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Abstract

The last decades have witnessed huge efforts devoted to deciphering the pathological mechanisms underlying
Alzheimer’s Disease (AD) and to testing new drugs, with the recent FDA approval of two anti-amyloid monoclonal
antibodies for AD treatment. Beyond these drug-based experimentations, a number of pre-clinical and clinical trials
are exploring the benefits of alternative treatments, such as non-invasive stimulation techniques on AD neuropathol-
ogy and symptoms. Among the different non-invasive brain stimulation approaches, transcranial alternating current
stimulation (tACS) is gaining particular attention due to its ability to externally control gamma oscillations. Here, we
outline the current knowledge concerning the clinical efficacy, safety, ease-of-use and cost-effectiveness of tACS

on early and advanced AD, applied specifically at 40 Hz frequency, and also summarise pre-clinical results on vali-
dated models of AD and ongoing patient-centred trials.
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Background

Alzheimer’s Disease (AD) is an irreversible and pro-
gressive neurodegenerative disorder, with a devastating
impact on the quality of life of patients and their caregiv-
ers. The staggering number of people affected with AD
is about 50 million, which is expected to triple by 2050,
causing a huge burden on healthcare systems [1, 2]. AD
is the most common form of dementia and is character-
ized by a progressive loss of memory, deficits in cognitive
functions (e.g., word retrieval, language comprehension,
visuospatial orientation, abstract thinking and judgment)
and neuropsychiatric symptoms (e.g., mood disorders,
apathy, anxiety, irritability, aggression and sleep distur-
bances), with the latter often appearing years before the
cognitive decline [3-6].

©The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or

other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40035-024-00423-y&domain=pdf
http://orcid.org/0000-0001-6526-1832

De Paolis et al. Translational Neurodegeneration (2024) 13:33

The amyloid cascade has been considered the main
explanation for AD pathogenesis for the last 40 years
[7-10], speculating that neuronal loss depends on the
toxic nature of amyloid p (Ap) soluble oligomers, fibrils
or plaques. According to this hypothesis, an increased
production of the toxic AP, fragment, following the
cleavage of amyloid precursor protein (APP) by pB- and
y-secretases, leads to enhanced oligomerisation and fibril
formation compared to the AP,, fragment, and to fast
accumulation of these fibrils into plaques, exacerbating
the neurotoxicity. Indeed, AP oligomerisation, fibrillo-
genesis, aggregation and deposition into plaques spark
a deleterious process that leads to synaptic degradation,
neuronal loss, neurodegeneration and neuroinflamma-
tion. The discovery of genetic mutations (APP, PSENI,
and PSEN?2) and the genetic risk factor (APOE €4 allele)
has corroborated the amyloid cascade hypothesis.
Indeed, A pathology still remains the most common tar-
get in clinical trials for AD treatment [11] and, through-
out the years, many anti-Ap monoclonal antibodies with
specific biochemical targets have been developed to
block its cascade at different stages. Despite the failure of
many potential candidates [12, 13], this effort resulted in
the recent FDA approval of two anti-Af antibodies, adu-
canumab and lecanemab, based on imaging data showing
reduction in amyloid burden and clinical results indicat-
ing a slowing-down of cognitive decline and improve-
ment in daily living [14-16]. Yet, these drugs are also
associated with adverse events such as amyloid-related
imaging abnormalities (ARIA) and variable changes
in brain volume, that, in the case of aducanumab, have
raised important issues regarding the risk—benefit profile
and have led to the refusal by the European Medicines
Agency to authorise the drug [17, 18]. On the other hand,
interesting results on safety are to be expected from the
ongoing trial on lecanemab in healthy young individu-
als with intermediate or elevated amyloid levels at risk of
developing AD ([19] — AHEAD trial NCT04468659).

A key factor contributing to the failure of many clini-
cal trials can be attributed, in part, to their late admin-
istration in the disease course. Indeed, the timing of the
therapeutic intervention plays a critical role. As a mat-
ter of fact, many years before clinical diagnosis, most
disease-related processes are already active in destroying
synapses and neuronal connections [20]. These altera-
tions occur even before the mild cognitive impairment
(MCI)-due-to-AD phase, the transitional period between
normal ageing and the diagnosis of clinically-probable
very-early AD [21]. The annual conversion rate from MCI
to dementia ranges from approximately 22% (commu-
nity-based studies) to 39% (memory clinics), with most
individuals developing AD [22]. Thus, in the context of
AD, the MCI phase represents a unique and crucial
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time-window for intervention to allow the slowing-down
of the disease progression. For this reason, specific and
accurate diagnosis of MCI-due-to-AD is essential in
order to apply tailored treatments, since the “one-size-
fits-all” approach may not be suitable because of the vari-
ous disease trajectories observed in MCI patients.

Indeed, in the MCI and early-AD stages, patients and
AD animal models show neuronal hyperexcitability,
spontaneous epileptiform activity and changes in cer-
ebral network oscillations [23—25]. In particular, reduc-
tions in alpha (7-13 Hz)-, beta (14-30 Hz)-, and/or
gamma (25-140 Hz)-frequency bands, and increases in
the theta (4-7 Hz) band have been described [26, 27].
A particular interest currently is on gamma oscillations,
which act physiologically as a “binding factor” that
coordinates the activities of various neurons in brain
areas involved in complex cognitive functions. When
gamma wave dysregulation occurs, network coordina-
tion fails, contributing to the cognitive deficits seen in
MCI ([26, 28, 29]; BOX 1).

In this conceptual framework of conceiving AD as a
circuit-based disorder, a new therapeutic paradigm is
hypothesized: is it possible to slow down or block disease
progression by tuning up these precocious neural cir-
cuit alterations? Non-invasive brain stimulation (NIBS)
techniques represent a promising intervention tool, not
only for their tolerability and safety, but also because
they can be used to directly target specific neural circuit
disturbances (see [30-32] for thorough reviews). In fact,
the challenges related to current drug treatments (such
as the potential ineligibility of patients, the absence of
clinically-relevant cognitive improvements after therapy,
the high costs or potential side effects) are pushing the
scientific community to explore new and alternative non-
pharmacological approaches for AD treatment. Among
the NIBS techniques, transcranial alternating current
stimulation (tACS) is receiving particular interest in the
AD field due to its relationship with brain oscillations. In
this review, we aim to discuss the current understanding
of this promising therapeutic strategy, with a major focus
on tACS at 40 Hz gamma frequency, as a potential way to
restore the disrupted brain connectivity and potentially
mitigate AD symptomatology.

Unravelling the potential of tACS

in neurostimulation: mechanisms and insights
Among the different NIBS methods, transcranial electri-
cal stimulation represents a group of techniques based on
the delivery of weak electric currents to modulate neu-
ral activity in the brain. This versatile method includes
several procedures that, depending on the way elec-
tric current is delivered, can be classified as continuous
(transcranial direct current stimulation, tDCS), random
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(transcranial random noise stimulation, tRNS) or alter-
nating (tACS), each resulting in distinct neurostimulation
effects. Among these methods, tACS stands out as a cut-
ting-edge approach, representing a significant advance
in the field of NIBS because it offers a unique and pre-
cise protocol to tune up the brain’s intrinsic oscillations,
opening up new possibilities for personalized brain stim-
ulation and therapeutic interventions in various neuro-
logical and psychiatric conditions, including AD.

Mechanism of action—how tACS works

tACS represents a simple procedure based on the deliv-
ery of low-intensity electric current (in humans it typi-
cally ranges from 1 to 4 mA) by the application of two or
more electrodes connected to a battery-powered current
stimulator [32]. The electrodes, strategically placed on
the scalp over the targeted brain region, deliver alternat-
ing currents which penetrate the skull and, at the selected
frequencies and intensities, can modulate the electrical
activity of neurons in the underlying brain areas, for a
selected treatment duration. More specifically, the cur-
rent delivered moves from the positive maximum pole to
the negative maximum one, providing a single repeating
cycle in sinusoidal motion with a specific frequency.

