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Main text
Synaptic degeneration is a prominent feature of vari-
ous neurodegenerative diseases and represents an early 
pathogenic event in Alzheimer’s disease (AD) [1, 2]. 
Multiple synapse-specific proteins involved in distinct 
synaptic pathways can be measured in the cerebrospi-
nal fluid (CSF) and have been implicated as promising 
biomarkers of synaptic degeneration. Among them, the 
most extensively studied ones include the presynaptic 
proteins synaptosomal-associated protein-25 (SNAP25), 
growth-associated protein-43 (GAP43) and synaptotag-
min-1 (SYT1) and postsynaptic protein neurogranin 
(NRGN) [3, 4]. However, the associations of these syn-
aptic biomarkers with AD-related pathologies including 
amyloid-β (Aβ), tau, glial activity, neurodegeneration, 
and cognitive function are still not fully understood. 
The aim of this study was to investigate and compare 
the relationships of synaptic biomarkers with AD bio-
marker-informed pathophysiology and clinical disease 
progression.

This cross-sectional study included 144 participants 
from the Translational Biomarkers in Aging and Demen-
tia (TRIAD) cohort, who had synaptic biomarkers quan-
tified in the CSF and had undergone multimodal imaging 

assessments including structural magnetic resonance 
imaging (MRI), Aβ-positron emission tomography (PET) 
with [18F]AZD4694, and tau-PET with [18F]MK6240. 
In addition to the descriptive statistical analyses, linear 
regression models were performed to examine the asso-
ciation between biomarkers, correcting for age and sex 
in all analyses. Detailed descriptions of methods and 
statistical analysis are available in Additional file 1: Sup-
plementary Material. Informed consent was obtained 
following ethics approval from the Institutional Review 
Board.

Clinical and demographic data are presented in Addi-
tional file 1: Table S1. Excluding the young participants, 
the average age of the population was 70  years old 
(± 7.74) and the AD dementia group was significantly 
younger than the other groups (P < 0.01). Concerning 
the synaptic biomarkers, age had a significant effect on 
SYT1 only (P = 0.004, partial eta-squared (ηp2) = 0.06). 
We found no difference in the proportions of males and 
females between the groups (P = 0.39), although sex effect 
was observed on NRGN (P = 0.001, ηp2 = 0.08 – when 
adjusting for covariates), where females had higher levels 
than males. Correlations between synaptic biomarkers 
and their concentrations across groups are presented in 
Tables S2 and S3, and Figures S1 and S2.

When evaluating if Aβ pathology would predict synap-
tic biomarker levels, we found that high concentrations 
of synaptic biomarkers were significantly associated with 
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increased Aβ pathology indexed by both Aβ PET and CSF 
Aβ42/40 (Fig. 1, Additional file 1: Figure S3 and Table S4) 
within the AD spectrum, except for SYT1, which did not 
associate with CSF Aβ42/40 or Aβ PET. From all bio-
markers, both PET and CSF measures had the highest 
effect size on SNAP25, as indicated by the beta values of 
the regression models, although it was not significantly 
better than GAP43 or NRGN. These results were further 
reinforced by the voxel-wise analysis, with SNAP25 hav-
ing more widespread associations with Aβ PET through-
out the frontal, temporal, parietal and posterior cingulate 
cortices (Additional file  1: Fig. S4). Similarly, significant 
associations were also found between tau PET and syn-
aptic biomarkers within the AD continuum, which were 
strongest for SNAP25 and weakest for SYT1. Stronger 
associations were found when CSF pTau181 was used as a 
proxy of tau pathology, with SNAP25 and GAP43 having 
the highest beta values. When tau PET uptake was evalu-
ated at the voxel level, we observed its associations and 
correlations with GAP43, NRGN and SNAP25 are largely 
colocalizing on the same brain regions.

Next, we investigated the relationships between syn-
aptic degeneration and glial activity, which was assessed 
with surrogate biomarkers of astrocytic reactivity and 
microglial activation, including glial fibrillary acidic pro-
tein (GFAP), chitinase-3-like protein 1 (YKL-40) and 
soluble triggering receptor expressed on myeloid cells 
2 (sTREM2). We found that GFAP was positively asso-
ciated with all synaptic biomarkers, and SNAP25 had 
the highest beta values  in the regression models. Very 
similar findings were observed for YKL-40, but not 
with sTREM2, which emerged as a better predictor of 
SYT1 levels than other synaptic biomarker tested. Syn-
aptic biomarkers also showed significant associations 
with neurodegeneration, indexed by CSF neurofila-
ment light chain (NfL) and hippocampal volume. GAP43 
showed the most substantial association with CSF NfL, 
as evidenced by its largest beta coefficient. However, 
hippocampal volume showed a significant inverse asso-
ciation only with SNAP25, which was also the biomarker 
that most correlated with grey matter atrophy in the pre-
defined anatomical regions. Finally, we found that the 
synaptic biomarkers were significantly associated with 

cognition proxied by Montreal cognitive assessment 
(MOCA) but not by mini-mental state examination 
(MMSE) at the same time point. However, all biomark-
ers were able to predict future cognitive performance 
proxied by both MMSE and MOCA, except SYT1. Addi-
tional results of path analysis are presented in Table S5 
and Figure S5.

