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Abstract 

 

There is increasing interest in assessing the impact of climate scenarios on financial sector 

stability. However, traditional financial sector stress tests typically take a macro-financial 

approach and are not well suited to capture asymmetric impacts across industries. In this paper, 

we develop a Merton (structural credit risk) approach to assess the impact of a carbon tax on 

the value of corporate debt and residential mortgages – which make up the majority of assets 

of most euro area banks. We calibrate the model using detailed, proprietary exposure data for 

Dutch banks. For a €100-€200 carbon tax, we find a substantial decline in the market value of 

banks’ assets equivalent to 4-63% of core capital. 
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“Changes in climate policies, new technologies and growing physical risks will prompt 

reassessments of the values of virtually every financial asset.” 

Mark Carney, Governor of the Bank of England1 

 

1. Introduction 

There is a substantial gap between Green House Gas (GHG) emission paths that are consistent 

with keeping global warming well below two degrees Celsius and emissions paths that result 

from current climate policies (Rogelj et al., 2018). In recent years, this gap between practice 

and policy goals has led central banks, financial supervisors, and researchers to investigate the 

financial risks stemming from climate change (“physical risks”) and from transitioning towards 

a low-carbon economy (Campiglio et al., 2018; Nieto, 2019). The latter “transition risks” may 

primarily arise if much more stringent climate policies are implemented by governments to 

follow up on the 2015 Paris Agreement (Batten et al., 2016). 

Decarbonizing the economy is expected to come at an economic cost, at least in the 

short run (Acemoglu et al., 2012; Nordhaus, 1992). Depending on policy choices, some of these 

costs will likely be borne by owners of financial assets, including banks, insurance companies, 

and pension funds (Smale et al., 2006; Scholtens and Van Der Goot, 2014). For example, higher 

taxes on GHG emissions can lead to additional costs for firms in GHG-intensive sectors and 

more rapid write-off of their capital investments (i.e., “stranded assets”), reducing firms’ 

market values and increasing their credit risk. These costs can be substantial and range across 

a wide variety of sectors and asset classes (Leaton, 2011). Estimates of the implied price of 

CO2-equivalent (CO2e) emissions needed to limit global warming to below two degree Celsius 

range from $15-$360 per tonne in 2030 and from $45-$1000 per tonne in 2050 (Stiglitz et al., 

2017). 

 
1 Speech at the 2019 Task Force on Climate-related Financial Disclosures TCFD Summit, Tokyo (Oct. 8, 2019). 
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From the perspective of both financial institutions and regulators concerned with 

financial stability, a key question is what the potential impact of such climate policies is on the 

balance sheets of financial institutions. Several studies have started to explore how climate 

policies adversely affect the value of financial institutions’ balance sheets and, for extreme 

scenarios, can cause systemic financial crises.2 Battiston, Mandel, Monasterolo, Schütze, and 

Vistentin (2017) perform a climate stress test for Eurozone banks, looking at the impact of 

climate policies on the equity exposures of European banks while at the same time allowing 

for second-round effects resulting from exposures between financial institutions. Vermeulen, 

Schets, Lohuis, Kölbl, and Jansen (2019) propose a framework for climate stress tests that 

builds on macro-economic stress test methods. This work fits into a broader literature on 

financial sector stress testing (see, for example, Upper, 2011; Henry et al., 2013; Ong, 2014).  

Our main contribution to the emerging literature on climate stress tests is two-fold. 

First, our research contributes to the literature by tractably modelling the industry-level impact 

of climate policies on the value of financial sector holdings of both equity and debt instruments. 

The literature to date primarily uses indirect and less tractable (“black box”) macro modelling 

to determine financial sector impacts and/or focuses exclusively on equity instruments while 

assuming that the value of certain financial instruments evaporates completely.3 Especially for 

banks, it is crucial to understand the effects of climate policies on debt instruments, since the 

majority of bank assets are subordinated in nature. For example, in the euro area, at least 85% 

of all banking assets consist of debt, while only 2% is equity (see Table 1). Second, because 

we take an industry-level approach, we are able to investigate differences in impact across 

 
2 From a policy perspective several central banks have started performing climate stress tests, or have announced 
to start doing them. These include the Dutch central bank, the Bank of England, and the Banque de France 
(Lehmann, 2020). 
3 Macro financial stress testing typically estimates the impact of scenarios on GDP and other macro-variables first 
and then uses those variables as inputs into financial risk models. Final results are obtained through several layers 
of modelling employing a large and complex set of equations, increasing the potential for modelling error and 
making it harder to intuitively interpret results. Moreover, not all modelling details are publicly available. 
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industries and across specific carbon taxation scenarios in detail (e.g., different price levels and 

policy design choices). Further research along these lines could inform the alignment of climate 

policies, and carbon taxes in particular, with the objective of financial stability. 

To assess the impact of climate policies on the financial sector assets, we build on the 

option valuation and structural credit risk modelling literature (Black and Scholes, 1973; 

Merton, 1974). Specifically, we employ the ideas by Merton (1974), who models the structural 

factors that determine the market value of debt. Merton’s key insight is that equity can be 

viewed as a residual claim on assets after the debt has been repaid. This implies that the equity 

holder has a call option on the value of the firm’s assets, where the payoff is either zero (in 

case of default) or the value of assets minus the face value of the debt. Conversely, the debt 

holder has a risk-free bond and is short a put option of the firm’s assets. Overall, Merton’s 

contingent claims approach implies that a negative asset valuation shock will affect the value 

of both equity and debt in a non-linear way.  

We modify the standard Merton (1974) model to account for mortgages that have 

additional safeguards built-in for the lender. Specifically, the traditional Merton model assumes 

that default occurs when at maturity the value assets V lies below the face value of debt L. For 

corporates, this is likely a valid approximation, although some extensions have been proposed 

to relax this assumption.4 However, for mortgages, which represent an important asset class 

for banks, default is more complicated since these often have additional safeguards built-in for 

the lender, such as recourse to the wealth and income of the borrower. This implies that, in a 

Merton setting, we need to adjust the default trigger for residential mortgages. Following Sy 

(2014), we take an approach where mortgage default is conditional on both insolvency (i.e., 

the value of the house falling below the value of the mortgage) and delinquency (i.e., not having 

sufficient liquidity to make the periodical payment on a loan). 

 
4 For example, Black and Cox (1976) look at the case where restructuring already occurs before V falls below L. 
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Our empirical analysis focuses on the banking sector in the Netherlands, for which we 

use detailed and proprietary loan and debt exposure data from the Dutch central bank (DNB). 

This includes residential mortgage data from the DNB loan-level database and corporate loan, 

debt, and equity data that are aggregated to 4-digit NACE sector level. Our exposure dataset 

includes the three largest banks in the Netherlands that collectively cover 79% of total assets 

in the Dutch banking sector. Total assets in the Dutch banking sector were €2,381 billion in 

2017. Furthermore, we calibrate a Merton contingent claims model to allocate asset valuation 

losses to junior (equity-like), and senior (debt-like) claim holders of the asset. For corporates, 

we use representative samples of firms from the Orbis Bureau van Dijk database to obtain 

estimates of leverage and asset volatility by sector. For listed firms, we link these samples to 

Thomson Reuters Datastream to obtain market estimates for asset volatility. For non-listed 

firms, we estimate asset value volatility using a cross-sectional regression model. For 

residential mortgages, we disaggregate exposures to different types of dwellings (i.e., 

apartments, terraced houses, and detached houses) per loan-to-value (LTV) bucket and per 

remaining maturity bucket. We also obtain estimates for house price value volatility and the 

probability of delinquency. We then estimate asset valuation shocks by valuing both the 

negative cash flows of the carbon tax and the total cash flows of representative firms and real 

estate, which leads to valuation shocks per industry and real estate segment. These shocks are 

calibrated using carbon intensity (scope 1 emissions or “carbon footprint”) data obtained from 

Eurostat, which are available for most 2-digit NACE sectors. For this reason, we further 

aggregate our exposure data to the same 2-digit NACE level. With minor exceptions, all our 

data are for 2017. 

To perform the stress test, we define four carbon taxation scenarios that differ in their 

severity and likelihood. Our main scenarios are based on the introduction of a €100 carbon tax, 

which lies well within current estimates of implied carbon prices that are needed to achieve the 
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goals in the 2015 Paris Agreement. We differentiate our scenarios by assuming either an abrupt 

(overnight) or smooth (10-year phase-in period) of the tax and by assuming either a regional 

application (no cost pass-through from firms to consumers) or a global application (50% cost 

pass-through from firms to consumers). Some of these policy scenarios are severe but not 

entirely implausible. They hence serve the purpose of investigating extreme policy scenarios, 

which is a common practice in financial sector stress testing (Cihák, 2007). 

Our findings indicate that, depending on the policy scenario, market value losses range 

from €4.5 billion to €35.8 billion following the implementation of a carbon tax of €100. In the 

most severe scenario, in which carbon taxation is applied abruptly, and there is no pass-through 

(e.g., due to regional application), losses amount to 30% of the available Common Equity Tier 

1 (CET1) capital in the Dutch banking system and to 1.5% of total assets. When carbon taxation 

is instead phased-in over ten years, the losses as fractions of CET1 capital and total assets 

decline to 14% and 0.7%, respectively. For €200 per tonne carbon taxes, the market value 

losses increase exponentially, ranging from €17.9 billion to €75.2 billion. In the most severe 

scenario, this equals 63% of CET1 capital and to 3.2% of total assets. When carbon taxation is 

instead phased-in over ten years, the losses as fractions of CET1 capital and total assets decline 

to 47% and 2.4%, respectively. Some of our €100 and €200 carbon tax scenarios show market 

value losses that are substantially (two to three times) higher than those obtained under 

traditional banking sector stress tests, of which the adverse scenarios typically result in declines 

in core capital around 20%.5 This may warrant increased attention of prudential policy makers 

to climate-related scenarios. It also underscores the importance of designing climate policies 

in such a way that they both achieve decarbonization in line with international agreements and 

safeguard financial sector soundness. 

 
5 For example, the 2018 stress test by the European Banking Authority (EBA) finds that, on aggregate, the CET1 
capital of EU banks declines by 19.2% in their adverse scenario. Furthermore, the Federal Reserve found that, on 
aggregate, the Tier 1 leverage ratio of US banks declines by 19.8% in their severely adverse scenario in their 2019 
stress test. 
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Furthermore, our findings shed light on vulnerable asset classes and sectors. We find 

that first-order market value losses for Dutch banks are primarily driven by exposures to 

corporate loans and debt, and to a lesser extent by residential mortgages and equity.6 Principal 

reasons for this finding are the low exposures of Dutch banks to equity instruments in 

transition-sensitive industries (i.e., less than 1% of total assets) and the low net present value 

of carbon taxes for most types of housing compared to their valuation, combined with recourse 

to a borrowers income on top of the recourse to the underlying real estate (which puts market 

value losses on real estate mostly as a burden to households and to a lesser extent on the banking 

sector). In the €100 carbon tax scenarios, the largest absolute contributions to market value 

losses are, in declining order, obtained for electricity, gas, steam and air conditioning supply 

(D.35), the manufacture of coke and refined petroleum products (C.19), water transport (H.50), 

the manufacture of basic metals (C.24), and air transport (H.51). Taken together, these five 

industries drive between 83% and 91% of the total market value losses, depending on the choice 

of scenario. 