As the current penetrates the skull and reaches the
targeted brain region, it induces alterations of the mem-
brane potential towards depolarization or hyperpolariza-
tion in an oscillatory fashion both in cell bodies and in
dendrites of neurons [33]. This alternating change in the
membrane potential is considered sufficient to change
the neuronal probability of generating action potentials
[34]. However, it does not directly affect the firing rate
of action potentials; instead, it governs their timing in a
frequency- and location-specific manner [35]. The effec-
tiveness of tACS is influenced not only by the amplitude
and frequency of the stimulation but also by the three-
dimensional orientation of both neurons and the pen-
etrating current. Its effects stem from the modification
of the membrane potential of neurons aligned with the
induced electric field [36]. Consequently, when these cells
are stimulated by tACS, they exhibit specific frequency
resonance, long-lasting after-effects and long-distance
oscillatory connectivity with their targets. Moreover,
the orientation of the electric stimulation significantly
alters the characteristics of the resulting field and, conse-
quently, its impact on neurons [37].

While the precise mechanisms underlying the action
of tACS remain not fully understood, electrophysi-
ological approaches, primarily electroencephalogra-
phy (EEG) or magnetoencephalography in humans, as
well as intracranial recordings and local field potential
recordings in animals have been employed to investi-
gate tACS mechanisms [33, 38—40]. Such studies have
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identified two main categories of effects: online effects,
which can help assess phase modulation during stimu-
lation, as well as offline effects, which can help assess
the lasting effects of stimulation, after stimulation has
ended. It has been suggested that the online effects
involve entrainment of brain oscillations to the stimu-
lation frequency and coupling or decoupling of long-
range oscillatory connectivity between distant brain
regions. Yet, the offline effects more likely involve
spike-timing dependent plasticity (STDP) rather than
entrainment [40-42]. These two mechanisms [43]
have been proposed as the main putative mechanisms
of action of tACS. Entrainment is a phenomenon
based on the synchronization of an oscillating unit to
an external driving force. The interaction between the
internal oscillator and the external driving force is uni-
directional; thus, only the internal oscillations are influ-
enced by the external driving force and not vice versa.
Entrainment is thought to be most effective when the
stimulating frequency is at or close to the endogenous
frequency of the targeted area, and when the endog-
enous oscillations approximate the external driving
force, both rhythms become coupled [44]. In STDP, the
stimulation leads to synaptic changes based on the tim-
ing of neuronal firing. Synaptic strength increases when
pre-synaptic spikes occur prior to the post-synaptic
spikes (long-term potentiation, LTP). Conversely, when
post-synaptic spikes occur prior to pre-synaptic spikes,
synapses weaken (referred to as long-term depression,
LTD; [45]). This tool produces periodic changes in the
firing frequency of the targeted neuronal networks
and consequentially can enhance or reduce the mag-
nitude of continuous physiological oscillatory rhythms
[46-48]. Despite this knowledge, the extent at which
entrainment and plasticity events produced by tACS
are interconnected, or whether their effects are inde-
pendent, remains to be defined.

Another important aspect related to the efficacy of
tACS is the intensity-effect relationship. When admin-
istered at a relatively low intensity, neuronal entrain-
ment is relevant to only a few cells, but application of
higher current intensities, considered safe for humans,
results in an increase of the electric fields and in a con-
sequent higher number of neurons entrained by tACS.
This suggests the existence of a minimum effective
intensity [35, 49, 50]. The direct relationship between
entrainment and current intensity provides evidence
for the dose-dependent impact of tACS on neuromod-
ulation. Yet, this relationship is not strictly linear as it
was shown that weaker stimulation intensities, below
the minimum effective one, induces de-entrainment
of neurons to the endogenous oscillation instead of
the external one [51, 52]. These and other experiments
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represent an important basis for choosing the most
appropriate parameters for translational applications of
tACS in humans.

Safety considerations

Working at very low intensities, tACS appears to be a
non-invasive, risk-free intervention, with only mod-
est and temporary side effects that are typically well
tolerated. These include moderate headache, nausea,
fatigue and skin reactions such as itching, tingling and
redness under the electrodes used to administer the
current [53-55]. However, although tACS is generally
considered safe when applied within the recommended
parameters, it is essential to consider individual dif-
ferences in brain anatomy and electrical conductivity
to avoid adverse effects. Careful electrode placement,
choice of stimulation intensity and monitoring are nec-
essary to minimize potential risks.

The paucity of important side effects represents a com-
parative advantage of tACS over anti-amyloid mono-
clonal antibody therapies and can be a salient point
of consideration within the realm of AD therapeutics.
Indeed, the new monoclonal antibody treatments, while
promising in their ability to target the underlying amyloid
pathology, come with strict eligibility criteria that limit
their applicability to only a small percentage of patients
in the early stages of AD. This is what emerged from a
recent publication that shed light on how the eligibility
of early-AD patients for treatment with aducanumab or
lecanemab is actually limited due to exclusionary com-
mon conditions of the typical older adult population
(including cognitive performance and age, body mass
index, comorbidities, brain microhaemorrhage suspi-
cious for co-morbid angiopathy [56]). Of the 237 partici-
pants with MCI or mild dementia and increased cerebral
amyloid load, only 47% met the inclusion criteria for
lecanemab’s trial, reducing to 8% after exclusion criteria
were added. For aducanumab, only 44% of patients were
eligible, falling to 5% after exclusion criteria were applied.
Conversely, the non-invasive nature of tACS alleviates
concerns pertaining to systemic adverse effects and pro-
cedural complications, rendering it potentially suitable
across a broader demographic spectrum, which is par-
ticularly relevant in the context of AD patients, typically
characterised by variable clinical profiles and medical
histories. It is also important to note that the individu-
alised dosimetry and customisable nature of tACS
parameters allow for tailored interventions, taking into
account inter-individual variability in neurophysiologi-
cal responses and treatment requirements. This approach
ensures optimal efficacy while minimising the risk of
adverse events, thus enhancing the overall safety profile
of tACS and circumventing the risk—benefit dilemmas
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associated with pharmacological agents in the context of
AD treatment.

Additionally, the integrative potential of tACS within
the existing treatments for AD also holds significant
promise. By virtue of its mechanism of action, tACS may
augment the efficacy of the current anti-amyloid thera-
pies, thereby offering a multifaceted approach to disease
management. Continued advancements in neuroimaging
techniques, coupled with a deeper understanding of the
precise neurobiological mechanisms underlying tACS-
mediated effects, are poised to further refine treatment
strategies and optimize clinical outcomes in AD patients.
Thus, the relative absence of side effects for tACS admin-
istration in AD patients engenders optimism for its
adjunctive or standalone use alongside the approved
anti-amyloid therapies. At the same time, as often occurs
with other multi-therapeutic approaches, the side effects
of the single treatments can compound each other, lead-
ing to an increased risk of harm. For example, nausea
and headache are two of the common side effects of both
lecanemab and aducanumab [14, 16], and they may also
be experienced by patients during tACS sessions. There-
fore, it should be noted that there is a likelihood of an
increase in the risk of both nausea and headache when
tACS is administered to individuals undergoing concur-
rent monoclonal treatment, despite these side effects
being considered minor.

In comparison, a more infrequent but more dangerous
side effect of monoclonal antibodies is ARIA, that, even
if present more often asymptomatically, can lead to per-
manent invalidity and death [57]. In particular, two major
subtypes of this condition have been described: ARIA-
oedema/effusion (ARIA-E) and ARIA-haemosiderosis/
microhaemorrhages (ARIA-H), both of which appear to
depend on a disruption in vascular permeability of the
blood-brain barrier, leading to an overflow of fluid in
the subpial space (ARIA-E) and in worst cases of eryth-
rocytes (ARIA-H), resulting in an inflammatory reaction
and haemoglobin-dependent damage. In this scenario,
the simultaneous administration of a monoclonal anti-
body and of tACS, among whose effects is an increase in
vascular permeability [58], might result in a higher risk of
developing ARIA, raising the risk of morbidity and mor-
tality. For this reason, it is necessary to further evaluate
the potential synergistic effect of both monoclonal ther-
apy and tACS in increasing the risk of side effects. Precise
selection of patients who can receive greater benefit from
the combination of these two lines of therapy with less
risk is also important.

Frequency-specific effects
Recent research has highlighted the importance of fre-
quency-specific effects of tACS. Different brain regions



De Paolis et al. Translational Neurodegeneration (2024) 13:33

and cognitive processes are associated with distinct fre-
quency bands. These frequencies dominate the EEG
recordings when the brain is performing specific func-
tions in the awake or different sleep states. For example,
slow-wave sleep or drowsiness generates delta (1-4 Hz)
and theta (4-7 Hz) band oscillations, while awake states
bring instead alpha (7-13 Hz) and beta waves (14-30 Hz)
that support wide-ranging neural processes including
voluntary movement [59-61].

