from the adoption of new technologies. Second, a critical aspect is that technology adopters

are different from non-adopters. Growing firms typically invest in technologies, with and without

subsidies. Our main design contrasts growing firms that plan to adopt new technologies, where one

firm gets the subsidy, and the other does not, which induces differences in technology adoption.

This has two implications: 1) Our estimates capture the local average treatment effect (LATE)

for firms close to investing in technologies. 2) Pre-screened but non-winning applicants provide a

better control group than generic non-applicant firms because they have expressed an interest in

technology adoption.

How broadly do the results apply? Our evidence is from Finland, where we could quantify

the effects with high-quality data and research design. But the input we received from managers

working in different contexts was that our observations apply more broadly in industrial manufac-
2This argument relates to ideas in Klette and Kortum (2004) and Akcigit and Kerr (2018), emphasizing the link

between the type of firm and the type of innovation.
3Measured by the Rauch (1999) index, the firms produce specialized goods, not commodities.
4Early research noted these changes first in Northern Italy, Germany, and Japan (Piore and Sabel 1984). Cur-

rently, the majority of Northern European manufacturing could be characterized as flexible specialization. For
example, 90% of manufacturing employment in Finland is in non-commodity production under the Rauch (1999)
classification. Bils and Klenow (2001) also document that US consumers have shifted away from standardized goods.
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turing. There are still limitations. Our results do not directly apply to non-physical technological

advances such as digitization or the internet, management practices such as lean manufacturing,

R&D, technological advances in offices, historical eras, or the future. Our results and explanation

focus on a firm-level mechanism. We do not exclude the possibility that micro-level technology

could lead to macro-level skill bias or labor replacement (Oberfield and Raval 2021). We also do

not claim that work does not change: our qualitative evidence suggests it does, but that change

does not imply labor replacement or skill bias by education, occupation, or cognitive performance.

Because our results challenge the two commonly presented ideas in the literature—that tech-

nologies replace labor or increase skill demand—it is critical to compare them to earlier research.

A substantial literature investigates the empirical linkages between technologies, work, and skills

but does not reach a solid conclusion (Acemoglu and Autor 2011). This paper is the first to eval-

uate manufacturing technologies’ effects using policy variation. Our measurement is an advance

over earlier work because we directly measure the critical objects: technology, employment, and

skills. Our results differ from the two ideas emphasized in the literature because the literature

has focused more on process advances in mass production (e.g., Acemoglu and Restrepo 2018).

In contrast, flexible manufacturing is more common in our context. Consistent with our work,

empirical research focusing on similar technologies in manufacturing firms typically finds similar

effects on employment and skill demand (e.g., Doms et al. 1997; Aghion et al. 2020; Dixon et

al. 2021; Koch et al. 2021). Moreover, earlier qualitative evidence corroborates our observations

(e.g., Berger 2020). At the same time, other empirical studies also find different effects for several

reasons: they focus on different types of technologies (e.g., the internet in Akerman et al. 2015 or

ICT in Gaggl and Wright 2017), isolate replacement effects (e.g., Bessen et al. 2020), or conduct

macro-level comparisons (e.g., Lewis 2011; Acemoglu and Restrepo 2020).5

Our analysis also contributes to the literature on industrial policy. We provide new estimates

for one specific policy: a lump-sum transfer to increase technology adoption in manufacturing

firms. The estimates help understand the broader question in growth and trade policy: what types

of policies help firms grow? (Rodrik 2007). We find that the firms in our context use subsidies

and technologies to achieve growth. To do so, they often scale up from idea to production. Our

quantitative estimates suggest that 1 euro in technology subsidies led to 1.3 euros of technology

investment. A typical EUR 100K subsidy led to 2.3 new jobs over the next 5 years. The cost per

job was EUR 43K, close to the literature’s average. The closest paper in this literature is Criscuolo

et al. (2019), which focuses on investment subsidies in the UK and finds similar effects. Recent

related research includes Becker et al. (2010), Cerqua and Pellegrini (2014), Howell (2017), Giorcelli
5We review related research in Appendix H.
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(2019), Howell et al. (2021), and Lane (2021). Technology subsidies and taxes are also actively

debated (Acemoglu et al. 2020a; Costinot and Werning 2020; Guerreiro et al. 2021).

The paper proceeds in two parts. The first part presents the context, data, empirical strategies,

and key results on employment, skill composition, and firm performance. The second part offers

a theoretical interpretation based on process vs. product advances and then provides theory-

motivated tests of that interpretation, including evidence on exports, products, prices, and on how

firms planned to use technologies. Finally, we present robustness checks and conclude.

2 Context

We analyze advanced technologies’ effects in manufacturing firms in Finland, 1994–2018. Since

we study technology investment both with and without the subsidy program, we present here the

context common to all our analyses.

The technologies in our context are standard new production technologies in manufacturing:

new CNC machines, robots, laser cutters, surface-treatment technologies, measurement devices,

enterprise resource planning (ERP), and computer-aided design (CAD) software. The workers

are primarily production workers (median 70%), e.g., machinists, welders, and machine operators,

typically with vocational training. The firms are generally medium- and small-sized (SMEs), but

we also analyze large firms. The most represented industries are fabricated metal products and

machinery. Most firms are contract manufacturers producing specialized intermediate goods in

small batches, e.g., pistons for engines, for large multinational firms. Figure 1 provides photographs

of the typical technologies, workers, and firms in our sample.

Figure 2 documents that the overall direction of Finnish manufacturing is towards greater

skill demands, seen in a rising share of educated labor and college income premium and a falling

production worker share. Finland’s trends are consistent with the rest of the world (e.g., Acemoglu

and Autor 2011), and the firm-level mechanisms we document might not be limited to Finland.

3 Data

The first challenge in estimating the effect of technology on employment and skill demand is

measurement. We directly measure the critical objects—technologies, work and skills, and firm

performance—using high-quality data that track workers and firms over time.6

6We provide details on data in Appendix E. For consistent measurement, we harmonize the Finnish occupation,
industry, and geography classifications. The novel crosswalks are available at economics.mit.edu/grad/tuhkuri/data.
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3.1 Technologies

We measure technologies using financial, text, customs, and survey data.

Financial Data7 The primary source for measuring firms’ technology investment is the Finnish

Financial Statement Register. We measure firms’ total investment and separately machinery and

equipment and software. Statistics Finland collects the data directly, and the data cover all Finnish

enterprises in almost all industries and our analysis years 1994–2018.

Text Data We develop a method to measure technologies using text data.8 We measure over-

all technology investment, types of technologies, and uses of technologies. The information on

technologies’ uses allows us to measure process vs. product advances.

The source for our text data is the ELY Center subsidy program, described in Section 4. The

text data are unstructured and produced as a side product of the program. A technology subsidy

application typically specifies technology’s type (e.g., a welding robot) and its use (e.g., to produce

longer seam welds). We focus on summary texts written by the program officers. The texts provide

information on firms’ actual plans because the technology plan is binding; firms receive subsidies

against verifiable costs. The full data contain 42,209 subsidy applications in different categories:

technologies, exports, R&D, start-up, etc. Our method works in two steps:

Step 1: We coded 20,000 randomly selected texts into categories based on pre-determined

criteria, summarized in Table 1. We distinguish technologies’ type and use, because a firm can use

the same type of technology for multiple purposes. Within technologies’ uses, we code texts into

applications intended to improve productivity within the same output variety (process) or produce

new varieties (product). Within technologies’ types, we code texts into automated technologies vs.

non-automated technologies (no active vs. an active user) and hardware vs. software (or both).

Step 2: We use machine learning to code the remaining 22,209 texts. We convert texts

into clean format, use the bag-of-words representation with TF-IDF weights, and support-vector

machines (SVMs) for prediction. Figure E1 presents features that best predict the technology

category. Table E1 provides summary information: our method achieves 95% accuracy in finding

the technology applications from the pool of all applications. For the subcategories of technology,

we manually code all applications in the analysis sample to maximize precision.
7We deflate all monetary values in this paper to 2017 euros using the Statistics Finland CPI.
8Many policy programs and firm decisions leave a trail of text records. Using this method, researchers can use

text records to produce quantitative data retrospectively without new data collection and in cases where data would
not otherwise be available. The novel part in our research is to measure technologies within firms directly. Recent
research uses text data to measure technological changes, especially patents, in other ways (e.g., Alexopoulos 2011;
Atalay et al. 2020; Autor et al. 2021; Dechezlepretre et al. 2021; Howell et al. 2021; Kogan et al. 2020; Mann and
Puttmann 2021; Webb 2020).
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Customs Data To measure the types of technologies, we also use customs data.9 The data

track technologies that firms import. Customs data record 621 different types of technologies in

the 6-digit CN-classification system. We classify these technologies based on the physical type of

machinery. The main distinction is between automated technologies vs. non-automated technolo-

gies. Automated technologies include, e.g., robots and CNC machines. Non-automated technologies

include, e.g., non-automatic and hand-operated tools, hydraulic presses, and lifting equipment.

Survey Data To measure the uses of technologies we also use survey data. The EU’s Community

Innovation Survey (CIS) asks firms about the importance of different objectives for product and

process innovations.

3.2 Work and Skills

We measure employment and wages from the registers maintained by Statistics Finland. The data

allow us to track all individuals in Finland over time independent of their labor-market status. We

link these data to multiple data sources on skills: education (level and type), school grades (9th

grade GPA and high school exit exam), and cognitive performance and personality (test scores

from universal male conscription). We measure occupations from employment registers at the 3-

digit level in the ISCO classification system. To measure the task content of occupations, we use

the European Working Conditions Survey (EWCS) that provides information on the tasks workers

perform in their jobs, collected through face-to-face interviews every five years. We construct

occupation-level measures of task intensity for routine, manual, cognitive, and social tasks.

3.3 Firms

We use a large set of data on firms, including the revenue, productivity, profits, exports, products,

prices, marketing, and patents. The data track all firms over time.

The firm-performance measures, revenue and profits, are obtained from Finnish Financial State-

ment Register. We use two variables to measure productivity: revenue per worker and total factor

productivity (TFP) estimated using the Cobb-Douglas production function. We measure profits

by the profit margin, defined as profits divided by the revenue. We define the labor share as the

wage bill divided by the revenue. We winsorize firms’ monetary values at the 5% level.

Exports are measured from Finnish Customs’ Foreign Trade Statistics. We measure firms’

products also from the Customs Register at the 6-digit CN classification. We focus on the number
9Recent research uses customs data to measure technology adoption because it is one of the few register-based

sources that track the types of technologies firms adopt (e.g., Acemoglu and Restrepo 2020; Acemoglu et al. 2020b;
Acemoglu and Restrepo 2021).
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of products per firm and product turnover: introduced and discontinued products. We compute

prices from the Customs Register and the Industrial Production Statistics, defining product-level

prices as the product-level revenue divided by the number of units sold. Marketing expenditure

data comes from the Financial Statement Register and patent data from Finnish Patent Database.

We measure firm subsidies from multiple registers. Two centralized systems (Yrtti 1 and 2)

record the ELY center subsidies. We gained access to these previously unstudied data that record

the application process from submission to decision. We measure all other firm subsidies using the

Statistics on Business Subsidies.

4 Research Design

The second challenge in estimating the effect of technology on employment and skill demand is

identification. Our main research design is based on a technology subsidy program for manufac-

turing firms. Technology subsidies offer a valuable source of variation because they provide firms

with a well-defined shock to the cost of technologies. We implement and validate an event-study

design that compares close winning and losing firms of technology subsidies over time. The basis

of the design is similar to Angrist (1998), Greenstone et al. (2010), and Kline et al. (2019).

A novel aspect is using text data to create comparisons of close winners and losers. To do so,

we use evaluation reports written by the program officers. We map these reports into propensity

scores that reflect the likelihood of receiving a subsidy and control for the scores to compare close

winners and losers. Roberts et al. (2020) discuss text matching.

We present two alternative designs in the Appendix: a regression discontinuity (RD) design

based on changes in the program’s firm-size threshold that determines priority for small firms to

address internal validity, and a spikes design based on the precise timing of technology adoption

events without the program to address external validity. These designs complement our overall

argument, and we refer to them in the analysis.

4.1 The Subsidy Program

The Program The technology subsidy program is administrated in Finland by the Centers

for Economic Development, Transport and the Environment (the ELY Centers).10 These centers

promote regional business policy through various activities, including advisory, financing, and de-

velopment services. Technology subsidies are part of a service called the Business Development Aid.
10There are 15 ELY Centers in our data. Until 2009 these centers were called TE Centers. Since 2014, four

RR-ELY Centers have administrated all technology subsidies. ELY Centers are separate from Business Finland
(previously TEKES), which provides funding for R&D.

8



The service provides funding for technology adoption, export promotion, R&D, and several smaller

categories, such as starting a new company. It also supported firms during COVID-19. The service

granted EUR 2 billion over our sample period 1994–2018 and directed EUR 758 million toward

technology subsidies. Technology subsidies were, on average, 0.7% of machinery and equipment

investment in Finland. This paper is the first quantitative evaluation of the program.

EU Context The program is part of the European Structural and Investment Funds (ESIFs),

one of the world’s largest industrial policy programs. ESIFs aim to support economic development

across all EU countries, especially in remote regions. The 2014–2020 program budget was EUR

670 billion.11 The national government and the EU fund technology subsidies together, typically

50/50. Decisions are made locally by the ELY centers. The EU regulates the budget and rules for

giving subsidies. The study speaks to the firm-level effects of the broader EU program.

The Program’s Objectives The technology subsidies aim to promote new technology adop-

tion. The agenda behind this objective is to improve firms’ competitiveness. Technology subsidies

in Finland have a long tradition based on the idea that the government can foster growth and struc-

tural change through industrial and regional policy (Rodrik 2007; Kekkonen 1952; Mitrunen 2021).

The program follows the EU’s technology neutrality principle—firms can choose their technology

as long as it is new—and is not primarily about the direction of technology, e.g., automation vs.

non-automation (Acemoglu 2002a).12

The Typical Case The typical technology subsidy is a EUR 100K cash grant paid toward

technology costs. The technology is typically a new CNC machine, often combined with a robot,

software, or measurement device. The firms are typically SMEs that manufacture fabricated metal

products, e.g., parts to large industrial machinery. The subsidies provide funding up to 35% of

the investment, typically 15%. ELY Center pays the grant against verifiable technology costs.

Subsidies of this size are audited, and approximately 30% of all ELY subsidies are audited.

The Selection Process The selection process works in three stages, as illustrated in Figure 3.

1. Application. Starting from all firms, some firms apply for technology subsidies. For our

research design, it means that we compare firms that all plan a technology investment. Firms
11Source: ESI Funds Open Data Platform.
12The standard economics rationales for the subsidies could be coordination problems, credit and information

frictions, and pure transfers to lower-income regions. However, typically in political discourse, the program is not
assessed in contrast to the free-market benchmark but seen in the context of economic planning.
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do not apply because a) they do not plan to invest, b) they do not know about the program,

c) anticipate they are not eligible, or d) consider the opportunity cost higher than benefits.

2. Pre-screening. In the pre-screening stage, firms contact ELY Centers that pre-screen ap-

plicants before they submit formal applications. The pre-screening stage is helpful for our

research design: after pre-screening, the centers’ goal is that all firms have a realistic chance

of winning the subsidy. The coarse evaluation criteria are size, industry, and general economic

position. The program requires that the firms are primarily in manufacturing and SMEs, not

owned by large firms, not in severe financial difficulties, and can carry out the technology

plan. Firms may decide to skip this stage, but that does not improve their chances of winning

the subsidy (but it creates rejected applications from otherwise high-performing firms that

are not, e.g., SMEs).

3. Decision. In the decision stage, firms submit a formal application explaining the investment

and timeline. Funding is discretionary. Subsidy winners are selected based on the program

rules and local and temporal budget priorities and constraints; an identical firm could receive

a subsidy on a given year, but not the other. ELY Centers do not score the applications

on a formal scale, but we use evaluation reports to match applicants. In the decision stage,

ELY Centers re-evaluate the coarse criteria: size, ownership structure, industry, and financial

position. ELY Centers make an impact assessment, where they evaluate the effectiveness of

the potential subsidy. Cases where the subsidy is more likely to have any impact, are more

likely to receive it. Other priorities also exist: firms satisfying the criteria for small firms and

firms in remote regions are prioritized.13 ELY Centers evaluate potential market distortions

and sometimes reject applications if the subsidy negatively interferes with local competition.

About 15% of applications are rejected.14

What Separates Subsidy Winners from Losers? Text data allows us to read the evaluations

of winning and losing applications. Winning applications’ evaluations are typically brief: they

state the project satisfies the criteria, and the officer recommends a subsidy. Losing applications’

evaluations specify why the officer does not recommend a subsidy. Typical rejection reasons are

1) effectiveness: the subsidy is not expected to have an impact on the project, the project is small

and unlikely to have a meaningful effect, the firm had already started the project or received a

subsidy for a similar project, 2) industry, size, and investment-type restrictions: the firm is not an
13Our regression discontinuity (RD) design builds on changes in the criteria defining a small firm.
14Corruption is unlikely to play a significant role in the process. The Corruption Perceptions Index (CPI), which

ranks countries “by their perceived levels of public sector corruption,” ranked Finland as having one of the lowest
levels of corruption in 2012–2020.
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SME, e.g., owned by a large firm, or that no aid is granted to a particular industry or investment

at that time or region, or that the firm has proposed to buy used machinery, which is generally not

allowed, 3) budget constraints: subsidy funds are limited so that aid is granted only under strict

conditions, 4) technical issues: the firm did not provide the required information by the deadline,

5) firm’s financial position and the owners’ history: ongoing corporate restructuring, debts from a

previous business, a previous foreclosure or tax liability, and 6) interference with local competition.

Employment-related reasons do not appear as typical reasons for rejection; we address this concern

in Section 7.

How do Subsidy Applicants Compare to Average Manufacturers? Table A1 compares

the subsidy applicant sample to all Finnish manufacturing firms. Technology adopters are different

than non-adopters. The subsidy sample firms are larger (despite being SMEs), more productive

and profitable, and more educated. Most importantly, technology adopters grow faster than av-

erage manufacturers. These observations highlight that non-winning applicants provide a better

control group than average manufacturers because all applicants have indicated a strong interest

in technology adoption. Our estimates capture the local average treatment effect (LATE) for firms

close to investing in technologies.

Expected Effects on Technology Investment We conceptualize the technology subsidy as a

temporary price reduction for technology. If a firm is close to the margin on whether or not to

invest, a temporary price reduction might push it to invest. Firms reported in our interviews that

subsidies affect investment because they lower the price of technology, including the associated

costs and the future risk of carrying a loan. Firms’ managers and subsidy officers often mention

the non-monetary costs of adopting new technology: mental investment and courage. They see the

subsidy also as a tool to change the mindset.

We clarify the source of variation using a model adapted from Cooper et al. (1999) in Appendix

G. The model maps the price changes induced by the program into the firm’s technology adop-

tion decision and factor demand. Under the framework, the firm’s technology adoption reflects

four forces: 1) the replacement cycle, 2) shocks to technologies’ prices, 3) shocks to technological

progress, and 4) shocks to productivity. The subsidies design isolates the role of technology price

shocks on technology investment.
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4.2 Winners-Losers Design

Our main empirical strategy is an event-study design that contrasts similar firms, one of which

was approved for technology subsidies while the other was not. The identification strategy is based

on the idea that subsidy decisions are quasi-randomly assigned with respect to the counterfactual

changes in firm outcomes after conditioning on the information used in the screening process. We

assess the comparability of winners and losers and provide several alternative estimation strategies,

including a matched non-applicant control group, and matching with text data in the next section.

We estimate two types of equations. Our main specification is the stacked event study:

Yjt = αj + κt +
∑
τ∈T

[
Iτjt · (γτ + βτ ·Dj)

]
+Xτ

jt + εjt (1)

where Yjt is an outcome for firm j in year t, Dj is the treatment indicator, Iτjt is the event-time

indicator for firm j’s decision having occurred τ years ago, and the set T = {−5,−4, . . . , 4, 5}

defines the five-year horizon over which we study dynamics. Our parameters of interest are the

coefficients βτ . They summarize the differential trajectory of mean outcomes for winning and losing

firms by the time relative to their application. Note that event-time is also explicitly defined for the

control group by application year, and firms are only in the treatment or control group for the entire

panel.15 Estimates before the event serve as a test of differential pre-trends between the treatment

and the control group. The coefficients γτ capture the common event-time τ effects. The term αj

is the set of firm indicators, κt set of calendar-time t indicators, i.e., cohorts of applicant firms, and

Xτ
jt contains potential pre-period controls interacted with both time indicators (the main figures

are reported without). We designate τ = −3 as our base event period and omit it. We set the

base clearly before the event to avoid contrasting the post-period to any anticipation effects (e.g.,

Ashenfelter’s dip).16 For clarity, we present all main estimates in reduced form (i.e., intention to

treat, ITT).

To summarize the dynamic estimates into a single number, we estimate the stacked first-

differences specifications:

∆Yj = β ·Dj +Xj + εj (2)

where ∆Yj is the change in the outcome from the base year τ = −3 to the post period that we

define in each context. The main regressor is Dj , an indicator for whether the firm won the subsidy.

We also estimate continuous versions where Dj refers to the amount of subsidies. The control term
15By focusing on a control group that never receives treatment, we avoid the problems arising in the estimation of

dynamic treatment effects when the comparison group consists of units that are treated at a different point in time
(Sun and Abraham 2020; Goodman-Bacon 2021).

16Our results are robust to the choice of base year.
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Xj controls for potential differential trends across firm and application characteristics. We report

standard errors that are robust to heteroskedasticity and cluster by firm.

We report the event studies without additional controls. In the first-differences specifications,

we control for the baseline firm characteristics at τ = −3 potentially correlated with subsequent

changes in our variables of interest: the 2-digit industry and firm size, and calendar-time t fixed

effects. We show the results are robust to different controls in the Appendix.

