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DOPA‑decarboxylase is elevated in CSF, 
but not plasma, in prodromal and de novo 
Parkinson’s disease
Ellen Appleton1†, Shervin Khosousi1†, Michael Ta2,3,4, Michael Nalls2,3,4, Andrew B. Singleton2,4, 
Andrea Sturchio1,5, Ioanna Markaki1, Wojciech Paslawski1, Hirotaka Iwaki2,3,4 and Per Svenningsson1,6*    

Parkinson’s disease (PD) diagnosis is based solely on 
clinical presentation [1]. Therefore, diagnostic and prog-
nostic biomarkers are needed. In recent years, seeding 
aggregation assays (SAA) have demonstrated the ability 
to discriminate PD from controls, showing also potential 
as a predictive marker [2]. Furthermore, the development 
of modern proteomic techniques such as the proxim-
ity extension assay (PEA) has enabled high throughput, 
highly sensitive multiplexing studies to become more 
prevalent. In the past year, several such studies identi-
fied DOPA decarboxylase (DDC) as an analyte of par-
ticular interest, demonstrating consistent elevation in 
Lewy body diseases and promising diagnostic potential. 
Increased DDC has been found in the cerebrospinal fluid 
(CSF) [3–5] and plasma [4] of both PD [3–5] and demen-
tia with Lewy bodies [4, 5] as well as atypical PD [3, 4], 

but not in non-parkinsonian neurodegenerative condi-
tions such as Alzheimer’s disease [5]. Intriguingly, CSF 
DDC is elevated in SAA-positive subjects, independent 
of Lewy body disease diagnosis [4].

This study aimed to evaluate CSF and plasma levels 
of DDC in prodromal, de novo, and treated PD patients 
and controls using PEA in three independent cohorts, 
the Parkinson’s Progression Markers Initiative (PPMI) 
(de novo PD n = 74 CSF, n = 78 plasma; prodromal PD 
n = 51 CSF, n = 62 plasma; and control n = 130 CSF, 
n = 130 plasma); Parkinson’s Disease Biomarkers Pro-
gram (PDBP) (PD n = 84 CSF, n = 84 plasma; and control 
n = 54 CSF, n = 54 plasma); and Biopark (PD n = 120 [27 
de novo] CSF, n = 238 [26 de novo] plasma; and control 
n = 69 CSF, n = 50 plasma) (Additional file 1: Table S1 and 
Supplementary Methods).

Differential abundance analysis of 1463 proteins in the 
CSF revealed DDC to be the most significantly changed 
protein in PD (PDBP), prodromal PD and de novo PD 
(PPMI) compared to controls. Focused investigation of 
PD CSF samples from Biopark using the Olink “Metab-
olism” panel (91 proteins) similarly identified DDC as 
the most increased analyte (Fig.  1a–g). Further analysis 
revealed similar elevations of CSF DDC in both prodro-
mal and de novo PD in the PPMI cohort (Fig. 1f ).

Receiver operating characteristic (ROC) curves were 
constructed to assess the discriminatory capacity of CSF 
DDC (Fig.  1h, Table  S2). DDC was able to discriminate 
PD from controls with area under the curve (AUC) of 
0.79–0.94 in three cohorts. The highest AUC was in the 
PDBP cohort where most PD patients were on treatment, 
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Fig. 1  CSF and plasma DDC levels in prodromal, de novo and treated PD. a–d Volcano plots showing differential abundance of 1463 proteins 
in the CSF, corrected for age and sex. Axes display Log2 fold change and Benjamini–Hochberg adjusted P-values. Plots show PD (n = 84) 
versus controls (n = 54) in the PDBP cohort (a), prodromal PD (n = 51) versus controls (n = 130) (b) and de novo PD (n = 74) versus controls (n = 130) 
(c) in the PPMI cohort, and PD (n = 120) versus controls (n = 69) (66 proteins) in the Biopark cohort (d). e–g Box-plots of age- and sex-adjusted CSF 
DDC levels in PD and controls from the PDBP cohort (independent t-test) (e), prodromal, de novo PD and control samples from the PPMI cohort 
(ANOVA, Tukey post-hoc test) (f), and de novo PD, PD and control samples from the Biopark cohort (ANOVA, Tukey post-hoc test) (g). h Receiver 
operating characteristic (ROC) curves for CSF DDC levels with area under the curve (AUC) for prodromal or PD vs controls in each cohort. i–l 
Volcano plots showing differential abundance of 1463 proteins in plasma, corrected for age and sex. Axes display Log2 fold change and Benjamini–
Hochberg adjusted P-values. Plots show PD (n = 84) versus controls (n = 54) in the PDBP cohort (i), prodromal PD (n = 62) versus controls (n = 130) (j) 
and de novo PD (n = 78) versus controls (n = 130) (k) in the PPMI cohort, and PD (n = 238) versus controls (n = 50) (71 proteins) in the Biopark cohort 
(l). m–o Box-plots of age- and sex-adjusted plasma DDC levels in PD and controls from the PDBP cohort (independent t-test) (m), prodromal, de 
novo PD and control samples from the PPMI cohort (ANOVA, Tukey post-hoc test) (n), and de novo PD, PD and control samples from the Biopark 
cohort (ANOVA, Tukey post-hoc test) (o). p ROC curves for plasma DDC levels with AUC for prodromal or PD vs controls in each cohort. *P < 0.05, 
****P < 0.0001
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and the lowest in the de novo, unmedicated PD patients 
from PPMI and Biopark. Prodromal PD showed compa-
rable results, with an AUC of 0.80.

