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Main text
Cerebral small vessel disease (CSVD) is a prevalent cer-
ebrovascular disease characterized by chronic vascular 
dysfunction [1], primarily diagnosed using MRI-based 
markers such as white matter hyperintensities (WMHs), 
cerebral microbleeds, perivascular spaces, and lacunes 
[2]. CSVD also involves blood–brain barrier (BBB) dis-
ruption, evident with an elevated cerebrospinal fluid 
(CSF)/serum albumin ratio (also called Albumin Quo-
tient, QAlb) [3]. Despite these markers reflecting dif-
ferent aspects of cerebrovascular disease, its underlying 
causes are not fully understood. Interestingly, CSVD 
often coincides with Alzheimer’s disease (AD) pathol-
ogy [4], and abnormal tau pathology affects brain vessel 
architecture and worsens white matter neurite density 
[5]. More importantly, glial cell-mediated neuroinflam-
mation is involved in the onset and progression of both 
CSVD and AD [6]. However, it is unclear whether the 

contribution of neuroinflammation to cerebrovascular 
injury is independent of AD pathology and the associa-
tion between CSF biomarkers of reactive glial cells and 
CSVD features remains unknown.

In this study, we included 52 cognitively unimpaired 
individuals, 42 patients with mild cognitive impairment, 
75 patients with AD, and 27 participants with non-AD 
dementia. There were no significant differences in sex 
among the clinical groups. The demographic character-
istics are summarized in Additional file 1: Table S1. Neu-
roinflammatory markers in CSF were analyzed, including 
MIF, CCL-2, CXCL-8, YKL-40, S100B, and LCN2. BBB 
permeability was assessed using the QAlb method, and 
the extent of CSVD was measured using MRI (Additional 
file 2: Supplementary Methods).

The levels of CSF neuroinflammatory markers were 
analyzed in individuals with different CSVD bur-
dens (Fig.  1a). Elevated pTau levels were found in mild 
CSVD (CSVD = 1, P = 0.014) cases, while decreased CSF 
Aβ42/Aβ40 ratios were observed in patients with mild 
(P = 0.007) or severe CSVD (CSVD > 1, P = 0.005). To rule 
out the potential effects of AD pathology, CSF Aβ42/
Aβ40 and pTau were adjusted as covariates. Compared 
to controls, CSVD participants exhibited higher QAlb 
(CSVD = 1: P = 0.034; CSVD > 1: P = 0.041) and LCN2 
(CSVD = 1: P = 0.018; CSVD > 1: P = 0.004) levels. MIF 
(P = 0.033) and CCL-2 (P = 0.027) levels were elevated 
only in severe CSVD cases. CXCL-8 levels were higher 
in severe CSVD compared to controls (P = 0.013) and 
mild CSVD (P = 0.003), while severe CSVD patients had 
lower S100B levels than mild CSVD cases (P = 0.043). 
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CSF neuroinflammatory marker levels in different groups 
defined by other CSVD features were also analyzed 
(Additional file 1: Figs. S1-S12).

We then evaluated the levels of neuroinflammatory 
markers at various stages of BBB damage. The QAlb val-
ues were divided into quartiles to assess the extent of 
BBB damage: Q1 (no damage), Q2 (mild damage), Q3 

Fig. 1  Levels of CSF biomarkers in different groups and their associations with cerebrovascular damage features. a, b Levels of CSF biomarkers 
across CSVD burdens (a) and QAlb stage (b). The box plots depict the median (horizontal bar), interquartile range (IQR, hinges), and the whiskers 
indicate the minimum and maximum values. (Quartile of Ln QAlb: Q1: 1.0–1.81; Q2: 1.81–2.13; Q3: 2.13–2.46; Q4: 2.46–3.46). P values were 
assessed by a one-way analysis of covariance (ANCOVA) adjusted by age, sex, APOE-ε4, Aβ42/Aβ40, and pTau. c Associations between different 
neuroinflammatory markers and cerebrovascular damage summarized in forest plots. Linear regression models were adjusted by age, sex, 
APOE-ε4, Aβ42/Aβ40, and pTau. (The red line represents P < 0.05, the black line represents P > 0.05). d Mediation analysis of YKL 40 alteration affects 
the BBB damage and white matter lesions. Mediation analysis included the following variables: Aβ42/Aβ40 or pTau were treated as a mediator, 
QAlb and WMH volumes were set as the dependent variable, and YKL-40 was set as the independent variable. Analyses based on multiple linear 
regression models with sex, age, and APOE-ε4 adjusted as covariates. P < 0.05 was considered statistically significant
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(moderate damage), and Q4 (severe damage) (Fig.  1b). 
Interestingly, AD core biomarkers (pTau and Aβ42/
Aβ40), CCL-2, and S100B showed minimal changes 
across QAlb quartiles. MIF (P = 0.008) and CXCL-8 
(P = 0.001) increased at moderate BBB damage but 
tended to decrease at severe BBB dysfunction. Patients 
with severe BBB dysfunction had the highest YKL-40 
levels (Q4 vs. Q1, P = 0.005; Q4 vs. Q2, P = 0.017; Q3 vs. 
Q3, P = 0.040). LCN2 increased significantly from early 
BBB damage (Q2 vs. Q1, P = 0.038), peaking at the severe 
stage (Q4 vs. Q1, P < 0.0001; Q4 vs. Q2, P = 0.013).

