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Abstract 

The rising prevalence of diabetes mellitus has casted a spotlight on one of its significant sequelae: cognitive impair-
ment. Sodium-glucose cotransporter-2 (SGLT2) inhibitors, originally developed for diabetes management, are increas-
ingly studied for their cognitive benefits. These benefits may include reduction of oxidative stress and neuroinflam-
mation, decrease of amyloid burdens, enhancement of neuronal plasticity, and improved cerebral glucose utilization. 
The multifaceted effects and the relatively favorable side-effect profile of SGLT2 inhibitors render them a promising 
therapeutic candidate for cognitive disorders. Nonetheless, the application of SGLT2 inhibitors for cognitive impair-
ment is not without its limitations, necessitating more comprehensive research to fully determine their therapeutic 
potential for cognitive treatment. In this review, we discuss the role of SGLT2 in neural function, elucidate the diabe-
tes-cognition nexus, and synthesize current knowledge on the cognitive effects of SGLT2 inhibitors based on animal 
studies and clinical evidence. Research gaps are proposed to spur further investigation.
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Introduction
Sodium-glucose cotransporter-2 (SGLT2) inhibitors are a 
category of antidiabetic drugs that act on the SGLT2 pro-
teins to reduce glucose reabsorption and lower plasma 
glucose concentrations [1]. The global prevalence of dia-
betes is on the rise. By 2040, about 642 million people are 
projected to be affected by diabetes mellitus. According 
to a large U.S. veterans registry, the prevalence of con-
current dementia and cognitive impairment among indi-
viduals with diabetes was 13.1% in the 65–74 age group 
and 24.2% in those aged 75 years and older [2]. Cogni-
tive impairment is a complication of diabetes mellitus, 
with neurodegenerative alterations being associated with 
the pathogenic mechanisms of cognitive impairment. 
Consequently, there has been an increasing focus on the 
impact of antidiabetic drugs on cognitive dysfunction 
[3]. Neurodegenerative changes are associated with the 

†Jiaqi Mei, Yi Li and Liyan Niu have equally contributed to this work.

*Correspondence:
Jing Zhang
zhangjing666doc@163.com
Peng Yu
yu8220182@163.com
1 Department of Endocrinology and Metabolism, The Second Affiliated 
Hospital of Nanchang University, Nanchang, China
2 Huan Kui College of Nanchang University, Nanchang, China
3 The Second Clinical Medical College of Nanchang University, The 
Second Affiliated Hospital of Nanchang University, Nanchang, China
4 Queen Mary College of Nanchang University, Nanchang, China
5 Food and Nutritional Sciences, School of Biological Sciences, The 
University of Hong Kong, Pokfulam Road, Hong Kong, China
6 Department of Neurology, Affiliated Hospital of Jiujiang University, 
Jiujiang, China
7 Department of Anesthesiology, The Second Affiliated Hospital 
of Nanchang University, Nanchang, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40035-024-00431-y&domain=pdf


Page 2 of 16Mei et al. Translational Neurodegeneration           (2024) 13:41 

pathogenesis of cognitive impairment, whereas SGLT2 
inhibitors can protect the nervous system through anti-
inflammatory and anti-oxidative stress effects [4, 5]. 
Accumulating evidence from both clinical and experi-
mental studies has shown that SGLT2 inhibitors have a 
therapeutic potential for cognitive impairment [6–14]. 
Current drugs for cognitive impairment mainly act by 
inhibiting cholinesterase activity and glutamate exci-
totoxicity, and most of the drugs such as donepezil and 
lisdexamfetamine have side effects such as decreased 
hepatic function and gastrointestinal discomfort [15, 16]. 
SGLT2 inhibitors expand the therapeutic approaches 
for cognitive disorders by reducing neuroinflammation, 
enhancing cerebral glucose metabolism and energy avail-
ability, limiting amyloid production and aggregation, and 
modulating neurotrophic factor production to support 
neural regeneration [17]. In this article, we elucidate the 
pathophysiological role of SGLT2 in the nervous system, 
discuss the association between diabetes mellitus and 
diverse neurodegenerative diseases, and analyze current 
clinical investigations into SGLT2 inhibitors for neuro-
degenerative disorder management. The mechanisms by 
which these inhibitors promote neuronal survival are also 
discussed.

Pathophysiological role of SGLT2 in the nervous 
system
Physiological roles of SGLT2
SGLT2 is a glucose transporter primarily expressed in 
the proximal tubules of the kidney [18]. SGLT2 is also 
prevalent throughout the central nervous system (CNS), 
including the brain parenchyma and blood–brain bar-
rier (BBB) [19–22]. In the BBB, SGLT2 expression in 
endothelial cells facilitates selective glucose transport, 
which is crucial for maintaining cerebral glucose levels 
[23].

SGLT2 expression in the brain parenchyma is predomi-
nantly observed in the hippocampus and cerebellum, 
where it is implicated in learning, appetite regulation, 
energy balance, and central cardiovascular and auto-
nomic control [3]. Its presence in the hippocampus has 
also been linked to synaptic plasticity. Studies have dem-
onstrated that SGLT2 inhibitors enhance insulin sensitiv-
ity in the brains of obese rats and improve brain function 
by mitigating inflammation, apoptosis, and oxidative 
stress, which markedly boost hippocampal synaptic plas-
ticity [24].