Overall, our results point to the substantial impact that climate-related policies can have 

on the market value of assets on the balance sheets of banks in the Netherlands. By tractably 

modelling the vulnerability of financial assets to carbon taxation, our analysis highlights the 

importance of debt exposures for their contribution to overall losses, and in particular the 

corporate loans and debt portfolio. In severe scenarios, climate policies may lead to substantial 

losses in the banking sector and our research, therefore, underlines the importance of 

adequately addressing the interlinkages between climate policies and financial stability (e.g., 

steering away from investments in long-term assets that are not compatible with a low carbon 

economy). Since our analysis focuses on direct (i.e., scope 1) carbon emissions and does not 

 
6 Note that second-round losses on mortgage portfolios might be higher, for example if unemployment rates and/or 
interest rates were to rise. The effect of climate policies on such macro-variables is highly uncertain, however, 
and depends amongst others on additional policy choices (e.g., re-employment programs and industry 
compensation schemes).  
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include second-order effects (e.g., through changing unemployment and interest rates), our 

outcomes are likely conservative, and we encourage further research to investigate further 

channels through which carbon taxes can affect financial institutions’ balance sheets. 

 

2. Financial stress test model 

In this section, we develop a tractable impact model that underlies our stress test. We set out a 

general approach which we further develop in the subsequent two sections. We also discuss 

assumptions and possible extensions. 

 

2.1 General set-up 

The primary goal of our modelling is to determine the impact of climate policy stress scenarios 

on the market value of debt and equity portfolios of banks. We do this by separating the 

aggregate exposures of banks into equity exposure and debt exposure in groups of assets k 

(from hereon: segments) that share similar vulnerability characteristics (e.g., carbon intensity). 

In principle, k can be at the level of an individual firm or real economy asset. However, given 

the exposure data that we have available, we will take k to represent either an industry (for 

firms) or real estate of a similar dwelling type. Total market value loss is given by: 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =  ∑ 𝜗𝜗𝐸𝐸,𝑘𝑘 ∗ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝐸𝐸 ,𝑘𝑘 +  𝜗𝜗𝐷𝐷,𝑘𝑘 ∗ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝐷𝐷 ,𝑘𝑘
𝑛𝑛
𝑘𝑘=1 , (1) 

with stress test coefficients 𝜗𝜗𝐸𝐸,𝑘𝑘  for equity and 𝜗𝜗𝐷𝐷 ,𝑘𝑘 for debt defined as follows: 

𝜗𝜗𝐸𝐸,𝑘𝑘 = 𝑀𝑀𝑀𝑀𝐸𝐸 ,𝑘𝑘
∗

𝑀𝑀𝑀𝑀𝐸𝐸 ,𝑘𝑘
 and 𝜗𝜗𝐷𝐷,𝑘𝑘 = 𝑀𝑀𝑀𝑀𝐷𝐷 ,𝑘𝑘

∗

𝑀𝑀𝑀𝑀𝐷𝐷 ,𝑘𝑘
 (2) 

In the above formula, 𝑀𝑀𝑀𝑀𝑘𝑘  represents the market value of a group of assets k. An asterisk (*) is 

used to denote the market value after the scenario shock has been applied. Using this definition 
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gives us the fraction of the market value of the portfolio that remains after the stress scenario 

is applied. Hence, the expected market value loss per unit of exposure can be written as 1 – 𝜗𝜗.7  

Section 2.2 provides the modelling of 𝜗𝜗𝐷𝐷,𝑘𝑘  and 𝜗𝜗𝐸𝐸 ,𝑘𝑘  as functions of a set of calibration 

parameters ϴ𝑖𝑖  and an asset value shock 𝜉𝜉𝑘𝑘. We follow Merton’s (1974) structural credit risk 

model, which we extend to take into account more complicated default conditions that are 

characteristic of European mortgages with double recourse. The basic idea is to distribute the 

asset valuation shock 𝜉𝜉𝑘𝑘 to holders of equity (E) and debt (D). This part of the stress test model 

can hence be viewed as covering the financial (right-hand) side of the corporate balance sheet. 

Since we take the calibration parameters to differ per asset i and calculate the stress test 

coefficients per segment k, we sum the outcomes of n individual assets making up a segment 

using a weighting parameter 𝜔𝜔𝑖𝑖 . 

𝜗𝜗𝐸𝐸 ,𝑘𝑘 ,𝜗𝜗𝐷𝐷 ,𝑘𝑘 = �𝜔𝜔𝑖𝑖 ∗ 𝑓𝑓𝑀𝑀𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝜉𝜉𝑘𝑘,𝛳𝛳𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

 (3) 

In section 2.3, we put forward a stylized discounted cash flow model to determine a valuation 

shock 𝜉𝜉𝑘𝑘 per segment. We model 𝜉𝜉𝑘𝑘 such that it ranges between zero (no losses) and one (full 

loss of sector value). This can be viewed as the real (left-hand) side of the corporate balance 

sheet, representing the value of a physical bundle of assets. We take 𝜉𝜉𝑘𝑘 to be a function of the 

scenario variable 𝜏𝜏𝑘𝑘,𝑡𝑡, which represents the euro tax amount per tonne of CO2e emissions over 

time, and a set of vulnerability parameters 𝛺𝛺𝑘𝑘,𝑡𝑡 which we differentiate per segment k and which 

may vary over time t.8 

𝜉𝜉𝑘𝑘 = 𝑓𝑓(𝜏𝜏𝑘𝑘,𝑡𝑡 ,𝛺𝛺𝑘𝑘,𝑡𝑡) (4) 

 
7 Since we are interested in the consequences for the market value of the bank balance sheet, we estimate the 
expected loss in risk-neutral terms (i.e., the probability of default is adjusted to reflect market participants’ risk 
preferences). 
8 Note that all our scenarios assume that the carbon tax applies equally to all segments k, hence for our analysis 
we can suffice by writing 𝜏𝜏𝑡𝑡. This is however not a  necessity; in practice climate policies often differentiate 
between industries. Vulnerability parameters in our analysis are the carbon footprint, the capacity to pass-on the 
carbon tax to consumers, adaptive capability, a  sector specific discount rate, and (for mortgages) the probability 
of delinquency. 
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2.2 Merton’s structural credit risk model for asset valuation shocks 

In a standard Merton structural debt framework, the market value of debt 𝑀𝑀𝑀𝑀𝐷𝐷  can be written 

as its risk-free value minus the risk-neutral expected loss (the latter being equivalent to a put 

option on the value of the assets). Following the notation of Giesecke (2002): 

𝑀𝑀𝑀𝑀𝐷𝐷 = 𝐿𝐿𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡) −𝐿𝐿𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡)�𝑁𝑁(−𝑑𝑑2)� −  𝑉𝑉𝑡𝑡𝑁𝑁(−𝑑𝑑1) (5) 

with 

𝑑𝑑1 =
ln ( 𝑉𝑉𝑡𝑡

𝐿𝐿 )+(𝑟𝑟+
𝜎𝜎𝑉𝑉

2

2 )(𝑇𝑇−𝑡𝑡)

𝜎𝜎𝑉𝑉√𝑇𝑇−𝑡𝑡
  

𝑑𝑑2 =
ln ( 𝑉𝑉𝑡𝑡

𝐿𝐿 )+(𝑟𝑟−
𝜎𝜎𝑉𝑉

2

2 )(𝑇𝑇−𝑡𝑡)

𝜎𝜎𝑉𝑉√𝑇𝑇−𝑡𝑡
 , 

 

where N is the probability of the standard normal density function below d. Hence 𝑀𝑀𝑀𝑀𝐷𝐷 can be 

expressed as a function of asset value V, contracted repayment L, time to maturity T-t, the 

standard deviation of asset value 𝜎𝜎𝑉𝑉 and the risk-free interest rate r. Furthermore, under the 

assumption that asset values follow a geometric Brownian motion, the volatilities of the firm 

and its equity are given by: 

𝜎𝜎𝐸𝐸 =
𝑉𝑉
𝐸𝐸𝑁𝑁(𝑑𝑑1)𝜎𝜎𝑉𝑉 (6) 

For our purposes, we will assume an instantaneous shock ξ on asset value such that immediately 

after the shock asset value V* is given by: 

𝑉𝑉∗ = (1− 𝜉𝜉)𝑉𝑉, (7) 

which gives the market value of debt after the shock as: 

𝑀𝑀𝑀𝑀𝐷𝐷∗ = 𝐿𝐿𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡)− 𝐿𝐿𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡)�𝑁𝑁(−𝑑𝑑2∗)�−  𝑉𝑉𝑡𝑡∗𝑁𝑁(−𝑑𝑑1∗) (8) 

Replacing 𝑉𝑉∗ with (1 − 𝜉𝜉)𝑉𝑉, defining the ratio of contracted repayment to asset value (leverage 

ratio) as R = L / V and dividing by the discounted exposure 𝐿𝐿𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡) we find that: 

𝑀𝑀𝑀𝑀𝐷𝐷∗ = 1− �𝑁𝑁(−𝑑𝑑2∗)� − ((1 − 𝜉𝜉)/𝑅𝑅𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡) )𝑁𝑁(−𝑑𝑑1∗) (9) 
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with 

𝑑𝑑1∗ =
ln ((1−𝜉𝜉)

𝑅𝑅 )+(𝑟𝑟+
𝜎𝜎𝑉𝑉

2

2 )(𝑇𝑇−𝑡𝑡)

𝜎𝜎𝑉𝑉�(𝑇𝑇−𝑡𝑡)
  

𝑑𝑑2∗ =
ln ((1−𝜉𝜉)

𝑅𝑅 )+(𝑟𝑟−
𝜎𝜎𝑉𝑉

2

2 )(𝑇𝑇−𝑡𝑡)

𝜎𝜎𝑉𝑉�(𝑇𝑇−𝑡𝑡)
  

 

Hence, 

𝜗𝜗𝐷𝐷 = 𝑀𝑀𝑀𝑀𝐷𝐷∗

𝑀𝑀𝑀𝑀𝐷𝐷
= 1−�𝑁𝑁(−𝑑𝑑2∗)�−((1−𝜉𝜉)/𝑅𝑅𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡))𝑁𝑁(−𝑑𝑑1∗)

1−�𝑁𝑁(−𝑑𝑑2)�−(1/𝑅𝑅𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡))𝑁𝑁(−𝑑𝑑1)   (10) 

Thus, given a risk-free interest rate r, 𝜗𝜗𝐷𝐷 is a function of the asset valuation shock 𝜉𝜉, the 

leverage ratio R, asset value volatility 𝜎𝜎𝑉𝑉 and the time to maturity T-t. Moreover, equations (6) 

and (9) can be solved simultaneously in order to determine V and 𝜎𝜎𝑉𝑉 from E and 𝜎𝜎𝐸𝐸. In a similar 

fashion, the Merton equation for equity is given by: 

𝑀𝑀𝑀𝑀𝐸𝐸 = 𝑉𝑉𝑡𝑡𝑁𝑁(𝑑𝑑1) −𝐿𝐿𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡)𝑁𝑁(𝑑𝑑2)  (11) 

And following the same line of reasoning as for debt, we find that: 

𝜗𝜗𝐸𝐸 = 𝑀𝑀𝑀𝑀𝐸𝐸∗

𝑀𝑀𝑀𝑀𝐸𝐸
= (1−𝜉𝜉)𝑁𝑁(𝑑𝑑1∗)−𝑅𝑅𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡)𝑁𝑁(𝑑𝑑2∗)

𝑁𝑁(𝑑𝑑1)−𝑅𝑅𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡)𝑁𝑁(𝑑𝑑2)   (12) 

 

2.2.1 Merton model limitations and extension to mortgages 

The Merton (1974) model is based on several assumptions, some of which have been 

challenged in subsequent research.9 One key assumption is that asset value follows a geometric 

Brownian motion, which implies that in a short interval of time, asset value can only change 

by a small amount (Merton, 1976). Several authors have noted that this is inconsistent with 

empirical observation, namely that in a short interval of time there can be large changes in 

stock prices or “jumps” (e.g., Cai and Kou, 2011). Moreover, in most segments, there are 

substantial costs associated with a default that is not captured by the Merton model (i.e., the 

 
9 For a full list of assumptions, see Merton (1974). 
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model assumes that there are no specific costs resulting from triggering default). To account 

for these costs, some authors explicitly introduce recovery values (e.g., Benos and 

Papanastasopoulos, 2007; Longstaff and Schwartz, 1995). Both of these assumptions in the 

standard Merton model lead to potentially higher losses as a result of an asset valuation shock, 

implying that our model is more likely to underestimate than to overestimate potential losses. 

