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EXECUTIVE SUMMARY 

Understanding present and potential movement of deep-seated landslides (DSLs) in western 

Washington is a long-studied and difficult problem. In Washington State, DSLs occur within many 

lithologies, climate regimes, and timescales. Different geographies may be more or less sensitive 

to natural and anthropogenic landslide triggering mechanisms. Traditionally, DSLs have been 

studied individually because they are highly variable, and geologists have lacked the 

tools/technologies necessary to gather information at broader scales (Miller, 2017). However, 

major advances in remote sensing offer opportunities to classify or group DSLs based on factors 

such as their geology, failure type, landscape position, and velocity patterns, in conjunction with 

the application of a variety of statistical analysis techniques, at regional scales (defined as > 1,000 

km2; Woodard, et al., 2023). 

This Study Design Report lays out a framework and design guidance for a proof-of-concept pilot 

study utilizing remotely sensed data in an effort to characterize several thousand landslides within 

a regional study area. Characterization will occur by combining landslide movement data from 

interferometric synthetic aperture radar (InSAR) and lidar change detection technologies that 

measure landslide velocities with other regional datasets (e.g., existing landslide inventories, 

geological mapping, topography, land use, hydroclimate). This combined effort will facilitate the 

classification of DSLs into common groupings and characterize regional drivers for landslide 

velocity changes. The purpose of this study is to develop a landslide classification scheme based 

on an improved understanding of landslide characteristics and activity levels. It is part of a larger 

deep-seated landslide research strategy to understand and anticipate landslide behavior and 

sensitivity to forest management.  

The four-county study area proposed by the Upslope Process Scientific Advisory Group (UPSAG) 

has extensive landslide mapping by the Washington Geologic Survey (WGS), historical synthetic 

aperture radar (SAR) coverage (covering large periods of the past 30 years) and overlapping lidar 

acquisitions (over the past 17 years). Relative to other areas around the globe, this is a very high 

density of data coverages that can assist in developing an understanding of spatial and temporal 

variations in landslide activity at a regional scale. This study targets specific sub-regions within 

the proposed four-county area. As originally proposed, the four-county area is likely not practical 

for a single study because of the significant amount of data and logistical constraints. The smaller 

sub-regions were identified based on an overlap of high-quality remote sensing data and a 

representative cross-section of landslide types; particularly the availability of multiple repeat lidar 

data sets and the spatial and temporal density of archived SAR data that could support generating 

InSAR deformation data. The following sub-regions have been identified to execute the Mapping 

and Classification Pilot Study: 

• Option 1a and 1b: Western Whatcom County (Mount Baker to Lower Nooksack River) and 

the Upper Snohomish River System (Snoqualmie and Skykomish Rivers) – 2,700 km2 

• Option 2 (includes 1b): Snohomish County (Sloan Peak to Snohomish) and the 

Snoqualmie River Valley (Fall City to Monroe) – 3,600 km2. 
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Each study area has been selected to provide a cross section of landslide classes and clusters 

that provide a statistically robust data set to support understanding the sensitivity of landslides to 

natural processes and human disturbance.  

For each of the areas described above, a targeted region-specific program of ground velocity data 

collection and processing would be undertaken, and these data would be integrated into a 

structured data schema for mapped landslides in the region. It is expected that the following 

velocity/displacement data would be integrated at each landslide polygon by a landslide 

practitioner: 

• Confirmation of presence or absence of measurable displacements across the collection 

period for the data utilized 

• Annualized displacements to support screening different relative landslide activity zones 

across clusters 

• Discrete velocity trend data to support variation in velocity in relation to seasonal and 

multi-year fluctuations in hydroclimatic conditions, surface vegetation change and/or 

human modification of the ground surface.  

The above observations would be entered into a database with schema designed to support 

integration of these data sets into various modelling efforts for other projects that contribute to the 

broader programmatic objectives. To develop a data-driven understanding of the linkages 

between velocity trends and extrinsic factors (such as hydroclimatic influences and human 

disturbance), the design report outlines key publicly available datasets that could be integrated 

with velocity data. 