There are also brain oscillations in the gamma range
(~25-140 Hz) which are related to several cognitive
functions, including working memory, learning and
attention [62, 63]. It is common to observe an altera-
tion of this oscillatory pattern in disorders affecting
memory and cognition, such as AD (BOX 1), and for
this reason gamma-frequency tACS caught particular
attention as it can influence perceptual and memory
processes [61, 62]. tACS can effectively “tune up” the
brain’s endogenous neural oscillations and modulate
their activity in a targeted manner. Indeed, when the
external current frequency matches the endogenous
brain oscillatory rhythm, neuronal spiking can be
amplified or re-established. Specifically, as mentioned
above, the oscillating currents can influence the mem-
brane potential of neurons, increasing the probability
that neurons generate synchronized action potentials,
crucial for proper information processing [32]. Under-
standing how the timing and phase of tACS interact
with the brain’s intrinsic rhythms is therefore crucial
for optimizing stimulation protocols and improving
their efficacy.

40 Hz - The neuroenhancement frequency

Gamma waves are reduced in both MCI and AD patients
[26, 64—66], as well as in various AD mouse models [67-70].
The etiopathogenesis of gamma wave alterations has not yet
been clarified, although the involvement of deficits in par-
valbumin-expressing GABAergic interneurons (PV-INs) is
certain (BOX 2).

Among the different frequencies of the gamma band
(ranging from 25 to 140 Hz), the most used in AD is the
gamma stimulation at 40 Hz. The reason of choosing
such frequency in AD treatment is based on a pioneer
study observing that modulation of gamma activity with
optogenetic stimulation at 40 Hz frequency of PV-INs in
5% FAD mice increases neuroprotective factors, preserves
cortical thickness and spine density, slows down neuronal
death, decreases amyloid levels, microgliosis and inflam-
matory gene expression, and improves performance in
memory and cognition tests [69]. Subsequent pre-clinical
studies showed that non-invasive 40 Hz stimulation with
sensory stimuli (named "gamma entrainment using sen-
sory stimuli”, or GENUS) led to comparable outcomes
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by the same and by other research groups, also in other
mouse models [71-79]. These promising molecular and
behavioural improvements in AD mice inspired research-
ers worldwide to use 40 Hz as a key frequency to restore
the gamma oscillopathy typical of AD. In fact, in the last
years, several important clinical trials have used 40 Hz
gamma modulation to investigate its therapeutic potenti-
alities (for reviews see [80—83]), with most works focusing
on sensory stimulation. Yet, the interest is also increasing
for the usage of 40 Hz tACS (Fig. 1).

Of note, although the gamma frequency appears to
represent a key frequency range to stimulate memory
function, especially for AD patients, gamma tACS can
also target neural oscillations occurring in a wider scale
of dysfunctional networks, such as the hippocampal-
prefrontal circuit. Considering the hippocampus and its
role in short- and long-term memory processing, close
attention should be paid also to theta waves (4—8 Hz), in
parallel to gamma waves, as both are required to encode
memory and perform cognitive abilities [84]. Oscilla-
tions in gamma and theta bands occur simultaneously,
and high-frequency gamma oscillations have been shown
to be modulated by the low-frequency theta oscillations.
This type of interaction between waves and cross-fre-
quency coupling (also known as phase-amplitude modu-
lation; [61, 85]) reflects integration of neural code across
different brain areas or gating information between
populations of neurons [86]. Interestingly, it has been
highlighted that the study of goal-oriented behavior and
cognitive function should not rely on single brain regions
but on the analysis of neuronal oscillations in different
distributed neural circuits. This serves to extrapolate “fin-
gerprints” of oscillating correlations occurring in cortical
networks involved in cognitive processing [87]. The value
of this approach is further evidenced by the idea that seg-
mentation of different types of oscillations and rhythmic
activity may serve to separate temporal aspects of mem-
ory (i.e., ordering of events as they appear in action) and
in particular of working memory such as for the phases
of encoding, maintenance and retrieval [88].

Here, despite the critical relevance of theta-gamma
cross-frequency coupling for short- and long-term mem-
ory, we will take into consideration only gamma band
stimulation, by particularly highlighting pre-clinical,
clinical research and ongoing clinical trials that employed
40 Hz tACS as a potential therapy method for AD (for a
summary see also Table 1).

Current knowledge of gamma tACS

for the treatment of AD

Pre-clinical studies

A reduction in adult hippocampal neurogenesis is con-
sidered a remarkable hallmark of AD [89]. Neurogenesis
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of AR soluble oligomers, resulting in PV-IN dysfunction and subsequent dysregulation of the excitation (E) / inhibition (I) balance. The presence
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throughout adulthood occurs only in specific brain regions,

learning and memory, exploratory behaviour and pattern
primarily in the subventricular zone of the lateral ventricles  recognition [90, 91]. The different neurogenesis stages —
and the subgranular zone of the hippocampal dentate gyrus,

like proliferation, differentiation, survival and maturation
and plays an important role in hippocampus-dependent

of newborn neurons — are affected to varying degrees in
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AD and can thus be partially responsible for the cognitive
deficits and hippocampal atrophy [89, 92]. Many studies
have therefore assessed whether different strategical inter-
ventions, including brain stimulation with ultrasound,
magnetic waves, as well as deep brain electrical stimula-
tion, can improve cognition in AD via the enhancement of
adult neurogenesis [93, 94]. One study, in fact, investigated
whether intracranial alternating current stimulation (IACS)
at 40 Hz — a modified version of tACS — could stimulate
hippocampal neurogenesis in the 5XFAD mouse model
of AD [95]. The authors showed that 40 Hz IACS could
increase the number of cells expressing the neurogenesis
markers Ki67, Nestin and doublecortin in both hippocam-
pal dentate gyrus and subventricular zone of 5XFAD mice
[95], suggesting the potential of this technique to enhance
adult neurogenesis, particularly considering that such
markers are linked to the normal migration of neurons into
the cerebral cortex.

Whether or not the facilitation of adult neurogenesis in
5XFAD mice can directly result in functional improve-
ments in memory and learning was not investigated by
the same authors, but an independent work confirmed
that 40 Hz tACS in 5XFAD mice could significantly
enhance the LTP of synaptic responses in the CA1 region
of the hippocampus [96]. LTP is a fundamental synaptic
plasticity process associated with the strengthening of
neural connections, crucial for memory consolidation
and learning, and its potentiation following 40 Hz tACS
is a powerful indication that the technique can be prom-
ising for functional improvements in the memory defects
affecting AD patients. Yet, the mechanisms related to the
enhanced LTP following 40 Hz tACS in 5 X FAD mice are
not yet understood. For example, the tACS protocol did
not change the levels of key neuroplasticity-related pro-
teins such as brain-derived neurotrophic factor (BDNF,
an important growth factor that regulates synaptic
plasticity, neurogenesis and neuronal survival), cAMP
response element-binding (CREB) and its phosphoryl-
ated form pCREB (well-known transcription factors that
play crucial roles in modulating gene expression associ-
ated with synaptic plasticity, learning and memory; [96]).
The lack of changes in BDNF, CREB and pCREB levels
suggests that the effectiveness of 40 Hz tACS in enhanc-
ing LTP might engage alternative neurobiological mecha-
nisms within the brain. It is indeed possible that the effect
of tACS is linked to changes in the functioning of pre- or
post-synaptic neurons, that could be related to neuronal
excitability, glutamate release probability or efficacy of
post-synaptic receptors, in relation to the gamma enter-
tainment mediated by the stimulation, which allows
the enhancement of communication between excita-
tory neurons [97]. Otherwise, the enhanced LTP might
be the result of enhanced excitability and plasticity of
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adult-born neurons [95], given the typical high input
resistance and high resting potentials of newborn cells
[98-100]. Although the mechanisms underlying the
modulation of synaptic plasticity by 40 Hz tACS remain
fairly elusive, different stimulation frequencies applied
via tACS have shown similar cognitive-improving and
plasticity-enhancing effects. For instance, alpha-tACS
stimulation in the visual cortex has demonstrated after-
effects, likely attributed to STDP [39, 40, 101, 102] and,
similarly, NMDAR-mediated STDP has been proposed
as the mechanism of plastic changes upon beta-tACS in
the motor cortex [103]. Of note, stimulation at 40 Hz fre-
quency with techniques different from tACS also induces
long-term plasticity changes that are phase-sensitive. For
example, Wespatat et al. (2004) highlighted the phase-
dependency of synaptic modifications, revealing NMDA
receptor-dependent LTP during peak-pairing and NMDA
receptor-independent LTD during trough-pairing [104].
Additionally, Wang et al. (2023) showed that 40 Hz
optogenetics stimulation, but not 10-Hz stimulation,
facilitates gamma oscillations and rescues synaptic plas-
ticity deficits induced by stroke, via phase-locking the
activity of PV-INs during peak phases, and enhancing the
activity of pyramidal neurons during the trough phases
of gamma oscillations [105]. This underscores how the
phase relationship between pre- and post-synaptic activ-
ity critically influences synaptic plasticity, in line with the
fundamentals of Hebbian learning theory.