SGLT2 is mainly expressed in pericytes, facilitating glu-
cose transport to these cells for their nourishment and 
metabolic functions. At this point, the pericytes share the 
glucose they have taken up with the nearby astrocytes in 
addition to using it for their own growth [25]. SGLT2 is 
also central to neurons, where it is present in cell bodies, 

axons, and dendrites. There is a hypothesis that SGLT2 
inhibitors contribute to glucose absorption in both glial 
cells and neurons, suggesting a potential therapeutic 
mechanism. SGLT2 plays a crucial role in neuronal sur-
vival, particularly noted with increased expression under 
stroke or ischemic conditions [26]. Recent research 
revealed that treatment with the SGLT2 inhibitor dapa-
gliflozin in dietary-induced diabetic mice, leads to ele-
vated expression of doublecortin  and synaptophysin, 
which are markers indicative of neurogenesis or synap-
togenesis [27].

Pathological roles of SGLT2
Associations between SGLT2 expression and various 
pathologies have been substantiated in multiple stud-
ies. Post-mortem analyses of human brain tissues have 
revealed a marked elevation of SGLT2 level in areas of 
cerebral damage [28]. Umino et  al. documented that 
high-glucose conditions lead to increased SGLT2 expres-
sion and increased renal threshold for glucose, resulting 
in enhanced glucose reabsorption, exacerbating hypergly-
cemia [29, 30]. Additionally, research has demonstrated a 
significant surge in sodium ion influx into neuronal cells 
mediated by SGLT2 during cerebral ischemia, which 
amplifies neuronal damage [31]. Moreover, D’Onofrio 
et al. noted a pronounced increase in SGLT2 expression 
within atherosclerotic plaques of diabetic patients com-
pared to non-diabetics [32]. These findings imply that 
pathogenic factors, including brain injury and hypergly-
cemia, would stimulate SGLT2 expression, further lead-
ing to a cascade of detrimental effects such as enhanced 
glucose reabsorption, neuronal damage, and atherogen-
esis (Fig. 1).

Relationship between diabetes and multiple 
neurodegenerative diseases and SGLT2 
intervention studies
Effects of diabetes on the nervous system
Diabetic neuropathy represents a significant complica-
tion of diabetes mellitus, with peripheral neuropathy 
being the most frequent presentation. Hyperglycemia is 
identified as the primary cause of this condition [33, 34]. 
The disease is characterized by marked axonal degen-
eration and segmental demyelination involving periph-
eral sensory and motor nerves. Damage to motor nerves 
may lead to neuromuscular atrophy with concomitant 
decreases in muscular endurance, size, and metabolism, 
so the main symptoms of the disease are muscle atrophy 
and sensory abnormalities [35, 36]. Diabetes can lead 
to neurological damage through multiple pathological 
mechanisms, including oxidative stress and neuroin-
flammation. Strom et  al. recently reported that reduced 
levels of extracellular superoxide dismutase (SOD) and 
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glutathione (GSH) are significantly correlated with dia-
betic neuropathy in patients with diabetes [37]. However, 
there is also a study showing a significant increase of 
SOD and a significant decrease of GSH levels in erythro-
cytes from diabetic patients. Such partially contradictory 
experimental results suggest that the status of oxidative 
stress varies among diabetic patients. More studies are 
needed to confirm this observation [38]. These findings 
support the hypothesis that oxidative stress is a criti-
cal contributor to diabetic peripheral neuropathy. Fur-
thermore, elevated blood levels of glucose may lead to 
activation of the cyclooxygenase-2 pathway within the 
microvasculature, which in turn promotes inflammation 
and oxidative stress in peripheral nerves[39].

In addition to the role in neurological impairment, 
accumulating evidence suggests that hyperglycemia is 
involved in BBB damage [40]. Hyperglycemia promotes 
production of reactive oxygen species (ROS), which leads 
to activation of nuclear factor κ-light chain enhancer of 
activated B cells (NF-κB), activation protein-1, and the 
signal transducer and activator of transcription (STAT) 
pathways, resulting in upregulation of inflammatory 
cytokines. During the inflammatory response, disrup-
tion of components of the BBB such as astrocytes and 

basement membranes, and downregulation of expression 
of some tight junction proteins such as claudin-5 and 
occludins, promote leukocyte extravasation, increase the 
diffusion of solutes across the BBB, and permit the entry 
of pathogens and toxins into the CNS [41, 42].

Hyperglycemia is also correlated with neuronal abnor-
mality. Studies have shown that hyperglycemia increases 
levels of dynamin-related protein 1 in mitochondria of 
neurons, resulting in impaired morphology and func-
tion of mitochondria, which in turn leads to synaptic 
dysfunction [43]. Moreover, hyperglycemia accelerates 
neuronal apoptosis through overproduction of ROS 
and free radicals. The resulting oxidative stress activates 
effector proteins, which compromise the mitochondrial 
membrane potential, causing mitochondrial swelling and 
increased permeability. As a result, the caspase-3 path-
way is activated, which promotes the release of apopto-
genic proteins like cytochrome c from the mitochondria 
to the cytosol [44, 45]. Hyperglycemia further promotes 
apoptosis by boosting caspase activity, leading to cel-
lular events such as DNA fragmentation, degradation of 
structural and nuclear proteins, protein cross-linking, 
apoptotic body formation, and ultimately phagocytic 
absorption (Fig. 2) [45–47].