We construct the analysis sample in the following way. We first restrict to technology appli-

cations based on the text data. We then restrict to manufacturing and construction industries for

three reasons: the program targets these industries, they produce physical outputs, and we have a

concrete understanding of what their new technologies are based on our fieldwork.17 We exclude

the largest 5% of applications because they tend to have poor control units. Finally, we restrict

to a balanced sample over the eleven-year horizon.18 The treatment group is defined by selecting

the largest approved subsidy application for each firm. Event-time indicator τ = 0 refers to the

year the subsidy application was submitted. The control group is defined by the largest rejected

application. Repeated applications for the same project are generally not allowed and untypical.

The ideal experiment that could capture the causal effect of technology on employment, skill

demand, and firm performance would randomly assign technology to firms. While a perfect tech-

nology experiment is hard to engineer, our identification strategy is based on the quasi-random

assignment of technology subsidies, Dj . The identifying assumption is that treatment assignment

is conditionally independent of the outcomes:

Assumption 1 (Rosenbaum and Rubin 1983, CIA): (Y1j , Y0j) ⊥⊥ Dj | Xj ,

where Y1j and Y0j tell what happens if the firm wins or loses a subsidy.

Our identification strategy exploits the fact that the subsidy program induces quasi-exogenous

variation in selection into technology adoption. We compare subsidy-receiving firms to firms that

applied for the subsidy but did not receive it. Because the sample includes only pre-screened

applicants to the subsidy program, these comparisons control for differences between technology

adopters and nonadopters that originate in the decision to apply for technology subsidies. Pre-

screened non-winning applicants probably provide a better control group for technology adopters

than conventional samples because, like subsidy winners, all applicants have indicated a strong

interest in technology adoption. But such comparisons do not control for all criteria used by the

program to decide which applicants to accept. The data analyzed here contain information on most
17This leaves out some technology subsidies. For example, ELY Centers could grant a technology subsidy for a

hotel’s online reservation system.
18We show the results are robust to a non-balanced sample in the Online Appendix.
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characteristics used by the program to accept applicants, including the evaluation report itself (next

section). Therefore, the remaining selection bias induced by the decision stage can be eliminated

using regression techniques or matching using the information used in the decision process.

Table 2 reports summary statistics for the treatment and the control groups. The groups are

reasonably similar in terms of revenue, employment, and worker composition. The main differences

are that the losing firms are smaller and applied for smaller subsidies. The pre-period differences

between the treatment and control motivate our matching strategy in the next section.

An alternative counterfactual is similar firms that did not apply for subsidies. We use coarsened

exact matching (CEM; Iacus et al. 2012) to define these similar firms. This matching strategy

addresses the concern that the losing firms are not a reasonable counterfactual for what would have

happened if the approved firms had not received the subsidy. We match by revenue, employment,

wages at τ = −3 plus revenue and employment changes in percentages from τ = −3 to τ = −1 and

industries’ main sectors (letter classes). The CEM percentiles are 10, 25, 50, 75, 90, and 99. The

match is 1:1 with replacement. We define matched control samples for both winning and losing

firms, the latter being a placebo test. Tables B1 and B2 show the covariate balance for the matched

samples. The matched control group also serves to assess whether the patterns in the losing firms

are typical or specific to the losing applicants.

4.3 Text Matching

We demonstrate a novel method of crafting a research design by controlling for program partic-

ipants’ underlying differences using text data. The subsidy records contain a report written by

the officer evaluating the application. Given similar reports, treatment assignment is more likely

to reflect quasi-random variation than systematic differences. The reports record qualitative char-

acteristics potentially related to the firm’s future trajectory. Text matching methods allow us to

control for these characteristics (see, e.g., Romer and Romer 2004; Roberts et al. 2020).

As our main text matching method, we control for propensity scores computed from evaluation

reports of applications. The propensity score is a predicted probability that conditional on a text

(Wj), the firm will win a subsidy:

p(Wj) ≡ E [Dj = 1|Wj ] . (3)

The propensity score theorem (Rosenbaum and Rubin, 1983) states that controlling for the proba-

bility of treatment is sufficient for satisfying Assumption 1. Propensity scores are valuable in this
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context because they reduce dimensionality as directly controlling for texts is not feasible.19

The subsidy records contain three types of texts that track the decision process: 1) application

summary, 2) evaluation, and 3) decision texts. The application summary and evaluation texts are

written by a middle-rank officer responsible for administrating the subsidy and presenting it to a

manager for a decision. We use the evaluation texts to compute the propensity scores. These texts

capture clearest the potential differences between the firms. Based on our interviews, the subsidy

officers’ goal is to present an unbiased evaluation.

The text propensity score method works in three steps.

Step 1: We represent the text as data. We use a vector representation based on word em-

bedding. In particular, we employ the FastText (Bojanowski et al. 2016) library for the Finnish

language. The advantage of the vector representation is that it captures the semantic meanings

of the text instead of a word collection. This is critical in our context since our goal is to extract

information from the evaluations beyond clear markers of success or failure.

Step 2: We estimate the propensity scores using the data. We use a machine learning method,

support-vector machines (SVMs), to calibrate word vectors into probabilities. We train the model

on all subsidy applications.20 The probabilities are calibrated using Platt scaling: a logistic regres-

sion on the SVM’s scores, fit by five-fold cross-validation on the training data (Zhang, Damerau

and Johnson 2002). Figure 4 provides the calibration plot for our analysis sample: the predicted

probabilities based on text data are on the x-axis and the probability of subsidy receipt on the

y-axis. The predicted probabilities closely match the empirical probabilities.

Step 3: We control for confounders using the propensity score. Regression adjustment is our

preferred approach. We compare the estimates to coarsened exact matching (CEM) and inverse

probability weighting (IPW; Hirano et al. 2003).21

As an alternative text-matching method, we use cosine similarity. It measures similarity between

two non-zero vectors of an inner product space:

cosine similarity =
Ā · B̄
‖Ā‖‖B̄‖

=

∑n
i=1AiBi√∑n

i=1A
2
i

√∑n
i=1B

2
i

, (4)

where Ai and Bi are components of vector Ā and B̄. Cosine similarity allows us to compute a
19Note that there is only one report for applicant firm j, both for the treatment and control, and hence the

propensity score p(Wj) contains only subscript j.
20Our analysis sample covers the majority of technology subsidies and out-of-sample calibration with the remaining

applications does not work. As an intermediate solution to avoid overfitting, we calibrate the model with all possible
applications, including exports and R&D.

21There are multiple ways to implement the three steps: represent the text as data, model and estimate p(Wj),
and use p(Wj); see, e.g., Angrist and Pischke (2009); Gentzkow et al. (2019).
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similarity score directly between the texts’ vector representations without projecting them first

to a single-dimensional score.22 We construct a matched sample for the winners by selecting the

nearest-neighbor with replacement from the losing firms. Table A2 reports the summary statistics

for the cosine-similarity matched sample.

5 Estimates

This section provides the reduced-form estimates on employment and wages, skill composition, and

firm performance using the primary research design. The main result is clear: we find no evidence

of employment reduction or skill bias across a comprehensive set of skills and technologies. The

estimates show that after winning a technology subsidy, firms invested sharply more in technologies,

hired more workers, but did not change their skill composition. Before receiving a technology

subsidy, the winning and losing firms had similar trends in technology investment, employment,

and skill composition. The results are robust to controlling for the text propensity score and to

other controls. The RD and spikes designs in Appendices C and D confirm the results. The results

are not limited to the subsidy program or SMEs.

The First Stage Figure 5 shows the first-stage event-study estimates βτ from Equation 1. The

outcome is technology investment. Winning a subsidy is associated with a sharp increase in tech-

nology investment. Before the subsidy application, the groups are on parallel trends. Figure A1

shows alternative first-stage estimates with all possible subsidies granted and received. It shows

that winners and losers are granted a different amount of subsidies exactly in the event year, not

before or after. The pattern for received subsidies matches technology investment. Table 3 reports

the first stage estimates for the main versions of the winners-losers design, with and without text

matching. The outcomes are technology subsidies, technology investment, and capital. The first

stage is robust to controlling for the text propensity score.

Employment and Wages Figure 6 displays the event-study estimates βτ from Equation 1. The

outcome is employment relative to the base period τ = −3. The estimates indicate that technology

subsidies lead to approximately 20% higher employment in the five years after receiving it. As

the figure shows, the employment pre-trends were similar between treatment and control groups.

Figure 9 visualizes and Table 4 reports the first-difference estimates from Equation 2, with and

without the text propensity control. These estimates combine the multiple event-study estimates
22A conceptual difference is that the propensity score measures the text’s predictive power on treatment assign-

ment, while cosine similarity measures the overall similarity between evaluation texts.
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into a single number. Our preferred specification with the propensity control indicates a statistically

precise 23% increase in employment. The employment estimates are consistent with the idea that

the advanced technologies were a complement to labor in this context.

Another way of measuring the potential replacement effects from advanced technologies is the

labor cost share. It measures the share of revenue that a firm pays to workers. We find a precise zero

estimate, reported in Table 4. We also generally find a zero effect on wages; in some specifications

a small statistically insignificant negative effect.

The employment estimates are similar when estimated using matched non-applicant control

group (Table 4 and Figures B1, B3), regression discontinuity design (Figure C4 and Table C4), and

the spikes design without subsidies (Figures D3, D5). The employment results are also robust to

different text matching versions (Table A3), different controls (Table A4), and are clearly present

in the mean graphs that compare the treatment and control group means over time (Figure A12).

Skill Composition Figure 7 displays the event-study estimates for the main firm-level skill

measures: average years of education, college-educated workers’ share, and the production workers’

share. We find no change in these measures, either before or after the technology subsidy. Figure

8 summarizes the estimates and Table 4 reports the numerical values. Our 95% confidence interval

excludes over .15 year changes in the average years of education. The results are in contrast with

the view that advanced technologies increase the share of more educated workers and decrease the

share of production workers in manufacturing firms. The main skill-composition estimates hold

in all our research designs and are robust to a variety of controls referenced in the employment

results, including text matching.

We also consider more detailed skill outcomes: education groups (Figure A2), occupation groups

(Figure A3), cognitive performance (Figure A4), school performance (Figure A5), personality (Fig-

ure A6), demographics (Figure A7), and task composition (Figure A8). The big picture is that the

effects are primarily skill-neutral in the sense that the skill composition does not change. Another

central observation is that the baseline skill levels of workers in the sample firms are well below

the median. For example, the average cognitive performance is .3 standard deviation lower than

the average population, and the average 9th grade GPA is .56 standard deviation below the popu-

lation average. The sample firm workers also score lower in tests designed to measure personality

traits valued by the Finnish Defence Forces, such as achievement aim and dutifulness. The only

personality trait the workers score higher than average is masculinity (+.15 standard deviation).

Finally, there are some patterns of changes in the skill composition that are consistent with the

observations from our fieldwork, while not statistically significant and subject to multiple testing
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concerns. The treatment effect on average school GPA is .1 standard deviation (Figure A5), and

the treatment effects on activity-energy, achievement aim, and sociability are .05 standard devi-

ation (Figure A6). These are the traits the managers and workers we interviewed consistently

mentioned to be complementary to new advanced technologies, as opposed to higher education or

non-production occupations.23

Firm Performance Figure 9 visualizes and Table 4 reports the first-difference estimates from

Equation 2 for measures of firm performance: revenue, labor productivity, total factor productivity,

and the profit margin. We measure labor productivity as revenue per worker and total factor

productivity from Cobb-Douglas production function estimation.24 The robust finding is that

technology subsidies and technology investment lead to approximately 30% higher revenue in the

five years after. However, we find no evidence of changes in productivity and the profit margin. This

somewhat surprising finding is consistent with Criscuolo et al. (2019), who study an investment

subsidy program in UK manufacturing, and Cerqua and Pellegrini (2014), who focus on capital

subsidies to businesses in low-performing regions. We provide an interpretation in Section 6.

Magnitudes Table 5 reports the first-difference estimates from Equation 2 with a continuous

treatment variable, the subsidy granted in EUR. The estimates from our preferred specification

indicate that 1 EUR in subsidies stimulates 1.3 EUR in machinery investment. The firms’ revenue

increases by 5 EUR per 1 EUR of subsidies.

Table 6 reports more detailed estimates on financial outcomes. The average profit margin is

5%. Winning a subsidy leads to an increase in average gross profit by EUR 24K and financial costs

by EUR 4K. The coefficients from continuous treatment are close to zero. There is a positive .05

effect on financial costs for each subsidy euro granted. That is, the firms carry additional financial

costs as a reaction to the subsidy. Because the baseline profitability is moderate in these firms,

and they increase their revenue and employment in the same ratio and incur additional costs from

the investment, winning a subsidy does not lead to a large increase in profits.

The employment increase is .23 jobs per EUR 10K subsidies, indicating a cost per job of EUR

43K (USD 49K). This number closely matches the numbers managers reported for machinery per

worker in their plant in our interviews. Criscuolo et al. (2019) review the existing cost per job

estimates. Our estimate is close to the average among the reported estimates. It is relatively
23Managers and workers emphasized the non-cognitive skills required in work: initiative, cooperation, and adapt-

ability, and that workers perform multiple tasks. One CEO put the view succinctly: “A company does not just pay
a welder to weld.”

24TFP is not ideally suited to measure firm performance in our context because (as we will show in Section 6) the
firms introduce new product varieties. Revenue per worker is robust to different production functions.
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close to the cost per job estimates of USD 43K by Pellegrini and Muccigrosso (2017) and USD

68K by Cerqua and Pellegrini (2014) in the context of capital subsidies to businesses in the least

developed regions in Italy, and the estimate of USD 63K by Glaeser and Gottlieb (2008) for the

US Empowerment Zones. Criscuolo et al. (2019) report an estimate of 27K USD at the firm level.

6 Mechanism

To recap the results: technology investment led to increases in employment and no changes in

skill composition—in contrast with the ideas that technologies replace labor or are skill biased. In

this section, we offer a theoretical interpretation and then provide theory-motivated tests of that

interpretation. We close by explaining when and why we expect to see these results.

6.1 Theoretical Framework: Process vs. Product

We outline a framework that contrasts two types of technological change: process versus product.25

Process refers to productivity improvements within an output variety, product to the expansion of

new varieties. The framework is standard (Dixit and Stiglitz 1977; Melitz 2003; Bustos 2011), but

we apply it to a new context. The central element is imperfect substitutability between output

varieties. The intuitive distinction is whether firms use new technologies to do the same thing

more efficiently or to do new things. We show that these two types of technological change predict

different effects and can be empirically tested.

The core idea of the model can be simplified as a composite function:26

F (TE ; f (TI ;L)) . (5)

The function highlights two types of technological change:

TI Process (The Intensive Margin): This affects the production “recipe” f of how factors L are

used in production activity. Example: a welding robot replaces human welder’s tasks.

TE Product (The Extensive Margin): This affects the “lens” F through which production is

projected into markets. Example: a welding robot makes longer seams than a human welder.

25We use the terms process vs. product, but other terms could convey the same idea: e.g., cost vs. differentiation
(Porter 1985), secondary vs. primary (Saint-Paul 2002), or defensive vs. enterprise (e.g., Boone 2000). The critical
distinction is whether technological change only affects how the output is made or how the customer receives it.

26We use this production function to make the idea as clear as possible. In the next section, we explicitly define
what a new type of output means.
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6.1.1 The Basic Setup

We begin by outlining a framework for modeling firm heterogeneity following Melitz (2003).27 The

market structure is monopolistic competition that emphasizes product differentiation and increasing

returns to scale at the firm level. The model specifies preference and firm heterogeneity in a

differentiated product market. This allows technology to have a role in creating new varieties—as in

many standard growth models (e.g., Romer 1990). We show that this view has different implications

than one emphasizing technology’s role in allowing productivity improvements within a variety.

Preferences Preferences are defined over the goods produced in a number of sectors j ∈ {0, 1, ..., J}

and assumed to take the Cobb-Douglas form:

U =
J∑
j=0

βj logQj ,
J∑
j=0

βj = 1, βj ≥ 0 (6)

There is a continuum of differentiated varieties within each of the j ≥ 1 sectors, and preferences are

assumed to take the Constant Elasticity of Substitution (CES) Dixit and Stiglitz (1977) form:28

Qj =

[∫
ω∈Ωj

qj (ω) (σj−1)/σjdω

]σj/(σj−1)

, σj > 1, j ≥ 1 (7)

Sector j = 0 is a homogeneous numeraire good, produced with a unit input requirement.

The Cobb-Douglas upper tier of utility implies that consumers spend Xj = βjY on goods

produced by sector j, where Y denotes aggregate income. The demand for each differentiated

variety within sector j is:

qj(ω) = Ajpj(ω)−σj , Aj = XjP
σj−1
j (8)

where Pj is the price index

Pj =

[∫
ω∈Ωj

p (ω) 1−σjdω

]1/(1−σj)

. (9)

27We aim to introduce the simplest model necessary to explain the findings, which captures the essence of a broad
class of models featuring process vs. product type technological changes. The Melitz (2003) framework allows for a
simple way of introducing imperfect substitutability between varieties. We specifically build on the version by Melitz
and Redding (2014). Related approaches include Hopenhayn (1992), Ericson and Pakes (1995), Klette and Kortum
(2004), Acemoglu et al. (2018), Akcigit and Kerr (2018), and Hemous and Olsen (2021).

28This representation has two interpretations: 1) consumers demand differentiated consumption goods with “love-
for-variety” preferences (e.g., Grossman and Helpman 1991), or 2) final-good firms demand differentiated intermediate
inputs, and a greater variety of inputs increases the “division of labor” (e.g., Romer 1987, 1990). Our context is the
technology adoption of intermediate-good producing firms that sell their outputs to final-good producing firms.
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Aj is a market demand index, determined by sector spending and the price distribution (the CES

price index). With a continuum of firms, each firm is of measure zero relative to the market as a

whole, and takes Aj as given.

Production Firms produce varieties using a composite input Lj with unit cost wj in sector j.

The firms choose to supply a distinct differentiated variety. Production has a fixed cost of fj units

of the composite input and a constant marginal cost, inversely proportional to productivity ϕ. The

total amount of the composite input required to produce qj units of a variety is:

lj = fj +
qj
ϕ
. (10)

Equilibrium We focus on the equilibrium in a given sector (and drop the sector j subscript for

clarity). Each firm chooses its price to maximize its profits subject to a downward-sloping residual

demand curve with constant elasticity σ. From the first-order condition for profit maximization,

the equilibrium price for each variety is a constant mark-up over marginal cost:

p(ϕ) =
σ

σ − 1

w

ϕ
(11)

which implies an equilibrium firm revenue of:

r(ϕ) = Ap(ϕ)1−σ = A

(
σ − 1

σ

)σ−1

w1−σϕσ−1, (12)

and an equilibrium firm profit of:

π(ϕ) =
r(ϕ)

σ
− wf = Bϕσ−1 − wf, B =

(σ − 1)σ−1

σσ
w1−σA. (13)

6.1.2 Two Types of Technological Change

Our model outlines two types of technological change: process vs. product.
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Process Process-type technological change improves the firm’s productivity within a variety.29

This is the intensive margin: it allows the firm to produce the same thing but more efficiently.30

We introduce the process-type technological change in the model as in Bustos (2011). The firm

has a constant marginal cost, 1/ϕ, of producing a variety. The firm can upgrade to a new technology

TI that reduces its production costs. Figure 10 visualizes the idea. This choice is a tradeoff between

a fixed cost fI and a productivity increase to ιϕ, where ι > 1. The resulting total cost functions

with and without process-type change are:

l =

f + q
ϕ if TI = 0

f + fI + q
ιϕ if TI = 1.

(14)

Process technology adoption is characterized by sorting according to firm productivity: there is a

productivity cutoff ϕ∗I above which the firm adopts the new technology because the adoption choice

involves a tradeoff between a fixed cost and a per-unit profit increase.

Product Product-type technological change enables the production of new varieties.31 This is the

extensive margin: it allows the firm to produce new things and switch between varieties. Critical

to this view of technological change is that outputs with different types are imperfect substitutes.

In our framework, there is only one dimension to improve productivity or costs, but multiple

dimensions to change product attributes. There is only one firm per variety (the most productive),

but firms can differentiate through multiple varieties.32

We introduce the product-type technological change in the model by building on Melitz (2003).

The firm can introduce a new variety by adopting new technology TE . The technology requires

a sunk entry cost of fE units of the composite input. Potential entrants to the new variety,
29The process efficiency motive is present in the specialization model of Smith (1776), the labor-saving technologies

of Marx (1867), the growth model of Solow (1956), the routine-replacement model of Autor, Levy and Murnane
(2003), the task model of Acemoglu and Autor (2011), the automation model of Acemoglu and Restrepo (2018), the
product-process model of Utterback and Abernathy (1975), and in the quality improvements in the ’Schumpeterian
models’ of Grossman and Helpman (1991) and Aghion and Howitt (1992).

30We distinguish two different quality improvements: those within the same variety vs. a new, imperfectly
substitutable variety. In this model, and in typical growth models, productivity changes through cost reductions and
quality improvements are essentially equivalent within the same variety. This is due to the fact the model implicitly
assumes perfect substitution between quality and quantity within the same variety. That is, the productivity term
ϕ can be interpreted in terms of costs or within-variety quality; the interpretations are isomorphic to a change in
units of account (Kugler and Verhoogen 2012 provide a proof).

31The expansion of variety in consumer and intermediate goods has a central role in many theoretical models of
growth (Romer 1990; Grossman and Helpman 1991). The product view is closely related to Porter (1985): gaining
competitive advantage through a quality-differentiation strategy instead of a cost-leadership strategy.