Notably, 40 Hz tACS was also shown to be effec-
tive in enhancing the LTP-like plasticity induced by
intermittent theta-burst stimulation applied to the pri-
mary motor cortex or the dorsolateral prefrontal cor-
tex (DLPFC) [106, 107]. This enhancement of LTP by
theta-gamma coupling is linked to an enhancement of
the gamma power and to modifications in short-interval
intracortical inhibition, which serves as a neurophysio-
logical marker for GABA, receptor activity [106]. These
findings imply that gamma tACS may directly influence
GABAergic neurotransmission within cortical regions,
potentially leading to sustained alterations such as con-
tinuous enhancement of gamma band activity. Therefore,
while the exact relationship between tACS frequency
and its effects on synaptic plasticity remains to be stud-
ied, the literature suggests that entraining synchronous
oscillations, particularly at the gamma frequency range,
can positively modulate synaptic plasticity and facili-
tate cognitive processes such as attention, memory and
learning. Given that dysfunctions of cognitive processes
can in part result from altered or disrupted gamma
neuronal oscillations, the potential therapeutic appli-
cations of tACS become a valuable asset in the context
of AD. However, in order to clarify the mechanisms of
action of this technique, future pre-clinical studies with
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40 Hz tACS should better analyse the electrophysiologi-
cal effects of the stimulation, focusing on basal synap-
tic transmission, glutamate release, functions of AMPA
and NMDA receptors and excitability of pyramidal and
GABAergic neurons.

Another interesting aspect deriving from pre-clinical
experiments on animal models of AD is the effect of 40 Hz
tACS on pathophysiological markers such as A and neu-
roinflammation. A recent study, aimed at comparing dif-
ferent tACS protocols to better evaluate the effects of
short- and long-term stimulations (7 days versus 21 days)
in APP/PS1 mice, revealed that long-term 40 Hz tACS
treatment increases spontaneous gamma power, enhances
cross-frequency coupling and improves memory per-
formance in the Y-maze compared to sham stimulation,
indicating functional enhancements [108]. Importantly,
long-term tACS reduced AP accumulation and changed
microglia morphology in the hippocampus. This is in
strict accordance with the fact that gamma entrainment
by 40 Hz optogenetics or visual stimulation reduces AP
via phagocytosis by microglia [69], but additional experi-
ments are necessary to better understand how 40 Hz tACS
acts on amyloid turnover, and whether it acts through
decreased amyloidogenesis or increased amyloid endocy-
tosis by phagocytic microglia. Indeed, authors only showed
a reverse in microglial morphology, with a reduction of the
cell body diameter in mice with long-term tACS treatment
compared to short-term treatment or sham treatment
[108]. For this reason, it would be interesting to accurately
demonstrate the specific effects and the underlying biolog-
ical mechanism of tACS on A clearance.

While the study on long-term tACS demonstrated that
the efficacy of gamma tACS is related to the duration of
the stimulation session [108], most recent data have also
highlighted the need to pay attention to the stimulation
intensity of the tACS protocol. In fact, a study applying
IACS at 40 Hz [109] confirmed the ability of this tech-
nique to reduce the A load, improve memory and influ-
ence the morphology and activation state of microglia in
the cortex and hippocampus of 5XFAD mice, but these
improvements were more evident when a highest current
intensity was applied (200 pA).

Thus, in this pre-clinical frame of exploring gamma
tACS in AD treatments, animal studies are still limited,
likely due to the technical and methodological chal-
lenges related to electrode implantation, duration of the
treatment protocol and intensity of the current delivery.
Moreover, there are concerns about translational com-
patibility of tACS results across species and techniques
[110]. Indeed, in a translational comparison, the cor-
relation between animal findings and humans should
be carefully run [51]. Since most of the in vivo experi-
ments in AD mice were conducted in anesthetized or
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immobilized animals, it should be considered that these
manipulations can change network functions and alter
neural dynamics and brain metabolism compared to the
awake, freely moving state [111]. In fact, tACS could yield
different results on neural activity, even when the same
stimulation protocol is used, because the electrophysi-
ological responses also depend on the current state of the
brain. In addition, voltage gradients and current inten-
sities described in animal research cannot be directly
compared to human investigations. Disparities in brain
volume, anatomy and skull thickness can all have a sig-
nificant impact on the physiological effects of the tech-
nique [51]. Moreover, only a few AD mouse models
have been used so far, and for this reason a deeper and
expanded research is necessary to strengthen the trans-
lational relevance and validity of 40 Hz tACS in AD. For
example, computational models or in vivo whole-brain
imaging could be successful tools for understanding
which regions are the most influenced by the different
stimulation paradigms, what is the proportion of stimula-
tion diffusion and which regions are unaffected by a par-
ticular electrode montage [112, 113]. Fortunately, despite
these limitations (e.g., limited behavioural testing, short
treatment periods, small sample sizes, potential anaes-
thesia and stress-induced side effects), the pre-clinical
outcomes described above offer a promising scenario for
a more detailed evaluation of the therapeutic potential of
gamma tACS to block or at least slow down AD cognitive
decline (Fig. 2).

Clinical studies exploring 40 Hz tACS

Many clinical studies have evaluated the feasibility and
efficacy of 40 Hz tACS in MCI and AD patients, by test-
ing different electrode placements, durations and modali-
ties of treatment and/or stimulation intensities. Some of
these studies have also analysed the possibility of exploit-
ing tACS devices at home (home-based 40 Hz tACS stud-
ies; HB-tACS). In this section, we will discuss the clinical
trials that have been published so far using 40 Hz tACS,
including ongoing trials showing either preliminary
results or exclusively the study design (see summary in
Table 1).

40 Hz tACS over the bilateral temporal lobes

Bilateral temporal stimulation is being applied in ongo-
ing trials ([114] - clinical trials NCT03290326 and
NCT03412604). The targeted areas were selected based
on the results of amyloid positron emission tomogra-
phy (PET) imaging showing the maximal tracer uptake
in these regions. In particular, the pilot clinical experi-
ment (trial NCT03290326) aims to test the safety, fea-
sibility and effectiveness of 40 Hz tACS in reducing the
Ap load, modulating EEG gamma-band spectral power
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Fig. 2 Cognitive impact of 40 Hz tACS in the AD murine hippocampus. The portrayal of the murine model of AD provides insights into the typical
pathological features of AD, with a focus on the hippocampus (brain region pivotal for memory and cognition, commonly implicated in the early
stages of the disease). The murine hippocampus exhibits significant signs of neuroinflammation, AR and tau accumulation, highlighting
compromised neuronal networks and PV-IN activity. Subsequently, 40 Hz tACS reveals a series of improvements in terms of reduction in AR
accumulation, enhanced cognitive functions, increased gamma power, and promotion of adult hippocampal neurogenesis. These outcomes
suggest that 40 Hz tACS might positively impact brain physiology, delineating the connection between 40 Hz stimulation and the observed
positive effects in the murine AD hippocampus, and offering fundamental insights into its potential therapeutic relevance for human AD. However,
further exploration of other implicated brain regions and/or mechanisms involved is imperative to comprehend the holistic effects of 40 Hz tACS