 On the other hand, specifically for mortgages, the Merton model may overestimate 

losses due to the recourse nature of most European mortgages. Recourse entitles the creditor to 

other household assets besides the value of the secured real estate, including other assets and 

future income. In contrast to some American mortgages, this implies that households are less 

prone to default on their mortgages in the face of asset valuation losses, even if the value of the 

real estate is lower than the value of the mortgage.10 To account for recourse, we model a more 

stringent default condition, rewriting equation (8) by dividing by the discounted exposure 

𝐿𝐿𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡) and multiplying its last term by 𝑁𝑁(−𝑑𝑑2)/ 𝑁𝑁(−𝑑𝑑2): 

𝑀𝑀𝑀𝑀𝐷𝐷/𝐿𝐿𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡) = 1− 𝑁𝑁(−𝑑𝑑2)(1− 𝑉𝑉𝑡𝑡
𝐿𝐿𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡) ∗

𝑁𝑁(−𝑑𝑑1)
𝑁𝑁(−𝑑𝑑2))  (13) 

In this equation, 𝑁𝑁(−𝑑𝑑2) is the risk-neutral probability of default and 𝑁𝑁(−𝑑𝑑1)/𝑁𝑁(−𝑑𝑑2) is the 

expected discounted recovery rate (Sy, 2014). For residential mortgages, we can then introduce 

a more strict default trigger by replacing the Merton probability of default 𝑁𝑁(−𝑑𝑑2), which 

could be thought of as representing insolvency, by a more broad probability of default that is a 

multiplication of 𝑁𝑁(−𝑑𝑑2) and the probability that a household will not have sufficient wealth 

and/or income to pay their instalment P(delinquent). If we assume that there is no correlation 

between 𝑁𝑁(−𝑑𝑑2) and P(delinquent), equation (13) can then be rewritten as: 

𝑀𝑀𝑀𝑀𝐷𝐷
𝐿𝐿𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡) = 1 −𝑁𝑁(−𝑑𝑑2) ∗ 𝑃𝑃(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) ∗ (1 − 𝑉𝑉𝑡𝑡

𝐿𝐿𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡) ∗
𝑁𝑁(−𝑑𝑑1)
𝑁𝑁(−𝑑𝑑2)),  (14) 

 
10 We note here that although a mortgage may legally be full-recourse, in practice this full-recourse is not always 
(fully) applicable. An example is the case of Ireland where in the aftermath of a housing crisis the central bank 
implemented regulations that severely restricted the ability of banks to contact or harass delinquent borrowers, 
making the Irish residential mortgages de facto limited recourse contracts (Connor and Flavin, 2015). 
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which leads to: 

𝜗𝜗𝐷𝐷,𝑀𝑀 = 𝑀𝑀𝑀𝑀𝐷𝐷 ∗

𝑀𝑀𝑀𝑀𝐷𝐷
= 1−𝑁𝑁(−𝑑𝑑2∗)∗𝑃𝑃(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)∗∗(1−(1−𝜉𝜉)/𝑅𝑅𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡)∗𝑁𝑁(−𝑑𝑑1∗)/𝑁𝑁(−𝑑𝑑2∗))

1−𝑁𝑁(−𝑑𝑑2)∗𝑃𝑃(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)∗(1−1/𝑅𝑅𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡)∗𝑁𝑁(−𝑑𝑑1)/𝑁𝑁(−𝑑𝑑2))
  (15) 

Similar reasoning can be applied to determine the impact of the market value of the equity 

portion of mortgage exposures (or in general, exposures where default is triggered by combined 

but uncorrelated insolvency and delinquency). 

 

2.3 Asset valuation shocks 

To determine asset valuation shocks, we take the yearly CO2 emissions connected to the 

segments’ activities 𝛾𝛾𝑘𝑘 (i.e., the sector-specific carbon footprint) and multiply this by the 

carbon tax 𝜏𝜏𝑡𝑡. The total valuation impact of the tax can then be determined by discounting the 

tax-related cash flows, most of which occur in the future, into a net present value using an 

appropriate discount rate per segment 𝑟𝑟𝑘𝑘 . Without any response from any of the actors involved 

(such as adjustments in the production process, the quantity or the price of products and/or 

making energy efficiency investments in real estate), an unanticipated shock to the carbon tax 

rate would lead to a reduction in the value of the bundle of assets that is equal to the present 

value of the additional (negative) cash flows. Assuming that there are no net tax effects, the 

impact of the tax shock on the net present value of a physical asset or firm can be thought of 

as follows: 

NPVtax, k = ∑  (1 − 𝑟𝑟𝑘𝑘)𝑡𝑡 ∗ 𝛾𝛾𝑘𝑘(−𝜏𝜏𝑡𝑡)𝑇𝑇
𝑡𝑡=0  (16) 

Of course, it can be expected that firms and households respond in an attempt to offset 

the potential loss in their value after a carbon tax is announced. We account for this in two 

ways. First, one response that is well-documented in the literature is the pass-through of 

increasing costs for firms (in this case the carbon tax) into product prices (Fabra and Reguant, 

2013; Smale, Hartley, Hepburn, Ward, and Grubb, 2006). This increase in price could partially 

offset the initial tax burden on producers. However, for most goods, an increasing price reduces 
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the size of the market, which potentially leads to firms exiting the market or lowering their 

production volumes.11 Therefore, in some of our scenarios, we allow for a non-zero amount of 

pass-through that can change over time (e.g., due to contract renewals after certain periods), 

denoted by 𝜑𝜑𝑘𝑘,𝑡𝑡 .12 Second, our model takes into account the possibility that firms and 

households adjust their physical assets and their use over time, for example by substituting 

inputs (e.g., green for brown electricity) and by making additional investments (e.g., energy 

savings technologies and technologies that avoid atmospheric emissions such as carbon filters). 

We do this by allowing the carbon intensity per segment 𝛾𝛾𝑘𝑘, and hence the tax burden, to change 

over time. We hence add a subscript t. We then arrive at the following expression for the 

valuation impact on the value of a physical asset or firm as: 

NPVtax,k = ∑  (1 − 𝑟𝑟𝑘𝑘)𝑡𝑡 ∗ 𝛾𝛾𝑘𝑘,𝑡𝑡(1− 𝜑𝜑𝑘𝑘,𝑡𝑡)(−𝜏𝜏𝑡𝑡)𝑇𝑇
𝑡𝑡=0  (17) 

Finally, we relate the net present value of the tax shock to the total asset value, which gives us 

the fraction of the total asset value that is lost due to the carbon tax:  

𝜉𝜉𝑘𝑘 =  𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡 ,𝑘𝑘
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑘𝑘

  (18) 

 

3. Data and calibration 

To perform the stress test, we need data to combine data on the exposure of financial 

institutions to different asset segments (i.e., industries and types of real estate), data on the 

vulnerability of these segments to a carbon tax (e.g., carbon intensity), and data to calibrate the 

contingent claims model (e.g., leverage and asset volatility). We describe our data in the next 

 
11 Note that this could not only lead to stranded assets (e.g., oil reserves and specialized capital goods) as often 
referred to in the literature, but also stranded business (i.e., future earnings that are priced into firm value but are 
not expected under the new climate policy regime). 
12 We will define two sets of scenarios with respect to pass-through. One will assume no pass through, which 
resembles the situation in which carbon taxation is only applied regionally and there is free trade between regions. 
In such a case, producers that are taxed are (for most products) expected not to be able to pass on the cost to 
consumers. Another set will assume 50% pass through, resembling the situation in which the tax is applied more 
widely. 
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three sub-sections. Furthermore, as part of the calibration, we estimate a model to predict the 

non-observable asset volatility of a representative sample of non-listed firms. This is important 

since non-listed firms are the main beneficiaries of bank funding, while their asset volatility 

cannot directly be observed. 

 The choice for our data sources is, to a large extent, driven by the availability of 

breakdowns that match the segment classification of our exposure data. For corporate 

exposures, these are industries according to a 2 or 4-digit NACE industry classification, while 

for mortgages we use a segmentation based on the type of dwelling (e.g., terraced houses, 

detached houses and apartments). All data is for 2017, except the sectorial exposures to equity 

for which we only have 2016 data available. For corporate exposures, we include all industries 

at the 2-digit NACE division with a carbon intensity of more than 0.5 kg CO2e / euro gross 

operating surplus. This includes most subsectors within agriculture, forestry and fishing (A), 

mining and quarrying (B), manufacturing (C), electricity, gas, steam and steam conditioning 

supply (D), water supply, sewerage, waste management and remediation activities (E), and 

transportation and storage (H). The choice of these industries is in line with other papers (e.g., 

Battiston et al. 2017; Vermeulen et al. 2019). We refer to this group as “transition-sensitive 

industries”.13  

 

3.1 Bank sector exposure data 

We use two proprietary datasets of the Dutch central bank that provide a detailed breakdown 

of corporate and residential real estate exposures. Combined, these two asset classes make up 

59% of the balance sheet of the Dutch banking sector. Other major asset classes that are outside 

the scope of our analysis are government loans and debt (11%) and loans and debt to financial 

institutions (14%) – see Table 1.  

 
13 The full list of transition-sensitive industries can be found in Table 2. 
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For corporate debt exposures, we use a 2017 dataset on the industry classification of 

the asset holdings of Dutch banks. This dataset is obtained as part of a 2017 climate exposure 

survey and includes the exposures of the three largest banks in the Netherlands, which together 

hold 79% of total assets in the Dutch banking sector. In this dataset, corporate loans and debt 

are categorized using a 4-digit NACE classification. For each 4-digit NACE class, the dataset 

provides total exposure and average remaining maturity. For our analysis, we aggregate these 

exposures to the 2-digit NACE division, in order to match them with Eurostat data on carbon 

intensity. We calculate the average remaining maturity for each 2-digit NACE division based 

on the exposure-weighted average remaining maturity..s. For equity exposures, we use a 

dataset on the sectorial classification of debt and equity, which was part of a 2016 survey on 

climate-related exposures. This dataset includes the same set of banks as the 2017 data.  

Based on these datasets, the largest three Dutch banks hold €208 billion worth of 

corporate debt and equity in transition-sensitive industries, which equals 11.1% of their total 

assets. Looking at the 2-digit NACE sectors in transition-sensitive industries, the largest three 

Dutch banks have, in declining order, the highest exposure to agriculture (A.01), food 

manufacturing (C.10), water transport (H.50), electricity and gas (D.35), and the extraction of 

crude petroleum and natural gas (B.06). For a full summary of this data, see table 2. 

For residential real estate loan exposures, we use 2017 loan-level data on residential 

mortgages from the Dutch Central Bank. This dataset covers 67% of the mortgages in the Dutch 

banking sector. In this dataset, we segment loans according to the type of building (e.g., 

apartment, town-house, detached). The database includes, at loan-level, the loan-to-value 

(LTV), remaining maturity, and the last transaction price of the house. The total exposure in 

the dataset is €497 billion, which equals 32% of total assets in the Dutch banking sector. With 

respect to residential real estate, the majority of the exposure consists of detached or semi-
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detached houses which make up about three quarters (76%) of the total residential real estate 

portfolio. For a full summary of this data, see table 3. 