32A new variety has several interpretations: a new product, a quality change not perfectly substitutable with
quantity, re-purposing production to respond to changing demand, expansion to new markets, capturing a larger
share of the value chain, etc. A new variety may be the same product but with an improved process that provides
more reliable scheduling or a faster response time to orders.
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both existing and new firms, face uncertainty about their productivity in the new variety. Once

the sunk technology cost is paid, the firm draws its productivity ϕ in the new variety from a fixed

distribution g(ϕ), with cumulative distribution G(ϕ). Figure 10 visualizes the idea. After observing

its productivity, the firm decides whether to exit the project or to produce. This decision yields a

survival cutoff productivity ϕ∗E at which a firm makes zero profits:

π (ϕ∗E) =
r (ϕ∗E)

σ
− wf = B (ϕ∗E)σ−1 − wf = 0 (15)

Free entry implies that in equilibrium, this expected measure of ex-ante profits (inclusive of the

entry cost) must be equal to zero:∫ ∞
0

π(ϕ)dG(ϕ) =

∫ ∞
ϕ∗E

[
Bϕσ−1 − wf

]
dG(ϕ) = wfE (16)

The relationship between profits and productivity is shown graphically in Figure F1. Firms drawing

a productivity ϕ < ϕ∗E would incur losses if they produced. These firms exit the project immedi-

ately, receiving π(ϕ) = 0 in that variety, and cannot cover their sunk entry cost. Among the active

firms, a subset of them with π(ϕ) > wfE make positive profits net of the sunk entry cost.

6.1.3 Theory-Based Predictions

Process and product type technological changes generate several distinct empirical predictions,

which we summarize in Table 7. We derive these predictions in Appendix F.

Process Process-type technological change predicts increases in revenue, productivity, and profit

margin. The intuitive idea is that firms with lower marginal costs produce more and earn higher

revenues due to the CES demand structure; lower marginal costs imply higher measured produc-

tivity and higher profits due to the increasing returns to scale.

A distinct prediction from the process-type technological change is zero effect on product com-

position. There is no similarly precise prediction on exports, which depends on whether the exports

are new varieties or not. The price prediction is negative if the process improvement is a cost re-

duction and positive if it is a quality improvement.

The predictions on employment, labor share, labor composition, and wages depend on the

underlying structure of how the process-type change affects productivity within the variety. In

the model, firms use a composite factor L to produce the varieties. If the composite factor of

production contains only labor, the model predicts that lower marginal costs reduce the labor

share since the firm takes wages as given and revenue per input increases. The literature specifies
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different versions of the composite factor and how process technology enters it.33 The models where

technological change simultaneously reduces costs and affects labor composition typically assume

that technological change is “skill biased,” in the sense that new technologies are complementary to

high-skill workers and increase their share of employment. If the technological change is specifically

automation (Acemoglu and Restrepo 2018), it replaces tasks previously performed by labor with

capital and reduces the labor share of value-added.

Product Product-type technological change predicts an increase in revenue but no changes in

productivity and profit margin. The intuitive idea is that the new variety allows the firm to sell

more. But its productivity and profit margin are still, on average, the same as before due to the

free-entry condition. Some new varieties are more profitable, some less.

A distinct prediction from the product-type technological change is the effect on the product

composition. While a new variety does not equal a new product (e.g., it could also be a faster

response time), a new product is a signal of a new variety. Another signal of new varieties is

exports. If different markets have differentiated preferences, a new variety makes the firm more

likely to export, export a larger share of its revenue, or export to a larger variety of destinations.

If the new variety is a quality improvement, the predicted price effect is positive.

The predictions on employment, labor share, labor composition, and wages again depend on

the underlying structure of how technological change helps introduce a new variety. But this time,

the critical difference is that there is no unambiguous basis for expecting a sustained effect on the

share or composition of labor. The skill or task composition might be different for a new variety,

but this depends on the particular context. However, the basic structure predicts an increase in

the use of the composite factor, generally employment (see also Harrison et al. 2014). The model

predicts zero wage effects in a competitive labor market (for both technological advances) since

wages are determined in the sectoral equilibrium and the firm is small relative to the market.

Some research proposes that exports and new products are also skill biased (Bernard and Jensen

1997; Xiang 2005; Matsuyama 2007). One reason we do not observe skill bias from exports or new

products is that these changes—which we conceptualize as new varieties—are a normal part of how

these firms operate. We observe in our fieldwork that these manufacturers constantly identify shifts

in demand and redeploy their productive resources to new uses using new technologies. The large-

scale manufacturers also combine economies of scale with flexibility, reflected in short production

runs, product introductions, and sensitivity to customer needs. Earlier fieldwork by Dertouzos et

al. (1989), Berger (2013), and Berger (2020) corroborates these observations.
33For example, the canonical model (Tinbergen 1975; Katz and Murphy 1992), the routine-replacement model

(Autor et al. 2003), and the automation model (Acemoglu and Restrepo 2018).
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6.2 Evidence: Testing Process vs. Product

This section empirically tests whether the technological changes we observe are the process vs.

product type. We document that they are primarily the product type. This explains the puzzling

results of no labor replacement or skill bias. Firms used new technologies to create new types of

output, not to replace workers.

We proceed in two steps. First, we consider a new set of outcomes that are critical signals that

contrast process vs. product type change. Second, we directly measure the type of technological

changes using our text and survey data. We close by describing a case from our fieldwork.

6.2.1 Testing the Predictions with New Outcomes

Process and product type technological change predict different effects, summarized in Table 7.

We use these predictions to distinguish them. So far, we’ve shown that the technological ad-

vances—either with or without the subsidies—led to increases in employment and revenue, no

change in skill composition, the labor share, wages, productivity, or the profit margin. These

empirical results are consistent with the product-type predictions but not with the process type.

Next, we provide evidence for new outcomes: exports, products, marketing, prices, and patents,

all signals of product-type changes.

Figure 11 shows the event-study estimates, with exporter indicator as the outcome. Subsidy

winners are more likely to become exporters. Table 8 reports a treatment effect of 4 percentage

points from the baseline of 28%. The effect on the exports’ revenue share is .9 p.p. from the

baseline of 5.2%. The winners also start exporting to .2 more regions, from 1.5 baseline.34

Table 8 reports the effects on products, measured from the customs data. The treatment effect

is .15 products from the baseline of 1.55. We also observe an increase in the product turnover: the

treatment firms both introduce and discontinue more products.

Figure 12 shows that subsidy winners are more likely to increase their marketing expenditure.

The increased marketing signals that the firm intends to change how the customers perceive their

output, not only production costs.

Table 9 reports the treatment effects on prices. We measure prices from the Customs Register

and the Industrial Production Statistics (a survey of manufacturing firms). We focus on product-

level prices’ unweighted average. We find a 29.1% increase in the customs data prices and 30.8%

in the manufacturing survey. Price increases signal potential quality improvements.

Figure A11 shows the evolution of the subsidy applicant firms’ patenting status. While sugges-

tive evidence, we observe that patenting is concentrated in the periods before applying for subsidies
34The export results are consistent with, for example, Lileeva and Trefler (2010) and Koch et al. (2021).
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and technology investment. This patent pattern is an additional signal that firms used the subsidies

and technologies to scale up from an idea to production.

6.2.2 Directly Measuring the Type of Technological Change

We measure the type of technological change directly using text and survey data.

Text Data Text data allow us to read the sample firms’ technology adoption plans. Based on

our theoretical framework, we classify the technology projects into process vs. product. Process

refers to using technologies to produce the same type of output more efficiently, and product refers

to using technologies to produce a new type of output or expand.

Figure 13 shows that 91% of projects in our sample are of the product type. These applica-

tions describe new products, access to new markets, responding to changing demand conditions,

growth, or similar use for the technology. Only 8% of the texts do not describe such reasons. The

technological changes we document are primarily product advances based on this measure, and our

sample contains very few purely process-type technological advances.

While most of the sample is product type, we estimate the treatment effects separately for

the two categories. We use the matched control group for treatment units described in Section

4.2 because our control sample is small in both categories. Table 10 provides the estimates. The

estimates provide some evidence that product advances led to larger employment effects and no

skill bias and that process-type advances led to smaller employment effects and some skills bias,

.14 years, significant at the 10% level.

Survey Data Survey data provides us an alternative way of measuring the uses of technologies.

The European Community Innovation Survey (CIS) asks our sample firms, and other firms, about

the importance of different objectives for process and product innovations. The options include,

e.g., introducing more extensive product selection, quality improvement, and lower labor costs.

Figure 14a shows that typical reasons for firms’ process and product innovations are access to

new markets, introducing a larger product selection, better quality, and larger capacity. Lower

labor costs rank as the fifth most important: only 20% of firms report that lowering labor costs is

important for process and product innovation. Based on CIS data, we classify the firm’s technology

project as the product type if the firm considers one of the product-type reasons (in black) important

but does not consider lower labor costs important. Conversely, we classify the firm’s technology

project as the process type if lower labor costs (in grey) are important, but none of the product

reasons are. Figure 14b shows that 97% of our technology adoption cases are the product type.
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These numbers are similar when considering our spikes design sample, all manufacturing firms, or

all Finnish firms, suggesting that the finding is not limited to the subsidy program. Our interviews

with CEOs corroborate this observation.

Table A8 shows the estimates by the technology category measured from the survey data. We

again use a matched control group since the original control group’s overlap with the survey is

limited. The estimates for the product group are similar to the overall group. The process group

is too small to estimate the results (marked by – in Table A8).

6.2.3 Fieldwork: An Illustrative Case

We conducted fieldwork to document the sample firms’ technology adoption. The case of an

industrial piston manufacturer we observed illustrates our explanation.

The firm had invested in a new CNC machine, a robot arm, a measurement device, and new

CAM software. When asked why they adopted the new technologies, the firm wanted to illustrate

what they considered as the big picture of technological change in piston manufacturing: constant

quality improvement. “With the old technologies, we couldn’t make these pistons.” Quality is

essential for the piston manufacturer: pistons are only a fraction of an industrial engine’s price, but

if they break, it is expensive (see Kremer 1993 and Autor 2015 on the O-ring production function).

Figure 15 shows the development of piston quality over the last 100 years. The firm called this

the “Moore’s law” for pistons. The main effect of the new technology was that the firm could now

produce new larger, and more effective pistons. The firm stayed competitive, and as a result, has

increased its revenue and employment.

The technology investment was associated with changes in production and work experience.

Mainly those were “small, but important changes.” For example, the new production design included

a proprietary method of attaching the piston to the machining platform. The new production

required some new skills: production workers needed to learn to use the robot and the CNC

machine, and the R&D team had to learn to program with the new CAM software. The educational

composition did not change as a result of the investment. However, the skill composition in the

firm has been increasing secularly over time.

Consistent with our theoretical framework, the firm described operating in an environment

where the market for each specific product is limited. They are de-facto monopolists (or oligopolists)

in that market. They could not expand substantially within a product but could potentially expand

by introducing a new product. All firms we studied explained essentially the same story, suggesting

that the mechanism applies in other industrial and custom manufacturing firms.35

35Our interviews suggest that while process-type advances exist, they are less likely to be physical machinery, but,
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6.3 Two Types of Manufacturing: Mass Production vs. Flexible Specialization

Our theoretical framework tells a tale of two types of technological change—process vs. prod-

uct—and how they predict different effects that can be empirically distinguished. A central ques-

tion created by our empirical analysis is: when and why is one more likely to occur than another?

The technology adoption events in our data are almost entirely product rather than process-type

changes. But both types may occur in reality, and some studies report examples of the latter

when it comes to automation (e.g., Acemoglu and Restrepo 2020; Restrepo and Hubmer 2021). We

explain next why our findings are distinctive but logical—and applicable to other settings where

similar incentives for process vs. product type technology adoption prevail.

To do so, we contrast two types of manufacturing: mass production (Taylor 1911; Ford 1922)

vs. flexible specialization (Piore and Sabel 1984; Milgrom and Roberts 1990). These two different

contexts affect the incentives for the two types of technological change. Mass production is char-

acterized by standardized products, high volumes, and a stable environment, and it makes process

advances more likely. Flexible specialization is characterized by specialized products, low volumes,

and an unstable environment; it makes product advances more likely.

Our results differ from the two views emphasized in the literature—that technologies replace

labor or are skill biased—because the literature has focused more on process advances in mass

production (e.g., Acemoglu and Restrepo 2018). In contrast, the flexible manufacturing system is

more common among the firms we study. In our context, both small and large manufacturing firms

produce specialized products in small batches. Examples include defense contractors manufacturing

specialized equipment and industrial manufacturing firms producing new wind power stations.

However, the findings may not apply to the mass production of non-specialized commodities, such

as cement or steel, or high-volume assembly, where costs are critical.

A large literature documents that manufacturing has moved from mass production to new, more

flexible, and specialized forms of production since the 1980s (e.g., Dertouzos et al. 1989; Berger

2013). These new forms of production emphasize quality and responsiveness to market conditions

while utilizing technologically advanced equipment. Piore and Sabel (1984) call this change the

second industrial divide, Kenney and Florida (1993) call it moving beyond mass production, and

Milgrom and Roberts (1990) call it modern manufacturing. While different studies approach the

topic from different angles, the common observation is that “the business environment is no longer

conducive to producing standardized products for a stable market” (Piore, 1994). One of the

managers in Berger (2020) explained clearly: “American manufacturing has been transformed.

It’s become highly engineered, highly specialized, and highly customized. I see this across all

for example, new management styles such as lean manufacturing.
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manufacturing. This is a different country. It’s no longer the mass production of the past.” Why

did this change happen? The research suggests several reasons: consumers shifted away from

standardized goods (e.g., Bils and Klenow 2001), globalization reduced the cost of specialization

between firms (e.g., Berger and Center 2005), and new technologies reduced setup times and made

it less costly to switch production between products (e.g., Bartel et al. 2007).

Next, we help understand when and why process vs. product type technological advances are

more likely, and how this trade-off links to the type of manufacturing—mass production vs. flexible

specialization. We point out three central factors: scope for specialization, volume, and the need

for adaptation, that each affect the incentives for proces vs. product type changes.36

Scope for Specialization The trade-off between process versus product type advances depends

on the scope for specialization. Firms in a sector with a higher scope for specialization are more

likely to introduce new varieties (e.g., Sutton 1998; Kugler and Verhoogen 2012). We conceptualize

the scope for specialization S as lowering the fixed cost f jE of product-type change:

∂fE
∂S

< 0. (17)

Intuitively, in sectors with a higher scope for specialization, firms may gain a competitive advantage

by introducing a new good or changing their selection of goods. This contrasts with sectors that

produce bulk goods, where the primary source of competitive advantage is cost.

Our main measure for the scope for specialization is the Rauch (1999) index based on whether a

good is a commodity.37 Figure 16 shows that 91% of the firms are in an industry with a Rauch index

over .5, indicating that our sample firms are in industries with a high scope for specialization. Our

main industries, fabricated metal products, machinery and equipment, and wood products, have an

index of 1 and are fully specialized based on the Rauch index. Our sample does not include firms

in non-specialized industries, such as cement, steel, or paper.38 Specialized manufacturing is not

limited to the subsidies design: the share of firms (and employees) in specialized vs. non-specialized

industries is similar in the spikes design. In Finland, 90% of all manufacturing employment is in

specialized non-commodities under the Rauch classification.

Table A9 provides treatment-effect estimates for specialized vs. non-specialized industries. The

estimates are generally similar in both groups. Our interpretation is that because the clear pattern
36These are not the only factors that may influence the choice. Other relevant factors include: automation

feasibility (Graetz and Michaels 2018; Acemoglu and Restrepo 2020), employment protection (Saint-Paul 2002;
Manera and Uccioli 2021), complementary resources, such as venture capital, trade associations, and suppliers
(Berger 2013; Gruber and Johnson 2019), and skill supply (e.g., Dertouzos et al. 1989; Berger 2013).

37Measures of the scope for specialization also include Gollop and Monahan (1991) and Sutton (1998).
38Dertouzos et al. (1989) emphasize that even in steel manufacturing, quality improvements are crucial.
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in our data is product-type technological change in specialized industries, it is unsurprising that we

do not observe different effects in the small subsample of firms in non-specialized industries. Table

A10 further reports the number of firms in the combinations of scope for specialization and the

technology category. Less than 1% of our sample are process-type technological advances in non-

specialized industries (e.g., efficiency improvements in steel manufacturing or purely warehouse

automation in the paper industry). Consistent with our hypothesis, product-type projects are

relatively more common in specialized industries.

Volume The trade-off between process versus product also depends on production volume. In

our interviews, most managers explained that they are specialized low-volume producers that invest

in advanced technologies that enable them to make the products that they sell to a few customers

with special demands. Our theoretical framework rationalizes why technology adoption events are

more likely to be the product than process type in a low-volume context. In the framework, the

amount of input required to produce volume qj of a variety is

l = f +
q

ϕ
, (18)

where f is a fixed production cost and 1/ϕ is a constant marginal cost. The process-type tech-

nology adoption decision TI is a tradeoff between an additional fixed cost fI and a productivity

increase to ιϕ. Due to increasing returns to scale, the high-volume producers benefit more from

the productivity increase; the fixed cost is distributed over the higher volume. In contrast, in a

low-volume context, the benefits from more efficient production are limited, but the benefits from

introducing new products are not. In our model, higher volume firms are also larger firms with

lower marginal costs because, given the CES demand structure, firms’ relative outputs and revenues

inversely depend on their relative marginal costs.

Firms in our sample are mainly SMEs, as shown in Table 2, consistent with observing mainly

product-type technology adoption events. Tables A6 and A7 describe the covariates for the matched

product and process samples. The groups are similar because our context is relatively uniform, but

there are some relevant differences. The product-type firms are smaller and more educated than

the process-type firms.

Need for Adaptation Over time, the trade-off between process vs. product depends on the

need for adaptation.39 A manufacturer we interviewed described that they could automate their

assembly—currently done manually—but it would require them to commit to a specific model and
39Bernard et al. (2010) analyze product switching as a source of reallocation within firms.
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set of parts to build it. This commitment was unattractive since they must update their model

and parts frequently to stay competitive for their customers. In this context, the firm had more

substantial incentives to use technologies to create new varieties than to improve its productivity

within a variety. Most firms we interviewed described operating in a changing environment where

adaptability is important.

We conceptualize the need for adaptation as a death shock that occurs with an increasing

probability δ ∈ (0, 1), building on Melitz (2003):

δ ∈ (0, 1),
∂δ

∂t
> 0. (19)

The death shock increases the relative incentives for product-type technology adoption. The reason

is that it generates a discount factor for the value computation and reduces the net present value

of future revenue in the given variety and, therefore, reduces the benefits from the process-type

technological change. In contrast, with a new variety, the firm can start again with a lower death

shock risk that starts to increase in each period. The need for adaptation may arise from several

factors: changes in the operating environment and consumer preferences, technological obsoles-

cence, and cost competition.40 Firms we interviewed explained: “We cannot compete with the

low-cost competitors. We need to offer unique goods and services.”

This view has two central empirical predictions: 1) we will observe a higher product turnover

in addition to new products, and 2) we observe a negative trajectory for those firms that did not

adopt the technology and a higher survival for those firms that did. Our evidence confirms both

predictions, and our text data directly records that firms reported investing in technologies to

respond to changing demand.

7 Robustness

We conduct several robustness checks to evaluate the internal and external validity of our findings.

7.1 Internal Validity

Selection Bias A natural concern when estimating the impact of technology adoption is the bias

due to a potential correlation between the adoption and unobserved characteristics of adopters.

These concerns are less likely to be important in our setting because (as described in Section 4)

we focus on variation induced by a technology subsidy program, where comparisons by adopter
40Firms with limited capabilities to respond to cost competition may launch new varieties when faced with low-cost

rivals (Porter, 1985; Aghion et al., 2005). This idea is consistent with Bloom et al. (2016) and Fieler and Harrison
(2018), who document that import competition induced innovation and product differentiation.
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status are restricted to a sample of applicants to the program. Non-adopting applicants probably

provide a better control group for adopters than conventional cross-section samples because, like

adopters, applicants have indicated a strong interest in technology adoption. Moreover, the data

analyzed here contain information on most characteristics used by the subsidy program to screen

applications. The selection bias induced by subsidy program screening can therefore be eliminated

using regression techniques or by matching on the covariates used in the screening process. Our

results are robust to controlling for the pre-application characteristics and the evaluation report

texts (Tables 4, 5, A3, A4, and A5).

To directly investigate whether the rejected applications are a reasonable counterfactual for the

approved applications, our trained panel read through all approved and rejected applications in

our analysis sample. We found only ten rejected applications that did not seem likely to receive

subsidies in any situation: either the entrepreneur had a concerning history or the firm’s financial

position was unstable. Our results are robust to excluding these applications. We also find similar

effects when using a matched non-applicant control group (Appendix B). As a placebo test, we

contrast the main control group to a matched non-applicant control group. We find no first stage

on investment and a small positive transitory effect on employment, indicating that the subsidy

losers grew somewhat faster than similar non-applicant firms.

We use three different research designs: 1) the winner-losers design, 2) a regression discontinuity

design using unanticipated changes in the subsidy program rules (Appendix C), and 3) an event-

study design focusing on technology adoption events (Appendix D). These designs generate similar

results. This suggests that selection bias in any single design is unlikely to drive our results.

The remaining concern is selection bias common to all our research designs. The concern

would be that none of the control groups we analyze here represents a reasonable counterfactual

for technology adopters. To address this concern, we can analyze trends in adopter firms without

any control group. Figure A12 shows the evolution of treatment group means for machinery

investment, employment, and years of education. Machinery investment increased sharply after

the technology subsidy application; winners increased their employment but did not change their

skill composition disproportionately. Trends in technology adopters do not support the view that

advanced technologies reduced employment or significantly changed skill composition.

Statistical Power A concern particularly relevant to presenting a null result is statistical power.

Are our results precise and technology-adoption events large enough to justify our conclusion about

no significant changes in skill composition measured by education and occupation? The estimates

from our preferred specification indicate a -.004 change in the average years of education at the
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firm level, with a standard error of .075 years, meaning that we can exclude over .15 year increases

in the average education. In comparison, the treatment and control firms increase their education

on average over the 11-year event window by .4 years.

The small effects could be driven by small events. Several aspects suggest that this is not the

reason for our findings: 1) The typical technology adoption event in the subsidy sample is EUR

100K, a doubled investment compared to an average year. The purchase price of the machinery

is only part of the total cost, about 25% in the US manufacturing context documented by Berger

(2020). The rest of the cost is the machine bed, installation, and all the work needed to integrate

the machinery into the plant. 2) The subsidy program requires that the technology investments

represent significant technological advances to the firm. 3) We consider large technology invest-

ment events in the spikes design in Appendix D. These estimates also indicate null effects on skill

composition measured by education and occupation.