Fig. 1  Physiological roles of SGLT2 in the brain. SGLT2 is mainly expressed in pericytes and brain parenchyma. SGLT2 expressed in pericytes 
facilitates glucose transport to support their nourishment and metabolic functions, with the additional role of distributing glucose 
to adjacent astrocytes. SGLT2 inhibitors enhance insulin sensitivity in the brains of obese rats by mitigating inflammation, apoptosis, and oxidative 
stress, markedly improving hippocampal synaptic plasticity
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The relationship between diabetes and cognitive decline
Diabetes significantly elevates the risk of Alzheimer’s 
disease (AD), with insulin resistance or type 2 diabe-
tes mellitus (T2DM) present in approximately 80% of 
AD patients [48, 49]. The duration and management of 
diabetes, along with glycemic variability, correlate with 
cognitive functions [50–52]. Diabetes contributes to the 
development of mild cognitive impairment, character-
ized by reduced processing speed, and impaired memory, 
attention, and executive abilities [53, 54]. Several mecha-
nisms by which diabetes impairs cognition have been 
identified.

Diabetes triggers neuroinflammation
Diabetes can induce neuroinflammation by activating 
the NF-κB pathway, increasing production of proinflam-
matory cytokines and toll-like receptor expression, and 
improving oxidative stress and inflammasome activation. 
Neuroinflammation is pivotal in AD pathogenesis and 
involves the activation of brain-resident inflammatory 
cells like microglia and astrocytes. These cells exacerbate 

the inflammatory state by releasing cytokines, interleu-
kins and chemokines, which may surround and amplify 
neurofibrillary tangles and senile plaques characteristic 
of AD [55, 56].

Diabetes accelerates vascular aging
Diabetes can accelerate vascular aging through inflam-
matory responses that lead to elevated production of 
cytokines such as tumor necrosis factor-α (TNF-α) and 
interleukin  (IL)-6. The resulting vascular changes can 
diminish cerebral blood flow and perfusion, leading to 
ischemic damage, white matter changes, basal ganglia 
diffuses and neuronal loss and apoptosis, impairing exec-
utive cognitive functions [57–59].

Diabetes leads to hyperglycemia
Hyperglycemia due to diabetes leads to neuronal glu-
cotoxicity, which is referred to as the detrimental effect 
of excessive glucose [60]. Glucotoxicity leads to abnor-
mal intracellular accumulation of methylglyoxal, which 
impairs dopaminergic neuron survival [61]. The loss of 

Fig. 2  Diabetes mellitus affects the nervous system. Diabetes can affect the nervous system through three mechanisms. First, it reduces the levels 
of extracellular superoxide dismutase (SOD) and glutathione (GSH), which in turn promotes inflammation and oxidative stress in peripheral nerves. 
Second, it promotes the production of reactive oxygen species (ROS), leading to the activation of nuclear factor κ-light chain enhancer (NF-κB), 
activation protein-1 (AP-1), and the signal transducer and activator of transcription (STAT) pathways, resulting in increased inflammatory cytokines 
and then increased BBB breakdown. Third, it increases the level of dynamin-related protein 1 (Drp1) in mitochondria within neurons and stimulates 
the overproduction of ROS, resulting in impaired mitochondrial morphology and function, which in turn leads to neuron apoptosis
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dopaminergic neurons then leads to memory and reward 
dysfunction [62]. Methylglyoxal also promotes endoge-
nous non-enzymatic glucose oxidation of proteins, lipids, 
and nucleic acids with consequent formation of advanced 
glycosylation end-products (AEGs). Elevated plasma lev-
els of AEGs may be associated with atrophy of the grey 
matter, and accumulation of AEGs may lead to neuronal 
dysfunction and increased vulnerability [63, 64]. The 
accumulation of AEGs further activates the receptor for 
advanced glycosylation end products (RAGE), which pro-
motes the activation of ROS, leading to neuronal death 
[65]. RAGE also binds to amyloid β (Aβ) and exacerbates 
its aggregation, resulting in hyperphosphorylation of tau 
and formation of senile plaques, ultimately leading to 
cognitive impairment [66].

Diabetes promotes oxidative stress
Activation of the pro-oxidative protein kinase C pathway, 
the hexosamine pathway, and the polyol metabolic path-
way in the development of diabetes contributes to oxida-
tive stress [67], promoting the production of NF-κB and 
NADPH oxidase 2 (NOX2). NF-κB is a key promoter of 
oxidative stress and neuronal death following Aβ peptide 
stimulation of microglia and astrocytes in AD. Unwanted 
NF-κB transcriptional activation can also trigger a variety 
of modifications in the expression of genes implicated in 
the cognitive deterioration associated with diabetes [68]. 
NOX2 can contribute to oxidative stress by promoting 
ROS production and thus oxidative stress. In addition, 
enhanced NOX2 expression in vascular endothelial cells 
may lead to increased cerebral vascular permeability, 
promoting leukocyte adhesion and CNS inflammation 
[69]. There is a close relationship between Aβ level and 
NOX2 activity, and NOX2-derived oxidative stress plays 
a major role in mediating Aβ-induced neuronal death 
and neurovascular dysfunction [70, 71]. Nox2 deletion in 
Tg2576 AD mice rescues the cerebrovascular dysfunction 
and behavioral deficits. In addition, a peptide inhibitor 
of NADPH oxidase also ameliorates neurovascular dys-
function. It inhibits the overproduction of NOX-derived 
ROS, thereby reducing amyloid precursor protein (APP) 
expression and Aβ-induced neurovascular dysfunction 
[72].