 

3.2 Vulnerability data 

For corporates, we estimate the vulnerability to a carbon tax based on the carbon intensity 

variable in the Eurostat Structural Business Statistics (SBS) database. This variable provides 

the amount of Green House Gas emissions as a fraction of gross value added, at the 2-digit 

NACE division. It includes emissions of CO2, N2O and NH4 in CO2-equivalents (CO2e). We 

adjust the Eurostat carbon intensity variable by subtracting personnel costs from gross added 

value, to obtain an as close as possible estimation of yearly profitability. Data on personnel 

costs are obtained from the same SBS database to ensure consistency. The resulting variable 

provides the kilogrammes of CO2e emissions per euro gross operating surplus, and thereby an 

approximation of the fraction of yearly profits that are eroded by each unit of carbon taxation.  

 For real estate, we estimate the vulnerability to a carbon tax based on the energy use 

relative to the value of the real estate. For each segment, we calculate the average house price 

and the associated energy use. We use the average natural gas (per M3) and electricity 

consumption (in kWh) per dwelling type for 2017 from the Dutch Statistical Office (CBS) 

Statline database. We combine these data with emission factors of 1.9 kg CO2e/M3 for natural 

gas and 0.355 kg CO2e/kWh for electricity.14 The reported carbon intensities are based on 

annual capital costs, which we derive from average sales prices per dwelling type, also obtained 

from CBS Statline, at a 3% per annum interest rate (which represents the typical mortgage rate 

in the Netherlands for a 100% loan-to-value mortgage). Hence, we multiply the average sales 

price by 0.03. We exclude residential mortgage exposure for which there is no classification 

 
14 CE Delft report, Emissiekentallen elektriciteit, 2015 (https://www.ce.nl/publicaties/download/1786) and RVO 
report, Berekening van de standaard CO2-emissiefactor aardgas, 2018. 

https://www.ce.nl/publicaties/download/1786
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for the type of dwelling, or the type of dwelling is of an uncommon nature (e.g., land-only and 

bungalows). The omitted exposure equals €18,145 million (3.6% of total reported exposures).  

 

3.3 Model calibration 

To calibrate the Merton model, we need estimates per industry and real estate segment for four 

parameters: leverage, asset value volatility, remaining time to maturity, and the risk-free 

interest rate. In addition, for mortgages, we need an estimate of the probability of delinquency. 

The remaining time to maturity is available as part of the exposure data for both corporate and 

residential real estate exposures as an exposure weighted average. Also, the loan-to-value 

(LTV) ratios are available as part of the exposure data for residential real estate, providing the 

exposure per segment in 10 LTV buckets. We assume a constant risk-free interest rate of 2%. 

The remaining challenge is then to obtain estimates for leverage and asset volatility for 

corporate exposures (both public and private firms), and to obtain estimates for asset volatility 

and the probability of delinquency for residential real estate exposures. 

 

3.3.1 Corporate exposures 

Neither leverage nor asset value volatility is part of the corporate exposure data at the Dutch 

central bank. To obtain estimates of the leverage per industry, we create a representative 

portfolio of firms obtained from the Orbis van Dijk database. Since most of the exposures of 

the Dutch banking sector are in the Netherlands, we obtain the full sample of Dutch firms that 

are present within the Orbis van Dijk database and then restrict the sample to those firms that 

have a non-zero and positive amount of long-term debt (which is the closest indicator we could 

find in the database of firms being bank-funded). For all these firms, we divide total debt by 

total assets to obtain a measure of the leverage ratio. Moreover, we obtain, for each firm in the 
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sample, their respective 4-digit NACE industry classification code. This allows us to link the 

sample data to the exposure data.  

A key challenge in the calibration process is that the volatility of market values is not 

directly observable for most firms in the Orbis van Dijk sample of Dutch firms. For each firm 

in the sample that is publicly listed, we determine the implicit asset value volatility based on 

the observable volatility of its listed stock. We do this by linking the listed firms in the Orbis 

van Dijk sample to Thomson Reuters Datastream using their ISIN-codes and obtaining the 

standard deviation of yearly total equity returns including dividends (computed using the 

Datastream return index) between 2006 and 2017. We choose this 12-year period to minimize 

the number of firms for which there is no complete time series available, while still including 

the variation caused by the global financial crisis in 2007 and 2008. We then transform the 

standard deviation of equity into implied asset volatility by using the Merton equations in 

section 2.2 (i.e., simultaneously solving for equations (6) and (9)). We exclude firms for which 

there are more than three missing values in the 12-year period. 

For non-listed firms, we cannot observe the standard deviation of yearly total equity 

returns. Excluding non-listed firms from the sample can be problematic, however, as this will 

likely lead to sample bias (non-listed firms are typically smaller, and may make different 

choices with regards to risk-taking and leverage). Specifically, smaller firms that are typically 

non-listed may have higher asset volatility than larger firms that are more often listed, due to 

fewer diversification opportunities within their business boundaries. To obtain an as valid 

estimate for asset volatility as possible for non-listed firms, we estimate a predictive model for 

the asset volatility of non-listed firms based on relevant financial and size characteristics that 

are available within the Orbis database. We first estimate the model using data for listed firms 

and the used to predict the asset volatility of non-listed firms. 
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We estimate four models based on a sample of 2,346 listed firms in the EU-15 in 

transition-sensitive industries, including size, profitability, leverage and liquidity as predictors 

of asset volatility. All variables except asset volatility are directly obtained from the Orbis 

database, while asset volatility is obtained via Datastream using the same methodology as for 

the listed Dutch firms only (described in the previous paragraph). We also include country and 

industry fixed effects (based on 2-digit NACE industries).  

The results for four variants of the OLS-regression are provided in Table 4. For each 

model, we report the estimated coefficient as well as its t-value. We start with a simple model 

(model 1) that includes only the natural logarithm of total assets as an explanatory variable, as 

well as country and industry fixed effects.15 Total assets are found to be negatively related to 

asset volatility (-0.031), implying that smaller firms indeed have higher asset volatility than 

larger firms. This relationship is statistically significant at the p<0.01 level. We then introduce 

several other potentially relevant variables: the return on assets in model 2 and the leverage 

and liquidity ratios in model 3. Model 4 provides a full model that includes total assets, return 

on assets, the leverage ratio and the liquidity ratio. Profitability (i.e., return on assets) is 

significant in the full specification (model 4) but does not add substantially to the explained 

variance – the R2 of model 4 and model 3 are similar at 0.37, while model 3 is simpler by 

excluding return on assets. For this reason, we use model 3 as our baseline model to estimate 

the asset value volatility of the non-listed firms. 

Table 5 reports the summary statistics for the standard deviation of assets (for the 

combined set of listed and non-listed firms) and leverage for each sector. The summary 

statistics are based on a sample of all firms in the Orbis database that are registered in the 

Netherlands and that are funded by a non-zero amount of long-term debt (this is the category 

 
15 An F-test confirms the significance of the fixed effects. The F-statistic for the country fixed effects is 2.15 (p-
value = 0.0077) and for the industry fixed effects F = 4.20 (p-value = 0.0000). 
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under which the majority of the bank exposures in our analysis would be accounted for). This 

results in a sample of 6,595 both listed and non-listed firms in transition-sensitive industries. 

To exclude outliers, we use the winsorization technique for the 5% lowest and highest predicted 

values. This results in the standard deviation of assets between 0.20 (C.11 Manufacture of 

beverages) and 0.44 (B.06 Extraction of crude petroleum and natural gas). With respect to 

leverage, we find that mean values per industry range between 0.48 (B.09 Mining support 

service activities) and 0.74 (D.35 Electricity, gas, steam and air conditioning supply).  

 

3.3.2 Residential real estate 

To obtain a measure the volatility of real estate assets, we use indices of average sales prices 

that are obtained from the Dutch statistical office (CBS) Statline database. This dataset 

provides house price indices from 1995 to 2018 with yearly intervals. For the Netherlands as a 

whole, the average house price has an annual standard deviation of 6.1% over that period. Since 

this is an aggregate index, we do not measure the idiosyncratic component of asset volatility. 

For this reason, we also look at a set of house price indices in the same Statline database for 

the 12 capital cities of the Dutch provinces. The average annual standard deviation of these 

indices over the 1995-2018 period is 6.6% (with a cross-sectional standard deviation of 1.1% 

across the 12 cities), which is the number we use in our further analysis.  

To estimate the probability of delinquency, we base ourselves on the historical default 

rates on Dutch mortgages. We believe that this provides a sensible estimate since defaults on 

mortgages in the Netherlands are only triggered in case of (prolonged) delinquency and not in 

case of insolvency. We take the long-run annual probability of default for the Dutch mortgages 

to be 0.96% (Stanga, Vlahu, and de Haan, 2017). We multiply this with the time to maturity of 

individual mortgages to obtain an estimate of the probability of default over the lifetime of an 

average mortgage. 
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4. Climate stress test of the Dutch banking sector 

After developing the stress test model and its calibration, in this section we turn to the results 

of our stress test. We first define a set of scenarios which we employ in our stress test (section 

4.1). As is common in financial sector stress tests, we aim to investigate a set of scenarios that 

is severe, but still plausible. We identify our scenarios based on three characteristics: the level 

of the carbon tax (i.e., the price per tonne of CO2e emissions), the timing of the tax (e.g., 

overnight versus phased-in over time), and the scope of its application (e.g., in a confined 

region versus globally). We then apply these shocks to exposure data of the Dutch banking 

sector and describe and interpret our findings (section 4.2). We conclude this section with a 

sensitivity analysis (section 4.3). 

 

4.1 Shock scenarios 

As a starting point, our analysis considers the introduction of a €100 per tonne CO2e carbon 

tax, in line with assumptions in Vermeulen et al. (2019). Additionally, we investigate the 

introduction of a €50 per tonne CO2e carbon tax and the introduction of a €200 per tonne CO2e 

carbon tax. For each level of carbon taxation, we define four policy scenarios. In the first 

scenario (I), the carbon tax is applied overnight, and we assume that regional application will 

prevent firms from passing through the tax to consumers (i.e., there is no room for increasing 

prices, and firms are inter-regional price takers). In the second scenario (II), the carbon tax is 

phased-in during a 10-year period in which the carbon tax increases linearly. Similar to the first 

scenario, there is no pass-through. In a third scenario (III), the carbon tax is applied overnight, 

but we allow firms to pass-through 50% of the tax to consumers (representing a situation where 

an inter-regional level playing field is maintained, limiting the impact on businesses). Finally, 

in a fourth scenario (IV), the carbon tax is phased-in during a 10-year period, and we allow 

firms to pass-through 50% of the tax to consumers.  
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For all scenarios, we assume that the carbon tax comes on top of the set of climate 

policies that are already expected (and priced in by the market). In other words, we assume that 

the shock is unanticipated. Furthermore, we assume that the introduction of the carbon pricing 

policy does not affect market expectations about further climate policies to follow (i.e., this is 

a one-shot fix). This assumption is relevant since changing expectations could alter the 

(expected) future asset volatility within segments and could, in turn, affect the market value of 

debt. Also, for all scenarios, we assume that the carbon pricing policy is applied to all emissions 

at their source (e.g., at the point where fossil fuels are burned). We hence focus on our analysis 

on scope 1 emissions. 