7.2 External Validity

There are several legitimate external validity concerns and alternative explanations for our find-

ings and interpretation. To repeat here: we do not argue that our results apply everywhere. We

document typical technological advances in manufacturing firms in Northern Europe. While ac-

knowledging that other technological advances exist, our fieldwork suggests we do not document a

marginal phenomenon. Next, we respond to specific external validity concerns.

Concern 1: The subsidy program is biased toward employment and low-skill work.

The observation behind this concern is, to some degree, correct. One of the objectives of the ELY

Center subsidy program is to stimulate employment by supporting the adoption of advanced tech-

nologies in manufacturing firms. But several aspects support the view that the program’s biases

are not the primary source of our findings: 1) We find similar results also when evaluating technol-

ogy adoption events without the subsidy program. Interviews with managers document that the

subsidy-supported technology adoption events are not notably different from typical technology

adoption events. 2) Interviews with subsidy administrators document that significant technology

projects are unlikely to be rejected because they would not stimulate positive employment effects.41

3) To address this concern systematically, we read all rejected applications and investigated whether

they were rejected for employment-related reasons. In none of the applications was the concern

about employment the main reason. Five reports mentioned employment, but the concerns were
41Some insignificant technology projects get rejected because they are insignificant and unlikely to stimulate

technological advances in production and employment effects.
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primarily about the potentially low first stage on technology investment; employment was sec-

ondary. Our findings are robust to excluding these applications. Text records also uncover that

ELY Centers often interpret the employment effects compared to the counterfactual where the firm

is not competitive in the market without the technology and would need to reduce employment;

maintaining employment is seen as an increase. 4) The employment effects are not enforced, i.e.,

the firms are free to make their employment decisions after receiving the subsidy. 5) We have no

evidence that the program intends to increase low-skill jobs; in fact, ELY Centers support hiring

high-skill workers into manufacturing firms.

Concern 2: Workers are already skilled and learn new skills. This alternative explanation

proposes that since workers are already skilled and learn new skills, we do not observe changes in

skill composition even if technologies are skill biased. To some degree, this is true. Most workers

in our sample have specialized training in production work and regularly participate in continuing

vocational training (CVTS Survey 2015). All managers we interviewed reported that they combine

technology adoption with worker training. New manufacturing technologies require new skills,

but our observations from the field indicate that production workers are best suited to learn to use

them. At the same time, the debate on skill bias has focused on the idea that advanced technologies

replace production work and induce increases in the relative demand for college-educated workers;

we do not find evidence of either at the firm level.

Concern 3: The technologies are not typical advanced manufacturing technologies. A

natural concern is that our estimates capture something other than the effects of standard advanced

technologies in manufacturing, in particular, that we miss the effects of automated technologies. To

address this concern, we classify technologies into automated versus non-automated technologies

using text and customs data, as described in Section 3. Automated technologies are considered

automated in everyday language: e.g., robots, CNC machines, and conveyor belts. Non-automated

are manually operated: e.g., non-automatic welding tools, hydraulic presses, and cutting machines.

In our text data, non-automated refers to all applications not classified as automated. Figures A9

and A10 show the estimates of firm-level effects for automated vs. non-automated technologies.

The effects are similar in both groups, and we still find employment increases and no changes in

the skill composition from automated technologies. Finally, the spikes design captures all major

technology investment events in the industry and size range. While there may be different types

of technology adoption events, our estimates capture the average of these events.
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Concern 4: Credit constraints drive the employment and skill effects. One alterna-

tive explanation is that the effects we observe are primarily about access to credit rather than

technologies, i.e., an exclusion restriction concern. While credit constraints are likely to play a

role in allowing the subsidies to induce firms to invest more, several arguments work against this

explanation for the employment increases and skill null result: 1) We observe a strong first stage

on technology investment. 2) We do not observe larger effects for the ex-ante more likely credit-

constrained firms: small firms in Table A11 and firms with higher debt-to-revenue ratios or financial

costs (reported in the Online Appendix). 3) We observe the same effects without the program in

Appendix D.

Concern 5: Fixed costs in production lead to skill-neutrality. One specific concern

is that these firms could have non-homothetic production technologies where fixed and variable

costs have different factor intensities (Flam and Helpman 1987). The fixed costs could be educated

managers and technical staff, while the variable costs could be production workers. If the firms

use technologies to expand, the increase in variable costs could mask the potential skill bias of

technologies. This concern has a testable implication: this phenomenon should be less important

for large firms. Small firms might primarily increase their variable costs, while we would expect

that large firms would also need to scale their fixed costs. Table A11 reports the main estimates by

firm size. We find no significant differences, suggesting that non-homothetic production is unlikely

to be the cause for our findings.

Concern 6: Firm-level employment gains replace employment elsewhere. A firm’s tech-

nology adoption may affect other firms, and the total employment and skill effects may differ from

those reported here. Two aspects make estimating these effects challenging: 1) the firms are

relatively small, and 2) they trade globally directly or indirectly through their customers; thus,

externalities are likely to be minor. Theoretically, whether or not the technology adoption events

replace employment elsewhere depends on the type of technology and the kind of externalities

it induces. We document that our technological advances are the product type: the firms use

technologies to produce new output types. These outputs are typically intermediate goods or ma-

chinery for final-good producing firms. In Romer (1990), this type of variety expansion generates

growth—that is, some of the externalities may be positive. At the same time, new intermediate

goods could replace previous vintages of intermediate goods as in the “Schumpeterian models” with

quality improvements and creative destruction as in Grossman and Helpman (1991) and Aghion

and Howitt (1992). Exploring these channels is a promising avenue for future research.42

42Acemoglu et al. (2020b), Koch et al. (2021), and Oberfield and Raval (2021) analyze potential externalities.
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8 Conclusion

This paper provides novel evidence on a classic question: what are the effects of advanced technolo-

gies in manufacturing firms? Our research is based on a technology subsidy program in Finland,

which we use as a natural experiment that induced sharp increases in technology supply to man-

ufacturing firms. Our administrative data allow us to measure firms’ technology investment and

workers’ employment, wages, and skills precisely over time. To address external validity, we evalu-

ate technology adoption events also without the program.

Our main finding is that advanced technologies, such as CNC machines, welding robots, and

laser cutters, did not reduce employment, replace production workers, or increase the share of highly

educated workers in industrial and custom manufacturing firms. We find that these technologies

led to increases in employment and no change in skill composition. The findings are consistent

across all estimation methods, with and without the subsidy program.

This paper proposes a simple explanation for the findings. We document that the firms used

new technologies to produce new types of output, not replace workers with technologies. Direct

evidence shows that technology adoption led to more revenue, new products, and new exports.

Text analysis of firms’ technology-adoption plans shows that they adopted new technologies to

introduce new products, access new markets, respond to changing demand, and grow. To explain

our findings, we outline a theoretical framework that contrasts two types of technological change:

process versus product (e.g., Utterback and Abernathy 1975; Porter 1985). Process change refers

to productivity improvements within an output variety; product expanding to new varieties (e.g.,

Dixit and Stiglitz 1977; Melitz 2003). Our evidence indicates that firms invested in advanced

technologies to gain a competitive advantage by introducing new varieties. For example, the piston

manufacturer we observed invested in new technologies to manufacture more effective pistons.

The results stand in contrast with the view that new technologies reduce employment or increase

the share of highly educated workers in manufacturing firms. While no single study can be decisive,

we review a body of evidence indicating that technology investments in manufacturing led to

increases in employment and to no detectable changes in skill composition (e.g., Doms et al. 1997;

Koch et al. 2021).

We do not argue that our results apply everywhere. We obtain our findings in a context

where small and large manufacturing firms produce specialized products in small lot sizes. But the

findings may not apply to non-specialized commodities, such as cement or steel, or high-volume

assembly, where prices and costs are essential. Our results differ from the two views emphasized in

the literature because it has focused more on process advances in mass production (e.g., Acemoglu
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and Restrepo 2018). In contrast, the flexible manufacturing system is more prevalent among the

firms we study. Qualitative evidence documents that a large part of manufacturing has evolved

from mass production (Taylor, 1911; Ford, 1922) to flexible specialization (Piore and Sabel, 1984;

Milgrom and Roberts, 1990). Currently, a large part of manufacturing is specialized.

Our results do not directly apply to non-physical technological advances, such as ICT or the

internet (e.g., Autor et al. 2003; Akerman et al. 2015; Gaggl and Wright 2017), management

practices, R&D, technological advances in offices, historical eras, or the future. Some technological

advances have also replaced workers (e.g., Acemoglu and Restrepo 2020; Bessen et al. 2020), and

our results do not challenge the view that skills and technologies are related (e.g., Lewis 2011).

Our evidence from the field suggests that work and skill requirements change in subtle ways due

to technology investment (as in Bartel et al. 2007).

Our results provide new evidence on the effects of one type of industrial policy: a lump-sum

transfer to increase technology adoption in manufacturing firms (see also Criscuolo et al. 2019).

Several researchers argue that lack of access to financial support limits the manufacturing sector’s

ability to scale up ideas into production (Dertouzos et al., 1989; Berger, 2013; Gruber and Johnson,

2019). We find that it is possible to stimulate technology investments by targeted subsidies and,

by doing so, induce increases in employment, revenue, exports, and product variety.

Finally, our study makes some methodological contributions. We demonstrate novel methods

to use text data in program evaluation. Many policy programs leave a trail of text records, and

these texts allow measuring things that would otherwise be difficult to measure. We show how to

use text data to measure variables of interest and perform matching. In the spirit of Roberts et al.

(2020) and Mozer et al. (2020), we demonstrate how to craft a research design by controlling for

program participants’ underlying differences using text data. As new technologies have proliferated

across firms, so, too, has the empirical literature on their effects. Our paper is the first to evaluate

advanced manufacturing technologies’ effects using a research design based on policy variation. In

light of the results reported here, some more conventional estimates of the effect of technologies in

manufacturing firms do not appear to be too far off the mark (e.g., Doms et al. 1997).
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Main Figures and Tables

(a) CNC Machine and a Robot.

(b) Inside an Industrial Manufacturing Plant.

(c) Machine Operators and a Milling Machine.

Figure 1: Documenting the Context: Photographs from Our Sample Firms.

Back to Section 2.
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Figure 2: Manufacturing Skill Trends

Notes: These figures document trends in Finnish manufacturing over 1994–2018. We restrict to firms with at least
3 workers. We compute the year-level averages from firm-level observations. The numbers are unweighted to match
our research design. The employment-weighted numbers are similar. Back to Section 2.
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Figure 3: The Subsidy Application Process.

Notes: Details in the main text. Back to Section 4.
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Figure 4: The Text Propensity Score Calibration Plot.

Notes: Upper panel: The predicted probabilities based on text data are on the x-axis, and the probability of
subsidy receipt is on the y-axis. The text data are evaluation reports of the applications written by the subsidy
program officers. The predicted probabilities are calibrated using a vector representation of the text and SVM. The
predicted probabilities closely match the empirical probabilities. Lower panel: Distribution of the predicted values.
Most of the applications have high predicted values reflecting the overall acceptance rate. Back to Section 4.3.
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Figure 5: The First Stage: The Effect of Technology Subsidies on Machinery Investments.

Notes: Event-study estimates from Equation 1. The outcome is investment in machinery and equipment (in EUR
1000s) measured from the financial statement register. Event time τ = 0 refers to the application year. For
example, the estimate for τ = 1 indicates that the treatment group invested EUR 60K more than the control
group. The estimates indicate a cumulative EUR 130K effect on machinery investment. This event-study
specification contains no controls in the term Xτ

jt in Equation 1. Back to Section 5.
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Figure 6: Employment Effects: The Effect of Technology Subsidies on Employment (in %).

Notes: Event-study estimates from Equation 1. The outcome is employment relative to the base year τ = −3.
Event time τ = 0 refers to the application year. The estimates indicate approx. 20% increase in employment. This
event-study specification contains no controls in the term Xτ

jt in Equation 1. Back to Section 5.
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(a) Education Years.
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(b) College-Educated Workers’ Share.
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(c) Production Workers’ Share.

Figure 7: Skill Effects: Event-Study Estimates.

Notes: Event-study estimates from Equation 1. The outcomes are relative to the base year τ = −3. Event time
τ = 0 refers to the application year. The estimates indicate approx. zero changes in the main skill measures.
Education years are defined as the average years of education among the workers in the firm (measured in years);
college-educated workers’ and production workers’ shares are the shares of employment of that group (measured in
percentage points). These event-study specifications contain no controls in the term Xτ

jt in Equation 1.
Back to Section 5.
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Figure 8: Skill Effects. The First-Difference Estimates.

Notes: Difference-in-differences estimates from Equation 2. The right-hand side reports means at τ = −3.
Education is measured as a relative change (%) in the average years of education in the firm between τ = −3 and
the average of τ ∈ [2, 5]. The shares are measured in percentage-point changes. The estimates indicate no
detectable changes in the skill composition. The specifications include two-digit industry and firm size as controls.
Back to Section 5.
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Figure 9: Firm-Level Effects.

Notes: Difference-in-differences estimates from Equation 2. The right-hand side reports means at τ = −3. Machine
Investment, Employment, Revenue, Wages, and Productivity are measured by relative changes to baseline at
τ = −3. For Machine Investment, the post-period outcome is the sum of investment between τ ∈ [0, 2] and for
other outcomes, the average of τ ∈ [2, 5]. The specifications include two-digit industry and firm size as controls.
Back to Section 5.
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Figure 10: Process vs. Product.

Notes: Details in the main text. Back to Section 6.
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Figure 11: Export Effects: The Export Status.

Notes: Event-study estimates from Equation 1. Event time τ = 0 refers to the application year. The outcome is
the firm’s export status indicator (exporter vs. non-exporter). Exports are measured from the Finnish Customs’
Foreign Trade Statistics. Export status is measured using the definition by Statistics Finland. A firm is defined as
an exporter in a given year if its total export value is over EUR 12K during the calendar year spread over at least
two different months, or a single export event is over EUR 120K in value. This event-study specification contains
no controls in the term Xτ

jt in Equation 1. Back to Section 6.2.
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Figure 12: Marketing Effects: Marketing Expenditure.

Notes: Event-study estimates from Equation 1. The outcome is the firm’s marketing expenditure, measured from
the Finnish Financial Statement Register. Event time τ = 0 refers to the application year. This event-study
specification contains no controls in the term Xτ

jt in Equation 1. Back to Section 6.2.
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Figure 13: Technology Categories Measured from Text Data: Observations by Category.

Notes: Product refers to technology projects that aim to produce a new type of output. Process refers to
technology projects that aim to produce the same type of output. The text data are text records from the subsidy
program’s administration, including each firm’s application and evaluation texts. A trained panel performed the
classification. Details in the main text. Back to Section 6.2.
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(b) Aggregated Objectives.

Figure 14: Technology Categories Measured from the Survey Data: Observations by Category.

Notes: The European Community Innovation Survey (CIS) reports firms’ views on the importance of different
objectives for process and product innovations, including technology adoption. Panel (a) shows the share of firms
in our main sample that report the objective is highly important. Variables are in thematic order (new varieties,
expansion, costs, environment, and regulations). We use survey years 1996–2008. If the firm has responded to
multiple rounds of CIS, we consider the closest survey to its technology-adoption event. Panel (b): Product refers
to firms that reported that one of the first five objectives was important and lower labor costs were not. Process
refers to firms that reported that lower labor costs were important but did not report any of the first five
objectives as important. N = 510 (i.e., the number of main-sample firms also in CIS). Back to Section 6.2.
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Back to Section 6.2.
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Figure 16: Specialized vs. Non-Specialized Industries: Observations by Category.

Notes: Specialized refers to industries producing non-commodities and non-specialized refers to industries
producing commodities measured by the Rauch (1999) index. The distribution is similar when using Gollop and
Monahan (1991) and Sutton (1998) indices. Back to Section 6.3.
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Table 1: Technology Categories.

Classification Description

Technologies All technology investments and projects.

Uses of Technologies
    Process Produce the same type of output using technologies.
    Product Produce a new type of output using technologies.

Types of Technologies
    Automated vs. non-automated Technologies with no active user vs. an active user.
    Hardware and/or software Physical vs. non-physical technologies.

Notes: Technologies are measured from the financial, text, customs, and survey data. Uses of technologies are
measured from the text data of the technology subsidy program and from the Community Innovation Survey
(CIS). Types of technologies are measured from the text data and the customs data. The technology classes are
described in Appendix E. Back to Sections 3 and 6.2.

61



Table 2: Summary Statistics: The Main Research Design (Winners vs. Losers).

Treatment Group Control Group Both

Variable Mean Std. Dev. Mean Std. Dev. 10p Median 90p

Machinery Inv. (EUR K) 109.93 369.14 82.60 233.11 0.00 27.24 233.80
Revenue (EUR M) 3.20 25.39 1.64 5.29 0.16 0.96 5.67
Employment 17.81 47.16 9.67 21.29 1.40 7.90 37.00
Wages (EUR K) 22.23 9.08 18.40 10.22 11.26 22.30 31.61
Subsidy Applied (EUR K) 112.05 129.25 47.01 81.30 8.89 58.13 290.06
Subsidy Granted (EUR K) 81.77 103.02 0.00 0.00 3.24 35.64 200.23
Educ. Years 11.71 0.99 11.45 1.12 10.50 11.73 12.67
College Share (%) 15.51 16.80 11.63 18.42 0.00 12.50 33.33
Production Worker Share (%) 70.53 21.53 70.37 28.61 42.86 72.73 100.00
Observations 1885 146 2031

Notes: All variables measured at τ = −3. Revenue, employment, and wages come from the firm- and worker-level
registers. Subsidies applied and granted are from subsidy application data. Education years, college, and
production worker shares are measured based on the worker composition within the firm. Back to Section 4.2.
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Table 3: The First Stage.

(1) (2) (3)
Granted Subsidy Machine Inv. (EUR K) Capital Stock (EUR K)

Treatment 66.06∗∗∗ 70.22∗∗∗ 107.9∗∗∗ 100.4∗∗∗ 49.78∗∗ 41.60
(3.119) (4.907) (17.53) (21.90) (18.26) (23.60)

Propensity Score
Observations 2031 1812 2031 1812 1560 1540
Standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: Difference-in-differences estimates from Equation 2. To measure capital, we use the official records on firms’
balance sheets. The specifications include two-digit industry and firm size as controls. Back to Section 5.
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Table 4: Firm-Level Effects.

Panel A: Investment, Employment, and Revenue.

Machine Investment (EUR K) Employment Revenue
Baseline Prop. Score Match Baseline Prop. Score Match Baseline Prop. Score Match

Treatment 107.9∗∗∗ 100.3∗∗∗ 127.9∗∗∗ 0.232∗∗∗ 0.234∗∗ 0.217∗∗∗ 0.314∗∗∗ 0.333∗∗∗ 0.261∗∗∗

(17.53) (21.90) (6.556) (0.0614) (0.0746) (0.0183) (0.0779) (0.0958) (0.0232)

Observations 2031 1812 3200 2031 1812 3200 2031 1812 3200

Panel B: Wages, Profit Margin, and Productivity.

Wages Profit Margin Productivity
Baseline Prop. Score Match Baseline Prop. Score Match Baseline Prop. Score Match

Treatment -0.0481 -0.0285 0.00306 0.00121 -0.00791 -0.00685∗ -0.00516 -0.00622 0.0117
(0.0355) (0.0407) (0.00290) (0.00772) (0.00978) (0.00290) (0.0350) (0.0427) (0.0120)

Observations 1952 1738 3080 2031 1812 3200 2031 1812 3200

Panel C: Labor Share and Skill Composition.

Labor Share Education Years College Share Production Worker Share
Baseline Prop. Score Match Baseline Prop. Score Match Baseline Prop. Score Match Baseline Prop. Score Match

Treatment -0.00202 -0.000700 -0.00293 0.0246 -0.00385 0.0303 0.00557 0.00592 0.00542 0.000723 -0.0213 -0.00464
(0.00496) (0.00601) (0.00203) (0.0611) (0.0752) (0.0207) (0.00935) (0.0116) (0.00330) (0.0181) (0.0212) (0.00605)

Observations 2031 1812 3200 1884 1676 2999 1884 1676 2999 1891 1692 3011
Standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: Difference-in-differences estimates from Equation 2. The table reports the treatment effects on selected outcomes for the main sample with and without
the text propensity-score control and the results for the matched sample. “Baseline” refers to a baseline specification with calendar-year indicators, two-digit
industry, and firm size as controls. “Prop. Score” refers to estimation with the text propensity score included as a control. “Match” refers to estimation in the
matched sample, where the control group is formed from matched non-applicant firms. Panel A: Machine investment is in EUR K. Employment and revenue
are in relative changes, e.g., 0.20 would refer to a 20% increase. Panel B: Wages and productivity are relative changes; the profit margin is in percentage
points. Panel C: Education years is in years. The labor, college, and production worker shares are in percentage points. For machine investment, the
post-period outcome is the sum of investment between τ ∈ [0, 2] and for other outcomes, the average of τ ∈ [2, 5]. Back to Section 5.
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Table 5: Continuous Treatment Estimates.

(1) (2) (3)
Machine Inv. Employment Revenue

Granted Subsidy 1.321∗∗∗ 1.262∗∗∗ 0.249∗∗∗ 0.230∗∗∗ 5.292∗∗∗ 4.973∗∗∗

(0.0806) (0.0809) (0.0213) (0.0220) (0.468) (0.478)

Propensity Score
Observations 2031 1812 2031 1812 2031 1812
Standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: Difference-in-differences estimates from Equation 2. Treatment is the subsidy amount in EUR, scaled to
EUR 10K for employment. For machine investment, the post-period outcome is the sum of investment between
τ ∈ [0, 2] and for other outcomes, the average of τ ∈ [2, 5]. The specifications include two-digit industry and firm
size as controls. Back to Section 5.

Table 6: The Effects on Profits and Financial Costs.

Panel A: Win/Lose.

(1) (2) (3) (4)
Profit Margin (%) Gross Profits Net Profits Fin. Costs

Treatment 0.121 24.49∗ 20.35∗ 4.133∗∗

(0.772) (9.941) (10.09) (1.425)
Baseline 5.2 274.0 -16.07 290.1
N 2031 2031 2031 2031

Panel B: Continuous Treatment.