The results of this study suggest that CSF synaptic 
biomarkers can indicate synaptic degeneration in corti-
cal regions affected by Aβ and tau pathologies, and are 
also linked with glial activity and future cognitive deficit, 
reinforcing their potential use as a biomarker for syn-
aptic dysfunction and degeneration in AD. Among the 
four synaptic biomarkers investigated, GAP43, NRGN 
and SNAP25 present very similar associations with Aβ 
and tau pathologies. SNAP25, in particular, has numeri-
cally greater associations and correlates with pathology 
in more brain regions. To our knowledge, no previous 
study had investigated the association of CSF synap-
tic biomarkers with the deposition of Aβ plaques and 
NFTs in the brain at the voxel level. In this study, voxel-
based analyses demonstrated that synaptic biomarkers 
including GAP43, NRGN and SNAP25 showed posi-
tive associations with Aβ plaque deposition in multiple 
AD-related regions including temporal cortices, occipi-
tal cortices, precuneus, posterior cingulate, and medial 
orbitofrontal cortices. On the other hand, the associa-
tion between the aforementioned synaptic biomarkers 
and NFT aggregation was primarily found in regions 
with early tau deposition including medial temporal and 
inferior-parietal cortices. Again, SNAP25 had numeri-
cally the strongest relationships with both Aβ-PET and 
tau-PET at the voxel level, although not significantly dif-
ferent from GAP43 and NRGN. Since studies have sug-
gested that soluble forms of Aβ and tau impose direct 
toxicity on the synapses [5], it is important to investigate 
the associations of these synaptic biomarkers not only 
with plaques and tangles, but also with Aβ and p-tau in 
the CSF. Results from linear regression models suggested 
that higher concentrations of synaptic biomarkers were 
associated with a lower CSF Aβ42/40 ratio (indicating 
a higher concentration of Aβ deposition in  the brain) 
and higher CSF p-tau concentrations. Among the CSF 

(See figure on next page.)
Fig. 1  Associations of synaptic biomarkers with AD biomarkers and cognition. a Forest plot showing the standardized estimates of the linear 
regression models of associations between synaptic biomarkers and other CSF/imaging biomarkers, adjusted by age and sex (for future 
cognition, baseline scores were also accounted for in the models). Dots indicate β values and bars show the confidence intervals. b Associations 
between synaptic biomarkers and Aβ PET, Tau PET and hippocampal volume in participants within the AD continuum. The lines represent the linear 
regression, and the shaded areas show the 95% confidence interval. Symbol * indicates significant associations. c Chord diagrams showing 
the correlations between synaptic and imaging biomarkers in pre-defined anatomical brain regions that remained significant after FDR correction 
for multiple comparisons
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Fig. 1  (See legend on previous page.)
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synaptic biomarkers investigated, SNAP25 presented 
the strongest effect size as indexed by beta coefficients, 
suggesting that SNAP25 rises at an early stage in the AD 
spectrum.

Beyond Aβ and tau pathologies, we also assessed 
whether synaptic biomarkers differ in their association 
with glial activity, neurodegeneration and cognition. In 
this study, GFAP was positively associated with all  syn-
aptic biomarkers although SNAP25 had numerically the 
highest association values. Very  similar findings were 
obtained when YKL-40 was evaluated, but not with 
sTREM2. Interestingly, sTREM2 best predicted SYT1 
levels, and no association was found with SNAP25. Pre-
clinical studies provided evidence that microglia and 
astrocytes can drive synaptic degeneration in animal 
models of ageing and AD via ingestion of tagged syn-
apses, contributing to cognitive decline [6–8]. Although 
knowledge of the involvement of astrocytes and micro-
glia in synaptic ingestion in humans during ageing and 
AD remains very limited, results collectively suggest that 
glial cells are likely capable of inducing synaptic loss and 
degeneration in humans. Results from this study also 
showed significant associations of synaptic biomarkers 
with neurodegeneration biomarkers. A higher concentra-
tion of SNAP25 was significantly associated with smaller 
hippocampal volume and correlated with grey matter 
atrophy in several brain anatomical regions. In line with 
these findings, we also found synaptic biomarkers to pre-
dict future cognitive performance, proxied by MMSE and 
MOCA, whilst at baseline assessment, a significant asso-
ciation was only found between SNAP25 and MOCA.

These findings should be considered in light of some 
limitations such as the sample size and the inherent con-
straints of cross-sectional data analysis, which cannot 
implicate synaptic biomarker trajectories along disease 
progression. Furthermore, the availability of a PET ligand 
to study synaptic density [9, 10] would be very valuable to 
further investigate brain regional associations of synaptic 
degeneration and provide insights into the mechanistic 
links between AD biomarkers and synaptic alterations in 
the living human brains.

Overall, this study suggests that CSF synaptic bio-
markers exhibit a degree of interchangeability in their 
potential utility. SNAP25 stands out as a superior CSF 
biomarker for assessing synaptic dysfunction due to its 
broader biomarker associations and larger effect sizes, 
supporting its potential inclusion in future AD clinical 
trials. This underscores the importance of considering 
synaptic function as a critical endpoint in AD treatment, 
beyond the traditional focus on Aβ and tau pathologies. 
Understanding the links between synaptic degeneration 
and other AD events offers insights for targeting syn-
apses as a therapeutic opportunity in AD.
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