on AD pathology

and improving cognitive abilities. The second interven-
tional trial (trial NCT03412604), in order to produce
a longer-lasting effect, has evaluated the tolerability
and effectiveness of a stronger stimulation protocol by
assessing brain connectivity, cognitive functions and
cerebral brain flux (CBF). The authors showed that
gamma spectral power changes were correlated with
CBF increase, as well as with moderate improvements
in cognitive performance related to episodic memory
and fluency. As a matter of fact, AD is characterized by
reduced brain metabolism [115, 116], and for this rea-
son, an increase of blood flow after treatment constitutes
a very promising biomarker of tACS efficacy. Indeed, it
has been recently demonstrated that gamma activity
can modulate blood vessel diameter in the human brain,
although the underlying mechanisms have not been
clarified yet [58]. Of note, the improvements in cogni-
tive functions [114] are in line with the crucial role of
the bilateral temporal lobes in many cognitive abilities
(i.e., facial recognition, communication and process-
ing of emotions; [117]). Moreover, the temporal cortex
represents a brain area where gamma band dysfunctions
can be detected with whole-head magnetoencephalog-
raphy in AD patients [118]. Importantly, another study
with bilateral temporal lobe gamma tACS [119] not only
showed a reduction of the plasma AP,,/AB,, ratio but

also an improvement in Mini-Mental State Examina-
tion (MMSE) and AD Assessment Scale cognitive sub-
scale (ADAS-Cog) scores immediately after 6 weeks of
stimulation. This may be related to the restoration of
gamma oscillations in the target area, with a functional
enhancement of the connected circuits. However, the
effects were not seen in the 12-week follow-up, prob-
ably because the benefits have a limited duration, as the
exogenous electrical stimulation can transiently entrain
the endogenous gamma waves but is not long enough to
induce permanent changes. In line with this hypothesis,
in another study the 40 Hz tACS protocol was delivered
on temporal regions only for 4 weeks, a sufficient period
to see a decrease of p-tau burden and microglial activa-
tion using PET imaging with selective tracers ([''C]-PiB,
['®F]-FTP and ['!C]-PBR2S8, respectively), but without
any changes in AP levels and in overall cognition [120].
This is also in accordance with the first study mentioned
above [114] in which a maximum of 4 weeks of gamma
tACS did not show significant improvements in global
cognition. Overall, these studies suggest that the dura-
tion of stimulation protocol has a vital importance in
showing long-lasting outcomes.

Finally, an ongoing double-blind, randomised con-
trolled trial on mild-AD patients using 40 Hz tACS aims
at targeting indirectly the temporal lobes by the usage
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of three electrodes, one placed on the forehead and the
other two on each mastoid area, as the current flows
through the bilateral frontal and temporal lobes. Their
aim is to evaluate neural plasticity using structural and
functional MRI (sMRI and fMRI, respectively) in addi-
tion to other traditional biomarkers and clinical param-
eters [121] (clinical trial NCT03920826; see also Table 1).

40 Hz tACS over the parietal lobes

In other studies ([122, 123], clinical trial NCT04783350),
researchers stimulated a specific area of the lateral pari-
etal cortex, the left angular gyrus, in which the conscious
experience of retrieving vivid, rich and multi-sensory
episodic memories resides [124—126]. Interestingly, both
groups used an HB-tACS protocol that was administered
by a caregiver previously receiving a lab-based train-
ing, while the adherence was remotely supervised in
real-time by physicians. The authors found an improve-
ment in the Memory Index Score (MIS), a measure of
delayed recall memory. In both studies, the stimulation
determined gamma power increase analysed by high-
density electroencephalography (HD-EEG). Although
Bréchet et al. (2021) only enrolled two patients and thus
the results should be considered extremely prelimi-
nary, this study represents an important and emblem-
atic pilot assessment of the feasibility of HB-tACS. In
Cappon’s group instead, despite the memory improve-
ment in MIS, the participants only showed modest ben-
efit in the Montreal Cognitive Assessment (MoCA) test.
According to the authors, this result is likely due to the
fact that the MIS evaluates both the free recall and the
cued recall condition, while the MoCA only measures
the delayed free recall condition and thus a larger effect
can be reached by using MIS [123]. Despite the limited
number of patients involved, these studies suggest that
the left angular gyrus may be a suitable target area for
specific spatial modulation of brain gamma oscillations
to induce memory enhancement. In addition, both works
demonstrate the high adherence, feasibility and safety of
remotely monitored, caregiver-administered HB-tACS
to improve memory in the elderly people. Indeed, home
participation can overcome accessibility problems and
increase recruitment, allowing for the implementation of
larger and longer clinical trials while preserving clinical
standards and high-quality research.

Other groups are testing HB-tACS protocols [127,
128] (clinical trials PNRR-POC-2022-12376021 and
NCT05643326, respectively), to also evaluate plasma lev-
els of neurofilament light chains (NfL), astrocyte markers
(GEAP) and AP,,/AB,, ratio. From a functional point of
view, they evaluated a battery of neuropsychological tests,
the short-latency afferent inhibition (SAI), an intracortical
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excitability transcranial magnetic stimulation (TMS)
parameter referring to the cholinergic neurotransmission,
and the resting-state functional magnetic resonance imag-
ing (rs-fMRI) connectivity. The targeted area in this study
is the precuneus, a medial portion of the parietal lobe play-
ing a pivotal role in different brain networks including the
default mode network, a “brain network node” frequently
damaged in AD [129]. The precuneus is involved in differ-
ent cognitive abilities such as visuo-spatial imagery, episodic
memory retrieval, self-processing and consciousness [130].

Although the aforementioned trials are still ongoing
and there are no published results yet, Benussi and col-
leagues [131] (clinical trial NCT04515433) targeted the
precuneus in MCI-due-to-AD patients, showing that
gamma tACS is able to restore SAI via a mechanism
that is, however, still unclear. Furthermore, the pre-
liminary results of this trial [131] showed that patients
had improved performance in the Rey Auditory Verbal
Learning test (in both immediate and delayed recall) and
in the face-name associations task, related to associative
and episodic memory retrieval [132, 133]. Since altera-
tions in the default mode network are already detectable
in MCI and are crucial for the disease development [134,
135], the precuneus could represent a suitable and acces-
sible target that can be precociously stimulated to slow
down the network degeneration. A subsequent study
by the same authors extended the previous results in a
larger number of AD patients, indicating a possible posi-
tive effect of precuneus-tACS on memory, confirming
that these improvements are related to gamma entrain-
ment, as demonstrated by EEG recordings [136] (clinical
trial NCT04842955).

Another ongoing study focuses on amnestic MCI patients
using tACS combined with mnemonic tasks to engage epi-
sodic memory [137] (clinical trial NCT04646499). It also
evaluates plasma AD biomarkers and neuroplastic changes
through rs-fMRI connectivity and neuronal excitation/
inhibition (E/I) balance. The latter can be analysed by non-
invasive proton magnetic resonance spectroscopy (MRS)
to determine the concentrations of brain metabolites such
as GABA and glutamate/glutamine ratio, which are used
as a measure of neuronal E/I ratio. In fact, previous stud-
ies support a relationship between functional connectivity
and regional excitability [138, 139], and hyperexcitability
is already diagnosed since the MCI phase [27-29]. Indeed,
MCI and AD patients exhibit deficits in these neurotrans-
mitters [140, 141]. In this context, tACS could represent a
valid tool to restore E/I alterations and brain hyperexcit-
ability. In conclusion, these preliminary results arising from
parietal lobe stimulation are promising in restoring some of
the cognitive functions usually impaired in AD, and future
data may corroborate the current state of art.
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40 Hz tACS over the DLPFC

Another major hotspot of the default mode network is
the DLPEC, frequently targeted in clinical trials as it is
highly affected by AP deposition and constantly impaired
in AD patients [142, 143]. Some studies have focused on
comparing tDCS with 40 Hz tACS ([144, 145]- clinical
trial NCT05544201). Other studies have evaluated the
effects of acoustic co-stimulation ([146] — clinical trial
NCT05251649; [147] — clinical trial NCT05251649) or
coupled tACS with cognitive exercises ([148-150] — clin-
ical trial NCT05203523).

The first study listed above [144] showed differences
between 40 Hz tACS and tDCS in MCI patients. Gamma
tACS significantly improved performance in higher-level
cognitive functions, in contrast to tDCS, although both
induced changes in different brain waves. For example,
gamma tACS increased beta-frequency activity, but sur-
prisingly, had no effect on gamma activity, suggesting
that 40 Hz tACS did not appear to entrain endogenous
gamma oscillations in the mentioned study. Nonetheless,
the stimulation protocol could induce plastic changes
within the stimulated area or network, allowing cognitive
restructuring and neuroplasticity since the MCI stages.
Indeed, the MCI brain compared to the AD brain is still
more plastic and shows more capacity for improvements,
confirming the importance of a precocious treatment.
In an ongoing trial, another research group is evaluat-
ing the effectiveness of 40 Hz high-definition tACS (HD-
tACS) compared to HD-tDCS delivered on the same area
[145] (clinical trial NCT05544201). Since tDCS shows
positive effects on post-sleep declarative memory in AD
patients [151-153], they are also examining the potential
effect of tACS treatment in improving sleep-related brain
activity and quality [145]. They expect to find better out-
comes using HD-tACS as it is more effective in triggering
the endogenous slow gamma oscillations and enhanc-
ing brain functions in healthy individuals as well as in
patients with different brain disorders [154].