Treatment of diabetes triggers hypoglycemia
Hypoglycemia, a common complication during treat-
ment of diabetes, is also one of the risk factors for cog-
nitive dysfunction. Studies have shown that 58%–64% 
of patients receiving insulin and non-insulin treatments 
require medical assistance to treat hypoglycemia over 
a period of 6–12 months [73]. Hypoglycemia may lead 
to neuronal death by promoting oxidative stress, zinc 
release, poly(ADP-ribose) polymerase 1 activation, and 

mitochondrial dysfunction, and the neuronal damage 
and cognitive decline caused by severe hypoglycemia 
are exacerbated by diabetes [74]. Severe hypoglycemia 
causes damage specifically in the hippocampus involved 
in memory and learning, leading to impaired cognitive 
function [73].

Insulin resistance often accompanies diabetes
Insulin resistance is one of the earliest defects in the 
pathogenesis of T2DM and one of the features of AD [68, 
75]. Chronic peripheral hyperinsulinemia due to insu-
lin resistance ultimately reduces brain insulin levels and 
leads to desensitization of neuronal insulin receptors. 
This may result in reduced clearance of Aβ peptides and 
increased hyperphosphorylation of τ proteins, leading to 
the formation of neurofibrillary tangles, in turn contrib-
uting to cognitive impairment [76, 77].

Diabetic patients often show dysfunctional lipid metabolism
Diabetes frequently co-occurs with lipid metabolism 
disorders, characterized by increased levels of triglycer-
ide (TG) and cholesterol. These alterations can disrupt 
APP metabolism, facilitate overproduction and deposi-
tion of Aβ peptides, and are significantly associated with 
cognitive deficits in diabetic patients [58]. Concurrently, 
elevated TG levels may compromise N-methyl-D-as-
partate receptor-dependent synaptic potentiation in the 
hippocampus, further contributing to cognitive decline 
(Fig. 3) [78].

Mechanisms involved in the regulation of neuronal 
survival by SGLT2 inhibitors
SGLT2 inhibitors suppress neuroinflammation
Neuroinflammation is closely related to cognitive defi-
cits [5]. Suridjan et  al. observed a positive correlation 
between neuroinflammation and the severity of cognitive 
impairment when comparing cognitively normal controls 
and individuals with AD [79]. Notably, recent investiga-
tions have highlighted the anti-inflammatory effects of 
SGLT2 inhibitors [80].

NOD-like receptor thermal protein domain associ-
ated protein 3 (NLRP3) inflammasomes are pivotal in 
the innate immune system, and their dysregulation con-
tributes to AD [81]. Tejera et  al. found that the NLRP3 
inflammasomes mediate the systemic inflammation 
(lipopolysaccharide)-induced reduction of microglial 
clearance of Aβ in APP/PS1 mice [82]. A comparative 
study by Kim et al. treated patients with T2DM and high 
cardiovascular risk with either SGLT2 inhibitors or sul-
fonylureas for 30 days. Results showed that in addition 
to glucose-lowering capacity, SGLT2 inhibitors markedly 
suppressed NLRP3 inflammasome activation in mac-
rophages. This suppression was mediated by elevations 
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in serum β-hydroxybutyrate and reductions in serum 
insulin, which in turn inhibited the NLRP3/IL-1/TNF-α/
miR-501-3p/ZO-1 axis and associated neuroinflam-
mation [83]. Furthermore, SGLT2 inhibitors attenuate 
inflammation and neuronal damage through inhibition 
of ROS-dependent neuronal apoptosis, downregulation 
of the phosphatidylinositol 3-kinase (PI3K)/Akt/GSK-3β 
signaling pathway, and inhibition of the NF-κB pathway 
and TNF-α activation [84].

SGLT2 inhibitors improve cerebral glucose metabolism 
and energy supply
SGLT2 inhibitors selectively target SGLT2 on the lumi-
nal surface of proximal renal tubules, inhibiting glucose 
reabsorption and promoting urinary glucose excretion. 

Consequently, this decreases plasma levels of glucose 
and glycated hemoglobin in individuals with T2DM 
[85, 86], which can lead to a decrease of insulin levels 
and an increase of glucagon release, promoting produc-
tion of ketone body [87]. SGLT2 inhibitors also inhibit 
SGLT2-mediated reabsorption of sodium ions, lead-
ing to increased sodium ion levels in renal tubular fluid, 
which in turn increases the electrochemical gradient 
driving carrier-mediated reabsorption of negatively 
charged ketones [88]. As a result, brain metabolism 
shifts from utilizing carbohydrates to utilizing ketones 
[89]. Additionally, SGLT2 inhibitors potentially enhance 
β-oxidation in the hepatic tissue, which encourages the 
production of ketone bodies [90].