To link the scenarios to our model, we relate our scenario assumptions to the parameters 

in equation (17). Specifically, we vary the path of carbon prices prices 𝜏𝜏𝑡𝑡  and the share of the 

tax that firms are assumed to be able to pass-on to consumers 𝜑𝜑𝑘𝑘,𝑡𝑡 . For scenarios I and III 

(overnight application) we set 𝜏𝜏𝑡𝑡 equal to the level of the carbon tax for all years t. For scenarios 

II and IV we set 𝜏𝜏𝑡𝑡 to increase linearly from zero to the level of the carbon tax during the first 

10 years, and equal to the level of the carbon tax for all years thereafter. For scenarios I and II 

we set 𝜑𝜑𝑘𝑘,𝑡𝑡  to zero for all industries k and all time periods t. For scenarios III and IV we set 

𝜑𝜑𝑘𝑘,𝑡𝑡  to 0.5 for all industries k and all time periods t except for t equals zero where we assume 

no pass-through (𝜑𝜑𝑘𝑘,𝑡𝑡 = 0), hence implying a one-year period before repricing can occur. For 

real estate segments k the pass-through parameter 𝜑𝜑𝑘𝑘,𝑡𝑡  is zero in all cases. However, to ensure 

consistency in the scenarios, we do adjust the taxation costs for households. For the scenarios 

without cost pass-through (I and II), we base the taxation costs that are linked to real estate on 

the use of natural gas only, since the full burden of the tax for electricity would fall onto the 

electricity producers. For the scenarios with 50% cost pass-through (III and IV), we base the 

taxation costs that are linked to real estate on the sum of the carbon costs of burning natural 

gas and 50% of the carbon costs related to the use of electricity. In all scenarios, we assume 
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the interest rate 𝑟𝑟𝑘𝑘  to be constant at 2% and the adaptation parameters 𝛾𝛾𝑘𝑘,𝑡𝑡 to linearly increase 

from 0% to 10% or 20% over a period of 5 years, the maximum reduction depending on the 

potential for electrification and the potential to cost-effectively capture emissions.16 Details are 

provided in Table A1 in the appendix. 

 Finally, to arrive at shocks per unit of asset value, we estimate total asset value for each 

segment k, using equation (18). For corporates, we base ourselves the gross operating surplus, 

obtained from Eurostat, which gives an as close approximation as possible of current 

profitability. We extrapolate this profitability by calculating the perpetuity value of a cash flow 

of the same magnitude, using the same discount rate (6%) as used in the NPV calculation of 

the carbon tax. For real estate, we base ourselves on the average sales prices per housing type, 

obtained from CBS Statline. This results in a vector of asset valuation shocks 𝜉𝜉𝑘𝑘 that represents 

the net present values losses in each industry k as a fraction of total firm value. These vectors 

fully quantify our scenarios, and hence any given scenario that produces the same vector 𝜉𝜉𝑘𝑘 

will produce the same stress test outcome.17  

The resulting asset valuation shocks per industry are provided in Tables 6 and 7. These 

tables report the asset valuation shocks 𝜉𝜉𝑘𝑘 that are calculated using equation (18), per industry 

(rows) and scenario (I to IV, columns). We find that, under a €100 carbon tax, corporate 

valuation shocks range between minus 2% (0.02) and minus 89% (0.89). For each industry, 

shocks are greatest under scenario I (overnight application, no pass-through), followed by 

scenario III (overnight application, 50% pass-through), scenario II (10 years phase-in, no pass-

through, and scenario IV (10 years phase in, 50% pass-through). Industries that are 

experiencing the highest decline in asset value are the manufacture of basic metals (C.24), the 

 
16 Since we lack the data to estimate the adaptation potential over time in all industries, we make conservative 
assumptions. We also note that the adaptation parameter reflects the net effect of both savings due to lower carbon 
emissions (i.e., less tax) and additional costs to achieve those savings. 
17 We note here that this opens up the possibility to use the same approach for other type of scenarios (both climate 
and non-climate related) that lead to valuation shocks within industries. 
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manufacture of coke and refined petroleum products (C.19), and electricity, gas, steam and air 

conditioning supply (D.35). Shocks for these industries range between no less than 0.83 and 

0.87. For the real-estate segments, asset valuation shocks range between a relatively modest 

0.018 and 0.038. The greatest asset valuation shocks are observed under scenario III, which for 

detached or semi-detached houses yields an asset valuation shock of 0.038, followed by 

terraced houses (0.035) and apartments (0.028). We note that even modest real estate asset 

valuation losses can result in substantially increased default risk since most households finance 

their homes with significant leverage.  

 

4.2 Estimates of the impact of a carbon tax on Dutch banks’ balance sheets 

Our main results are shown in Table 9. This table reports the stress test results for our four 

carbon tax scenarios, at three carbon tax levels: €50 / tonne, €100 / tonne, and €200 / tonne. 

We report both the market value losses for the sample of the three largest Dutch banks, as well 

as an extrapolation based on market share for the entire Dutch banking sector (using a factor 

of 1.27).18 The table also presents the market value losses per major asset class, including 

corporate loans and debt, corporate equity, and residential mortgages. Finally, the table reports 

the market value as fractions of total Common Equity Tier 1 (CET1) capital in the Dutch 

banking sector and the total assets in the Dutch banking sector.  

From the table, we distil three major findings. First, for the main estimates for a €100 

per tonne carbon tax, total market value losses for the whole Dutch banking system range 

between €4.5 billion and €35.8 billion, depending on policy choices made. In the most severe 

scenario (I), in which carbon taxation is applied abruptly, and there is no pass-through (e.g., 

due to regional application), losses amount to 29.9% of CET1 capital and to 1.5% of total 

 
18 The largest three Dutch banks cover 79% of the total assets in the Dutch banking sector. The total Common 
Equity Tier 1 (CET1) capital for the entire Dutch banking sector was €120 billion in 2017. Total assets were 
€2,381 billion. 
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assets. When carbon taxation is instead phased-in over ten years (scenario II), the losses as 

fractions of CET1 capital and total assets decline to 14.4% and 0.7%, respectively. When 

carbon taxation is applied abruptly and allowing for 50% pass-through (scenario III), the losses 

as fractions of CET1 capital and total assets are 7.7% and 0.4%. Finally, for the least severe 

scenario (IV), in which carbon taxation is phased-in over ten years and allowing for 50% pass-

through, the losses as fractions of CET1 capital and total assets are 3.8% and 0.2%. These 

losses are substantial: comparing outcomes to regular stress test exercises by financial 

regulators, we find that the market value loss under the most severe policy assumptions 

(scenario I) is of the same order of magnitude (29.9%) as the impact on CET1 capital in the 

most severe scenarios employed in regular financial sector stress testing. For example, the 2018 

stress test by the European Banking Authority (EBA) found that, on aggregate, the CET1 

capital of EU banks declines by 19.2% in their adverse scenario, while the EBA also stated that 

the 2018 stress test was more severe than any previous EU-wide exercise.19 Additionally, the 

2019 stress test by the Federal Reserve found that, on aggregate, the Tier 1 leverage ratio of 

US banks declines by 19.8% in their severely adverse scenario.20 

 Second, losses for the Dutch banking sector are primarily driven by exposures to 

corporate loans and debt. In the €100 carbon tax scenarios, the fraction of losses that are driven 

by residential mortgages and equity is only between 1% and 2% of total losses. Principal 

reasons for this finding are the low exposures of Dutch banks to equity instruments in 

transition-sensitive industries (i.e., less than 1% of total assets) and the low net present value 

 
19 https://eba.europa.eu/risk-analysis-and-data/eu-wide-stress-testing/2018. In the adverse scenario, the fully 
loaded CET1 capital declines from 1,176 billion to 950 billion, which is equivalent to a decline of 19.2%. Key 
features of the adverse scenario of the EBA 2018 stress test were: a cumulative fall in GDP over 3 years by 2.7%, 
unemployment reaching 9.7% in 2020, cumulative inflation over 3 years standing at 1.7%, and a cumulative fall 
in residential and commercial real estate prices over 3 years of 19.1% and 20% respectively. 
20 https://www.federalreserve.gov/publications/files/2019-dfast-results-20190621.pdf. In the adversely severe 
scenario the Tier 1 leverage ratio declines from 8.6% to 6.9%, which is equivalent to a decline in CET1 capital of 
19.8% if other liabilities are constant. The scenario assumes a global recession with the U.S. employment rate 
rising by more than 6 percentage points to 10 percent, accompanied by a large decline in real estate prices (-25% 
for house prices and -35% for commercial real estate) and elevated stress in corporate loan markets. 

https://eba.europa.eu/risk-analysis-and-data/eu-wide-stress-testing/2018
https://www.federalreserve.gov/publications/files/2019-dfast-results-20190621.pdf
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of carbon taxes for most types of housing compared to their valuation, combined with recourse 

to a borrowers income next to recourse to the underlying real estate (which puts market value 

losses of real estate mostly as a burden to households and not to the banking sector). Looking 

at the corporate loans and debt exposure in more detail, the majority of losses for our €100 / 

tonne estimates are driven, in declining order, by exposure to electricity, gas, steam and air-

conditioning (D.35), the manufacture of coke and refined petroleum products (C.19), water 

transport (H.50), the manufacture of basic metals (C.24), and air transport (H.51). Together, 

these five industries drive between 83% and 91% of total market value losses in the corporate 

and mortgage portfolios across the four scenarios. The market value losses for all sectors are 

reported at a 2-digit NACE aggregation level in Table 10. 

 Third, the market value losses for Dutch banks’ balance sheets increase exponentially 

with the euro amount of the tax. By looking at the same four scenarios but with lower (€50) 

and higher (€200) carbon prices, we investigate the sensitivity of our outcomes to the 

magnitude of the carbon tax. For example, for scenario I we find that at a price level of €50 per 

tonne, the total market value losses amount to €8 billion. This increases non-linearly to €36 

billion for a price level of €100 per tonne (a factor 4.5 compared to €50 per tonne) and to €75 

billion for a price level of €200 per tonne (a factor 2.1 compared to €100 per tonne). The 

exponential increase in market value losses is counteracted by some industries reaching the 

point where the full market value of the asset is lost. We find the latter to be the case for four 

industries in Scenario I and III at a price of €200 per tonne: the manufacture of coke and refined 

petroleum products (C.19), the manufacture of basic metals (C.24), electricity, gas, steam and 

air conditioning supply (D.35) and air transport (H.51). Figure 1 provides a graphical 

representation of the total market value losses as a function of the price per tonne CO2e of the 

carbon tax. 
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Besides our main results, we provide the results for a specific scenario that estimates 

the market value losses for the Dutch banking sector in case a major share of fossil fuel assets 

becomes stranded. To this end, we perform an additional analysis where we investigate 

stranded assets in the fossil fuel extraction industries covering coal, lignite, oil and natural gas 

extraction (B.05 and B.06). Since the direct (scope 1) emissions of these sectors are limited, 

they do not play a large role in driving the main stress test results. However, in case of more 

stringent climate policies, it is highly likely that these sectors are also affected, either by 

reduced demand or by other types of climate policies. For example, McGlade and Ekins (2015) 

find that, globally, a third of current oil reserves, half of the gas reserves and over 80 per cent 

of coal reserves should remain unused from 2010 to 2050 in order to meet the Paris Agreement 

target of keeping global warming below two degrees Celsius. We use these estimates for our 

industry valuation shocks as reported in Table 8: 0.85 for the mining of coal and lignite (B.05), 

0.34 for the extraction of crude petroleum (B.061), and 0.50 for the extraction of natural gas 

(B.062). Results are reported in Table 11. We find that market value losses for this specific 

scenario amount to €2.1 billion. This equals 1.8% of total CET1 capital in the Dutch banking 

sector and 0.1% of total assets. Hence an unburnable carbon scenario alone does not seem to 

affect the Dutch banking sector severely.  