(1) (2) (3)
Gross Profits Net Profits Financial Costs

Granted Subsidy -0.0353 -0.0878 0.0525∗∗∗

(0.0638) (0.0646) (0.00949)
Baseline 274,006 -16,074 290,080
N 2031 2031 2031
Standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: The effects on profits and financial costs. The baseline means are measured at τ = −3. The profit margin is
measured in percentage points. Gross and net profits refer to profits before and after financial costs. Panel A:
The treatment is the win-lose status. The profits and financial costs are measured in EUR 1000s. Panel B: The
treatment is the amount of subsidies the firm was granted. The coefficients are interpreted as the effect of one euro
in subsidies on profits or financial costs, measured in euros. The baseline medians are 5.0% (profit margin), EUR
52K (gross profits), EUR 37K (net profits), and EUR 8.3K (financial costs). The specifications include two-digit
industry and firm size as controls. Back to Section 5.
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Table 7: Predictions from Process vs. Product Type Technological Changes.

Outcome Process Product
Revenue ↑ ↑
Productivity ↑ 0
Profit margin ↑ 0
Products 0 ↑
Export status and share – ↑
Employment – ↑
Labor share ↓ –
Skill composition ↑ –
Prices ↓ if cost 0

↑ if quality ↑ if quality

Notes: Details in the main text. The symbol – refers to no clear prediction. Back to Section 6.1.
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Table 8: Export and Product Effects.

(1) (2) (3) (4) (5) (6)
Export Status Export Share Export Regions Products Products Introduced Products Discontinued

Treatment 0.0404∗∗ 0.00935∗ 0.219∗∗∗ 0.155∗∗ 0.0880∗∗ 0.0664∗∗

(0.0134) (0.00451) (0.0568) (0.0599) (0.0282) (0.0223)
Baseline 0.284 0.0523 1.498 1.546 0.498 0.539
N 2031 2031 2031 2031 2031 2031
Standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: Difference-in-differences estimates from Equation 2 for the main research design (winners vs. losers). Exports and products are measured from the
Finnish Customs’ Foreign Trade Statistics. Export status is measured using the definition by Statistics Finland. A firm is defined as an exporter in a given year
if its total export value is over EUR 12K during the calendar year spread over at least two different months, or a single export event is over 120K EUR in value.
The specifications include two-digit industry and firm size as controls. Back to Section 6.2.

67



Table 9: Price Effects.

(1) (2)
Price (Exports) Price (Manufacturing)

Treatment 0.291 0.308∗∗

(0.328) (0.102)
N 400 217
Standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: Difference-in-differences estimates from Equation 2 for the main research design (winners vs. losers). We
winsorize price data at the 10% level within product and year. Prices are measured as product-level revenue
divided by quantity from the Finnish Customs’ Foreign Trade Statistics and the Industrial Production Statistics (a
survey of manufacturing firms). The specifications include two-digit industry and firm size as controls. Back to
Section 6.2.
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Table 10: The Effects by Technology Categories Measured from Text Data.

Panel A: Investment, Employment, Wages, and Firm Performance.

(1) (2) (3) (4) (5)
Machine Inv. (EUR K) Employment Revenue Wages Productivity

Product 142.7∗∗∗ 0.210∗∗∗ 0.262∗∗∗ -0.00270 0.0222
(9.964) (0.0235) (0.0320) (0.0122) (0.0154)

Process 77.66∗∗∗ 0.0905 0.0783 -0.00154 -0.0515
(22.95) (0.0779) (0.0759) (0.0324) (0.0483)

N, Product 2046 2046 2046 1963 2046
N, Process 198 198 198 192 198

Panel B: Skill Composition and The Labor Share.

(1) (2) (3) (4)
Labor Share Educ. Years College Share Production Worker Share

Product -0.00474 0.0227 0.00691 -0.0110
(0.00264) (0.0269) (0.00422) (0.00742)

Process 0.00583 0.137 0.00497 0.0101
(0.00765) (0.0809) (0.0135) (0.0211)

N, Product 2046 1905 1905 1921
N, Process 198 186 186 186
Standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: Difference-in-differences estimates from Equation 2. Product (the extensive margin) refers to technology projects that aim to produce a new type of
output. Process (the intensive margin) refers to technology projects that aim to produce the same type of output with new technologies. Panel A: Column 1 is
in EUR K. Columns 2, 3, 4, and 5 are relative changes, e.g., 0.20 would refer to a 20% increase. Panel B: Columns 1, 3, and 4 (shares) are in percentage points.
Column 2 (education) is in years. We use coarsened exact matching (CEM) to construct the control group. N refers to the number of matched observations. For
machine investment, the post-period outcome is the sum of investment between τ ∈ [0, 2] and for other outcomes, the average of τ ∈ [2, 5]. Back to Section 6.2.
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A The Subsidies Design: Supplementary Figures and Tables
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(a) Granted.
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(b) Received.

Figure A1: The First Stage: The Effect of Winning a Subsidy on Granted and Received Subsidies.

Notes: Event-study estimates from Equation 1. Panel (a): The outcomes are any subsidy granted (a) and received
(b), measured from the Finnish Statistics on Business Subsidies. Event time τ = 0 refers to the application year.
Back to Section 5.
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Figure A2: Skill Effects: Education Groups.

Notes: Difference-in-differences estimates from Equation 2. The right-hand side reports means at τ = −3. The
data are from Finnish educational registers. Back to Section 5.

-3% -2% -1% 0% 1% 2% 3% 4%

Non-Production Workers, High   

Non-Production Workers, Low   

Production Workers   

Difference-in-Differences Estimate, Percentage Points

   14.1%   

   5.65%   

   70.5%   

Ba
se

lin
e 

Le
ve

l (
at

 t 
= 

-3
)

Figure A3: Skill Effects: Occupation Groups.

Notes: Difference-in-differences estimates from Equation 2. The right-hand side reports means at τ = −3. The
data are from Finnish occupation registers. The shares do not sum to 100% because some workers do not have
occupational info, i.e., the denominator includes all workers in the firm. Back to Section 5.
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Figure A4: Skill Effects: Cognitive Performance.

Notes: Difference-in-differences estimates from Equation 2. The right-hand side reports means at τ = −3.
The estimates are in percentages of standard deviations. The data are from the Finnish Defence Forces.
Back to Section 5.
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Figure A5: Skill Effects: School Performance.

Notes: Difference-in-differences estimates from Equation 2. The right-hand side reports means at τ = −3. The
estimates are in percentages of standard deviations. The data are from the Secondary Education Application
Register and the Finnish Matriculation Examination Board Register. Back to Section 5.
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Figure A6: Skill Effects: Personality.

Notes: Difference-in-differences estimates from Equation 2. The right-hand side reports means at τ = −3.
The estimates are in percentages of standard deviations. The data are from the Finnish Defence Forces.
Back to Section 5.
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Figure A7: Skill Effects: Demographics.

Notes: Difference-in-differences estimates from Equation 2. The right-hand side reports means at τ = −3. The
data are from the Finnish worker and population registers. Back to Section 5.
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Panel A: Above Median.
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Panel B: Below Median.
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Figure A8: Skill Effects: Tasks.

Notes: Difference-in-differences estimates from Equation 2. The right-hand side reports means at τ = −3. Median
refers to the median task intensity in the Finnish labor force. For example, the first row indicates that 74.9% of
workers in our sample firms are in an occupation times industry cell that is above the median in routine task
content. The treatment group increases their share of these workers by a statistically insignificant 1% compared to
the control group. The shares do not sum to 100% because some workers do not have occupational info, i.e., the
denominator includes all workers in the firm. The data are from the Finnish occupation registers and the European
Working Conditions Survey (EWCS). Back to Section 5.
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Figure A9: Automated (left) vs. Non-Automated (right) Technologies from Text Data.

Notes: Difference-in-differences estimates from Equation 2. Automated vs. non-automated technologies are measured from text data as described in Section 3
and Appendix E. The right-hand side reports means at τ = −3. Automated (N): Treatment 678, Control 30. Non-Automated (N): Treatment 1207, Control 116.
Back to Section 7.
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Figure A10: Automated (left) vs. Non-Automated (right) Technologies from Customs Data.

Notes: Difference-in-differences estimates from Equation 2. Automated vs. non-automated technologies are measured from customs data as described in Section
3 and Appendix E. A project is classified as automated if over 50% of the imported machinery are automated technologies. A project is classified as
non-automated if over 50% of the imported machinery are non-automated technologies. The right-hand side reports means at τ = −3. Automated (N):
Treatment 220, Control 146. Non-Automated (N): Treatment 319, Control 146. Back to Section 7.
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Figure A11: Patents: Share of Patenting Firms.

Notes: The share of patenting firms by year among subsidy applicant firms. Patent information comes from the
Finnish Patent Database. Event time τ = 0 refers to the subsidy application year. Back to Section 6.2.
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Figure A12: Raw Means: Machinery Investment, Employment, and Education.

Notes: Means over time for the main treatment and control groups (winners vs. losers). Machinery investment in
EUR, employment in % relative to τ = −3, and education in years. The patterns in the main control group are
similar to the patterns in a matched non-applicant control group as shown by Figure B1. Back to Section 7.
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(c) Firm Survival Based on the Firm Register.
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(d) Firm Survival Based on Worker Flows.

Figure A13: Firm Survival Effects.

Notes: Group means and event-study estimates from Equation 1. Panels (a, c): Survival is measured from
whether the firm ID exists in the firm register. Panels (b, d): Survival is extended to include mergers and
acquisitions (and other cases the firm ID changes), where at least 50% of workers continue under the same firm ID.
The main estimates are reported for a balanced sample over the 11-year horizon. The estimates are robust to a
non-balanced sample, shown in the Online Appendix. Back to Section 7.
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Table A1: Summary Statistics: Benchmarking to All Manufacturing.

Subsidy Sample Finnish Manufacturing

Variable Mean p10 Median p90 Mean p10 Median p90

Revenue (EUR M) 2.66 1.96 2.56 3.77 2.03 1.89 2.01 2.27
Employment 16.25 12.76 16.11 19.07 12.35 11.63 12.52 13.06
Wages (EUR K) 26.25 19.98 25.88 32.83 26.95 21.13 26.94 32.16
Labor Productivity (EUR K) 150.30 131.20 147.80 171.08 140.55 125.82 142.72 152.31
Profit Margin (%) 5.55 3.10 5.56 7.63 4.47 2.94 4.56 5.84
Employment Change (%, Five Year) 57.72 40.70 50.81 84.15 48.11 34.52 44.24 82.17
Revenue Change (%, Five Year) 74.62 44.66 74.76 96.19 59.87 30.25 54.83 101.80
Subsidy Applied (EUR K) 110.48 86.74 107.61 149.45 4.80 3.38 4.68 6.20
Subsidy Granted (EUR K) 79.53 49.82 78.51 109.14 2.58 2.13 2.62 3.27
Educ. Years 11.79 11.57 11.77 12.07 11.64 11.49 11.60 11.84
College Share (%) 15.36 13.38 15.37 17.94 14.56 13.33 14.78 15.45
Production Worker Share (%) 70.70 66.37 69.99 74.87 69.33 66.76 69.12 72.67
Number of Observations 2031 260,220
Number of Unique Firms 2031 18,501
Number of Years 16 16

Notes: Manufacturing firms include all firms that satisfy the subsidy sample’s balance-sheet-based restrictions and have over two full-time employees. The
subsidy sample is measured at event-time τ = −1. Manufacturing means are measured for each firm in a given year and collapsed to a year-level mean for all
manufacturing. These year-level means are averaged over 1994–2018. The median and the percentiles are at the year level. Subsidy applied, subsidy granted,
college share, and production worker share are not winsorized, but all other outcomes are (at top and bottom 5% level). Back to Section 4.1.
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Table A2: Summary Statistics: Text Matching using Cosine Similarity.

Treatment Group Control Group Both

Variable Mean Std. Dev. Mean Std. Dev. 10p Median 90p

Revenue (EUR M) 2.26 4.44 1.68 3.85 0.13 0.72 4.68
Employment 15.77 26.04 11.15 24.65 1.10 5.90 27.40
Wages (EUR K) 21.24 8.15 19.28 10.29 6.73 21.27 29.23
Subsidy Applied (EUR K) 110.02 128.33 64.64 105.44 4.60 38.35 241.32
Subsidy Granted (EUR K) 78.31 99.14 0.00 0.00 0.00 0.34 124.65
Educ. Years 11.67 0.98 11.42 1.04 10.50 11.63 12.50
College Share (%) 15.18 16.75 11.05 16.30 0.00 10.30 33.33
Production Worker Share (%) 70.62 22.17 72.65 27.18 40.00 75.00 100.00
Observations 1508 1508 3016

Notes: All variables measured at τ = −3. Back to Section 4.3.
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Table A3: Firm-Level Effects: Different Text Matching Versions.

Panel A: Coarsened Exact Matching (CEM).

(1) (2) (3) (4) (5) (6)
Machine Inv. (EUR K) Employment Revenue Educ. Years College Share Production Worker Share

Treatment 93.10∗∗∗ 0.242∗∗∗ 0.313∗∗ -0.0480 -0.000144 -0.00883
(19.93) (0.0712) (0.0956) (0.0661) (0.0105) (0.0207)

Observations 1256 1256 1256 1160 1160 1161
Standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Panel B: Inverse Probability Weighting (IPW).

(1) (2) (3) (4) (5) (6)
Machine Inv. (EUR K) Employment Revenue Educ. Years College Share Production Worker Share

Treatment 159.6∗∗∗ 0.359∗∗∗ 0.458∗∗∗ -0.0441 0.00547 -0.0276
(22.81) (0.0911) (0.117) (0.0848) (0.0162) (0.0300)

Observations 1812 1812 1812 1676 1676 1692
Standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Panel C: Cosine Similarity.

(1) (2) (3) (4) (5) (6)
Machine Inv. (EUR K) Employment Revenue Educ. Years College Share Production Worker Share

Treatment 103.9∗∗∗ 0.169∗∗∗ 0.195∗∗∗ 0.0133 -0.00224 -0.00769
(14.90) (0.0249) (0.0335) (0.0219) (0.00542) (0.00896)

Observations 3016 3016 3016 2678 2678 2678
Standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: Difference-in-differences estimates from Equation 2 with different text matching versions. Back to Section 5.
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Table A4: Firm-Level Effects: Different Controls.

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Machine Inv. (EUR K) Employment Revenue Wages Productivity Labor Share Educ. Years College Share Prod. Work. Share

No Controls 140.9∗∗∗ 0.185∗∗ 0.261∗∗∗ -0.0553 -0.00559 -0.00242 0.0225 0.00480 -0.0235
(25.76) (0.0606) (0.0770) (0.0353) (0.0341) (0.00492) (0.0599) (0.00927) (0.0359)

Controls 1 132.4∗∗∗ 0.219∗∗∗ 0.302∗∗∗ -0.0499 -0.00379 -0.00247 0.0252 0.00587 -0.0263
(26.17) (0.0615) (0.0779) (0.0356) (0.0351) (0.00496) (0.0611) (0.00936) (0.0357)

Controls 2 114.8∗∗∗ 0.232∗∗∗ 0.314∗∗∗ -0.0481 -0.00516 -0.00202 0.0246 0.00557 -0.0256
(23.99) (0.0614) (0.0779) (0.0355) (0.0350) (0.00496) (0.0611) (0.00935) (0.0357)

Controls 3 105.0∗∗∗ 0.249∗∗∗ 0.327∗∗∗ -0.0385 -0.00670 -0.000862 0.0252 0.00572 -0.0255
(23.96) (0.0609) (0.0773) (0.0350) (0.0349) (0.00490) (0.0612) (0.00942) (0.0363)

Controls 4 41.02 0.210∗∗∗ 0.284∗∗∗ -0.0344 -0.00658 -0.000101 0.0247 0.00509 -0.0268
(22.92) (0.0607) (0.0770) (0.0351) (0.0350) (0.00493) (0.0614) (0.00946) (0.0363)

Controls 5 36.43 0.221∗∗∗ 0.299∗∗∗ -0.0319 -0.00474 -0.000143 0.0168 0.00482 -0.0275
(22.65) (0.0613) (0.0776) (0.0352) (0.0350) (0.00494) (0.0619) (0.00951) (0.0366)

Observations 2031 2031 2031 1952 2031 2031 1884 1884 821
Standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: Difference-in-differences estimates from Equation 2 with different controls.
Controls 1: industry (2-digit).
Controls 2: industry (2-digit), employment (at the base year).
Controls 3: industry (2-digit), employment (at the base year), ELY Center indicators.
Controls 4: industry (2-digit), employment (at the base year), ELY Center indicators, applied subsidy amount.
Controls 5: industry (2-digit), employment (at the base year), ELY Center indicators, applied subsidy amount, text category indicators.
Back to Section 5.
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Table A5: Continuous Treatment Estimates Controlling for the Subsidies Applied.

(1) (2) (3)
Machine Inv. (EUR K) Employment Revenue

Granted Subsidy 0.589∗∗∗ 0.613∗∗∗ 0.129∗∗ 0.140∗∗ 1.546 2.074∗

(0.153) (0.163) (0.0464) (0.0500) (0.960) (1.038)

Applied Subsidy
Propensity Score
Observations 2031 1812 2031 1812 2031 1812
Standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: Difference-in-differences estimates from Equation 2. Treatment is the received subsidy amount in EUR.
Treatment is scaled to EUR 10K for employment. Applied subsidy is the applied subsidy amount in EUR.
Machinery investment is the sum over τ ∈ [0, 2]. Other outcomes are averages over τ ∈ [2, 5]. Back to Section 5.
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Table A6: Product: Matched Sample Summary Statistics.

Treatment Group Control Group Both

Variable Mean Std. Dev. Mean Std. Dev. 10p Median 90p

Revenue (EUR M) 3.65 33.13 6.42 23.70 0.16 1.02 7.52
Employment 18.65 55.00 30.54 87.85 1.50 8.50 43.30
Wages (EUR K) 22.23 8.27 22.74 8.68 12.95 23.05 31.17
Subsidy Applied (EUR K) 111.99 128.51 3.13 23.43 0.00 4.03 182.69
Subsidy Granted (EUR K) 83.63 104.87 1.87 13.83 0.00 2.94 131.11
Educ. Years 11.71 1.00 11.62 1.04 10.50 11.70 12.67
College Share (%) 15.38 16.94 16.05 18.42 0.00 12.50 35.23
Production Worker Share (%) 70.81 21.92 67.97 24.67 37.50 72.34 100.00
Observations 1023 1023 2046

Notes: All variables measured at τ = −3. The treatment group is subsidy-winning firms that described
product-type technological advances in their application text. The matched control group is searched from all firms
with balance sheet data. In this table, the subsidy applied and granted refer to all recorded subsidies; the matched
control group does not apply or receive ELY Center subsidies. Back to Section 6.2.

Table A7: Process: Matched Sample Summary Statistics.

Treatment Group Control Group Both

Variable Mean Std. Dev. Mean Std. Dev. 10p Median 90p

Revenue (EUR M) 3.06 6.22 3.18 5.29 0.16 1.02 8.14
Employment 21.61 38.00 21.85 37.54 1.30 8.80 46.50
Wages (EUR K) 23.67 8.34 23.95 8.71 14.68 24.19 33.67
Subsidy Applied (EUR K) 77.50 95.55 13.12 59.09 0.00 4.16 141.99
Subsidy Granted (EUR K) 52.94 72.32 8.22 35.42 0.00 3.49 90.19
Educ. Years 11.57 0.95 11.53 0.93 10.50 11.68 12.52
College Share (%) 14.45 15.99 14.50 16.75 0.00 12.50 30.60
Production Worker Share (%) 69.48 20.42 70.32 22.70 50.00 71.43 100.00
Observations 99 99 198

Notes: All variables measured at τ = −3. The treatment group is subsidy-winning firms that described
process-type technological advances in their application text. The matched control group is searched from all firms
with balance sheet data. In this table, the subsidy applied and granted refer to all recorded subsidies; the matched
control group does not apply or receive ELY Center subsidies. Back to Section 6.2.
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Table A8: The Effects by Technology Categories Measured from CIS Survey.

Panel A: Employment, Wages, and Firm Performance.

(1) (2) (3) (4) (5)
Machine Inv. (EUR K) Employment Revenue Wages Productivity

Product 311.5∗∗∗ 0.235∗∗ 0.364∗∗∗ -0.00137 0.154∗

(62.75) (0.0812) (0.101) (0.0296) (0.0620)
Process - - - - -

- - - - -
N, Product 164 164 164 164 164
N, Process 6 6 6 6 6

Panel B: Skill Composition and the Labor Share.

(1) (2) (3) (4)
Labor Share Educ. Years College Share Production Worker Share

Product -0.0169∗ 0.0758 0.00812 -0.00478
(0.00737) (0.0679) (0.0107) (0.0184)

Process - - - -
- - - -

N, Product 164 163 163 163
N, Process 6 6 6 6
Standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: Difference-in-differences estimates from Equation 2. Product (the extensive margin) refers to technology projects that aim to produce a new type of
output. Process (the intensive margin) refers to technology projects that aim to produce the same type of output with new technologies. The process sample is
too small to perform estimation (denoted by –). Panel A: Column 1 is in EUR K. Columns 2, 3, 4, and 5 are relative changes, e.g., 0.20 would refer to a 20%
increase. Panel B: Columns 1, 3, and 4 (shares) are in percentage points. Column 2 (education years) is in years. We use coarsened exact matching (CEM) 1:1.
N refers to matched observations. Machinery investment is the sum over τ ∈ [0, 2], other outcomes are averages over τ ∈ [2, 5]. Back to Section 6.2.
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Table A9: The Effects by Context Measured from the Rauch Index.

Panel A: Employment, Wages, and Firm Performance.