Interesting data also originate from studies combining
40 Hz tACS with 40 Hz sensory stimulation, driven by the
initial results on pre-clinical AD [69]. In a case study, the
acoustic stimulation at 40 Hz in combination with 40 Hz
tACS had a long-lasting effect on cognition, visual per-
ception and attention in a 74-year-old AD patient [146].
To validate the outcomes, the same authors designed a
specific protocol on patients with mild and moderate AD
comparing the same paired stimulation pattern (acous-
tic and electrical) with tACS or sound stimulation alone
[147]. As in the case report, participants are expected
to show improvements not only immediately after the
stimulation but also after a 4-month follow-up. This can
be presumably explained by the fact that tACS has timely
effects in improving cognition, and the combination of
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tACS and sensory stimulation could have “offline effects”
on neuroplastic processes that could occur both dur-
ing the treatment and after the end of the stimulation.
In the first pilot study [146], the authors revealed an
increase in MMSE and MoCA scores of the patient after
a 4-month follow-up and a reduction in ADAS-Cog. This
is an intriguing aspect as it would be interesting to evalu-
ate with cyclic and scheduled follow-ups the maximum
temporal limit in which the effects are still detectable. In
another study, the potential longer-lasting effect of 40 Hz
tACS on the left DLPFC, coupled with cognitive exer-
cises delivered through a tablet app, was explored [148].
The researchers aimed at strengthening cognitive func-
tions by emphasizing on the spatial orientation, asso-
ciative memory, word-image association, visual memory
and categorization [148]. The cognitive status of all par-
ticipants improved, yet only the group that received both
exercises and the 40 Hz tACS continued to improve at the
1-month follow-up, indicating that tACS might poten-
tially induce sustained enhancements when coupled with
cognitive training. Later, the same group confirmed the
previous results, with patients choosing whether to com-
bine the cognitive exercises with repeated 40 Hz tACS or
performing the exercises alone. They proved that tACS
coupled with brain exercises is more beneficial and effec-
tive for performance in cognitive and spatial tests [149].
However, since in this study the placebo effect was not
examined, researchers are complementing their work
through a specialized, crossover, double-blind, placebo-
controlled trial [150].

40 Hz tACS as a potential screening tool

Finally, it is worth mentioning a pioneer study [155]
aimed at focusing on the differences in the tACS effects
between MCI and AD patients. tACS was delivered in
the full spectrum of gamma bands (i.e., 40 to 120 Hz)
to stimulate distinct areas of the left hemisphere. The
authors found that tACS did not have a modulatory effect
on AD patients when compared to MCI and age-matched
healthy volunteers. Interestingly, some of the MCI
patients were responsive to the tACS protocol by showing
an increased gamma power and improvements in neu-
ropsychological tests, while others did not; in particular,
the unresponsive patients to tACS converted to AD two
years later. Thus, the authors suggested that, besides the
therapeutic potential, gamma-tACS could be employed
as an early screening tool for identifying MCI individuals
with high risk of dementia and conversion to AD. This is
also in line with the neuroimaging results, which confirm
that functional changes precede structural alterations.
During the MCI period, in fact, brain anatomy remains
relatively intact, while synaptic dysfunction begins to
impact dynamic connectivity. At this stage, activation of
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the residual neural reserve networks plays a crucial role
in preserving normal brain functions. Consequently,
neurophysiological methods might be well-suited to
detect early alterations, especially in the MCI brain [156].
Because of this, the 40 Hz tACS — which was first devel-
oped as an effective tool to treat MCI/AD — might con-
ceal an unexplored potential also for screening the risk of
conversion from MCI to AD. Thereby, this technique may
emerge as a promising “theranostic” approach, having
both diagnostic and therapeutic potential. In fact, tACS
may not only be an innovative treatment for AD preven-
tion in people with MCI, but may also be a good tool for
identifying MCI patients at high risk of developing AD.
Indeed, Naro et al., 2016 (see also [156]) suggested that
such patients are unresponsive to tACS treatment [155].
In this context, it would be informative to couple tACS
with EEG recordings following stimulation, as the con-
firmation of persistent after-effects following tACS may
provide indications for the effectiveness of the treatment.

Non-40 Hz frequency performance
It is evident that the predominant focus of investiga-
tions in the realm of tACS for MCI or AD has been on
the specific frequency of 40 Hz. Notably, none of these
studies have explored alternative frequencies to establish
a control condition. Instead, they have uniformly opted
for 40 Hz stimulation, with the exception of Naro et al.
(2016), who employed continuous and random stimula-
tion spanning from 40 to 120 Hz, thus encompassing the
entire gamma frequency range [155]. However, this study
did not include non-40 Hz gamma frequencies as control
conditions but instead utilized sham stimulation, consist-
ent with other clinical studies cited in the current review.
As previously argued, it is worth noting that the spe-
cific choice of 40 Hz was initially influenced by the study
of Iaccarino et al. (2016), who demonstrated that flicker
stimulation at 40 Hz reduced Ap levels in a mouse model
of AD, with no effects observed when mice were exposed
to other stimulation parameters or frequencies (e.g., con-
stant light-on or darkness, flicker at 20 Hz or 80 Hz and
random flicker), suggesting a frequency-dependent neu-
romodulatory effect of the stimulation [69]. Similarly,
optogenetic stimulation of PV-INs at other frequencies
(e.g., 8 Hz or random noise) had no effect on the induc-
tion of gamma oscillations [157, 158], or on the levels
of AP [69] in AD mice, in line also with the notion that
entrainment is effective when the stimulating frequency
resembles the endogenous frequency of the targeted cells.
40 Hz GENUS has exhibited promising outcomes
even in cognitively healthy adults. Notably, PET scans
have revealed a distinctive pattern of regional CBF
enhancement during binaural auditory stimulation set
at 40 Hz, with this frequency proving to be the most
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effective among the 12 stimulation frequencies tested.
This increase in EEG activity amplitude at the 40 Hz
steady state has been correlated with heightened cor-
tical activity [159], emphasizing a specific response
to gamma sensory stimulation. Additionally, Santar-
necchi et al. (2013) investigated various frequencies
(40 Hz, 5 Hz, non-periodic high-frequency tRNS and
no stimulation) of prefrontal tACS in healthy individu-
als, demonstrating that tACS at the specific frequency
of 40 Hz led to a notable decrease in the time needed
to solve complex logic problems [160]. In a subsequent
study however, the authors found that the efficacy of
prefrontal 40 Hz stimulation varied based on individ-
ual capabilities, with those displaying slower baseline
performance benefiting more [161]. The authors cau-
tioned against directly linking cognitive performance
and stimulation efficacy, as the study participants
were relatively homogeneous in terms of baseline per-
formance and age. Thus, generalizing these results to
diverse populations, such as those with varying ages or
initial cognitive deficits, would be premature. Never-
theless, the study suggested that individual differences
in frequency responsiveness, such as reduced endog-
enous prefrontal gamma activity in slower responders,
may influence tACS effects. Therefore, since reduced
gamma activity is a common feature in AD, it is plausi-
ble to assume that individual differences in frequency
responsiveness, as observed in the study, may differen-
tiate the effects of 40 Hz tACS in subjects with MCI or
AD, depending on the level of impairment of gamma
activity.

This does not negate the need for further studies to
specifically investigate the efficacy of other tACS fre-
quencies besides 40 Hz in AD. In fact, while the sham-
controlled studies have provided valuable insights into
the potential benefits of 40 Hz tACS in MCI and AD pop-
ulations, the lack of alternative frequency stimulations
as control conditions limits our understanding of the
specificity and efficacy of gamma frequency stimulation.
Given the complex nature of neural oscillations and the
variability in individual responses to tACS, it is essential
to employ a range of control conditions to disentangle
the unique effects of 40 Hz stimulation from nonspecific
factors. Thus, moving forward, future studies should con-
sider the inclusion of varied control conditions to provide
a more comprehensive understanding of the therapeutic
potential of tACS and, more generally, NIBS.