 

4.3 Sensitivity analysis 

In this subsection, we test the sensitivity of the outcomes of our stress test to changes in key 

assumptions. Results are reported in Table 12. In this table, we present the outcomes of our 

€100 carbon tax scenarios, based on alternative assumptions relating to the risk-free interest 

rate, the ease with which firms can adapt to the carbon tax (e.g., by investing in carbon 

abatement technologies), and allowing for firm-level variation in leverage and asset volatility 

(instead of taking the average leverage and asset volatility for the entire industry). The first two 
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represent parameters in our modelling that are relatively hard to determine, either because they 

are not known yet (i.e., the future risk-free interest rate) or because the estimates of the 

parameters are not readily available (i.e., the industry-specific abatement curves that determine 

the rate with which firms can reduce their carbon footprint 𝛾𝛾𝑡𝑡). The latter represents a 

refinement of our modelling, which we introduce to show that within industry variation in the 

calibration parameters matters for the outcome (and loosening our previous assumption of 

representative firms in an industry). 

 The first panel (A) of Table 12 reports outcomes based on a risk-free interest rate that 

is constant over time at a rate of 0%, instead of 2% which is assumed in our main analysis. This 

assumption reflects a ‘low-for-long’ scenarios with respect to risk-free interest rates in the euro 

area. We find that lowering the risk-free interest rate to 0% increases the market value losses 

in all four scenarios; however, not to the same extent. Losses as a fraction of CET1-capital are 

32.5% (scenario I), 16.6% (scenario II), 9.8% (scenario III), and 5.3% (scenario IV). These 

represent increases over the baseline scenario of 8.7%, 15.6%, 27.7%, and 40.7%, respectively. 

These increases are, to a large extent, driven by market value losses for residential mortgages, 

and is primarily due to their relatively long duration k. 

 The second panel (B) of Table 12 reports outcomes based on an increased ability of 

firms to cost-effectively reduce their carbon footprint. Specifically, we double the adaptation 

parameters presented in Table A1. This results in adaptation parameters between 20% and 40%, 

depending on the potential for electrification and the potential to capture emissions. We find 

that increasing the ability to reduce carbon footprints decreases the market value losses for 

banks. Losses as a fraction of CET1-capital are 19.4% (scenario I), 9.8% (scenario II), 5.8% 

(scenario III), and 2.8% (scenario IV). These represent decreases over the baseline scenario of 

34.9%, 32.1%, 24.0%, and 25.6%, respectively. This result is primarily driven by exposures to 

corporate loans and debt.  
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 Finally, the third panel (C) of Table 12 reports the outcomes where we introduce firm-

level variation in leverage and asset volatility in the corporate loan portfolio. One challenge to 

our results is that we employ a “representative firm” approach, by defining average parameter 

values for leverage and asset volatility per industry (e.g., a 2-digit NACE industry). To check 

whether this has a substantial impact on results, we estimate our model for each of the 6,595 

firms in our sample individually. These include all firms in the Orbis database that are 

registered in the Netherlands and that are funded by a non-zero amount of long-term debt 

(which is the category under which the majority of bank lending would be accounted for). We 

estimate an asset valuation shock for each of these firms, and then aggregate these shocks by 

taking the long-term debt weighted average for all firms within an industry. We find that this 

approach increases the market value losses for banks. Losses as a fraction of CET1-capital are 

34.5% (scenario I), 18.1% (scenario II), 10.1% (scenario III), and 5.2% (scenario IV). These 

represent increases over the baseline scenario of 15.4%, 25.6%, 31.5%, and 37.0%, 

respectively. We thus show that a representative firm approach may underestimate shocks in a 

Merton setting, which is at least partly driven by the non-linear increase in market value losses 

when solvent firms approach their default point. 

 

5. Conclusion and discussion 

Current trajectories of carbon emissions lead to a global warming scenario of three to four 

degree Celsius (Rogelj et al., 2013). That is well beyond the safe boundary of keeping global 

warming below two degree Celsius. A sudden tightening of climate policies is therefore 

possible. Using the Merton methodology to assess the impact of the introduction of a carbon 

tax on equity- and debt-type assets allows us to calculate the impact on bank assets. Current 

studies of climate stress tests that take a industry-level approach look primarily at losses on 
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equities and thus underestimate carbon risk, while macro-econometric approaches are 

intractable and rely on strong assumptions regarding GDP channels. 

Using our novel climate stress testing methodology, we find that 3.8% to 29.9% of the 

available Common Equity Tier 1 (CET1) capital of the Dutch banking system is wiped out in 

first-round losses following the implementation of a sizeable carbon tax of €100, depending on 

the geographical scope of application and abruptness of the policy. These estimates can be seen 

as a lower bound, as second-round effects could lead to further losses. Moreover, first-round 

losses increase exponentially with the size of the carbon tax. A carbon tax of €200 leads to 

first-round losses of 14.9% to 62.6% of the available CET1 capital of the Dutch banking 

system. Losses in some of the more severe scenarios are of the same order of magnitude (for 

€100 per tonne) and higher (for €200 per tonne) as those obtained under the severe scenarios 

in more traditional financial sector stress tests. This indicates that climate-related scenarios are 

of relevance to prudential supervisors and may warrant increased alignment between prudential 

policymakers and climate policymakers. This to avoid severe losses in the financial system 

while at the same time achieving a decarbonization of the economy in line with international 

climate agreements. 

Our analysis has several limitations. First, we focus our attention to market value effects 

that are an immediate result of asset valuation shocks. We hence do not account for general-

equilibrium effects, such as potentially increasing unemployment, as well as other second-

round losses due to exposures between financial institutions. Second, the Merton model 

assumes no additional costs at bankruptcy and no sudden jumps in asset value. Both of these 

limitations are likely to result in a conservative estimation of total losses, implying that our 

results reflect a lower bound estimate of total market value losses in the investigated scenarios. 

Third, our scenarios do not include potential valuation changes in industries that are not 

necessarily carbon intensive but that are dependent on carbon-intensive value chains (such as 
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the traditional, fossil-fuel based, car industry) or that tend to benefit from climate policies (such 

as renewables and electric car producers). Incorporating the potential valuation shocks to such 

industries is, in our view, an important avenue for future research. Finally, our analysis assumes 

that, besides the asset value shock, the parameters in the Merton model remain constant. We 

hence implicitly assume that our scenario shocks do not alter asset value volatility and/or the 

risk-free interest rate. 

Our findings are relevant to macro-prudential supervisors, micro-prudential 

supervisors, and other financial sector participants. For macro-prudential supervisors, our 

results show that strong carbon pricing policies have the potential to substantially alter the 

market value of a broad range of assets on banks’ balance sheets. This is in line with previous 

findings in Battiston et al. (2017) and Vermeulen et al. (2019). As a consequence, from a 

systemic mandate, macro-prudential authorities may wish to engage in an ongoing dialogue 

with climate policymakers in order to achieve orderly decarbonization of the economy. For 

micro-prudential supervisors, our results point to those assets and industries that are of a 

heightened risk of losing their value in an energy transition. This could have implications for 

the risk scoring of individual financial institutions that are, to a greater extent, exposed to these 

industries (e.g., specialized banks such as agricultural banks). And finally, our results have 

implications for financial institutions in their assessment and pricing of transition-related 

financial risks. In particular, it provides estimates of market value losses in the tail-end of the 

distribution. This can help financial institutions set risk limits, and could provide input into 

their loan origination, investment, and pricing decisions. For the latter, however, a key missing 

parameter is the probability of scenarios occurring and having a full set of scenarios. We would 

also encourage further research into the pricing of climate risk based on forward-looking 

scenarios. 
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Table 1 – Aggregate assets in the euro area and Dutch banking sector 
 
This table reports the aggregate balance sheet of banks in the euro area and the Netherlands. The shaded 
area shows the assets for which we have granular exposure data available and that are in the scope of 
our analysis. These assets together represent 59% of the aggregated balance sheet of the Dutch banking 
sector. All data is for 2017 and obtained from the ECB Statistical Data Warehouse. 
 
 Euro area Netherlands 

 € trillion Percentage 
of total € trillion Percentage 

of total 
Equity exposures 0.54 2% 0.02 1% 
Corporate loans and debt 5.08 23% 0.59 26% 
Residential mortgages 3.84 17% 0.74 32% 
Consumer loans (non-mortgage household loans) 1.88 8% 0.05 2% 
Government loans and debt 2.82 13% 0.25 11% 
Financial corporate loans and debt 3.38 15% 0.32 14% 
Central bank loans and debt 1.84 8% 0.16 7% 
Other 2.91 13% 0.15 7% 
     
Total 22.30 100% 2.28 100% 
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Table 2 – Carbon footprint and exposures in the corporate loans and debt portfolio 
 
This table reports exposures and carbon intensity per industry. For our analysis, we focus on a subset 
of two-digit NACE industries that have carbon footprints higher than 0.5 (we refer to these industries 
from hereon as transition-sensitive industries). Carbon footprint data is based on Eurostat carbon 
intensity per gross value added and includes emissions of CO2, N2O and NH4 in CO2-equivalents 
(CO2e). We adjust the Eurostat carbon intensity data to reflect the profitability of industries as close as 
possible by subtracting personnel costs from gross value-added, in order to arrive at carbon emissions 
per euro gross operating surplus. Data to make this adjustment is however not available for Agriculture, 
forestry and fishing (A.01 to A.03). For these industries we estimate the carbon intensity based by taking 
the ratio of gross operating surplus and gross value added from the Dutch national accounts provided 
by the Dutch Statistical Office (CBS). Moreover, not all Eurostat carbon intensity data is available at a 
2-digit NACE industry level. Industries for which only a higher level of aggregation is available are 
denoted with an asterisk (*). Exposure amounts include debt and equity and are based on a sample of 
the three largest Dutch banks, covering 79% of the assets in the Dutch banking sector. All figures are 
for the Netherlands and for 2017. Data is obtained from the Dutch central bank (DNB) and Eurostat. 
 

  

Carbon footprint 
(kg CO2e / euro 
gross operating 

surplus) 

Exposure 
(€ 

million) 

A.01 Crop and animal production, hunting and related service activities 2.75 65,793 
A.02 Forestry and logging 0.65 2,946 
A.03 Fishing and aquaculture 1.39 1,117 
B.05 Mining of coal and lignite 0.56* 0 
B.06 Extraction of crude petroleum and natural gas 0.56* 11,307 
B.07 Mining of metal ores 0.56* 0 
B.08 Other mining and quarrying 0.56* 827 
B.09  Mining support service activities 0.56* 9,404 
C.10 Manufacture of food products 0.71* 26,499 
C.11 Manufacture of beverages 0.71* 6,996 
C.12 Manufacture of tobacco products 0.71* 1,018 
C.17 Manufacture of paper and paper products 1.26 3,546 
C.19 Manufacture of coke and refined petroleum products 9.51 7,153 
C.20 Manufacture of chemicals and chemical products 3.24 10,109 
C.23 Manufacture of other non-metallic mineral products 2.79 3,076 
C.24 Manufacture of basic metals 9.75 3,427 
D.35 Electricity, gas, steam and air conditioning supply 10.08 20,434 
E.37 Sewerage 5.02* 22 
E.38 Waste collection, treatment and disposal activities; materials recovery 5.02* 1,778 
E.39 Remediation activities and other waste management services 5.02* 134 
H.49 Land transport and transport via pipelines 1.56 9,272 
H.50 Water transport 3.96 20,932 
H.51 Air transport 8.82 2,284 
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Table 3 – Carbon footprint and exposures in the residential mortgages portfolio  
 
This table reports residential mortgages exposure and carbon footprint per type of dwelling. Exposure 
amounts are based on a sample of 9 Dutch banks, covering 67% of the total aggregated residential 
mortgages exposure on the balance sheets of Dutch banks. To calculate the carbon footprint, we use the 
average natural gas (per M3) and electricity consumption (in kWh) per housing type for 2017 from the 
Dutch Statistical Office (CBS) Statline database. We combine these data with emission factors of 1.9 
kg CO2e/M3 for natural gas and 0.355 kg CO2e/kWh for electricity. The reported carbon intensities 
are based on the annual capital cost which we derive from average sales prices per housing type, also 
obtained from CBS Statline, assuming a 3% per annum mortgage interest rate (hence multiplying the 
average sales price by 0.03). We exclude residential mortgage exposure for which there is no 
classification for the type of dwelling or the type of dwelling is of an uncommon nature (e.g., land-only 
and bungalows). The omitted exposure equals €18,145 million (3.6% of total reported exposures). 
 

