
Gold

Ian Lance Taylor
Google

What?

Why?

How?

Performance

Features

Future

Who?

Gold

Ian Lance Taylor
Google

June 17, 2008

Gold

Ian Lance Taylor
Google

What?

Why?

How?

Performance

Features

Future

Who?

What?

What is gold?

◮ gold is a new linker.

◮ gold is now part of the GNU binutils (if you configure
with --enable-gold, gold is built instead of GNU ld).

◮ gold only supports ELF, which is used by all modern
operating systems other than Mac OS and Windows.

◮ gold is written in C++.

◮ gold currently supports x86, x86 64, and SPARC.

Gold

Ian Lance Taylor
Google

What?

Why?

How?

Performance

Features

Future

Who?

Why?

Why write a new linker?

◮ Almost all programmers use no linker features.
◮ Exception: linker scripts on embedded systems
◮ Exception: version scripts for libraries

◮ The linker is a speedbump in the development cycle.

◮ Compilation can be easily distributed; linking can not.

◮ The GNU linker is slow.

Gold

Ian Lance Taylor
Google

What?

Why?

How?

Performance

Features

Future

Who?

Why?

Why is the GNU linker slow?

◮ It was designed for the a.out and COFF object file
formats. ELF support was added later.

◮ ELF includes relocations which build new data; this had
to be shoehorned into the GNU linker.

◮ The GNU linker traverses the symbol table thirteen
times in a typical link.

◮ gold traverses the symbol table three times.

◮ The GNU linker is built on top of BFD, increasing the
size of basic data structures like symbol table entries.

◮ For x86 64, GNU linker symbol table entry is 156 bytes.
◮ gold is 68 bytes.

◮ The GNU linker always loads values using byte loads
and shifts.

Gold

Ian Lance Taylor
Google

What?

Why?

How?

Performance

Features

Future

Who?

Why?

Why not fix the GNU linker?

◮ The GNU linker source code is split in several parts
which communicate by various hooks.

◮ The linker proper (src/ld).
◮ The ELF emulation layer

(src/ld/emultempl/elf32.em).
◮ The generic BFD library (src/bfd).
◮ The ELF support in the BFD library (src/elf.c,

src/elflink.c).
◮ The processor specific ELF backend (e.g.,

src/elf64-x86-64.c).

◮ The GNU linker is designed around a linker script. All
actions are driven by entries in the linker script.

Gold

Ian Lance Taylor
Google

What?

Why?

How?

Performance

Features

Future

Who?

Why?

Why not fix the GNU linker?

◮ The GNU linker source code is split in several parts
which communicate by various hooks.

◮ The linker proper (src/ld).
◮ The ELF emulation layer

(src/ld/emultempl/elf32.em).
◮ The generic BFD library (src/bfd).
◮ The ELF support in the BFD library (src/elf.c,

src/elflink.c).
◮ The processor specific ELF backend (e.g.,

src/elf64-x86-64.c).

◮ The GNU linker is designed around a linker script. All
actions are driven by entries in the linker script.

Changing this design is not a fix; it is a rewrite.

Gold

Ian Lance Taylor
Google

What?

Why?

How?

Performance

Features

Future

Who?

How?

Some notes on the gold implementation. For more
information, see the paper. For details, see the source code.

◮ Over 50,000 lines of commented C++ code.

◮ Uses templates to avoid byte swapping for a native link.

◮ Multi-threaded.

◮ Not driven by a linker script.
◮ Linker scripts are supported, though.
◮ Linker script support is over 10% of the source code.

Gold

Ian Lance Taylor
Google

What?

Why?

How?

Performance

Features

Future

Who?

How?

// Swap<s i z e , b i g end i an >:: r e a d v a l (wv)

// Swap<64, f a l s e >:: r e a d v a l (wv)

template<i n t s i z e , bool b i g end i an >

s t r u c t Swap
{

t ypede f typename Va l t ype base<s i z e >:: Va l t ype Va l t ype ;

s t a t i c i n l i n e Va l t ype
r e ad v a l (const Va l t ype∗ wv)
{ r e tu r n Conve rt<s i z e , b i g end i an >:: c o n v e r t h o s t (∗wv) ; }

} ;

// Conve rt <64, f a l s e >:: c o n v e r t h o s t (∗wv)

template<i n t s i z e , bool b i g end i an >

s t r u c t Conve rt
{

t ypede f typename Va l t ype base<s i z e >:: Va l t ype Va l t ype ;

s t a t i c i n l i n e Va l t ype
c on v e r t h o s t (Va l t ype v)
{

r e tu r n Conve r t e nd i an<s i z e , b i g e nd i a n == Endian : : h o s t b i g e nd i a n>

: : c o n v e r t h o s t (v) ;
}

} ;

Gold

Ian Lance Taylor
Google

What?

Why?

How?

Performance

Features

Future

Who?

How?

// Conve r t e nd i an <64, t rue >:: c o n v e r t h o s t (∗wv)

template<i n t s i z e>

s t r u c t Conve r t e nd i an<s i z e , t rue>

{
t ypede f typename Va l t ype base<s i z e >:: Va l t ype Va l t ype ;

s t a t i c i n l i n e Va l t ype
c on v e r t h o s t (Va l t ype v)
{ r e tu r n v ; }

} ;

// ∗wv

Gold

Ian Lance Taylor
Google

What?

Why?

How?

Performance

Features

Future

Who?

Performance

How long it takes gold to link compared to the GNU linker.

◮ Hello, world
◮ Dynamic link: 37% faster
◮ Static link: 54% faster

◮ Large program (700M, 1300 objects, 400,000 symbols)
◮ Complete build from scratch: 50% faster
◮ Change one input object: 82% faster
◮ Difference is disk cache effects.

Gold

Ian Lance Taylor
Google

What?

Why?

How?

Performance

Features

Future

Who?

Features

gold has some features which are not in the GNU linker.

◮ C++ ODR detection.
◮ Uses debug info to look for two symbols with the same

name defined at different source lines.

◮ Debug info compression.

◮ Discard debug info other than source line information
◮ Backtraces work.
◮ Local variables are not available.

Gold

Ian Lance Taylor
Google

What?

Why?

How?

Performance

Features

Future

Who?

Concurrent Linking

Problem: compilation can be easily distributed; linking can
not.

◮ Solution: concurrent linking.

◮ Start the link before starting the compilations.

◮ As each compilation completes, pass the object file to
the linker.

◮ The linker lays each object down as it receives it.

◮ The linker stores relocations as it goes along.

◮ As the first objects are seen, the symbols are
determined, and relocations can be applied.

◮ This is not implemented.

Gold

Ian Lance Taylor
Google

What?

Why?

How?

Performance

Features

Future

Who?

Incremental Linking

Problem: changing one object file only changes a small part
of an executable. Recreating the entire executable is
wasteful.

◮ Solution: incremental linking.

◮ The linker records symbol and relocation information in
the executable.

◮ The linker checks which objects are newer than the
executable.

◮ Only those objects are updated.

◮ If only object changes, there is significantly less
relocation processing and significantly less I/O.

◮ This is not implemented.

Gold

Ian Lance Taylor
Google

What?

Why?

How?

Performance

Features

Future

Who?

Who

◮ Ian Lance Taylor
◮ Design, bulk of implementation.

◮ Cary Coutant
◮ Shared library generation, TLS.

◮ Craig Silverstein
◮ x86 64 port, ODR detection, debug info compression.

◮ Andrew Chatham
◮ x86 64 port.

◮ David Miller
◮ SPARC port.

	What?
	Why?
	How?
	Performance
	Features
	Future
	Who?