Conclusions and future perspectives

tACS is a promising tool to challenge AD, particularly
for its ability to selectively modulate brain oscillations
with substantial spatial and frequency specificity. This
has allowed researchers to target different brain regions
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using gamma waves that are closely associated with
memory and cognitive functions notably affected in AD.
Within the broad spectrum of gamma band frequen-
cies, the low gamma at 40 Hz is particularly significant.
This growing interest in the usage of 40 Hz tACS is sup-
ported by the promising results observed in AD mouse
models. Pre-clinical investigations suggest that gamma
tACS may exert beneficial effects on neurogenesis, syn-
aptic plasticity, cognitive performances and pathological
hallmarks of AD, such as A levels and neuroinflamma-
tion. Such findings push researchers and scientists to
investigate the potential therapeutic implications also in
patients. Available data obtained from clinical trials sug-
gest that gamma tACS can reduce p-tau, Ap and micro-
glial activation and ameliorate clinical outcomes related
to learning and memory processes. In particular, MCI
and/or AD patients show improvements in episodic,
autobiographical, working, declarative and associative
memory, amongst others. Interestingly, gamma tACS is
administered in distinct areas (such as the DLPFC, pre-
cuneus and left angular gyrus, among others) with posi-
tive results, showing the crucial impact of these different
brain areas in disease evolvement and highlighting the
complexity of the pathology.

40 Hz tACS is employed to target the main pathologi-
cal hallmarks, but since AD is considered a “disconnec-
tion syndrome” [26, 118, 164], tACS is primarily used
to address circuit dysfunction, mitigating the potential
propagation of these alterations throughout the brain.
Although the exact mechanism is not completely known
— and hence pre-clinical studies are crucial — it appears
that 40 Hz tACS initially influences the stimulated brain
region at a local level, modulating and synchronizing its
gamma rhythms. With the reset of local gamma waves,
it is then possible to restore the coordination and com-
munication of the brain regions that are functionally
connected to the targeted area, ultimately leading to a
systemic effect, resulting in the amelioration of AD hall-
marks and symptomatology.

The implications of using 40 Hz tACS are straightfor-
ward. Since neural disconnection is already detectable
from the early disease stage, tACS can be precociously
used in the MCI phase or even before, when brain dam-
age can still be restored, blocked and/or delayed. Indeed,
the disease acts in a subtle way for 10-15 years without
symptoms, then it becomes mildly symptomatic and
finally it manifests severely. In the latter stage all the
“neural reserve” has been completely exhausted and even
the most effective treatment (pharmacological or not)
is likely to fail. Therefore, intervention during the initial
phases of cognitive impairment may offer a paramount
advantage, when neural reserve is relatively intact, and
the disease is still at the beginning [165]. In this scenario,

Page 25 of 34

the application of tACS alone, or in combination with
monoclonal antibody treatment such as lecanemab,
approved for patients with MCI and early AD [14], can
be highly beneficial when the intervention occurs at the
earliest appearance of cognitive decline. In the same line
of thinking, tACS can be essential when the patient is not
eligible for the monoclonal antibody therapy, thus mak-
ing tACS an attractive, alternative solution (Fig. 3).

Another clear indication deriving from the usage of
40 Hz tACS, and indeed other NIBS techniques offer-
ing equally promising results against AD, is the need to
focus beyond the amyloid targeting. This is particularly
evident from yet another recent failure of a phase-3 trial,
in which the anti-Ap antibody solanezumab, tested in
pre-clinical AD patients with high brain amyloid levels,
failed to slow clinical decline despite a lower increase in
amyloid levels after 240 weeks of treatment [166].

In this context, timely diagnosis has a decisive role and
is key to identifying the best window of clinical interven-
tion. Together with fMRI and PET, in recent years, EEG
and its derived HD-EEG, have gained increasing impor-
tance in early and accurate AD diagnosis. The analysis of
EEG brain signals may provide valuable insights into the
functional alterations in the brain circuitry, while cog-
nitive impairment progresses. These techniques, com-
plemented by machine-learning algorithms, allow the
identification of subtle alterations and pinpoint the exact
location of circuitry dysfunction before severe clinical
symptoms burst out [165, 167]. In a future perspective,
in fact, it would be useful to combine EEG (or HD-EEG)
with 40 Hz tACS, to specifically and directly stimulate
those areas that have been previously detected as dys-
functional (see for example [168]; Fig. 3). Interestingly, a
similar approach has already been developed using TMS,
with the research team employing TMS-EEG to deter-
mine the precise location of brain oscillation disruptions
and assess the immediate effects of stimulation [169].
Unfortunately, an important limit for routinely using
tACS-EEG is the presence of recording artifacts. These
artifacts not only hinder the adaptation process, espe-
cially for the target frequency, but also act as interference
in observing the true effects of 40 Hz tACS on the brain’s
neural activities. In recent years, several research labora-
tories have been developing specific methods to remove
the artifact from EEG recordings for concurrent EEG sig-
nal acquisition during tACS [168, 170-172].

Overall, although 40 Hz tACS has shown positive out-
comes, sometimes it also yields contradictory results.
While some patients have shown substantial and persis-
tent outcomes, others showed poor effects only limited
to the stimulation period and some did not show any
improvements at all. This marked disparity raises ques-
tions regarding the replicability and the longevity of the
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Fig. 3 Spectrum of AD: biomarker trends and intervention options. The gradient bars describe the manifestation of the key hallmarks across the AD
continuum, in which symptom severity increases throughout all the disease stages. Specifically, one of the earliest detectable aberrations include
gamma wave disturbances, followed by significant plaque deposition, tau-mediated lesion processes and neurodegeneration, while cognitive
function is relatively preserved in the early stages. Importantly, due to its safety and feasibility, 40 Hz tACS can be administered as early as the MCl
stage to restore gamma waves, thus providing a key opportunity to modulate all other biomarkers. Similarly, the FDA-approved lecanemab can

be administered early, during MCl and early AD to reduce the amyloid load. This time window provides a critical advantage for early treatment,

and the combined usage of both approaches (tACS and lecanemab) might be highly beneficial. Alternatively, tACS can be applied alone,

when patients are not eligible for pharmacological treatment. Of note, early treatment requires early diagnosis; in this framework, compared

to the current diagnostic tools, EEG-tACS could represent an ideal strategy for future prompt intervention

tACS treatment and justifies the need of additional and
more personalised studies. To fully exploit the poten-
tial of 40 Hz tACS in the context of AD, a multifaceted
approach is therefore needed. First, future research
should prioritize pre-clinical experiments aimed at
unravelling the effects of 40 Hz stimulation, with an
emphasis on electrophysiological, molecular and cellu-
lar effects related to the improvements observed in AD
models, and on the underlying mechanisms involved.
In the clinical setting, instead, researchers should work
to define more precise and personalised stimulation
protocols. For example, 40 Hz tACS has been shown to
improve cognitive symptoms in major depressive disor-
der patients or to attenuate symptoms in patients with
obsessive compulsive behavior [173, 174]. Consequently,
since AD patients are affected by both cognitive and
neuropsychiatric symptoms, clinical settings could take
advantage of tACS effects to restore these alterations.
Thus, identifying and tailoring tACS to the specific symp-
tomatology of the patient is important for the individu-
alization of a personalized therapy. In this regard, given
its ease of use, convenience and cost-effectiveness, 40 Hz

tACS is also a valuable tool for home-based treatment
with very limited side effects, but strict patient adherence
protocols should be exercised to guarantee efficacy and
reproducibility.

In conclusion, 40 Hz tACS represents an evolving tech-
nique in designing multidimensional intervention thera-
pies (both alone and in combination with other types of
treatment). Therefore, given its flexibility and effective-
ness, the medical community can exploit 40 Hz tACS
benefits to revolutionize the AD treatment landscape.