Fig. 3  Diabetes mellitus is associated with cognitive decline. Diabetes can affect cognitive decline through the following mechanisms. First, 
it induces neuroinflammation by activating the NF-κB pathway, enhancing proinflammatory cytokine production, and stimulating oxidative 
stress and inflammasome activation. Second, it accelerates vascular aging through inflammatory responses that elevate cytokines such as tumor 
necrosis factor-α (TNF-α) and interleukin-6 (IL-6), resulting in neuronal loss and apoptosis. Third, it leads to neuronal glucotoxicity, which leads 
to an abnormal intracellular accumulation of methylglyoxal. Methylglyoxal promotes the formation of advanced glycosylation end-products 
(AGEs) and activates the receptor for advanced glycosylation end products (RAGE), leading to activation of ROS and thus neuronal death. 
Fourth, it promotes oxidative stress and facilitates the production of NF-kB and NADPH oxidase 2 (NOX2), which lead to neuronal damage 
and neuroinflammation. Fifth, treatment of diabetes may trigger hypoglycemia. Hypoglycemia promotes neuronal death by inducing activation 
of poly(ADP-ribose) polymerase 1 (PARP-1) and mitochondrial dysfunction. Sixth, insulin resistance ultimately reduces brain insulin levels and leads 
to neuronal insulin receptor desensitization, resulting in reduced clearance of Aβ peptides and increased hyperphosphorylation of tau protein. Last, 
triglyceride (TG) and cholesterol levels are increased under the condition of diabetes, which facilitate Aβ overproduction and deposition
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In most neurodegenerative diseases, glucose uptake 
and transport is impaired, resulting in an energy defi-
cit state within the brain that exacerbates disease pro-
gression [91]. Interestingly, while glucose metabolism 
is impaired, ketone body metabolism typically remains 
unchanged, providing an alternative energy source for 
the brain [92]. Ketone bodies not only serve as alternative 
fuels for neuronal activities but also enhance mitochon-
drial function and efficiency [91]. Compared to glucose, 
ketone bodies are used more efficiently by neurons, 
astrocytes and oligodendrocytes, offering a more effi-
cient energy provision for brain cells [93]. Consequently, 
SGLT2 inhibitors can support neuronal survival by opti-
mizing cerebral glucose metabolism and supplementing 
energy supplies.

SGLT2 inhibitors modulate neurotrophic factors 
and synaptic plasticity
The SGLT2 inhibitors can increase neurotrophic factors 
such as brain-derived neurotrophic factor (BDNF), nerve 
growth factor (NGF), and glial cell line-derived neu-
rotrophic factor (GDNF) by alleviating neuronal ROS/
oxidative stress and subsequently restoring the DJ-1/
Nrf2 pathway [84, 94, 95]. BDNF critically governs the 
development of brain circuits, synaptic plasticity, neu-
roregeneration, and neuroprotection, playing a pivotal 
role in synaptic transmission [96, 97]. NGF is instrumen-
tal in the axonal branching of developing neurons in the 
peripheral nervous system, contributing significantly to 
synaptic plasticity [98].

In a previous study, dapagliflozin administration in 
diabetic mice induced notable upregulation of both dou-
blecortin (number of immature neurons) and synap-
tophysinn (synaptic density), indicating potential drug 
efficacy in facilitating neurogenesis and the rehabilitation 
of synaptic density [27]. But this study did not explore in 
detail the specific mechanism underlying the enhance-
ment of doublecortin and synaptophysin expression. In 
addition, SGLT2 inhibitors enhance insulin sensitivity in 
the brains of obese mice by reducing neuroinflammation, 
apoptosis, and oxidative stress, which in turn enhances 
mitochondrial brain function and significantly increases 
hippocampal synaptic plasticity [99]. These findings 
underscore the potential of SGLT2 inhibitors to modu-
late neuronal survival through regulation of neurotrophic 
factors and enhancement of synaptic plasticity.

SGLT2 inhibitors suppress the production and aggregation 
of amyloid
Aβ deposition is a hallmark and key event of AD [100]. 
SGLT2 inhibitors appear to mitigate Aβ production by 
activating the adenosine monophosphate-activated pro-
tein kinase (AMPK) signaling pathway. SGLT2 inhibitors 

stimulate AMPK via hepatic kinase B1 [101], which 
reduces amyloid formation in neurons through a variety 
of ways.

Aβ is produced from sequential cleavage of APP by β 
and γ secretases [102]. Beyond reducing β-secretase-
mediated cleavage of APP in neurons, AMPK also modu-
lates the expression levels of α and β secretases, thereby 
influencing APP processing. Moreover, AMPK activation 
decreases the level of sphingomyelin in neuronal lipid 
rafts, consequently affecting the amyloidogenic process-
ing of APP in lipid rafts [103].

Vascular dysfunction may also be associated with amy-
loid deposition [104]. Studies have shown that cerebro-
vascular diseases such as chronic cerebral underperfusion 
and BBB deterioration, together with cardiovascular 
diseases such as atrial fibrillation and heart failure, and 
other vascular risk factors, may promote the deposition 
of Aβ [105–107]. SGLT2 inhibitors can effectively reduce 
these risk factors by lowering blood pressure, inhibiting 
adipokines and cytokine-mediated inflammation, and 
reducing ROS production and NLRP3 inflammasome 
activity [108]. However, currently there is no direct evi-
dence that SGLT2 inhibitors inhibit Aβ production and 
aggregation by improving vascular factors. More studies 
are needed to explore the involvement of this pathway. 
Meanwhile, overactivation of the mammalian target of 
rapamycin (mTOR) leads to rapid loss of brain function 
in rats, promoting Aβ deposition, BBB permeability, and 
tau protein hyperphosphorylation. In contrast, SGLT2 
inhibitors can decrease mTOR activity to a normal level, 
halting the onset or progression of AD [99]. Given that 
Aβ contributes to neuronal apoptosis [109], the inhibi-
tion of amyloid production by SGLT2 inhibitors suggests 
a protective role in neuronal survival.