 Carbon footprint (kg CO2e / euro annual 
capital cost) 

Exposure (€ million) 

 Based on natural gas 
consumption 

Based on total 
energy consumption   

Flat/Apartment 0.25 0.36 65,022 
Terraced House 0.31 0.45 51,210 
Detached or semi-detached 0.36 0.48 363,103 
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Table 4 – Prediction model for asset volatility of non-listed firms  
 
This table reports the OLS-regression results for different models to predict the yearly standard 
deviation of asset value (asset volatility). We base our analysis on a sample of 2,346 listed firms in the 
EU-15 in transition-sensitive industries, obtained from the Bureau van Dijk Orbis database. All 
variables except asset volatility are directly taken from the Orbis database. We also obtain for all firms 
their ISIN code, which we use to obtain the yearly standard deviation of equity value (based on the 
return index of stock prices between 2006 and 2018) via Thomson Reuters Datastream. We then 
transform the standard deviation of equity into asset volatility by using the Merton equations as put 
forward in section 2.2 (i.e., simultaneously solving for equations (5) and (8)). We exclude firms for 
which there are more than three missing values in the 12-year period based on which we calculate the 
standard deviation of equity value. Furthermore, we exclude firms with the 1% largest and smallest 
values for asset volatility and 1% of firms with the largest leverage. This results in an estimation sample 
of 1,548 firms. We perform F-tests to confirm the significance of the sets of dummy variables in the 
full model. The F-statistic for the country dummy variables is 2.15 (prob > F = 0.0077) and for the 
industry dummy variables 4.20 (prob > F = 0.0000), based on the full model (Model 2). T-values are 
reported within brackets, *** denotes a significance-level of 1%.  
 

 Model 1 Model 2 Model 3 Model 4 

Total assets (natural logarithm) -0.031*** 
(-9.54) 

-0.016*** 
(-4.88) 

-0.019***  
(-6.32) 

-0.031***  
(-10.02) 

Return on assets -0.000 
(-0.30) 

-0.001*** 
(-2.64) - - 

Leverage ratio - -0.502*** 
(-13,88) 

-0.486*** 
(-13.66) - 

Liquidity ratio - 0.005*** 
(3.41) 

0.005*** 
(3.50) - 

     
Country fixed effects Yes Yes Yes Yes 
Industry fixed effects Yes Yes Yes Yes 
     
R-squared 0.26 0.37 0.37 0.26 
N 1,532 1,521 1,537 1,548 

 

 

  

  



Table 5 – Summary statistics of corporate loans and debt calibration sample  
 
This table reports summary statistics by industry for the sample of firms that we use to calibrate the Merton model. We base ourselves on all firms in the Orbis 
database that are registered in the Netherlands and that are funded by a non-zero amount of long-term debt (this is the category under which the majority of the 
bank exposures in our analysis would be accounted for). This results in a sample of 6,595 listed and non-listed firms in transition-sensitive industries. For the 
non-listed firms, we estimate the standard deviation of assets based on Model 3, as reported in table 4. We winsorize the 5% lowest and highest predicted values, 
which results in a range of predicted values for asset variation of individual firms in the sample between 0.05 and 0.49. Note that, in line with the exposures of 
the largest three Dutch banks, there are no registered Dutch firms in the NACE industries B.05 and B.07 in the Orbis database. 
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   Standard deviation of assets  
(estimated based on Model 3) Leverage 

  N Mean Standard 
deviation 

Asset 
weighted 

mean 
Mean Standard 

deviation 

Asset 
weighted 

mean 
A.01 Crop and animal production, hunting and related service activities 2,316 0.23 0.13 0.19 0.56 0.25 0.54 
A.02 Forestry and logging 18 0.22 0.15 0.23 0.58 0.27 0.50 
A.03 Fishing and aquaculture 102 0.40 0.09 0.36 0.55 0.24 0.47 
B.05 Mining of coal and lignite 0 - - - - - - 
B.06 Extraction of crude petroleum and natural gas 18 0.44 0.08 0.37 0.54 0.34 0.70 
B.07 Mining of metal ores 0 - - - - - - 
B.08 Other mining and quarrying 42 0.43 0.08 0.43 0.61 0.24 0.56 
B.09  Mining support service activities 56 0.38 0.11 0.32 0.48 0.26 0.37 
C.10 Manufacture of food products 548 0.30 0.11 0.20 0.60 0.23 0.46 
C.11 Manufacture of beverages 39 0.20 0.09 0.07 0.59 0.20 0.63 
C.12 Manufacture of tobacco products 4 0.23 0.14 0.21 0.52 0.34 0.58 
C.17 Manufacture of paper and paper products 107 0.29 0.10 0.16 0.63 0.21 0.70 
C.19 Manufacture of coke and refined petroleum products 12 0.22 0.13 0.12 0.64 0.24 0.79 
C.20 Manufacture of chemicals and chemical products 200 0.25 0.12 0.17 0.56 0.23 0.53 
C.23 Manufacture of other non-metallic mineral products 172 0.26 0.11 0.11 0.63 0.21 0.71 
C.24 Manufacture of basic metals 76 0.36 0.10 0.32 0.59 0.22 0.45 
D.35 Electricity, gas, steam and air conditioning supply 310 0.24 0.13 0.25 0.74 0.25 0.49 
E.37 Sewerage 24 0.23 0.13 0.20 0.57 0.27 0.57 
E.38 Waste collection, treatment and disposal activities; materials recovery 235 0.22 0.12 0.17 0.66 0.24 0.63 
E.39 Remediation activities and other waste management services 80 0.24 0.13 0.20 0.67 0.24 0.65 
H.49 Land transport and transport via pipelines 1,649 0.24 0.11 0.16 0.67 0.21 0.57 
H.50 Water transport 574 0.31 0.13 0.28 0.66 0.25 0.63 
H.51 Air transport 13 0.26 0.14 0.07 0.68 0.26 0.90 



Table 6 – Estimated asset valuation shocks by industry in €100 carbon tax scenario 
 
This table reports the asset valuation shocks 𝜉𝜉𝑘𝑘  estimated by industry in four different scenarios. All 
shocks are reported as net present value losses as a fraction of total firm value, using equations (17) and 
(18). The scenarios differ based on the path of carbon prices 𝜏𝜏𝑡𝑡  and the share of the tax that firms are 
assumed to be able to pass-on to consumers 𝜑𝜑𝑘𝑘,𝑡𝑡 . Scenarios I and II reflect the situation where there is 
no pass-through of costs to consumers (which can be thought of as more regional application, without 
a level-playing field), while scenarios III and IV reflect the situation where 50% of the cost of the tax 
is passed through to consumers (which can be thought of as more global application, where a level-
playing field is largely maintained). Furthermore, scenarios I and III are based on an overnight 
application of the tax, which then remains constant at €100 / tonne CO2e. Scenarios II and IV are based 
on a linear phase-in of the tax over a period of 10 years, after which it remains constant at €100 / tonne 
CO2e. Carbon emissions are obtained from the Eurostat Air Emissions Accounts (AEA) database, while 
total asset value is based on the gross operating surplus as obtained from the Eurostat Structural 
Business Statistics (SBS) Database. All data is for the Netherlands and for 2017. 
 

  I II III IV 
A.01 Crop and animal production, hunting and related service activities 0.25 0.13 0.18 0.09 
A.02 Forestry and logging 0.06 0.03 0.04 0.02 
A.03 Fishing and aquaculture 0.13 0.07 0.09 0.05 
B.05 Mining of coal and lignite 0.05 0.03 0.04 0.02 
B.06 Extraction of crude petroleum and natural gas 0.05 0.03 0.04 0.02 
B.07 Mining of metal ores 0.05 0.03 0.04 0.02 
B.08 Other mining and quarrying 0.05 0.03 0.04 0.02 
B.09  Mining support service activities 0.05 0.03 0.04 0.02 
C.10 Manufacture of food products 0.06 0.03 0.05 0.02 
C.11 Manufacture of beverages 0.06 0.03 0.05 0.02 
C.12 Manufacture of tobacco products 0.06 0.03 0.05 0.02 
C.17 Manufacture of paper and paper products 0.11 0.06 0.08 0.04 
C.19 Manufacture of coke and refined petroleum products 0.87 0.46 0.64 0.32 
C.20 Manufacture of chemicals and chemical products 0.30 0.16 0.22 0.11 
C.23 Manufacture of other non-metallic mineral products 0.25 0.14 0.19 0.09 
C.24 Manufacture of basic metals 0.89 0.48 0.66 0.33 
D.35 Electricity, gas, steam and air conditioning supply 0.83 0.45 0.60 0.31 
E.37 Sewerage 0.46 0.25 0.34 0.17 
E.38 Waste collection, treatment and disposal activities; materials recovery 0.46 0.25 0.34 0.17 
E.39 Remediation activities and other waste management services 0.46 0.25 0.34 0.17 
H.49 Land transport and transport via pipelines 0.14 0.07 0.09 0.05 
H.50 Water transport 0.36 0.18 0.24 0.12 
H.51 Air transport 0.80 0.43 0.59 0.30 
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Table 7 – Estimated asset valuation shocks for residential real estate in €100 carbon tax scenario 
 
This table reports the asset valuation shocks 𝜉𝜉𝑘𝑘  estimated for residential real estate in four different 
scenarios. All shocks are reported as net present value losses as a fraction of total real estate value, 
using equations (16) and (17). The scenarios differ based on the path of carbon prices 𝜏𝜏𝑡𝑡  and the amount 
of the tax that firms are assumed to be able to pass-on to consumers 𝜑𝜑𝑘𝑘,𝑡𝑡 . In the scenarios (I and II) 
where there is no pass-through of costs to consumers, we base the asset valuation shock on the use of 
natural gas only (since electricity is assumed not to increase in price). In the scenarios (III and IV) where 
there is 50% pass-through of costs to consumers, we base the asset valuation shock on the total use of 
energy (natural gas and electricity). Furthermore, scenarios I and III are based on an overnight 
application of the tax, which then remains constant at €100 / tonne CO2e. Scenarios II and IV are based 
on a linear phase-in of the tax over a period of 10 years, after which it remains constant at €100 / tonne 
CO2e. All data is for 2017 and obtained from the Dutch statistical office (CBS). 
 

  I II III IV 
Apartment 0.023 0.018 0.028 0.022 
Terraced house 0.028 0.022 0.035 0.027 
Detached or semi-detached house 0.033 0.026 0.038 0.030 
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Table 8 – Asset valuation shocks for unburnable carbon in fossil fuel stranded assets scenario 
 
This table reports asset valuation shocks for the extractive industries (coal, lignite, crude petroleum and 
natural gas) that are based on the fraction of fossil fuel reserves that cannot be burned if global warming 
is to be limited to two degrees Celsius, as reported by McGlade and Ekins (2015). We take the average 
value for scenarios with and without Carbon Capture and Storage (CCS). 
 