(1) (2) (3) (4) (5)
Machine Inv. (EUR K) Employment Revenue Wages Productivity

Specialized 147.9∗∗∗ 0.188∗∗∗ 0.216∗∗∗ -0.00748 0.00401
(8.141) (0.0213) (0.0272) (0.0113) (0.0134)

Non-Specialized 86.61∗ 0.132 0.171 0.0334 0.0122
(42.06) (0.0965) (0.114) (0.0386) (0.0612)

N, Specialized 2704 2704 2704 2606 2704
N, Non-Specialized 248 248 248 242 248

Panel B: Skill Composition and the Labor Share.

(1) (2) (3) (4)
Labor Share Educ. Years College Share Production Worker Share

Specialized -0.00184 0.0247 0.00281 -0.00350
(0.00219) (0.0218) (0.00361) (0.00637)

Non-Specialized -0.00149 -0.00469 -0.00735 0.0399
(0.00988) (0.107) (0.0192) (0.0251)

N, Specialized 2704 2539 2539 2584
N, Non-Specialized 248 236 236 239
Standard errors in parentheses.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: Difference-in-differences estimates from Equation 2. Panel A: Column 1 is in EUR K. Columns 2, 3, 4, and 5 are relative changes, e.g., 0.20 would refer
to a 20% increase. Panel B: Columns 1, 3, and 4 (shares) are in percentage points. Column 2 (education years) is in years. N refers to matched observations.
We use coarsened exact matching 1:1 (CEM). Machinery investment is the sum over τ ∈ [0, 2]. Other outcomes are averages over τ ∈ [2, 5]. Details in the main
text. Back to Section 6.3.
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Table A10: Technology Categories from Text Data vs. Rauch Index.

Class Product Process Total
High Rauch Index 1019 89 1108
Low Rauch Index 98 15 113
Total 1117 104 1221

Notes: This 2x2 table reports the number of firms in the text categories and Rauch Index combinations. Product
refers to technology projects that aim to produce a new type of output. Process refers to technology projects that
aim to produce the same type of output with new technologies. High Rauch Index refers to specialized industries,
Low Rauch Index refers to non-specialized industries. Back to Section 6.3.
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Table A11: The Effects by Firm Size.

Panel A: Large Firms.

(1) (2) (3) (4) (5) (6)
Machine Inv. (EUR K) Employment Revenue Productivity Labor Share College Share

Treatment 83.88 68.81 0.305∗∗∗ 0.309∗∗ 0.264 0.494∗∗ -0.136 0.0236 0.0133 -0.00853 -0.00893 -0.0159
(69.06) (88.72) (0.0722) (0.104) (0.137) (0.160) (0.0834) (0.0967) (0.00981) (0.0111) (0.0167) (0.0201)

Propensity Score
Observations 676 609 676 609 676 609 676 609 676 609 675 608

Panel B: Medium-Sized Firms.

(1) (2) (3) (4) (5) (6)
Machine Inv. (EUR K) Employment Revenue Productivity Labor Share College Share

Treatment 76.82∗ 87.38∗ 0.296∗∗∗ 0.280∗ 0.467∗∗∗ 0.399∗∗ 0.0707 0.0193 -0.0104 -0.0124 0.0185 0.0200
(33.67) (41.97) (0.0858) (0.113) (0.114) (0.150) (0.0551) (0.0718) (0.00856) (0.00969) (0.0162) (0.0213)

Propensity Score
Observations 685 603 685 603 685 603 685 603 685 603 683 601

Panel C: Small Firms.

(1) (2) (3) (4) (5) (6)
Machine Inv. (EUR K) Employment Revenue Productivity Labor Share College Share

Treatment 31.99∗ 28.23 0.330∗∗ 0.373∗∗ 0.355∗∗ 0.370∗ -0.0410 -0.0956 0.00216 0.0162 0.00334 0.00373
(13.48) (18.09) (0.103) (0.121) (0.125) (0.148) (0.0526) (0.0615) (0.00781) (0.00927) (0.0158) (0.0192)

Propensity Score
Observations 670 600 670 600 670 600 670 600 670 600 526 467
Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: Difference-in-differences estimates from Equation 2. Large Firms (FTE > 13.3; Median 25.8, Mean 41.7), Medium-Sized Firms (FTE >= 4.6 & FTE <=
13.3; Median 7.9, Mean 8.2), Small Firms (FTE < 4.6; Median 2.3, Mean 2.3). Back to Section 6.3.
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B The Subsidies Design: Matched Control Group
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(b) Winners vs. Matched Control:
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(c) Losers vs. Matched Control:
Machinery Investment
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Figure B1: The Matched Control Groups: The First Stage and Employment Effects.

Notes: Event-study estimates from Equation 1. Panels (a, b): Treatment group is the subsidy winners (the main
treatment group), and control group is constructed via matching. Panels (c, d): Treatment group is the subsidy
losers (the main control group), and the control group is constructed via matching, i.e., it compares two different
control groups. We use coarsened exact matching (CEM). We match by revenue, employment, wages at τ = −3
plus revenue and employment changes in percentages from τ = −3 to τ = −1 and industries’ main sectors (letter
classes). The CEM percentiles are 10, 25, 50, 75, 90, and 99. The match is 1:1 with replacement. Event time τ = 0

refers to the application year. Back to Section 5.
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Figure B2: The Matched Control Group: Skill Effects.

Notes: Difference-in-differences estimates from Equation 2. The estimates compare the main treatment group
(“winners”) to a matched control group. The right-hand side reports outcome means at τ = −3. Back to Section 5.
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Figure B3: The Matched Control Group: Firm-Level Effects.

Notes: Difference-in-differences estimates from Equation 2. The estimates compare the main treatment group
(“winners”) to a matched control group. The right-hand side reports outcome means at τ = −3. Back to Section 5.
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Table B1: The Matched Control Group: Balance Table A (Winners vs. Matched Control).

Treatment Group Control Group Both

Variable Mean Std. Dev. Mean Std. Dev. 10p Median 90p

Revenue (EUR M) 3.06 26.57 3.09 9.15 0.17 0.96 6.26
Employment 17.46 46.27 18.03 38.79 1.60 8.20 37.70
Wages (EUR K) 21.60 8.08 22.06 8.36 12.15 22.43 30.56
Subsidy Applied (EUR K) 108.52 126.79 0.00 0.00 0.00 0.86 172.15
Subsidy Granted (EUR K) 78.62 100.55 0.00 0.00 0.00 0.49 122.38
Educ. Years 11.68 0.98 11.56 1.04 10.50 11.67 12.63
College Share (%) 15.24 16.84 15.39 18.45 0.00 12.50 34.62
Production Worker Share (%) 70.96 21.53 68.43 25.11 37.50 72.73 100.00
Observations 1600 1600 3200

Notes: All variables measured at τ = −3. Back to Section 4.

Table B2: The Matched Control Group: Balance Table B (Losers vs. Matched Control).

Treatment Group Control Group Both

Variable Mean Std. Dev. Mean Std. Dev. 10p Median 90p

Revenue (EUR M) 1.62 5.52 1.27 2.71 0.10 0.43 2.71
Employment 9.02 18.56 8.81 15.12 1.00 3.90 20.00
Wages (EUR K) 17.81 7.95 18.01 8.79 5.50 18.80 27.82
Subsidy Applied (EUR K) 47.47 76.19 0.00 0.00 0.00 0.00 65.59
Subsidy Granted (EUR K) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Educ. Years 11.34 1.12 11.42 1.23 10.00 11.50 12.56
College Share (%) 10.50 15.47 15.41 21.76 0.00 6.90 33.33
Production Worker Share (%) 74.25 25.39 70.77 27.93 30.95 79.63 100.00
Observations 123 123 246

Notes: All variables measured at τ = −3. Back to Section 4.
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C The Regression Discontinuity Design

Design To address internal validity, we use a regression discontinuity (RD) design generated by

a change in the rules used to evaluate the applications. Buri (2017) discusses the policy change and

the RD strategy. The advantage of the RD design is that the estimates are likely to reflect a causal

relationship and satisfy Assumption 1. The disadvantages of the RD design in this context are

statistical power, that the treatment is less precisely defined, and that it does not allow a natural

way to use the text data to compare different technology types and uses.

The EU expanded the definition of a small firm in 2005. Our RD design uses the fact that firms

just below the new threshold were prioritized for subsidies but were otherwise similar to those just

above it. Before the policy change, upper thresholds for small firms were 50 for employment, EUR

5M for the balance sheet, and 7M for turnover. The EU raised the thresholds for balance sheet

and turnover to 10M. We use the balance sheet’s total value as our running variable because it

measured most precisely and had the most significant change; this gives us the statistical power to

conduct the analysis.43

The critical part is that the new rule was applied using retrospective data for firms. Thus firms

could not immediately manipulate their size. However, as we show in Figure C1, firms adjusted

their size later. This evidence leads us to focus only on the first year of the policy change when

manipulation at the threshold was unlikely. Finland implemented the change in 2007 but considered

data from 2004–2006. Our estimates use 2004 data as the running variable to avoid selection bias.

The policy change potentially affected firms’ self-selection into the program, the likelihood of

winning the subsidy, and the levels of subsidies. While being a small firm is not a strict criterion

for receiving subsidies, the ELY centers prioritize small firms (e.g., Takalo et al. 2013). The firms

know this and are potentially more likely to apply for subsidies when the expected benefits are

more significant. There were no simultaneous changes at the same margin.

To produce the RD estimates, we use the following specification:

Yi = α+ βEi + f(zi,2004) + εi (20)

where Yi is outcome, f(zi,2004) is a function of the running variable (balance sheet in 2004) and

Ei is the cut-off indicator (balance sheet under 10M in 2004), α is constant, and εi is the error

term. We use the bandwidth of 5 million, triangular kernel, and first-order polynomial (Gelman

and Imbens, 2019) in our main specification. We cluster the standard errors at the 3-digit industry
43We exclude agriculture and forestry, the public sector, transportation, and finance since these sectors are gener-

ally not eligible for these ELY Center subsidies.
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level. To make the RD estimates comparable to our difference-in-differences estimates, we use the

threshold indicator Ei as an instrument for the received subsidies using 2SLS.

Results Table C2 shows the summary statistics for the sample firms. As expected, the RD sample

firms are larger than in the main design because, by definition, their revenue is around EUR 10M.

Figure C1 documents firms starting to bunch around the new threshold after the change comes into

effect. Figure C2 formally shows by a McCrary test (McCrary 2008; implemented as in Cattaneo

et al. 2018) that this is not yet the case in the pre-change year of 2004, which is the relevant year

for our identification. Table C2 provides a test whether firms are different on other sides of the

cutoff before the treatment.

Next, we describe the first stage. Figure C3 shows a jump in the received subsidies at the new

cutoff of EUR 10M. The running variable (x-axis) is the balance sheet in 2004, the outcome variable

(y-axis) is total received subsidies in EUR 10K. The received subsidies are larger on the left side of

the cutoff since those firms became small under the new classification. Figure C3 also shows that

these subsidies stimulated new investments. The linear graphs show a clear jump at the cutoff.

Table C3 quantifies the same jumps using Equation 20 for subsidies received and investments made

in 2007. Becoming a small firm increased the subsidies by EUR 38K and investments by EUR

188K. Both estimates are significant at the 5% level.

Table C4 presents the primary outcomes of the RD design. These results broadly confirm our

main results of firm growth in employment and revenue but no skill bias. Being re-classified as a

small firm increases employment by 9%, and revenue by 25%. We see no changes in average wages,

years of education, or the share of college-educated workers or production workers. The estimation

is done by setting the average of 2003–2006 as a baseline value and comparing each observation

from 2010 to 2015 separately to the baseline to increase statistical power. These differences are the

outcomes in the estimation. Figure C4 visualizes a similar estimation for each year separately. We

observe an increase of 8–10 employees from 2010 onwards.

We run multiple robustness and placebo tests for our estimates. Figure C5 explores robustness

to the choice of bandwidth: our results are not sensitive to it. Figure C6 runs our main specification

with different thresholds: we cannot replicate our results with the placebo thresholds. Figure C7

run the estimation with placebo years’ balance sheets: we observe no effect.
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Figure C1: RD: Number of Firms at the Balance Sheet Threshold.

Notes: This figure shows the number of firms around the balance-sheet threshold for small firms announced in
2003, which came into effect in 2007. Back to Section C.
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Figure C2: RD: Density of Firms at the Balance Sheet Threshold.

Notes: This figure visualizes the McCrary-test for our RD year. The horizontal axis is the firms’ balance sheet in
2004 in millions of euros. The vertical axis denotes the density of observations. Back to Section C.
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Figure C3: RD: The First Stage.

Notes: This figure shows the discontinuity at the balance sheet threshold for 2007 investment subsidies (left) and
total investment (right). The vertical axis is in thousands of euros, and the horizontal axis is in millions of euros.
Back to Section C.
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Figure C4: RD: Employment.

Notes: The estimates are from Equation 20. The outcome is the employment difference to base year 2006. The
explanatory variable is the balance-sheet RD threshold indicator. In all regressions, we cluster the standard errors
by three-digit industry, the kernel function is triangular, and the polynomial order is one. Back to Section C.
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Figure C5: RD: Different Bandwidths.

Notes: The estimates are from Equation 20. The horizontal axis indicates the size of the estimation window. In all
regressions, we cluster the standard errors by three-digit industry, the kernel function is triangular, and the
polynomial order is one. Back to Section C.
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Figure C6: RD: Placebo Thresholds.

Notes: The estimates are from Equation 20. The outcome are investment subsidies in the upper panel and
investment in the lower panel. The explanatory variable is the balance-sheet threshold indicator. The indicator
equals one if the balance sheet is lower than the number indicated on the horizontal axis. In all regressions, we
cluster the standard errors by three-digit industry, the kernel function is triangular, and the polynomial order is
one. Back to Section C.
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Figure C7: RD: Placebo Years.

Notes: This figure shows the discontinuity at the balance sheet threshold for investment subsidies (top) and total
investment (bottom). The vertical axis is in thousands of euros, and the horizontal axis is in millions of euros. In
all versions, we consider the 2004 balance sheet. The discontinuity should be exactly in 2007. Before 2007, there
should not be a discontinuity since the new balance sheet criterion was not yet in place. After 2007, there should
not be a discontinuity since the balance sheet 2004 value was no longer relevant. Back to Section C.
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Table C1: RD: Summary Statistics.

Mean Std. Dev N
Employment 65.75 76.93 1269
Revenue (EUR M) 16.7 16.5 1273
Wages 34,700 16,900 1269
Production Worker Share 0.40 0.32 1271
College Share 0.37 0.26 1273
Total Investment 377,600 579,000 1273
Investment Subsidies 16,200 127,600 1273
Total Subsidies 23,900 124,600 1273
Subsidized Loans 168,500 1,055,500 1273

Notes: Summary statistics for the RD sample, with balance sheet between 5 to 15 million EUR. Back to Section C.

Table C2: RD: Pre-Treatment Covariate Balance.

Investment Subsidy Revenue Employment
Small 2004 5.771 16.17 -4.296 -7.745

(88.22) (19.03) (2.849) (10.37)
N 1273 1273 1273 1270

Notes: The estimates are from Equation 20. The outcomes are pre-period averages over years 2000–2004. Standard
errors in parentheses, clustered by three-digit industry. * p < 0.10, ** p < 0.05, *** p < 0.01. Back to Section C.

Table C3: RD: The First Stage.

(1) (2)
Subsidy Investment

Small 2004 38.07∗ 188.5∗

(16.44) (86.53)
N 1273 1273

Notes: The estimates are from Equation 20. The outcomes are 2007 investment subsidies (left) and 2007 total
investment (right). Standard errors in parentheses, clustered by three-digit industry. * p < 0.10, ** p < 0.05, ***
p < 0.01. Back to Section C.
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Table C4: RD: The Reduced Form Estimates.

(1) (2) (3) (4) (5) (6)
Employment Revenue Wages College Share Educ. Years Producion Worker Share

Small 2004 0.0899∗ 0.251∗∗∗ 0.0214 -0.00108 -0.00902 0.00613
(0.0417) (0.0435) (0.0208) (0.0106) (0.0625) (0.0119)

N 6005 6006 6003 6012 6012 6012

Notes: The estimates are from Equation 20. The outcomes are defined in first differences. Standard errors in parentheses, clustered by three-digit industry.
* p < 0.10, ** p < 0.05, *** p < 0.01. Back to Section C.
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Table C5: RD: The IV Estimates.

(1) (2)
Total Investment Employment Change

Granted Subsidy (2007) 4.952∗ 3.224
(2.446) (2.643)

N 1273 6005

Notes: The estimates are from IV version of Equation 20 as described in text. The outcomes are defined first
differences. Standard errors in parentheses, clustered by three-digit industry. * p < 0.10, ** p < 0.05, *** p <
0.01. Back to Section C.
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D The Spikes Design

To address external validity, we consider technology adoption without the subsidy program. This

design exploits the precise timing of technology investment events, which we call spikes, to analyze

technologies’ short-term effects at the firm level. The second design is valuable because the subsidy-

based design is subject to two external validity concerns: 1) subsidy program as variation source,

2) program participants’ representativeness. The spikes design complements the subsidy design by

using a different variation source and a different sample. The spikes design is similar to a mass-

layoff design (Jacobson et al., 1993) as it uses the precise event timing for identification and builds

on the work of Hawkins et al. (2015) and Bessen et al. (2020). The design detects distinct events

because technology investments tend to be temporally concentrated (e.g., Doms and Dunne 1998;

Caballero and Engel 1999; Cooper et al. 1999; Nilsen and Schiantarelli 2003).

The Treatment Group We define the technology investment event, the spike, as an indicator

that equals 1 when a firm’s technology expenditures are significantly above average for the firm:

Djt = 1
{
Technology Expenditurejt > Threshold · Technology ExpenditureiT /∈t

}
The average expenditure is computed over timeline T leaving out the current year t. For our main

specification, we use the threshold of 4.44 We measure technology expenditure as investment in

machinery and equipment from the financial statement register.

The sample design is the following. We consider years 1994–2018 and restrict the sample to

manufacturing, warehouse and retail, transportation industries, and firms with full-time equivalent

employees (FTE) between 10 and 750 at time τ = −1 relative to the event. We focus on a

balanced sample and require that the firms operate at least starting from time τ = −9. With

these restrictions, we can exclude new rapidly growing firms that are not relevant to our research

questions and event definition and ensure comparability with the subsidies design. Very large firms

tend to have several units or plants, which obscures the evaluation of the spike.

The treatment group is the firms that experience a technology investment event and satisfy the

sample design criteria. In the case of multiple spikes, we choose the largest spike and require no

other spikes in window τ ∈ [−5, 8]. Figure D2 shows the treatment group’s average technology

expenditure by year. The event time is normalized around the event (τ = 0). There is a clear

investment spike: a significant fraction of technology investment at the firm level is associated with

significant variations.
44The results are robust to the particular threshold.
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The Matched Control Group To construct a control group, we match the spiking firms to non-

spiking firms. The matched control group serves as counterfactual for what would have happened in

had the spiking firms not made the investment. We provide a theoretical basis for this comparison

in Appendix G. We use coarsened exact matching (CEM). We match by revenue, employment,

wages at τ = −3 and industries’ main sectors (letter classes). The CEM percentiles are 10, 25,

50, 75, and 90. The final caliper match is the propensity score based on the same CEM variables.

The match is up to 1:5 with replacement. Table D1 shows the covariate balance for the matched

samples. We match only in the pre-period cross-section to ensure that the pre-trend comparison

between the treatment and control is informative.

Estimation The empirical strategy contrasts the treatment group with a spike to a matched

control group that did not have a spike within the same 10-year window using a dynamic difference-

in-differences design. To do so, we estimate Equations 1 and 2 from Section 4.2.

Robustness For robustness, we estimate the results also excluding firms that start exporting,

change their management, make a significant investment in buildings and property, or open a new

plant before the event. We also consider the estimates with different controls.

The First Stage Figure D2 shows the first stage. The outcome is technology investment. Treat-

ment group firms invest 2 million EUR more in technologies than the control firms in the event

year. Before and after it, the groups invest similar amounts and are on parallel trends.

Clarifying the Source of Variation We outline a theoretical framework that clarifies the source

of variation in Appendix G. The same model provides the basis also for the subsidies design, and

we refer to it in Section 4.1. The model is adapted from Cooper et al. (1999). The main result of

the model is that with adjustment costs, firms may experience low technology-investment activity

periods followed by bursts of investment activity. The model produces a cutoff rule for the firm’s

optimal policy, where the firm adopts the technology if and only if the propensity H ≥ H∗ for a

cutoff H∗ (Figure G1).

This result clarifies that the treatment and the matched control group could be comparable

in the short run because minor initial differences may lead to significant variations in technology

investment. For example, in the model, one reason a firm invests and the other similar firm does

not is that they have a different replacement cycle. Our estimates from the spikes design exploit

the precise timing of technology investment events.
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Figure D1: The Spikes Design. Machinery and Equipment Investment.

Notes: Machinery investment in EUR 1000s. Event time is normalized to zero in the year of the largest machinery
investment. The sample is restricted to manufacturing, retail, transportation industries and firms with employment
10–750 for comparability with the subsidies design. Consistent with the theoretical framework in Appendix G,
technology investment is typically a spiky activity. Back to Section D.
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Figure D2: The Spikes Design. First Stage: Machinery and Equipment Investment.

Notes: Event-study estimates from Equation 1. The outcome is machinery investment in EUR 1000s. Event time
is normalized to zero in the year of the largest machinery investment. Back to Section D.
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Figure D3: The Spikes Design. Employment Effects.

Notes: Event-study estimates from Equation 1. Event time is normalized to zero in the year of the largest
machinery investment. Employment is in % relative to the base year τ = −3. Entry rate is defined as the number
of entering workers divided by employment in the base year τ = −3. Exit rate is defined as the number of exiting
workers divided by employment in the base year. Back to Section D.
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Figure D4: The Spikes Design: Skill Effects.

Notes: Difference-in-differences estimates from Equation 2. The estimates compare the spikes treatment group to a
matched control group. The right-hand side reports outcome means at τ = −3. Back to Section D.
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Figure D5: The Spikes Design: Firm-Level Effects.

Notes: Difference-in-differences estimates from Equation 2. The estimates compare the spikes treatment group to a
matched control group. The right-hand side reports outcome means at τ = −3. Back to Section D.