Neuroregenerative effects of SGLT2 inhibitors
A previous animal study shows that the inhibition of 
C-reactive protein by SGLT2 inhibitor empagliflozin pro-
motes macrophage polarization to the M2 phenotype 
[110]. The M2 macrophages play a pivotal role in nerve 
regeneration. They synthesize hypoxia-inducible fac-
tor 1 subunit-α in response to injury-induced hypoxia, 
subsequently leading to elevated expression of vascular 
endothelial growth factor A, a key regulator of endothe-
lial cell proliferation and migration [111]. Meanwhile, 
empagliflozin significantly increases tissue levels of 
BDNF, NGF, and GNDF in diabetic mice [84, 94, 95], all 
neurotrophic factors playing important roles in nerve 
regeneration [112]. For example, BDNF can stimulate the 
intrinsic regenerative capacity of neurons by promoting 
mRNA expression that provokes the regeneration capac-
ity of neurons [113]. NGF can bind pro-myosin recep-
tor kinase A, activating a cascade of molecular pathways 
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such as phospholipase C-γ, MAPK (mitogen-activated 
protein kinase)/Erk, and PI3K pathways. These pathways 
collectively contribute to the induction of neural regen-
eration [114]. However, direct evidence showing that 
SGLT2 inhibitors promote neural regeneration by mod-
ulating M2 polarisation in macrophages or the levels of 
BDNF, NFG, and GNDF proteins is lacking.

Clinical trials on SGLT2 inhibitors
The research into the numerous therapeutic benefits of 
the SGLT2 inhibitors outlined above for neurodegenera-
tive illnesses is no longer in the experimental stage, and 
data from a variety of clinical trials suggest that they have 
the potential to treat these diseases. Table 1 summarizes 
evidence from nine studies indicating that SGLT2 inhibi-
tors are at least as effective as other diabetic treatments 
in managing cognitive decline. A randomized controlled 
clinical trial showed that SGLT2 inhibitors did not induce 
reduction of cognitive performance in T2DM patients 
[115]. Four studies reported a reduced risk of cogni-
tive impairment in diabetic patients following treatment 
with these inhibitors [116–119]. Mone et  al. performed 
a prospective trial and observed cognitive benefits from 
empagliflozin in frail old patients with diabetes after one 
month of treatment. They found significant beneficial 
effects of empagliflozin on cognitive and physical impair-
ment in frail older adults [120]. Another prospective 
trial demonstrated effective improvement in language 
domains and executive functioning with treatment with 
SGLT2 inhibitors for more than 3 years through more 
than 6 years of follow-up [121]. Additionally, a rand-
omized controlled trial and a single-arm study have cor-
roborated the positive impact of SGLT2 inhibitors on the 
cognitive function of elderly patients with T2DM and 
non-diabetic individuals aged 55 or older, respectively 
[122, 123]. These findings suggest the potential of SGLT2 
inhibitors to treat cognitive disorders. Nonetheless, 
potential side effects, such as urinary tract infections and 
electrolyte imbalances, warrant consideration (Fig.  4). 
In addition, in real-world diabetes management, various 
agents are often used in combination with SGLT2 inhibi-
tors, leading to a more complex interpretation of the 
observations. A limitation of observational clinical trials 
is that it is difficult to analyze individual drug effects or 
make comparisons between them [124]. 

Challenges of using SGLT2 inhibitors for treatment 
of cognitive disorders
SGLT2 inhibitors exhibit potential neuroprotective 
effects across various neurodegenerative disorders, 
including AD and Parkinson’s disease [17, 84]. How-
ever, several important questions remain unanswered. 
First, SGLT2 inhibitors have been reported with side 