BOX 1 Reduction of gamma oscillations in AD

The reduced power of gamma oscillations in AD is
believed to be caused by a redistribution of the syn-
aptic drive between active and silent neurons, with
reductions of the inhibitory tone followed by dis-
inhibition of firing in active cells [23, 175]. In fact,
there is a strong correlation between the number of
hyperexcitable cortical cells and brain Ap load, with
hyperactive neurons identified near AP plaques [176].
A reduction of the GABAergic inhibitory terminals
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on cortical neurons proximal to AP plaques can be
observed both in humans and in animal models [177].
This is due to a functional impairment of inhibi-
tory INs, resulting in a decline of GABA, receptor
currents and a redistribution of the inhibitory and
excitatory drive within neuronal circuits [24, 178].
For example, in mice with the APOE &4 allele, repre-
senting one of the main genetic risk factors for AD,
there is a loss of GABAergic interneurons (INs) in the
hippocampus [179]. Together with a general deple-
tion of the inhibitory drive, specifically the number
of PV-INs is reduced both in AD patients and animal
models, in parallel with an impaired PV-IN activity,
leading to disrupted brain network and hypersyn-
chrony [68, 180]. Verret et al. (2012) identified that
both AD patients and hAPPJ20 transgenic mice show
PV-IN and inhibitory synaptic dysfunctions, which
result in aberrant gamma oscillatory activity and
cognitive alterations [67]. Similar deficits in PV-IN
number or function were also detected in other
AD models [180-184]. Since many factors can be
involved in this network imbalance, the exact mecha-
nisms that underlie these deficits in PV-INs are still
unknown; nevertheless, soluble AB forms could play
a critical role in this intricated scenario, contribut-
ing to this network breakdown [68]. Interestingly,
using the APP23xPS45 model, researchers found that
in the hippocampal CA1l region many neurons are
hyperactive before plaque formation in 1-2 month-
old mice. Indeed, hippocampal hyperactivity can be
induced by application of soluble A in mice and it
can be rescued in APP23xPS45 mice by acute treat-
ment with a y-secretase inhibitor, which reduces the
levels of soluble AP in the brain [185-187]. Another
important contribution in desynchrony comes from
neuroinflammation that correlates with AP plaque
progression [188]. With an overexpression of IL-1p,
tumour necrosis factor alpha and IL-6, there is an
increase of seizure severity that can in turn enhance
inflammatory processes causing downstream cogni-
tive effects such as inhibition of hippocampal LTP
and neuronal death [189]. In addition, neuroinflam-
mation and microglia play a fatal role in disman-
tling the perineuronal nets (PNNs), one of the most
crucial elements in neuronal trophism and survival.
PNNs are condensed extracellular matrix structures
that surround neurons, particularly PV-INs. Since
PV-INs have a fast-spiking activity that makes them
more susceptible to deterioration, PNNs are funda-
mental for their correct functionality, as they create
a protective “scaffold” that envelops the INs, sup-
porting their high energy demands [190, 191]. It has

been demonstrated that PNNs are reduced in AD, as
a consequence of microglial activation and its pro-
inflammatory products [191, 192]. When PNNs are
degraded the protective shield is removed, and neu-
rons are exposed to neurotoxic insults such as AP,
leading to cell damage and death [193]. These amount
to a positive feedback loop of microglial activation,
PNN loss, AB-accumulation and neuroinflammation
[194]. This vicious circle increases the brain hyper-
synchrony and the consequent aberrant neuronal
activity which, in turn, boost all the aforementioned
pathological processes, enhancing the circuit break-
down. Nonetheless, the fact that aberrant gamma
activity and cognitive dysfunction in AD patients and
mouse models appear at early disease stages is a valid
indication that hyperactivity represents the initial
step in the pathophysiological cascade and the conse-
quent abnormalities in gamma waves.

BOX 2 Gamma oscillatory activity and the role of PV-INs
PV-INs are involved in gamma rhythms in many cor-
tical and subcortical brain structures [195], including
the hippocampus, where they play a crucial role in
memory processes and in higher cognitive functions
[196]. Although PV-INs make up a small percentage
of the total hippocampal neuronal population, about
2.6% of the total neurons and 24% of the GABAergic
neurons in the CA1 region [197, 198], they play a criti-
cal role in the hippocampal network as they coordinate
and stabilize pyramidal neuron communication [199],
synchronizing their cortical activity during cognitive
processes [62, 200, 201].

The first evidence of PV-IN involvement in gamma
oscillations came from the correlative study between
PV-IN spikes and locally recorded gamma oscillations
in the hippocampus of awake rats [202], showing the
occurrence of PV-IN spikes always immediately after
the spikes of neighbouring pyramidal neurons [62,
203]. The short millisecond delay between the firing
of the pyramidal neuron and the spike of the PV-IN
is consistent with monosynaptic excitation of PV-INs,
which in turn activates a GABA, receptor-mediated
inhibition of the pyramidal cell, that precedes pyrami-
dal cell hyperpolarization [62, 203-205]. In this way,
the rhythmic activity of PV-INs synchronizes the
spiking of pyramidal cells by delineating a very nar-
row window for action potential initiation in pyrami-
dal cells. In this scenario, the fast excitation and the
delayed feedback inhibition alternate, creating a
cyclic trend that persists over time (Fig. 4). In vivo,
several optogenetic studies provided the causal evi-
dence of gamma wave evocation or silencing through
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Fig. 4 Mechanisms of large-scale gamma band synchronization in neural networks. The large-scale gamma band synchronization represents

a powerful mechanism for integration and coordination of distant neurons. The firing of spatially distant neurons might show considerable delays
due to axonal conduction and synaptic transmission. However, the relative phase of gamma oscillations in separated or within the same areas

is cancelled, as in reality the firing of distant neurons does not show delay or is proximately zero (zero lag-phase synchrony). This synchronization
mechanism is based on two main models, the first termed Inhibitory-Inhibitory (I-), and the second Inhibitory-Excitatory (I-E). a The I-l model

only consists of inhibitory interneurons (INs, IN1 marked blue and IN2 marked green), that are mutually inhibited via GABA, receptors to quickly
actualize zero-phase synchrony. When the first PV-IN fires, it can inhibit itself and also inhibit distant INs (blue bands). Likewise, the inhibition

of the second PV-IN inhibits itself and the first PV-IN (green band). b The E-I model consists of excitatory pyramidal neurons (red) and inhibitory INs
(blue). The short millisecond delay between the firing of the pyramidal neuron and the spike of the IN is consistent with monosynaptic excitation
of the IN, which in turn activates a GABA, receptor-mediated inhibition of the pyramidal cell (red band), that precedes pyramidal cell depolarization.
In this way, the rhythmic activity of INs synchronizes the spiking of pyramidal cells, creating a window for action potential initiation in pyramidal
cells. In this scenario, the fast excitation and the delayed feedback inhibition alternate, creating a cyclic oscillating trend that persists over time

cell-type-specific modulation of PV-INs [157, 158].
Additionally, gamma oscillations can also be evoked
ex vivo by various agonists of metabotropic or iono-
tropic receptors present on these neurons [206-210].
In parallel to this Excitatory-Inhibitory (E-I) rela-
tionship that explains the rhythmic appearance
of gamma waves, an Inhibitory-Inhibitory model
(I-I) also exists, which only consists of inhibitory
INs that are mutually inhibited via GABA, recep-
tors to quickly actualize zero-phase synchrony and
can receive tonic or stochastic inputs (Fig. 4) [211].
Regarding the tonic drive, INs can spike with a

well-defined periodicity, synchronizing their firing
[212]. Conversely, when INs receive different inputs
at an asynchronous state, instead of generating ran-
dom fluctuations, they do not remain stable but turn
synchronous over time [213-218]. In biological sys-
tems, the two models coexist and intertwine, creat-
ing a far more complex and intrigued plot in which
PV-INs receive multitude number of inputs at the
same time and fire following an oscillatory pattern.
This is also because of the fast-spiking nature of PV-
INs and their specific biological and electrophysiological
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properties, as their somatic input—output relationship
is about 5 times steeper compared to principal neurons
[219], leading them to an increased sensitivity toward
different input changes. Importantly, Kriener et al.
(2022) showed that the steepness of the input—output
relationship of hippocampal PV basket cells is differ-
ent depending on whether they are stimulated on the
soma or dendrites [220]. Indeed, the PV-IN soma is
more sensitive to different amounts of input, whereas
the dendrites reduce the amplitude of fast-fluctuat-
ing synaptic responses, reducing the variability in the
interspike interval, thus generating the rhythmicity of
gamma oscillations. The studies of biophysical proper-
ties revealed that the robustness of gamma oscillations
is mainly mediated by dendrites through high-threshold
and fast-activating Kt currents via Kv3-type channels
[221-223], that can tone down spatial and temporal
input heterogeneities and thereby enhance spike syn-
chrony in the gamma range. To summarize, PV cells can
level out different excitatory and inhibitory inputs, syn-
chronizing at a common frequency rate, thus enhancing
the robustness of gamma oscillations.
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