107



Table D1: The Spikes Design: Balance Table.

Treatment Group Control Group Both

Variable Mean Std. Dev. Mean Std. Dev. 10p Median 90p

Machinery Inv. (EUR K) 271.21 858.93 376.70 999.26 6.96 109.55 770.54
Revenue (EUR M) 14.48 30.10 14.12 69.98 1.29 4.85 26.97
Employment 51.66 68.29 53.67 71.11 11.10 28.30 119.20
Wages (EUR K) 33.68 9.26 33.75 8.21 25.12 32.56 43.20
Subsidy Applied (EUR K) 72.40 339.62 25.23 119.99 0.00 0.00 45.37
Subsidy Granted (EUR K) 41.15 173.02 16.07 81.71 0.00 0.00 23.17
Educ. Years 11.89 0.91 11.86 0.87 10.88 11.78 12.94
College Share (%) 21.24 16.70 20.90 14.95 5.56 17.65 40.91
Production Worker Share (%) 58.90 30.95 63.68 25.79 14.29 71.43 88.89
Observations 450 1593 2043

Notes: All variables measured at τ = −3 relative to the event. We use coarsened exact matching (CEM) with
replacement. Back to Section D.

108



E Data and Fieldwork

E.1 Data on Technologies: Text Data Categories

This Appendix section reports details on the text data categories and the classification process.

E.1.1 Uses of Technologies

Process This category contains cases where the firm intends to use the technology to produce

the same output type. The use of technologies to automate processes or increase automation is

part of this category. Typical descriptions: an investment that makes operations more efficient, a

productivity-enhancing investment, an investment that increases automation. These descriptions

often include details, for example, which part of the production the firm intended to make more

efficient. Some applications describe these technological advances as “solving bottlenecks.” This

term refers to the idea that the bottleneck’s efficiency is complementary to other elements in the

production.

Product This category contains cases where the firm intends to use the technology to produce

a new output type. Typical descriptions: diversification of production, e.g., a new product, a new

service, or a more comprehensive selection of services; improved production capabilities, e.g., the

ability to work with or to manufacture larger items (very common), development of product fea-

tures, such as increasing quality or the degree of processing, transitioning to more environmentally

sustainable production, and moving production from subcontractors to own facilities.

Product and process are two opposites as to whether the improvement is within or between

varieties. If the text does not specify the use of the technology on this margin, we code it as

NA. Typical NA cases only specify the technology (e.g., a CNC machine) or describe an expansion

motive without further details.

This category also contains cases where the firm intends to use the technologies to expand or

grow. We classified both process and product type projects (and NAs) according to this criterion.

There were essentially two types of expansion descriptions: 1) the main goal was to expand or

increase capacity, 2) expansion was described as an effect of product or process type change in

production.

E.1.2 Types of Technologies

Automated vs. non-automated This category classifies cases where the technology requires

no active user (automated) vs. an active user (non-automated). The classification is done based on
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the specific technology or machinery described in the text. Automated machinery include robots,

CNC machines, automated conveyor belts, automated welding tools, and other automated tools and

machinery. Non-automated machinery include machinery that are not explicitly automated, such

as hand-operated tools, non-automatic welding tools, hydraulic presses, non-automatic machine

tools, cutting machines, lifting equipment, pumps, furnaces, and sprayers.

Hardware and/or software This category classifies cases where the technology is physical

(hardware) or not physical (software). Typical hardware include CNC machines, welding robots,

laser cutters, bending presses, surface-treatment technologies, robot arms, conveyor belts, sensors,

measurement devices. Typical software include enterprise resource planning (ERP), computer-

aided design (CAD), and production-control software.

Table E1: Summary Statistics: Text Category Predictions using SVM.

Class Precision Recall F1-score Test Support Number of Cases

Not Technology (0) 0.97 0.96 0.96 1737 31022
Technology (1) 0.88 0.93 0.90 644 11887

Accuracy 0.95 2381 42909
Balanced Accuracy 0.94 2381 42909

Macro Avg. 0.93 0.94 0.93 2381 42909
Weighted Avg. 0.95 0.95 0.95 2381 42909

Notes: Test Support refers to the 10% random out-of-sample from which accuracy measures are computed.
Precision is the ratio of correctly predicted positive observations to the total predicted positive observations.
Recall (Sensitivity) is the ratio of correctly predicted positive observations to the all observations in the category.
F1 Score is the harmonic mean of Precision and Recall. Accuracy is the ratio of correctly predicted observations to
the total observations. Back to Section E.
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Figure E1: Predictive Features for Text Categories: Technology.
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Notes: Top features for predicting technology texts. The y-axis refers to the feature weights from the SVM prediction. Features translated to English from
Finnish. Features in <> refer to compound terms combining similar spelling versions of the same term. Back to Section E.
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E.2 Data on Work and Skills

We measure individual workers’ employment, wages, education, grades, occupation, tasks, cognitive

performance, and personality.

Employment and Wages We obtain employment and wage data from the registers maintained

by Statistics Finland. The data contain the employment status, wages, and other income and a

link to the firm. The data allow us to track all persons in Finland over time independent of their

labor-market status. The data are combined from multiple government sources (including the social

security system and the tax authorities) and direct data collection by Statistics Finland. These

registers also record the individuals’ age and gender.

Education We measure education and school grades. Education is measured from The Register

of Completed Education and Degrees. It provides exact information on the educational degrees

the individual has obtained. We measure the level of education in four categories: 1) very low

(no recorded degree), 2) low (high school), (3) medium (BA or equivalent), and 4) high (MA or

PhD). We measure the type of education also in four categories: 1) STEM (science, technology,

engineering, and mathematics), 2) HASS (humanities, arts, and social sciences), 3) business and

law, and 4) other types. We map degrees to years of education based on their official length.

School grades are measured from the Secondary Education Application Register and the Finnish

Matriculation Examination Board Register. We focus on the 9th-grade GPA and the standardized

scores in the national high-school exit exam (12th grade).45 We normalize both grade measures to

have mean 0 and standard deviation 1 within cohorts.

Occupations and Tasks We measure occupations from the employment registers at the 3-digit

level in the ISCO classification system. We harmonize the occupation classifications, resulting

in 48 consistently defined occupations. For most analyses, we focus on three broad occupational

categories: production workers (craft workers, operators, assemblers, and elementary occupations),

non-production workers in lower-level positions (clerical, service, and sales workers), non-production

workers in higher-level positions (technicians and associate professionals, professionals, and man-

agers).

To measure the task content of the occupations, we use the European Working Conditions

Survey (EWCS).46 The survey provides information on the tasks workers perform in their jobs. The

data are collected through face-to-face interviews every five years. Using these data, we construct
45We use 9th-grade GPA because only approximately 50% of Finns take the high-school exit exams.
46For example, Kauhanen and Riukula (2019) use the EWCS to measure occupational task content.
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occupation-level measures of task intensity for routine, manual, cognitive, and social tasks (see,

e.g., Autor et al. 2003). For example, occupation is classified as highly routine if the workers in

this occupation describe often performing repetitive and monotonous tasks. The advantage of the

EWCS data is that it is based on workers’ descriptions of their work; it is available for the specific

country and time and is consistent with the European occupational classification.

Cognitive Performance and Personality We obtain data for cognitive performance and per-

sonality from the Finnish Defence Forces (FDF). The data cover approximately 80% of Finnish men

born 1962–1979, and are measured because of universal conscription. The cognitive-performance

measures are visuospatial, arithmetic, and verbal reasoning. The visuospatial test is similar to

Raven’s Progressive Matrices (Raven and Court, 1938). The personality-trait measures are socia-

bility, activity-energy, self-confidence, leadership motivation, achievement motivation, dutifulness,

deliberation, and masculinity. The personality test is based on the Minnesota Multiphasic Person-

ality Inventory (MMPI). We normalize all measures to have a mean 0 and standard deviation of 1

within cohorts. The FDF data are described in Izadi and Tuhkuri (2021a,b).

E.3 Data on Firms

We use a large set of data on firms, including the revenue, profits, exports, products, prices, and

patents. The data track all firms over time.

Firm Performance The firm-performance measures, revenue, value-added, and profits, are ob-

tained from the Finnish Financial Statement Register. We use two variables to measure produc-

tivity: revenue per worker and total factor productivity (TFP) estimated using the Cobb-Douglas

production function. We measure profits primarily by the profit margin, defined as profits divided

by the revenue. We define the labor share as the wage bill divided by the revenue. We winsorize

firms’ monetary values at the 5% level.

Exports Exports are measured from the Finnish Customs’ Foreign Trade Statistics. We focus

on the firms’ export status (exporter vs. non-exporter), exports’ share of the total revenue, and

export destinations.

Products We measure firms’ products from the Customs Register at the 6-digit CN classification.

We focus on the number of products per firm and product turnover: the number of products

introduced and discontinued.

113



Prices We compute firms’ product-level prices from both the Customs Register and the Industrial

Production Statistics. We define product-level prices as the product-level revenue divided by the

number of units sold. We harmonize the product categories to be consistent over time. We focus

on firm-level average prices computed as an unweighted average. We winsorize price data at the

10% level within product and year.

Patents Patent information comes from the Finnish Patent Database. We focus on the number

of new patent applications per firm.

Capital We measure capital from the official records on firms’ balance sheets.

Industries We measure industries at a harmonized 2-digit level classification (based on NACE

Rev. 2). Our primary industry-level variable is the industry’s scope for quality differentiation,

which we measure using Rauch (1999), Gollop and Monahan (1991), and Sutton (1998) indices.

We also measure industries’ automation intensity (Acemoglu and Restrepo, 2020), tradability (Mian

and Sufi, 2014) and education level (similar to Ciccone and Papaioannou, 2009).

Subsidies We measure firm subsidies from multiple registers. Two centralized systems (Yrtti

1 and 2) record the ELY center subsidies. We gained access to these previously unstudied data,

which record the application process from submission to decision. We measure other firm subsidies

using the Statistics on Business Subsidies data.

E.4 Fieldwork

We conducted fieldwork to understand the changes we document at the level of specific firms and

workers. We visited our sample manufacturing plants and interviewed CEOs, technology managers,

production workers, and subsidy administrators.

Firm Visits and Interviews We chose five manufacturing firms for in-depth case studies. The

primary purpose of the case studies was to observe the technologies, production, and work firsthand.

We spent on average 4 hours at each manufacturing plant observing the production and conducting

interviews. We also conducted five separate firm interviews (a total of 10 firms).

Our qualitative research method was open-ended interviews, building on prior qualitative re-

search on technologies in firms (e.g., Piore 1979; Dertouzos et al. 1989; Berger 2013; Piore 2006).

This method is helpful because it allows us to identify the prevalence of mechanisms we had pos-

tulated ex-ante and uncover new mechanisms that we had not anticipated. We asked firm repre-
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sentatives about their production, technology adoption, motivations behind adopting technologies,

the observed effects, and government subsidies.

We selected the firms to be representative of the sample and different from each other. We

visited and interviewed firms with employment from 30 to 18,000 workers; subsidy winners, subsidy

losers, and non-applicants; firms in rural and urban areas; privately owned and publicly traded

firms, and firms with high levels of own capital and firms in the corporate restructuring. All firms

were in the fabricated metal product and machinery industries.

Worker Interviews We separately interviewed five production workers using similar in-depth

interviews as in our firm visits. In all interviews, we asked the respondents broadly about their work

and skills, technologies they use at work, other technologies at their workplace, and the effects of

technologies they had observed. Our qualitative methods draw from a long social sciences tradition

to directly ask the respondents how they perceive the cause and effect. We used a semi-structured

approach to interviewing that uses open-ended questions to allow a wide range of responses to

emerge (see, e.g., Piore 1979; Boyd and DeLuca 2017; Bergman et al. 2019). We recruited the

interview respondents in collaboration with the Finnish Industrial Union, the largest Finnish union

representing industrial workers.

Subsidy Program Interviews and Text Data To understand the subsidy program, we in-

terviewed 1) officers in all four main ELY Centers, 2) program administrators at the Ministry of

Economic Affairs and Employment, 3) an external program auditor at the Ministry of Finance,

and 4) a consulting firm that assists firms in subsidy applications (a total of 18 interviewees in 7

groups). We also use text records from the administrative system of the subsidy program to track

the applications and qualitatively understand how the subsidy program works.47

47In addition, we studied the relevant legislature, ELY Centers’ relevant strategy documents, and the official
reports of the subsidy program (e.g., Ritsilä and Tokila 2005; Pietarinen 2012; Aaltonen 2013; Ramboll 2013; Auri
et al. 2018; Heikkinen et al. 2019; Ilmakunnas et al. 2020, and TEM 2020).
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F Theoretical Framework Details

In this Appendix, we derive the predictions from process and product type technological change.

F.1 Predictions from the Process Type

Process-type technological change has several specific and measurable implications.

Revenue Firms with lower marginal costs produce more and earn higher revenues. A key

implication of the CES demand structure is that the relative outputs and revenues of firms depend

solely on their relative productivities:

q (ϕ1)

q (ϕ2)
=

(
ϕ1

ϕ2

)σ
,

r (ϕ1)

r (ϕ2)
=

(
ϕ1

ϕ2

)σ−1

, ϕ1, ϕ2 > 0 (21)

where a higher elasticity of substitution implies greater differences in size and profitability between

firms for a given difference in relative productivity.

Productivity Lower marginal costs imply higher measured productivity. Measures of the firm or

plant revenue-based productivity are monotonically related to the firm productivity draw ϕ. Since

prices are inversely related to the firm productivity draw ϕ, revenue per variable input is constant

across firms. Revenue-based productivity, however, varies because of the fixed production cost:

r(ϕ)

l(ϕ)
=

wσ

σ − 1

[
1− f

l(ϕ)

]
, (22)

where input use l(ϕ) increases monotonically with ϕ. A higher productivity draw increases variable

input use and revenue, with the result that the fixed input requirement is spread over more units

of revenue.

Profits Lower marginal-cost firms earn higher profits. As shown earlier:

π(ϕ) =
r(ϕ)

σ
− wf = Bϕσ−1 − wf, B =

(σ − 1)σ−1

σσ
w1−σA. (23)

Prices The price effect depends on whether the productivity improvement refers to lower marginal

costs or a higher quality within the variety. That comes from the fact that the CES preference

representation implicitly imposes a choice of units to measure the quantity of each variety. Within

a variety, quantity and quality are perfect substitutes, and a marginal-cost reduction is equivalent

to a quality improvement, up to a new price vector. Firms with lower marginal costs charge lower
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prices because the equilibrium price for each variety is a constant mark-up over marginal cost,

and firms with higher quality charge higher prices since the equilibrium price for each variety can

equivalently be expressed in terms of quality c:

p(ϕ)cost =
σ

σ − 1

w

ϕ
, p(ϕ)quality =

σ

σ − 1
cw. (24)

Labor Share If the composite factor of production contains only labor, the structure of the

model implies that lower marginal costs reduce the labor share since the firm takes wages w as

given and revenue per input increases:

wl(ϕ)

r(ϕ)
=
σ − 1

σ

[
1− f

l(ϕ)

]−1

. (25)

If the technological change is specifically automation as, e.g., in Acemoglu et al. (2020b), it substi-

tutes capital for tasks previously performed by labor and reduces the labor share of value-added.

Employment and Labor Composition The firms use a composite factor of production L to

produce the varieties. The underlying structure of how technological change improves productivity

determines how it affects factor composition, including employment. The literature specifies dif-

ferent versions of the composite factor and how technology enters it (e.g., Tinbergen 1975; Katz

and Murphy 1992), the routine-replacement model (Autor et al., 2003), and the automation model

(Acemoglu and Restrepo, 2018).48

In the models where technological change simultaneously reduces marginal costs and affects

labor composition, technological change is typically assumed to be “skill biased,” in the sense that

new technologies are more complementary to high-skill workers.49 The central prediction from

these models is that if the firm adopts the technology (TI = 1), the employment share of low-skill,

routine, and production workers decreases:

slL (TI = 1) < slL (TI = 0) , where slL = lL/
L∑
i
li. (26)

48The distinction between cost and quality within the variety—while isomorphic in this framework—becomes rele-
vant when considering the factor content of technologies. While the canonical, routine replacement, and automation
models can be re-written so that instead of costs, technological change affects quality, their motivation is based on
firms’ cost-reduction intentions.

49In Autor et al. (2003) and Acemoglu and Autor (2011) the effect is mediated through tasks: technologies
substitute for a set of tasks (e.g., routine or lower-complexity tasks), in which a set of workers (e.g., lower-skill
workers) have a comparative advantage.
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F.2 Predictions from the Product Type

Product-type technological change produces a set of specific observable implications.

Revenue Firms that introduce a new variety produce more and earn higher revenues:

q =

q (ϕ)

q (ϕ) + q (E [ϕ])
r =

r (ϕ) if TE = 0

r (ϕ) + r (E [ϕ]) if TE = 1
(27)

Products Firms that introduce a new variety produce a larger number of products:

∣∣Ωi
TE=1

∣∣ > ∣∣Ωi
TE=0

∣∣ , ω ∈ Ω (28)

where
∣∣∣Ωi

TE

∣∣∣ denotes the number of elements in the set of varieties produced by the firm i (measured

as produced or exported products or e.g., patents).

Exports If different markets have differentiated preferences, a new variety makes it more likely

that the firm starts exporting, exports a larger share of its revenue, or exports to a larger variety

of destinations:

EXP iTE=1 > EXP iTE=0, (29)

where EXP iTE denotes the a measure of exporting activity by the firm i.

Inputs Firms that introduce a new variety use more inputs, such as labor:

l =

f + q
ϕ1

if TE = 0

2f + fE + q
ϕ + q

E[ϕ] if TE = 1
(30)

Productivity, Profits, and Prices The product-type technological change predicts, on average,

zero effects on productivity, the profit margin, and prices because the expected productivity in the

new variety is equal to the productivity in the existing variety. The new variety is not uniformly

better than an existing variety, but new and an imperfect substitute to the existing varieties. In

monopolistic competition, firms can expand either by improving productivity within a variety or

by introducing a new variety, but the firms cannot expand without either action. On average,

the introduction of a new variety appears as if the firm only scales proportionally in size. Zero

effects on productivity, prices, and the profit margin combined with a positive effect on revenue

are consistent with the new varieties view.

118



Labor Composition, Labor Share, and Wages One critical difference between the produc-

tivity and new variety views is whether technological change is likely to have distributional effects.

The new varieties view has no unambiguous basis for expecting a sustained effect on the labor com-

position or the labor share. The task or skill-composition might be different for the new variety,

but this is likely to depend on the particular context.50 The model predicts zero effects on wages

in a competitive labor market, since wages are determined in the sectoral equilibrium, and the firm

is small relative to the market.

Figure F1: New Variety Entry Cutoff. From Melitz and Redding (2014).

50In the Nelson and Phelps (1966) view, skills are complementary to the adoption of new technologies; the use of
technologies in the creation of new varieties would induce a temporary increase in skill demand.

119



G Theoretical Framework for the Research Design

To clarify the source of variation in our identification strategies, we consider the forces that influence

a firm’s technology adoption and its factor demand. We proceed in two steps. In Step 1, we focus

on the firm’s technology-adoption decision. In Step 2, we consider the firm’s conditional factor

demand, treating the technology as a quasi-fixed factor; the idea is to show that we can trace the

implications of the technology adoption problem for factors’ relative demand. The framework is

general to allow for the analysis of multiple types of technologies and factor inputs. The adoption

model is adapted from Cooper et al. (1999).

G.1 Step 1: Technology Adoption

In Step 1, we model the general technology-adoption problem of an individual firm. In the model,

the firm makes the discrete choice between replacing existing technology with a new technology or

continuing to use the old technology for another period. Consider a firm i that maximizes:

E0

∞∑
t=0

BtY
i
t (31)

subject to

Y i
t = Aitθ

i
tF
(
T it ;L

i
t

)
−Di

tΘ
i
t (32)

T it+1 =

 (1− δ)T it if Di
t = 0

τ it+1 if Di
t = 1

(33)

where τ it+1 = µitτ
i
t and µit ≥ 1 is the rate of exogenous technological progress.51 The choice

variable in this problem is Di
t where Di

t = 1 if the new technology T is adopted in period t.

The first equation (31) is the firm’s objective function. The firm maximizes the discounted

present value of profits, which are defined as output minus the adjustment costs. The discount rate

is Bt ∈ (0, 1).

The second equation (32) describes the production process and the adjustment costs. The

function F (·) is increasing and concave in the level of technology. The output also depends on the

state of productivity Ait. We assume that A follows a first-order Markov process Φ(A′|A). The

model has two types of adoption costs. The first is a fixed adjustment cost (Θi
t). If the firm adopts

the new technology (Di
t = 1), it has to incur a cost Θi

t. It reflects the direct cost of the technology,
51We allow the technological progress to contain an idiosyncratic and a deterministic common component to clarify

the potential mechanisms. That is, we assume µit = µt + εit.
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its installation costs, other fixed adjustment costs, and a temporary output loss. We assume that

Θi
t is i.i.d. The second is the opportunity cost that is proportional to the production volume. It is

characterized by θit that equals λit ≤ 1 during an adoption period and 1 otherwise.52 The intuition

is that investment temporarily diverts resources away from production.

The third equation (33) describes the time path of the given technology. The technology

frontier is τt. The firm’s actual technology that is in-use is T it . The in-use technology is typically

less productive than the latest version because technology depreciates at an exogenous rate δ and

because the latest technologies improve at rate µit. The firm can decide to adopt the latest version

of the technology (Di
t = 1); in that case its technology will be equal to τ it+1 in the next period.

The gains to adoption reflect both technological progress (µit) and the rate of depreciation (δ).

Under this framework, the firm’s technology adoption reflects several forces:

1. Replacement cycle: The underlying deterministic replacement cycle—driven by depreciation

of capital δ and the common exogenous technological progress µit—will imply that the older

vintage of the capital, the more likely is replacement.

2. Shocks to technologies’ costs: Idiosyncratic shocks to costs Θi
t affect the investment in a

straightforward way: lowering the costs and increasing the likelihood of the investment.