effects including genitourinary infections, ketoacido-
sis, and fractures [125], and the consequences of their 
extended use have not been thoroughly studied. Recent 
evidence suggests an association of SGLT2 inhibitors 
with acute kidney injury and an elevated risk of blad-
der cancer development, which highlights the incom-
plete understanding of their long-term safety profile 
for cognitive impairment therapy [126]. Second, clini-
cal research evaluating the therapeutic efficacy of 
SGLT2 inhibitors on cognitive impairment is limited. 
Most studies were conducted on animal models. The 
short lifespan of such models prevents adequate evalu-
ation of the efficacy of SGLT2 inhibitors for cognitive 
impairment. To date, only a handful of clinical tri-
als have investigated the long-term effects of SGLT2 
inhibitor usage, leaving their sustained therapeutic 
value and efficacy in prolonged treatments unresolved. 
Third, while existing research concentrates on the effi-
cacy of SGLT2 inhibitors for cognitive impairment in 
diabetic patients, there is a pressing need for studies 
on the variations in treatment outcomes for cognitive 
impairments stemming from diverse etiologies [127]. 
A small number of ongoing clinical trials are address-
ing the effects of SGLT2 inhibitors on cognitive impair-
ments due to non-diabetic causes, including stroke 
(ClinicalTrials.gov identifier NCT05565976) and other 
non-diabetic conditions such as Alzheimer’s patients 
without diabetes (NCT05081219). Fourth, although 
recent research indicates that SGLT2 inhibitors may 
prevent the progression of cognitive impairment [115, 
128], studies on their ability to reverse established 
damage are limited. Wang et  al. demonstrated that 
SGLT2 inhibitor-induced normalization of hyperglyce-
mia can reverse cerebrovascular dysfunction and cogni-
tive deficits in chronically hyperglycemic rats; however, 
evidence in human patients is lacking [6]. Finally, the 
mechanisms underlying the effects of SGLT2 inhibi-
tors have not been completely understood. Regarding 
the known side effects of SGLT2 inhibitors, including 
fractures and ketoacidosis, further research into their 
specific mechanisms may yield strategies to mitigate 
these adverse effects through drug combinations. For 
instance, fractures could be associated with elevated 
phosphate, fibroblast growth factor 23, and parathyroid 
hormone levels, along with reduced 1,25-dihydroxy 
vitamin D concentrations or a decline in blood volume 
attributable to SGLT2 inhibitors [129]. Derived from 
these mechanisms, one can hypothesize that combining 
SGLT2 inhibitors with oestriol or adjusting their dos-
age could mitigate their side effects.
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Prospects of using SGLT2 inhibitors for treatment 
of cognitive disorder
SGLT2 inhibitors, primarily prescribed for diabetes man-
agement, have recently expanded clinical use to cardiore-
nal diseases [130]. Concurrently, emerging research has 
highlighted their potential in treating cognitive disorders. 
The diverse therapeutic applications and multiple action 
pathways of SGLT2 inhibitors indicate their promising 
scalability in clinical settings, with ongoing trials sub-
stantiating their viability for cognitive disorder interven-
tions [120, 122]. As polypharmacy is common in chronic 
disease management, exploring the interactive effects of 
SGLT2 inhibitors with other medications is of significant 
interest and warrants further exploration. The synergis-
tic potential based on the pharmacodynamics of SGLT2 
inhibitors and the pathophysiology of cognitive disorders 
is illustrated in Table 2.

First, the combined use of SGLT2 inhibitors with insu-
lin sensitizers is advantageous. Brain insulin resistance 
is a pivotal factor in AD pathogenesis [143], and SGLT2 

inhibitors have been shown to enhance cerebral insulin 
sensitivity by mitigating brain inflammation, apoptosis, 
and oxidative stress, thereby ameliorating AD progres-
sion. Combining these inhibitors with insulin sensitizers 
could potentially amplify this benefit. Notably, evidence 
suggests that a regimen combining dapagliflozin and 
velagliflozin effectively prevents cognitive decline in 
cases of obesity-related insulin resistance [24]. Second, 
SGLT2 inhibitors can be combined with lipid-lowering 
drugs. Diabetes accelerates the aging of blood vessels 
in the brain, which leads to impaired cognitive function 
[58, 59]. Statins, on the other hand, can prevent vascu-
lar sclerosis by lowering cholesterol levels and inhibiting 
other downstream products of the mevalonate pathway, 
so they can synergize with SGLT2 inhibitors to improve 
cerebral hemodynamics and thus improve cognitive 
impairment [133]. Additionally, pairing SGLT2 inhibi-
tors with angiotensin-converting enzyme (ACE) inhibi-
tors presents a therapeutic strategy. ACE inhibitors 
facilitate vasodilation and enhance cerebral blood flow 

Fig. 4  Mechanisms underlying the regulation of neuronal survival by SGLT2 inhibitors. (1) SGLT2 inhibitors suppress NLRP3 inflammasome 
activation in macrophages by elevating serum β-hydroxybutyrate (BHB) and reducing serum insulin, which in turn inhibit the NLRP3/IL-1/TNF-α/
miR-501-3p/ZO-1 axis. Furthermore, SGLT2 inhibitors inhibit the ROS-dependent neuronal apoptosis, downregulate the PI3K/Akt/GSK-3β signaling 
pathway, and inhibit the NF-κB pathway and TNF-α activation. These pathways inhibit the neuroinflammation. (2) SGLT2 inhibitors target SGLT2 
on the proximal renal tubules, reduce glucose reabsorption and promote urinary glucose excretion, which lead to the shift of brain metabolism 
from utilizing carbohydrates to fatty acid oxidation, and thus optimizes cerebral glucose metabolism. (3) SGLT2 inhibitors increase levels 
of neurotrophic factors like brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), contributing to synaptic plasticity together. 
(4) SGLT2 inhibitors activate adenosine monophosphate-activated protein kinase (AMPK) via liver kinase B1, and AMPK modulates the expression 
of α and β secretases, thereby reducing Aβ generation from amyloid precursor protein (APP). (5) SGLT2 inhibitors promote macrophage polarization 
to the M2 phenotype, and M2 macrophages promote nerve regeneration. Meanwhile, SGLT2 inhibitors significantly increase tissue BDNF and NGF 
levels. BDNF can promote mRNA expression that provokes intrinsic regeneration capacity of neurons and NGF can bind to pro-myosin receptor 
kinase A (TrkA) to activate a cascade of molecular pathways to induce neural regeneration
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by elevating local bradykinin levels, leading to increased 
production of nitric oxide and prostacyclin [136]. Such 
a combination may offer a synergistic effect on cerebral 
vascular protection. Furthermore, oxidative stress, which 
contributes to AD through mechanisms like Aβ deposi-
tion, tau hyperphosphorylation, and neuronal damage, is 
a critical target [137]. Antioxidants, by neutralizing free 
radicals, can mitigate oxidative stress, potentially reduc-
ing AD pathology. Vitamin C, a potent antioxidant, may 
treat cognitive impairment by suppressing the expression 
of pro-inflammatory genes, diminishing neuroinflamma-
tion, and preventing Aβ fibril formation [144], enhancing 
the therapeutic effect when used with SGLT2 inhibitors. 
SGLT2 inhibitors can also be used in combination with 
glucagon-like peptide-1 (GLP-1) agonists. As a diabetic 
therapeutic agent, GLP-1 agonists have also shown neu-
rotrophic and neuroprotective effects. GLP-1 receptors 
are present on neuronal soma and dendrites and are sig-
nificantly expressed in the hippocampus, hypothalamus, 

