Gold

lan Lance Taylor
Google

Gold

lan Lance Taylor
Google

June 17, 2008



What? Gold

lan Lance Taylor
Google

What?

What is gold?

> gold is a new linker.

» gold is now part of the GNU binutils (if you configure
with ——enable-gold, gold is built instead of GNU Id).

» gold only supports ELF, which is used by all modern
operating systems other than Mac OS and Windows.

» gold is written in C++.
» gold currently supports x86, x86_64, and SPARC.



Why? Gold

lan Lance Taylor
Google

Why?

Why write a new linker?

» Almost all programmers use no linker features.

» Exception: linker scripts on embedded systems
» Exception: version scripts for libraries

» The linker is a speedbump in the development cycle.
» Compilation can be easily distributed; linking can not.
» The GNU linker is slow.



Why? Gold

lan Lance Taylor

Google
Why is the GNU linker slow?
> |t was designed for the a.out and COFF object file e
formats. ELF support was added later.
» ELF includes relocations which build new data; this had
to be shoehorned into the GNU linker.
» The GNU linker traverses the symbol table thirteen
times in a typical link.
» gold traverses the symbol table three times.
» The GNU linker is built on top of BFD, increasing the
size of basic data structures like symbol table entries.
» For x86_64, GNU linker symbol table entry is 156 bytes.
» gold is 68 bytes.
» The GNU linker always loads values using byte loads

and shifts.



Why? Gold

lan Lance Taylor
Google

Why not fix the GNU linker?

» The GNU linker source code is split in several parts
which communicate by various hooks.
» The linker proper (src/1d).
» The ELF emulation layer
(src/1d/emultempl/elf32.em).
» The generic BFD library (src/bfd).
» The ELF support in the BFD library (src/elf.c,
src/elflink.c).
» The processor specific ELF backend (e.g.,
src/elf64-x86-64.c).

Why?

» The GNU linker is designed around a linker script. All
actions are driven by entries in the linker script.



Why? Gold

lan Lance Taylor
Google

Why not fix the GNU linker?

» The GNU linker source code is split in several parts
which communicate by various hooks.
» The linker proper (src/1d).
» The ELF emulation layer
(src/1d/emultempl/elf32.em).
» The generic BFD library (src/bfd).
» The ELF support in the BFD library (src/elf.c,
src/elflink.c).
» The processor specific ELF backend (e.g.,
src/elf64-x86-64.c).

Why?

» The GNU linker is designed around a linker script. All
actions are driven by entries in the linker script.

Changing this design is not a fix; it is a rewrite.



How?

lan Lance Taylor
Google

Some notes on the gold implementation. For more o
information, see the paper. For details, see the source code.

» Over 50,000 lines of commented C++ code.
» Uses templates to avoid byte swapping for a native link.
» Multi-threaded.

» Not driven by a linker script.

> Linker scripts are supported, though.
» Linker script support is over 10% of the source code.



How?

lan Lance Taylor

Google
// Swap<size , big_endian >::readval(wv)
// Swap<64, false >::readval(wv)
template<int size, bool big_endian> How?
struct Swap
{

typedef typename Valtype_base<size >::Valtype Valtype;

static inline Valtype
readval (const Valtypex wv)
{ return Convert<size , big_endian >::convert_host(xwv); }

I
// Convert<64, false >::convert_host(xwv)

template<int size, bool big_endian>
struct Convert
{

typedef typename Valtype_base<size >::Valtype Valtype;

static inline Valtype
convert_host (Valtype v)

return Convert_endian<size, big_endian = Endian:: host_big_endian>
c:convert_host (v);



How?

Gold

lan Lance Taylor
Google

How?
// Convert_endian <64, true >::convert_host (xwv)

template<int size>
struct Convert_endian<size, true>

typedef typename Valtype_base<size >::Valtype Valtype;

static inline Valtype
convert_host(Valtype v)
{ return v; }

/) *wv



Gold

Performance

lan Lance Taylor
Google

How long it takes gold to link compared to the GNU linker.

Performance
» Hello, world

» Dynamic link: 37% faster

» Static link: 54% faster
> Large program (700M, 1300 objects, 400,000 symbols)

» Complete build from scratch: 50% faster

» Change one input object: 82% faster

» Difference is disk cache effects.



Features ool
lan Lance Taylor
Google
gold has some features which are not in the GNU linker.
» C++ ODR detection. Festames

» Uses debug info to look for two symbols with the same
name defined at different source lines.
» Debug info compression.

» Discard debug info other than source line information

» Backtraces work.
» Local variables are not available.



Gold

Concurrent Linking

lan Lance Taylor
Google

Problem: compilation can be easily distributed; linking can
not.

» Solution: concurrent linking.

» Start the link before starting the compilations. _—
» As each compilation completes, pass the object file to

the linker.

» The linker lays each object down as it receives it.
» The linker stores relocations as it goes along.

> As the first objects are seen, the symbols are
determined, and relocations can be applied.

» This is not implemented.



Incremental Linking ool

lan Lance Taylor
Google

Problem: changing one object file only changes a small part
of an executable. Recreating the entire executable is
wasteful.

» Solution: incremental linking.

» The linker records symbol and relocation information in Future
the executable.

» The linker checks which objects are newer than the
executable.

» Only those objects are updated.

» If only object changes, there is significantly less
relocation processing and significantly less 1/0.

» This is not implemented.



VVhO Gold

lan Lance Taylor
Google

v

lan Lance Taylor
» Design, bulk of implementation.

v

Cary Coutant
» Shared library generation, TLS.

Who?

v

Craig Silverstein

» x86_64 port, ODR detection, debug info compression.
Andrew Chatham

» x86_64 port.
David Miller

» SPARC port.

v

v



	What?
	Why?
	How?
	Performance
	Features
	Future
	Who?

