Hostname: page-component-5c6d5d7d68-vt8vv Total loading time: 0.001 Render date: 2024-08-23T03:03:46.591Z Has data issue: false hasContentIssue false

Intrinsic dust and star-formation scaling relations in nearby galaxies

Published online by Cambridge University Press:  09 June 2023

Bogdan A. Pastrav*
Affiliation:
Institute of Space Science, Atomistilor 409, 077125 Magurele, Ilfov, ROMANIA email: bapastrav@spacescience.ro bapastrav@spacescience.ro

Abstract

Following from our recent work, we present results of a detailed analysis of a representative sample of nearby galaxies. The photometric parameters of the morphological components are obtained from bulge-disk decompositions, using GALFIT software. The previously obtained method and library of numerical corrections for dust, decomposition and projection effects, are used to correct the measured (observed) parameters to intrinsic values. Observed and intrinsic galaxy dust and star-formation related scaling relations are presented, to emphasize the scale of the biases introduced by these effects. To understand the extent to which star-formation is distributed in the young stellar disks of galaxies, star-formation connected relations which rely on measurements of scale-lengths and fluxes/luminosities of Hα images, are shown. The mean dust opacity, dust-to-stellar mass and dust-to-gas ratios of the sample, together with the main characteristics of the intrinsic relations are found to be consistent with values found in the literature.

Type
Poster Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aniano, G., Draine, B. T., Hunt, L. K., Sandstrom, K., Calzetti, D. et al. 2020, ApJ 889, 150 10.3847/1538-4357/ab5fdbCrossRefGoogle Scholar
Cortese, L., Ciesla, L., Boselli, A. et al. 2012, A&A, 540, A52 Google Scholar
Draine, B.T. 2003, ARAA, 41, 241 10.1146/annurev.astro.41.011802.094840CrossRefGoogle Scholar
Grootes, M., Tuffs, R.J., Popescu, C.C. et al. 2013, ApJ, 766, 59 10.1088/0004-637X/766/1/59CrossRefGoogle Scholar
Grossi, M., Hunt, L. K., Madden, S. C. et al. 2015, A&A, 574, A126 Google Scholar
Kennicutt, R. C., Armus, L., Bendo, G. et al. 2003, PASP, 115, 928 10.1086/376941CrossRefGoogle Scholar
Kennicutt, R. C., Calzetti, D., Aniano, G. et al. 2011, PASP, 123, 1347 10.1086/663818CrossRefGoogle Scholar
Pastrav, B. A., Popescu, C. C., Tuffs, R. J., Sansom, A. E., 2013a, A&A, 553, A80 Google Scholar
Pastrav, B. A., Popescu, C. C., Tuffs, R. J., Sansom, A. E. 2013b, A&A, 557, A137 Google Scholar
Pastrav, B. A. 2020, MNRAS, 493, 3580 10.1093/mnras/staa477CrossRefGoogle Scholar
Pastrav, B. A. 2021, MNRAS, 506, 452 10.1093/mnras/stab1746CrossRefGoogle Scholar
Peng, C. Y., Ho, L. C., Impey, C. D., Rix, H.-W. 2010, AJ, 139, 2097 10.1088/0004-6256/139/6/2097CrossRefGoogle Scholar
Popescu, C. C., Tuffs, R. J., Dopita, M. A. et al. 2011, A&A, 527, A109 Google Scholar
Rémy-Ruyer, A., Madden, S.C., Galliano, F., Galametz, M., Takeuchi, T. T. et al. 2014, A&A 563, A31 Google Scholar
Rémy-Ruyer, A., Madden, S. C., Galliano, F. et al. 2015, A&A, 582, A121 Google Scholar
Tuffs, R. J., Popescu, C. C., Völk, H. J., Kylafis, N. D., Dopita, M. A. 2004, A&A, 419, 821 Google Scholar
van der Giessen, S. A., Leslie, S. K., Groves, B., Hodge, J. A., Popescu, C. C. et al. 2022, A&A 662, A26Google Scholar
Supplementary material: PDF

Pastrav supplementary material

Pastrav supplementary material

Download Pastrav supplementary material(PDF)
PDF 762 KB