3. Shocks to technological progress: Idiosyncratic shocks to technological progress, that is shocks

to µit, increase the benefits from the technology investment and increase the likelihood of the

investment.53

4. Shocks to productivity: The response of investment to Ait depends on both the nature of the

adjustment costs (λit and Θi
t) and the persistence of the shock (Φ(A′|A)). The firm would

prefer to replace machines during a period where inputs are not very productive (reflecting

λit < 1) and would also prefer to have a new machine available when productivity is high.

To build intuition, suppose that adjustment costs are fixed. If A is i.i.d., investment is

independent of A. But if a shock to A is informative of similar shocks in the future, then

the investment is more likely when A is high—the firm invests now to benefit from the high

productivity in the future.

We provide proofs and more detailed exposition in Section G.3. In the detailed version, we charac-

terize the solution by a hazard functionH(t, A), the probability of adoption if the current technology

stock is t and the state of productivity is A.
52This implies that adjustment costs are heterogeneous across firms even if λit = λ < 1, i.e., equal for all firms i

and periods t.
53Within the framework, this mechanism works analogously to the aging of technology.
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In words, two forces determine a technology’s productivity: the technology’s ’age’ and a shock

to total factor productivity. Given the state of productivity, the producer compares the discounted

expected benefits of more productive technology relative to the current adoption costs. The gain

to adoption is that a new version of the technology is more productive as it reflects some aspects

of technological progress. There are two types of costs for replacement. First is the direct loss of

output associated with the acquisition and installation of new capital goods. Second is that the

process of installing the new machines and retraining workers reduces productivity in the firm. The

nature of the adjustment costs and the structure of the stochastic process governing the shocks

jointly determine adoption timing.

The model assumes that small adjustments of technologies are either infeasible or undesirable.

In particular, many technology-investment projects (e.g., the purchase of large machines) are not

possible in small quantities. In addition, the model assumes that the costs of adjusting the tech-

nologies stock may be nonconvex. Consequently, at the firm or plant level, we may see periods

of low technology investment activity followed by bursts of investment activity, i.e., investment

spikes. Empirical observations support this view of technology adoption: we find that a significant

fraction of technology investment activity at the firm level is associated with large variations in the

technology stock: i.e., technology investment is typically a lumpy activity.

G.2 Step 2: Conditional Factor Demand

In Step 2, we consider the firm’s conditional factor demand, treating the technology as a quasi-fixed

factor. This approach is closely related to the work by Berman et al. (1994) who treat machine

investments as quasi-fixed and invoke Shephard’s lemma to justify their empirical specification.

Cost-function estimates with quasi-fixed capital trace back to Caves et al. (1981). Our aim is

to trace the implications of the technology adoption problem for factors’ relative demand. The

intuition is that technology is relatively more costly to adjust than labor.54

The firm’s production function is written as:

Y = F (T ;L) (34)

where T is the technology of our focus and L is a vector of multiple other factors. An element

Li is the quantity of factor i used in the production of a quantity Y of output. We assume F is

strictly increasing with each of its arguments and strictly concave. We denote the relative price

of factor i by Wi > 0. For the purposes of this analysis, these relative prices reflect potential
54Hamermesh 1989analyzes the costs firms face in adjusting labor demand to exogenous shocks. The study argues

that adjustment costs could be viewed as fixed and documents that labor adjustment tends to be lumpy.
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relative productivity effects from technology T . The conditional factor demands are characterized

as solutions to the cost-minimization function:

min
(L1...Ln)

n∑
i=1

WiLi subject to F (T ;L1...Ln) > Y (35)

The minimum value of the total cost is the cost function C (W1...Wn, Y ). Under this framework, it

satisfies the standard properties of a cost function. It is increasing, homogeneous of degree 1, and

concave in (W1...Wn), and it satisfies the Shephard’s lemma.

The Shephard’s lemma gives us an analytical tool to interpret the relationship between factor

demands and their prices. It states that:

L̄i = CWi (W1...Wn, Y ) (36)

where L̄i denotes the factor demand for the factor Li and CWi denotes the partial derivative of the

cost function C with respect to priceWi. In other words, the cost function says that the conditional

factor demands can be characterized through a shock to the price vector (W1...Wn).

The expression (36) allows us to provide a theoretical basis for analyzing the effects of technology

adoption on the demand for different types of labor. In this framework, technology’s effect on labor

demand is translated through its effect of the (potentially unobserved) prices of labor, which reflect

the productivity of labor combined with the technology. For example, complementarity between

technology and skills would mean that technology T would change the price vector (W1...Wn) in a

way that the factor demands L̄i would shift toward high-skill labor LH ∈ L.

G.3 Details on Step 1: Technology Adoption

We consider the technology adoption (or replacement) problem of an individual firm with a given

stock of technologies. This treatment is closely based on Cooper et al. (1999). The underlying

technological progress in this economy makes the problem nonstationary. To analyze the problem,

we normalize it to a stationary version. Define xt = Xt/τ
i
t so that lowercase roman letters represent

values which are normalized by the current value of the technology frontier. For simplicity, assume

that the fixed adjustment cost is proportional to the technology frontier, i.e., Θi
t = Θiτ it and that

F (·) exhibits constant returns to scale. The problem is normalized as:

E0

∞∑
t=0

βity
i
t (37)
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subject to:

yit = Aitθ
i
tt
i
t −Di

tΘ
i (38)

tit =

 ρtit if Di
t−1 = 0

1 if Di
t−1 = 1

(39)

In this normalized version, the discount rate (βit) equals Btµit. We assume that the technological

progress (µit) is not too fast so that βit < 1. We define ρit = (1− δ) /µit ∈ [0, 1] that reflects both

depreciation and obsolescence. With this normalization, technology adoption (Di
t = 1) implies that

the state of the technology is 1 in the next period and a fraction ρit of its size in the previous period

otherwise.

To analyze this problem, we use a dynamic programming approach. The states are the age of

the technology stock (t) and the productivity shock (A). The value function V (t, A) satisfies the

functional equation:55

V (t, A) = max
[
V Y (t, A), V N (t, A)

]
(40)

where
V N (t, A) = AF (t) + βEA′|A,ε′V (ρt, A′)

V Y (t, A) = AF (t)λ−Θ + βEA′|AV (1, A′)
(41)

The superscript Y refers technology adoption (Di
t = 1) and N to no technology adoption (Di

t = 0).

The expectation over A′ is taken using the conditional distributions Φ(A′|A). We assume shock

follows a first-order Markov process. The productivity shock has two effects: a direct effect on

current productivity and an indirect effect through information about future productivity shocks

through Φ(A′|A). We assume shocks to Θi are i.i.d.

The solution to the functional equation leads to adoption if and only if V Y > V N given the

state vector, h = (t, A). We characterize the solution by a hazard function H(t, A) ∈ [0, 1], the

probability of adoption if the current technology stock is t and the state of productivity is A. The

cutoff is visualized in Figure G1.56

Proposition 1. There exists a solution to the functional equation.

Proof. The solution’s existence is guaranteed by Theorem 9.6 in Stokey et al. (1989) if β < 1.

55For expositional clarity, we drop the subscript t and the superscript i.
56While given the state vector, the probability of an investment spike is deterministically either zero or one, this

hazard is a useful object because the idiosyncratic shocks are generally not measured in the data.
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Proposition 2. H(t, A) is decreasing in t.

Proof. For a given value of productivity A let t∗(A) satisfy V N (t, A) = V Y (t, A) where

V N (t, A) ≡ At+ βV (ρt, A′) (42)

V Y (t, A) ≡ Atλ−Θ + βEV (1, A′) (43)

Define ∆ (t, A) = V Y (t, A) − V N (t, A). Using this object, it is sufficient to show that ∆ (t, A) is

decreasing in t. From (42) and (43):

∆ (t, A) = At(λ− 1)−Θ + βEA′
[
V (1, A′)− V (ρt, A′)

]
(44)

where V (t, A) ≡ max
{
V Y (t, A), V N (t, A)

}
. The first term is decreasing in t. The last part of

this expression is also decreasing as t increases since V (t, A) is an increasing function of t. Thus

∆(t, A) is decreasing in t. This proves that given the state of productivity A, the hazard H(t, A)

is decreasing in t.

Proposition 3. H(t, A) is decreasing in Θ.

Proof. Using the definition of ∆ (t, A; Θ), we have

∆ (t, A; Θ) = At(λ− 1)−Θ + βEA′
[
V (1, A′; Θ)− V (ρt, A′; Θ)

]
(45)

The term ∆ (t, A; Θ) is decreasing in Θ and thus the result is immediate.

Proposition 4. H(t, A) is independent of A if Θ > 0, λ = 1, and A is i.i.d.

Proof. Using the definition of ∆ (t, A), for the case of Θ > 0 and λ = 1, we have

∆ (t, A) = −Θ + βEA′
[
V (1, A′)− V (ρt, A′)

]
(46)

Since A is i.i.d., the right side is independent of the current realization of the shock. Thus the

gains to replacement are independent of A.

Proposition 5. H(t, A) is increasing in A if Θ > 0, λ = 1, and Φ(A′|A) is decreasing in A.

Proof. Using the definition of ∆ (t, A), for the case of Θ > 0 and λ = 1, we have

∆ (t, A) = −Θ + βEA′|A
[
V (1, A′)− V (ρt, A′)

]
(47)
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The expectation over A′ is conditional on A so that the current state of productivity does influence

the replacement choice even though λ = 1. Since high values of A put, by assumption, more weight

on high values of A′, it is sufficient to show that V (1, A)−V (t, A) is increasing in A for any t. This

is, in turn, equivalent to the condition that∫ 1

t
VtA(z,A)dz > 0 (48)

for all t. This condition is satisfied if VtA(t, A) > 0 for all (t, A). From (42) and (43) this positive

cross-partial condition holds when Θ > 0 and λ = 1. To see this, note that by assumption,

replacement will eventually occur so that (42) is a sequence of current period returns with positive

cross partials between t and A. From (43), V Y (t, A) has a positive cross partial since the second

term is independent of t.

D = 1

H(t, μ, θ, Θ, A)H *
D = 0

Figure G1: The Cutoff.

Notes: Threshold model. The technology adoption model rationalizes firms’ spiky investment behavior. In the
model, the firm makes a technology investment D = 1 if adoption likelihood H crosses a threshold. Back to Section
G, 4, and D.
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H Related Research

Technologies’ Effects on Employment and Skill Demand This paper contributes to the

active literature on technologies’ effects on employment and skill demand, surveyed by Acemoglu

(2002b), Card and DiNardo (2002), and Acemoglu and Autor (2011), and specifically to the evidence

on advanced technologies’ effects in manufacturing firms.

The closest papers to our research report similar findings. Doms et al. (1997) report little cor-

relation between technology adoption and skill upgrading in US manufacturing, focusing on similar

technologies (e.g., CNC machines and robots) and industries (e.g., fabricated metal products) as

we do. Bartel et al. (2007) show that valve plants that adopted new IT-enhanced equipment shifted

their business strategies toward producing more customized products, consistent with our inter-

pretation and evidence. They report changes in machine operators’ skill requirements, not in the

traditional sense of replacing production workers or increasing the demand for formal education,

but, for example, increased focus on setting up, monitoring, and correcting the new machinery,

consistent with what we find in our fieldwork. Weaver and Osterman (2017) emphasize that most

manufacturing work does not require high levels of formal education. Criscuolo et al. (2019) an-

alyze the effects of an investment support program in UK manufacturing using an instrumental

variables (IV) strategy, and find evidence for a positive treatment effect on employment. Pavcnik

(2003) documents that plants’ adoption of foreign technology is not associated with skill upgrading,

and Nilsen et al. (2009) find no evidence that investment spikes are associated with changes in the

composition of the workforce. In recent work, Genz et al. (2021) report that the adoption of CNC

machines and industrial robots led to increases in employment, including production workers, and

did not coincide with a higher demand for more educated workers. Koren et al. (2020) report

positive wage effects on machine operators exposed to imported machines. Extensive qualitative

evidence corroborates these observations (e.g., Sohal 1996; Small 1999; Berger 2013, 2020).

Contemporary evidence on effects of robots and automation in firms supports our findings

(Acemoglu et al., 2020b; Aghion et al., 2020; Bonfiglioli et al., 2020; Dixon et al., 2021; Karen

Eggleston et al., 2021; Koch et al., 2021; Stapleton and Webb, 2020). Most of it finds positive effects

on employment, no negative effects on low-skill workers, and no major changes in skill composition.

Dixon et al. (2021) document that robot adoption is motivated by improving product and service

quality, not reducing labor costs. Koch et al. (2021) report that the employment increases applied to

all types of workers and provide evidence supporting the idea that exports facilitate the expansion

effects from technologies. Aghion et al. (2020) report no different effects across skill groups. In

contrast, Acemoglu et al. (2020b) estimate 0–1.6% declines in the production employment share
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while focusing on unskilled industrial jobs. The most significant difference between these studies is

the results for the labor-cost share: e.g., Acemoglu et al. (2020b) and Koch et al. (2021) find labor

share declines (3–5% and 5–7%), but Aghion et al. (2020) find no change. One way to reconcile

these estimates is that the former two focus exclusively on robots, while the latter uses a broader

measure of technologies. Robots specifically appear to reduce the labor share, while other advanced

technologies appear to have neutral effects. Similar to Koch et al. (2021), we find zero effects on

the labor share from CNC machines and other advanced technologies.57

Our results are different from some firm-level studies that focus on different technologies. These

papers document that some technological advances, especially ICT, may have been skill biased. For

example, Akerman et al. (2015) study the regional rollout of broadband internet in Norway using

a difference-in-differences design. More effective internet is a critical technological advance, but

different from new manufacturing technologies, and we would expect potentially different effects.

The estimates indicate that college-educated workers’ wages and employment increased modestly

in places that received faster internet. There were, on average, no negative effects on non-college

and manual workers, but a small negative effect on high-school dropout and routine (cognitive)

workers’ wages. In another example, Gaggl and Wright (2017) estimate the effects of a temporary

tax allowance on ICT investments, primarily software, in the UK using an RD design. They find

that ICT subsidies induced increases in employment and wages. Workers performing non-routine

cognitive tasks experienced the increases, routine cognitive workers experienced modest declines,

and manual workers experienced no change. Bresnahan et al. (2002) also report complementarities

between skill and IT equipment, such as computers. Caroli and Van Reenen (2001) document that

organizational change, Boler (2015) that R&D, and Leiponen (2005) and Lindner et al. (2021)

that innovation is complementary to skills. The contrast to these papers highlights that distinct

technological advances may induce distinct effects. Specifying the technologies in focus, as these

papers do, is valuable for building cumulative evidence.

Our results are also different from studies that focus on technologies’ replacement effects. These

papers’ results highlight that some technological changes may also replace workers. Bessen et al.

(2020) study the effects of automation events on incumbent workers, measuring automation from

firms’ expenditures on third-party automation services. Our event-study design builds on their

approach. The main difference is that their approach is designed to capture the replacement effects;

they isolate what happens to the incumbent workers when firms automate. They find that a large

increase in automation expenditure makes workers more likely to separate from the firm. The effects

are meaningful but modest in size: the average earnings loss is 2%. They detect no differences by
57Humlum (2019) provides evidence supporting the view that robot adoption affects firm-level skill composition.

128



wage groups, often used as a proxy for skill. Feigenbaum and Gross (2021) study the replacement

of telephone operators for mechanical switching by AT&T in 1920–1940. This eliminated most

of these jobs, did not reduce future cohorts’ overall employment, but caused adverse effects on

incumbent operators.

Our results are different from several macro-level studies. We organize the macro evidence into

indirect and direct approaches. The indirect approaches include Katz and Murphy (1992); Beaudry

et al. (2010); Lewis (2011); Acemoglu and Restrepo (2020); Dauth et al. (2021). These papers report

skill bias from technological advances, partly for different reasons. The main argument in Katz

and Murphy (1992) is that to reconcile the increased college wage premium with the increased

supply of college-educated workers, substantial growth in the demand for more-educated workers

is necessary. This demand growth is sometimes interpreted as skill-biased technological change.

Beaudry et al. (2010) and Lewis (2011) evaluate technology-skill complementarity using variations

in skill supply. They find that the local skill supply predicts increases in technology adoption. This

observation is consistent with our results, despite the seeming contradiction. Technology adoption

may be easier in places with more high-skill workers, even if technologies do not directly affect skill

composition within firms.58 Acemoglu and Restrepo (2020) and Dauth et al. (2021) also analyze

technology-skill complementarity at the local level in the US and Germany. They focus on the

places’ exposure to robots based on their pre-existing industry structure. The exposure approach

has many clear advantages, including the possibility to analyze equilibrium effects, but the focus

on variations stemming from pre-existing industries may leave out technologies’ other effects than

replacement, such as using technologies to launch new products.

The direct approaches include Berman et al. (1994); Autor et al. (1998); Krusell et al. (2000);

Autor et al. (2003); Spitz-Oener (2006); Michaels et al. (2014), and Graetz and Michaels (2018).

These papers also report skill bias from technological advances. Part of the direct macro evidence

considers different technologies. Berman et al. (1994); Autor et al. (1998); Spitz-Oener (2006);

Autor et al. (2003), and Michaels et al. (2014) focus on the effects of ICT, especially computers.

Another part, e.g., Krusell et al. (2000) and Graetz and Michaels (2018), considers similar tech-

nologies to our study and still finds skill bias. While we do not have a complete explanation for

the difference, micro and macro estimates may be different and still consistent with each other for

several reasons, for example, due to externalities (see, e.g., Oberfield and Raval 2021) or if tech-

nologies induce broad economy-wide changes.59 Exploring these channels is a promising avenue for
58This interpretation is consistent with the technology view emphasized by Nelson and Phelps (1966); Welch

(1970); Schultz (1975), where education fosters the process of technology adoption and with models of directed
technological change (Acemoglu, 1998, 2002a). The interpretation is also consistent with Doms et al. (1997), who
find that plants that adopted more technologies employed more educated workers before adoption.

59These reasons include: 1) externalities, e.g., in the product market, the intermediate input market, the factor
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future research.

To summarize the evidence from the prior literature, we make six observations: 1) Advanced

manufacturing technologies, such as CNC machines, appear to cause increases in employment and

no changes in the skill composition at the firm level, 2) Technological advances in manufacturing

do not appear to cause negative effects specifically to manual workers, 3) Robots, in particular,

also appear to cause increases in employment and no significant skill bias at the firm level, but

may reduce the labor-cost share, 4) ICT, specifically computers, software, and the internet, appear

to have been skill biased for cognitive work at the micro and macro levels, 5) Some technological

advances, such as automation consulting services, appear to have caused some worker displacement,

and 6) Local skill supply appears to foster technology adoption. Due to the still limited evidence,

these conclusions are tentative. Our results corroborate 1–2 and are consistent with 3–6.

Industrial Policies’ Effects Our analysis contributes to the literature on industrial policy.

By industrial policy, we refer to policies that stimulate specific economic activities and promote

economic development. These policies are common. For example, EU countries spent EUR 134.6

billion on government subsidies to the private sector (designated as state aid) in 2019, about 0.81

% of the EU’s GDP (The EU State Aid Scoreboard, 2020). The objectives and effects of industrial

policy are debated (Lane, 2020).

This paper focuses on a particular type of firm subsidy: a lump-sum transfer to increase tech-

nology adoption in manufacturing. Manufacturing subsidies are widespread (see, e.g., Gruber and

Johnson 2019) but understudied. Berger (2013) argues that these types of programs have con-

tributed to the productivity and growth opportunities in German SME manufacturing, and lack of

them may contribute to the relatively low productivity growth of US manufacturing. Our evidence

from Finland shows that it is possible to increase technology adoption by targeted subsidies and,

by doing so, induce increases in the subsidized firms’ employment, revenue, and exports.

Empirical challenges in the industrial policy literature are similar to those in the literature on

technology and work. There are different types of industrial policies in different contexts, and

evaluating them is challenging. This paper provides new quasi-experimental estimates of firm

subsidies’ effects in a specific context. In addition to the research we mentioned earlier, Takalo et

al. (2013) and Einio (2014) analyze Finnish R&D subsidies.

market, or due to technological externalities, 2) compositional effects, e.g., through expansion and contraction of
firms and industries, 3) technologies creating new areas in the economy, e.g., video games, the Apollo program,
or Google, and 4) technologies directly inducing macro-level changes, e.g., self-booking platforms displacing travel
agents, the internet changing job search, or technologies inducing broad organizational and cultural changes. The
papers addressing externalities and compositional effects include Acemoglu et al. (2020b); Aghion et al. (2020);
Humlum (2019); Koch et al. (2021); Restrepo and Hubmer (2021), and Oberfield and Raval (2021).
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Products and Exports, Intermediate Inputs, and Innovation Our analysis relates to the

research on firms’ product and export choices, intermediate inputs, and innovation. Recent research

has found that becoming an exporter stimulates firms’ technology adoption and product quality

upgrading (Verhoogen, 2008; Lileeva and Trefler, 2010; Bustos, 2011; Kugler and Verhoogen, 2012).

Our research documents that technology adoption also induces firms to become exporters and to

introduce new product varieties. The complementarity between technology and exporting appears

to operate in both directions.

Access to new machinery is conceptually related to access to new intermediate inputs. Research

finds that access to new imported inputs fosters introducing new product varieties and productivity

(Goldberg et al., 2010; Koren et al., 2020). Our research corroborates the result on product varieties.

In related work, Bernard et al. (2010, 2011) analyze the role of product switching as a source of

reallocation within firms, and Hausmann et al. (2007) consider product-specialization patterns’

implications for growth.

Our theoretical framework builds on the literature on heterogeneous firms and trade reviewed

by Melitz and Redding (2014). We use modeling techniques from Bustos (2011) to capture the

technology adoption decisions by heterogeneous firms. We find that the monopolistic competition

view of the industrial manufacturing market is consistent with our quantitative and qualitative

evidence. Finally, our research provides empirical evidence to enrich the models of firm-level

technological change and innovation (e.g., Hopenhayn 1992; Ericson and Pakes 1995; Klette and

Kortum 2004; Acemoglu et al. 2018).60

60Back to Section 1.
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