cerebral cortex, and olfactory bulb [145]. GLP-1 agonists 
are capable of rescuing cognitive dysfunction by reducing 
plaque load, synaptic loss, and neuronal inflammation 
[146, 147], and thus may exert neuroprotective effects 
in synergy with SGLT2 inhibitors. Additionally, SGLT2 
inhibitors may also be integrated with neurotrophic sub-
stances, anti-inflammatory agents, and various other 
drugs to establish a multifaceted approach to neuropro-
tection in cognitive disorders.

Nevertheless, these prospects of combinational appli-
cations are raised based on the pathways of action of 
SGLT2 inhibitors on cognitive impairment. More stud-
ies are needed to evaluate their safety and therapeutic 
efficacy.

Conclusion
The multifaceted effects of SGLT2 inhibitors render 
them a promising therapeutic candidate for cogni-
tive disorders. In this review, we discuss the roles of 

Table 2  Potential of combining SGLT2 inhibitors with other drugs to improve cognitive impairment

SGLT2 sodium-glucose cotransporter-2, AD Alzheimer’s disease, GLP-1 glucagon-like peptide-1

Types of drugs used in combination Name Effect References

Insulin sensitizer Metformin Improves insulin resistance and exerts potential neuroprotective, neu-
rotrophic, and neurogenic stimulatory effects that synergize with SGLT2 
inhibitors to improve cognitive impairment

[131]

Thiazolidinediones Increases insulin receptors to improve insulin sensitivity and also works 
with SGLT2 inhibitors to improve lipid metabolism disorders 
and decrease brain inflammation

[132]

Antihyperlipidemic drug Statins Prevents vascular sclerosis in the brain by lowering blood lipids, stabiliz-
ing and reducing atherosclerotic plaques, as well as reducing the inflam-
matory response. Synergizes with SGLT2 inhibitors to improve cerebral 
hemodynamics

[133]

Fibrates Reduces total plasma cholesterol and triglycerides, attenuates increased 
amyloid production due to disorders of lipid metabolism, has anti-inflam-
matory effects, and improves cerebral hemodynamics in combination 
with SGLT2 inhibitors

[134, 135]

Angiotensin-converting enzyme inhibitor Captopril tablets Increases local bradykinin concentrations, which in turn increases nitric 
oxide and prostacyclin production, leads to vasodilatation to improve 
local blood flow and synergistically protects the cerebral vasculature 
with SGLT2 inhibitors

[136]

Neurotrophin Acetylcarnitine Promotes the production of neurotrophic factors and synaptic growth 
to facilitate nerve regeneration, producing synergistic neuroprotective 
effects with SGLT2 inhibitors

[137]

Antibacterial drug Acetaminophen Reduces neuroinflammation in AD and exerts synergistic neuroprotec-
tion with SGLT2 inhibitors

[138]

Antioxidant Vitamin E Ameliorates oxidative stress by trapping free radicals, among other 
things, which improves AD and produces synergistic antioxidant protec-
tion with SGLT2 inhibitors

[139]

Vitamin C When used with SGLT2 inhibitors, it reduces amyloid plaque formation 
and can quench reactive oxygen species, which protects mitochondria 
and reduces the level of oxidative stress in the brain

[140]

Probucol Has total cholesterol-lowering and antioxidant effects and may synergize 
with SGLT2 inhibitors to protect cerebral blood vessels

[141]

GLP-1 agonist Liraglutide Prevents memory impairment and synaptic loss, reduces β-amyloid 
plaque load and microglia-induced inflammation, and enhances synaptic 
neuroplasticity. May synergise with SGLT2 inhibitors to protect neurons

[142]
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SGLT2 in neural function and the diabetes-cognition 
nexus. Clinical trials have shown cognition-improving 
effects of SGLT2 inhibitors. The mechanisms underly-
ing the effects include reduction of oxidative stress and 
neuroinflammation, attenuation of amyloid burdens, 
enhancement of neuronal plasticity, and improved cer-
ebral glucose utilization. More clinical trials are needed 
to fully understand the long-term therapeutic safety 
and effectiveness of SGLT2 inhibitors. The effects of 
SGLT2 inhibitors on cognitive impairments due to 
non-diabetic causes also need to be explored. Based 
on the pharmacodynamics of SGLT2 inhibitors and the 
pathophysiology of cognitive diseases, this review also 
demonstrated the synergistic potential of SGLT2 inhib-
itors and suggested future research avenues.
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