  
2-degrees 

alignment of 
fossil fuel 
extraction 

B.05 Mining of coal and lignite 0.85 
B.061 Extraction of crude petroleum 0.34 
B.062 Extraction of natural gas 0.50 
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Table 9 – Market value losses for different carbon tax scenarios, in € million 

This table reports the stress test results for our four carbon tax scenarios. Total market value losses are 
reported for the sample of the three largest banks and extrapolated to the entire Dutch banking sector 
(market estimate). The total Common Equity Tier 1 (CET1) capital for the Dutch banking sector was 
€120 billion in 2017. Total assets were €2,381 billion. 
 

 
Scenario I 
• Regional 
• Abrupt 

Scenario II 
• Regional 
• Phase-in 

Scenario III 
• Global 
• Abrupt 

Scenario IV 
• Global 
• Phase-in 

 
€50 / tonne carbon tax 

    

     
Corporate loans and debt 6,259 3,372 1,926 1,073 
Corporate equity 0 0 0 0 
Residential mortgages 73 57 85 66 
Total (three largest banks) 6,332 3,428 2,011 1,140 
Total (market estimate) 8,041 4,354 2,555 1,447 
% of CET1 capital 6.7% 3.6% 2.1% 1.2% 
% of total assets 0.3% 0.2% 0.1% 0.1% 
     
€100 / tonne carbon tax     
     
Corporate loans and debt 28,063 13,480 7,071 3,435 
Corporate equity 1 0 0 0 
Residential mortgages 152 117 181 139 
Total (three largest banks) 28,216 13,597 7,252 3,574 
Total (market estimate) 35,834 17,268 9,210 4,539 
% of CET1 capital 29.9% 14.4% 7.7% 3.8% 
% of total assets 
 

1.5% 0.7% 0.4% 0.2% 

     
€200 / tonne carbon tax     
     
Corporate loans and debt 58,840 43,848 32,444 13,780 
Corporate equity 1 1 0 0 
Residential mortgages 335 253 405 303 
Total (three largest banks) 59,176 44,101 32,849 14,084 
Total (market estimate) 75,153 56,009 41,718 17,886 
% of CET1 capital 62.6% 46.7% 34.8% 14.9% 
% of total assets 3.2% 2.4% 1.8% 0.8% 
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Table 10 – Market value losses per industry, in € billion (€100 / tonne carbon tax) 

This table reports the contribution of individual industries to total market value losses in the four main 
€100 / tonne carbon tax scenarios, for the total sample of the three largest Dutch banks. The largest 
absolute contributions to market value losses are, in declining order, obtained for electricity, gas, steam 
and air conditioning supply (D.35), the manufacture of coke and refined petroleum products (C.19), 
water transport (H.50), the manufacture of basic metals (C.24), air transport (H.51) and crop and animal 
production, hunting and related service activities (A.01). 
 

  I II III IV 
A.01 Crop and animal production, hunting and related service activities 1.53 0.85 0.50 0.30 
A.02 Forestry and logging 0.01 0.01 0.01 0.00 
A.03 Fishing and aquaculture 0.02 0.02 0.01 0.01 
B.05 Mining of coal and lignite 0.00 0.00 0.00 0.00 
B.06 Extraction of crude petroleum and natural gas 0.17 0.13 0.09 0.06 
B.07 Mining of metal ores 0.00 0.00 0.00 0.00 
B.08 Other mining and quarrying 0.01 0.01 0.01 0.00 
B.09  Mining support service activities 0.03 0.02 0.01 0.01 
C.10 Manufacture of food products 0.02 0.01 0.01 0.01 
C.11 Manufacture of beverages 0.00 0.00 0.00 0.00 
C.12 Manufacture of tobacco products 0.00 0.00 0.00 0.00 
C.17 Manufacture of paper and paper products 0.05 0.03 0.02 0.01 
C.19 Manufacture of coke and refined petroleum products 5.90 3.76 2.12 0.92 
C.20 Manufacture of chemicals and chemical products 0.15 0.06 0.03 0.01 
C.23 Manufacture of other non-metallic mineral products 0.09 0.04 0.02 0.01 
C.24 Manufacture of basic metals 2.53 0.97 0.39 0.17 
D.35 Electricity, gas, steam and air conditioning supply 12.78 4.86 2.13 0.92 
E.37 Sewerage 0.00 0.00 0.00 0.00 
E.38 Waste collection, treatment and disposal activities; materials recovery 0.28 0.13 0.06 0.03 
E.39 Remediation activities and other waste management services 0.02 0.01 0.01 0.00 
H.49 Land transport and transport via pipelines 0.04 0.02 0.01 0.01 
H.50 Water transport 2.67 1.39 0.91 0.57 
H.51 Air transport 1.75 1.18 0.74 0.39 
- Detached or semi-detached house 0.12 0.09 0.14 0.11 
- Apartment 0.02 0.01 0.02 0.02 
- Terraced house 0.02 0.01 0.02 0.02 
Total 28.22 13.60 7.25 3.57 
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Table 11 - Market value losses for unburnable carbon, in € million 

This table reports the outcome for a partial stress test in a fossil fuel stranded assets scenario based on 
the shocks presented in Table 8. Total market value losses are reported for the sample of the three largest 
banks and extrapolated to the entire Dutch banking sector. The total Common Equity Tier 1 (CET1) 
capital for the entire Dutch banking sector was €120 billion in 2017. Total assets were €2,381 billion. 
We note that our sample does not include any exposure to B.05 (mining of coal and lignite). 

 

 
2-degrees alignment of 
fossil fuel extraction 

Corporate loans and debt 1,680 
Total (three largest banks) 1,680 
Total (market estimate) 2,134 
% of CET1 capital 1.8% 
% of total assets 0.1% 
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Table 12 – Sensitivity analysis 

This table reports market value losses for the €100 carbon tax scenarios, using alternative assumptions. 
Panel (A) reports outcomes based on a risk-free interest that is constant over time at a rate of 0% instead 
of 2%. Panel (B) reports outcomes assuming double the potential for cost-effective carbon abatement 
(20% or 40%). Panel (C) reports outcomes by running the Merton model at the firm level in the 
corporate portfolios, thereby allowing for variation in the leverage and asset volatility parameters. The 
underlined percentages report the difference compared to the main estimate outcome in Table 9. 

 

 
Scenario I 
• Regional 
• Abrupt 

Scenario II 
• Regional 
• Phase-in 

Scenario III 
• Global 
• Abrupt 

Scenario IV 
• Global 
• Phase-in 

 
(A) risk-free interest rate at 0% 
     
Corporate loans and debt 29,799 15,021 8,203 4,206 
Corporate equity 0 0 0 0 
Residential mortgages 897 698 1,060 823 
Total (three largest banks) 30,696 15,720 9,263 5,029 
Total (market estimate) 38,984 19,964 11,764 6,387 
% of CET1 capital 32.5% 16.6% 9.8% 5.3% 
% of total assets 1.6% 0.8% 0.5% 0.3% 
Difference with main estimate +8.7% +15.6% +27.7% +40.7% 
     
(B) +100% abatement potential   
     
Corporate loans and debt 18,222 9,119 5,327 2,521 
Corporate equity 0 0 0 0 
Residential mortgages 152 117 181 139 
Total (three largest banks) 18,374 9,236 5,508 2,660 
Total (market estimate) 23,335 11,730 6,995 3,378 
% of CET1 capital 19.4% 9.8% 5.8% 2.8% 
% of total assets 1.0% 0.5% 0.3% 0.1% 
Difference with main estimate -34.9% -32.1% -24.0% -25.6% 
     
(C) including firm-level variation in leverage and asset volatility 
     
Corporate loans and debt 32,418 16,954 9,352 4,758 
Corporate equity 1 0 0 0 
Residential mortgages 152 117 181 139 
Total (three largest banks) 32,571 17,071 9,533 4,897 
Total (market estimate) 41,365 21,680 12,107 6,219 
% of CET1 capital 34.5% 18.1% 10.1% 5.2% 
% of total assets 1.7% 0.9% 0.5% 0.3% 
Difference with main estimate +15.4% +25.6% +31.5% +37.0% 
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Figure 1 –Market value losses in the Dutch banking sector as % of total CET1 capital  

This figure shows the total market value losses (as a percentage of total CET1 capital) in the four main 
scenarios as a function of the price per tonne CO2e of the carbon tax. In the first scenario (I), the carbon 
tax is applied overnight, and we assume that regional application will prevent firms from passing 
through the tax to consumers (i.e., there is no room for increasing prices, and firms are inter-regional 
price takers). In the second scenario (II), the carbon tax is phased-in during a 10-year period in which 
the carbon tax increases linearly. Similar to the first scenario, there is no pass-through. In a third 
scenario (III), the carbon tax is applied overnight, but we allow firms to pass-through 50% of the tax to 
consumers (representing a situation where an inter-regional level playing field is maintained, limiting 
the impact on businesses). Finally, in a fourth scenario (IV), the carbon tax is phased-in during a 10-
year period, and we allow firms to pass-through 50% of the tax to consumers. Discontinuities in the 
curve occur when an industry reaches the point where the full market value of the assets is lost. Total 
market value losses are based on estimates for a sample of the three largest Dutch banks and 
extrapolated to the entire Dutch banking sector. The total Common Equity Tier 1 (CET1) capital for the 
entire Dutch banking sector was €120 billion in 2017. 
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Appendix 

Table A1 – Parameter assumptions for abatement potential 

This table reports the assumptions for abatement potential over time, which we operationalize as a 
decline in carbon footprint 𝛾𝛾𝑡𝑡  over time. For all industries, we take a linear reduction of carbon footprint 
over five years. We conservatively assume the maximum reduction to be 10% for all industries unless 
the industry has strong potential for electrification (land and water transport) or strong potential to 
capture emissions (electric power generation). In those cases, we take abatement potential to be 20%.  

 
NACE 
Rev. 2 Industry 

Abatement 
potential 

A.01 Crop and animal production, hunting and related service activities 10% (5 yr) 
A.02 Forestry and logging 10% (5 yr) 
A.03 Fishing and aquaculture 10% (5 yr) 
B.05 Mining of coal and lignite 10% (5 yr) 
B.06 Extraction of crude petroleum and natural gas 10% (5 yr) 
B.07 Mining of metal ores 10% (5 yr) 
B.08 Other mining and quarrying 10% (5 yr) 
B.09  Mining support service activities 10% (5 yr) 
C.10 Manufacture of food products 10% (5 yr) 
C.11 Manufacture of beverages 10% (5 yr) 
C.12 Manufacture of tobacco products 10% (5 yr) 
C.17 Manufacture of paper and paper products 10% (5 yr) 
C.19 Manufacture of coke and refined petroleum products 10% (5 yr) 
C.20 Manufacture of chemicals and chemical products 10% (5 yr) 
C.23 Manufacture of other non-metallic mineral products 10% (5 yr) 
C.24 Manufacture of basic metals 10% (5 yr) 
D.35 Electricity, gas, steam and air conditioning supply 20% (5 yr) 
E.37 Sewerage 10% (5 yr) 
E.38 Waste collection, treatment and disposal activities; materials recovery 10% (5 yr) 
E.39 Remediation activities and other waste management services 10% (5 yr) 
H.49 Land transport and transport via pipelines 20% (5 yr) 
H.50 Water transport 20% (5 yr) 
H.51 Air transport 10% (5 yr) 

 
 

(Sy, 2014). 