As most controls and de novo PD patients in the PPMI 
cohort had data on SAA status available, we analysed its 
association with DDC levels in CSF. SAA positivity was 
associated with higher DDC levels in both PD and the 
few SAA+ controls. Moreover, the few SAA- PD subjects 
had below-average levels of DDC in the PD group (Fig. 
S1).

The Olink analysis was repeated in plasma samples 
from the same three cohorts (Fig. 1i–o). As in CSF, DDC 
was the most significantly increased protein in PD plasma 
samples from the PDBP and Biopark cohorts, compared 
to controls. However, DDC was not altered in prodromal 
or de novo PD from the PPMI cohort (Fig. 1n). Addition-
ally, separation of the Biopark PD samples into de novo 
and treated PD also demonstrated no significant plasma 
DDC increase in de novo PD vs controls (Fig. 1o).

Furthermore, ROC analysis showed plasma DDC levels 
to be capable of differentiating between PD and controls 
in both the PDBP and the Biopark (AUC = 0.87–0.88) 
cohorts. This was not replicated in de novo PD from 
PPMI and Biopark (AUC = 0.50–0.58), or prodromal PD 
(AUC = 0.60) (Fig. 1p, Table S2).

The three cohorts are heterogeneous in terms of PD 
stage and medication and further analyses revealed that 
disease duration and levodopa equivalent daily dose in 
the PDBP cohort were positively correlated with both 
CSF and plasma DDC levels (Fig. S2). The PPMI de novo 
PD cohort was followed over a period of four years, dur-
ing which time many participants began PD treatment 
(Fig. S3). From this longitudinal dataset, we selected the 
latest time point for each patient (average disease dura-
tion 2.8  years for CSF, 2  years for plasma), in order to 
further explore the influence of medication on DDC lev-
els. As in the Biopark cohort, plasma DDC was signifi-
cantly increased in treated PD samples only, whilst CSF 
DDC was increased in both treated and untreated PD 
(Fig. S3). The increase in plasma DDC appeared to be 
driven by levodopa/DDC-inhibitor treatment specifically, 
as the same effect was not observed in those receiving 
only dopamine agonists, an effect mirrored in the PDBP 
cohort (Figs. S3 and S4).

After correcting for age and sex, a weak correlation 
between CSF DDC and Unified Parkinson’s Disease Rat-
ing Scale 3 (UPDRS-3) score (R = 0.23, P = 0.048) was 
found in de novo PD patients from the PPMI cohort, but 
it was not reproduced in other cohorts (Fig. S5). No other 
correlations were identified in CSF and/or plasma.

By utilising PEA analysis in three independent cohorts, 
we have provided further evidence of the efficacy of DDC 
as a diagnostic PD biomarker. Of particular importance, 

assessment of prodromal and de novo PD patients from 
the PPMI and Biopark cohorts demonstrated that CSF 
DDC has diagnostic capacity in early, untreated PD, and 
even before PD diagnosis.

The Biopark, PPMI, and PDBP cohorts are heterogene-
ous with regard to disease stage, disease duration, and PD 
treatment status, features which were shown to correlate 
with DDC levels. Levodopa had a small influence on CSF 
DDC. For example, the highest AUC was in the PDBP 
cohort where most PD patients were on treatment, and 
the lowest were in the unmedicated, de novo PD patients 
from the PPMI and Biopark cohorts. Nevertheless, DDC 
is an excellent CSF biomarker across cohorts, independ-
ent of treatment.

We speculate that the increase of DDC in the CSF 
could be a compensatory mechanism as suggested in 
animal models [6]. Another possible reason could be the 
release of DDC from dying monoaminergic neurons. 
DDC has limited correlation with clinical features; in 
fact, only a mild correlation was found between DDC and 
UPDRS-3 total score, questioning its validity as a robust 
prognostic biomarker. Moreover, it has been shown that 
different DDC polymorphisms can affect the levodopa 
response, adding another layer of complexity for the clin-
ical correlation [7].

Whilst plasma DDC was very effective in discriminat-
ing between treated PD and controls, this did not extend 
to prodromal and de novo PD. As has been shown previ-
ously, plasma DDC levels are affected by levodopa/DDC-
inhibitor treatment [8]. Intriguingly, this effect was not 
seen in subjects treated with dopamine agonists. It would 
be interesting to investigate what other factors related 
to PD medication affect DDC levels, including the type 
and dose of DDC inhibitors, the effect of MAO/COMT 
inhibitors, and different dopamine agonists.

Our paper adds novelty to the recent findings [3–5] in 
which higher DDC levels have been found in subjects 
with Lewy body dementia and atypical parkinsonism, 
corroborating the importance of DDC in the diagnosis of 
parkinsonian syndromes.

A strength of this study is the large sample size and val-
idation of the results using several cohorts. However, this 
could be strengthened further using orthogonal methods 
to corroborate DDC measurements.

In conclusion, our data show that CSF DDC has strong 
biomarker potential in PD. Since we found alterations 
even in the prodromal phase, DDC could be also an 
excellent biomarker for the identification of patients suit-
able for clinical trials.
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PDBP	� Parkinson’s Disease Biomarkers Program
ROC	� Receiver operating characteristic
AUC​	� Area under the curve
UPDRS	� Unified Parkinson’s disease rating scale
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