Subsequently, we performed univariate linear regres-
sion to explore associations of neuroinflammatory 
markers with QAlb and WMH volumes. Elevated QAlb 
correlated with increased CXCL-8 (β = 0.166, P = 0.038), 
YKL-40 (β = 0.238, P = 0.005), and LCN2 (β = 0.400, 
P < 0.0001). Higher WMH volumes were associated with 
elevated YKL-40 (β = 0.333, P = 0.010) but decreased 
S100B (β =  − 0.329, P = 0.010) (Fig.  1c and Additional 
file 1: Table S2). These associations remained significant 
even without adjusting for CSF Aβ42/Aβ40 and pTau 
(Additional file  1: Fig. S13). AD patients exhibited dif-
ferent association patterns compared to non-AD groups 
(Additional file 1: Table S3).

To assess the contribution of CSF neuroinflammatory 
markers to QAlb and WMH volumes, we conducted 
multivariate analysis, incorporating significant markers 
identified from univariate analyses. Covariates included 
age, sex, APOE-ε4, Aβ42/Aβ40, and pTau. The R2 values 
for the models with markers alone and markers in com-
bination with covariates are summarized in Additional 
file  1: Table  S4. While covariates significantly contrib-
uted to higher QAlb (R2 = 0.080, P = 0.003), regression 
values for QAlb were similar between models with 
markers alone and with markers + covariates (R2 = 0.314 
versus R2 = 0.366), suggesting neuroinflammation is a 
primary mediator of the effect on QAlb. For WMH vol-
umes, models with YKL-40 and S100B remained signifi-
cant (R2 = 0.334, P = 0.002), whereas covariates did not 
(R2 = 0.089, P = 0.071). Notably, YKL-40 directly contrib-
uted to BBB damage and WMH lesions independent of 
AD pathologies (Fig. 1d).

Although the involvement of inflammation in CSVD 
is well recognized [7], the relationship of neuroinflam-
mation, particularly CSF neuroinflammatory markers 
closely related to glial cells, with cerebrovascular dys-
function, remains largely unexplored. Our study revealed 
associations between CSF neuroinflammatory markers 
closely related to glial cells (YKL-40, S100B, and LCN2) 
and cerebrovascular injury. YKL-40 positively corre-
lated with both QAlb and WMH volumes, implicating its 
role in BBB permeability and WMH progression. Con-
versely, elevated LCN2 levels were linked to worsened 

BBB permeability, while S100B negatively affected WMH 
volumes.

A large proportion of AD patients exhibit cerebro-
vascular dysfunction, complicating the understanding 
of the role played by neuroinflammation in mixed AD 
and cerebrovascular disease. Recent positron emission 
tomography studies revealed distinct pathways of neu-
roinflammation and Aβ deposition, independently con-
tributing to the progression of mixed AD and vascular 
dementia pathologies [8]. Similarly, our data showed 
increased glial cell-associated neuroinflammatory mark-
ers during early CSVD and BBB damage stages, even 
after adjustment for AD-related pathologies. This high-
lights the glial cell-associated neuroinflammation as an 
early event in cerebrovascular disease.

Our study has several limitations. First, it was cross-sec-
tional and conducted in a single center, limiting the gen-
eralizability to other regions, especially in a vast country 
like China. Second, we did not measure CSF biomarkers 
of vascular inflammation secreted by activated endothe-
lial cells, which are crucial components of the BBB and 
vasculature. Future research should explore the causal 
relationship and sequence of vascular inflammation 
and pathophysiological events. Furthermore, lipids and 
metabolites that contribute to vascular brain injury should 
also be considered in future investigations. Last, we did 
not include the analysis of soluble PDGFRβ (sPDGFRβ) in 
this study. PDGFRβ is a type of tyrosine kinase receptor 
expressed by pericytes, and sPDGFRβ in the CSF has been 
suggested to be closely associated with pericyte and BBB 
damage [9]. In particular, a recent study has shown that 
high baseline levels of CSF sPDGFRβ predict the future 
cognitive decline in carriers of APOE4 gene, a major risk 
factor for AD [10]. Therefore, it would be important to 
investigate pericyte-related biomarkers to understand the 
pathophysiology of neurodegenerative diseases, particu-
larly in relation to cerebrovascular dysfunction.

In summary, our findings provide evidence that neu-
roinflammatory CSF biomarkers tightly related to glial 
cells play a significant role in distinct pathological pro-
cesses associated with cerebrovascular damage, which is 
independent of AD pathologies. Future studies are neces-
sary to fully understand the functional profiles of specific 
neuroinflammatory markers in cerebrovascular dysfunc-
tion. Such investigations would not only aid in the iden-
tification of monitoring biomarkers but also facilitate the 
development of targeted therapeutic strategies.
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