The project outlined in this Study Design Report is derived from the Cooperative Monitoring, 

Evaluation, and Research (CMER) Scoping Document (UPSAG, 2020). However, the intent of 

the Scoping Document was to investigate why landslides with similar characteristics may exhibit 

differences in activity level. This was envisioned to include an early field effort focused on specific 

landslides of interest within clusters, with a field methodology developed in an iterative fashion to 

support the overall DSL classification, including research that has shown that some DSLs are 

triggered by local subsurface hydrogeological and stratigraphic differences (Miller, 2016, 2017; 

Iverson et al, 2015). The Study Design takes a slightly different approach and is based on remote 

sensing techniques that utilize velocity trends to develop a spatial understanding of the variability 

in landslide activity across the study area. Following the development of a landslide inventory, 

activity, and velocity time-series database, the study will use statistics to analyze the data. Field 

work will primarily focus on verification of the insights derived from remote sensing data analysis. 

The novel hybrid methodology described in the Study Design is untested in this area, as are the 

mixed methods described in the Scoping Document. 

The following comparison between the research objectives listed in the CMER Scoping Document 

(UPSAG, 2020) and the Study Design offers information on how the original research objectives 

will be met with a focus on activity level: 
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Table 1-1. Comparison between the CMER Scoping Document research objectives and the Study Design plan. 

Research objectives defined by CMER (UPSAG, 2020)  Study Design  Explanation of Differences

Identify distinguishing characteristics within and between DSLs with

similar geomorphic, topographic, stratigraphic, hydrologic, and

climate settings.

Section 5.3 provides a methodology that utilizes statistics derived

from the existing landslide inventories to support designation of

landslide classes and the use of different morphological attributes

to define landslide clusters.  

The Scoping Document envisioned classifying DSLs by identifying

their controlling characteristics through a hypothesis-driven

iterative process, including field validation early in the

classification process. It makes use of existing qualitative and

quantitative data. The study design utilizes statistics throughout

the workflow to analyze quantitative inventory and remote regional-

scale data in conjunction with movement and velocity technology

(InSAR and LiDAR change detection (LCD)). 

Investigate why landslides with similar characteristics may exhibit

differences in activity level. Can activity levels of individual DSLs

within and between clusters be linked to sensitivity to hydrologic or

other change?  

Section 5.4 describes how data obtained from globally available

hydroclimatic models and remote sensing-derived products can

spatially and temporally link these transient conditions to

differences in landslide activity. 

The Scoping Document envisioned a process that relied on

identification of clusters and field verification while the Study

Design relies on statistical analysis of remote sensing data to

investigate the linkage between DSL movement and hydrologic and 

other data. 

Develop causal mechanism hypotheses for individual landslides

evaluated in the field. These mechanisms might be evident through

hydrogeologic characteristics visible in active landslides.  

Temporally and spatially continuous regional velocity and

displacement observations will be linked to the landslide inventory

polygons that partially inform the designation of landslide classes

and clusters. These will be used for modelling with the

hydroclimatic and land cover datasets to derive relationships

between landslide attributes and these external drivers. After the

classification process is complete, differences in landslide activity

across similar landslides will be utilized to guide field validation of

hypotheses as to what is driving landslide activity change at the

local scale.  

The Scoping Document has a stronger focus on understanding

causal mechanisms at local scales. The Study Design de-

emphasizes identifying causal mechanisms for individual

landslides, instead focuses on finding relationships across a

region. 

Determine the best remote sensing tools, field assessment and

other methods to classify DSLs in a manner that will improve our

understanding of the relative potential for DSL reactivation or

accelerated movement. What data are necessary to estimate the

relative sensitivity of DSLs within a class?  

Section 5.2 provides an overview of the existing remotely sensed

data and considerations for integration to best support the

classification tasks. The application of the existing remotely

sensed data will support understanding as to which tools are most

effective in deriving the critical variables and will support the

optimization of data collection for future focus areas.  

The Scoping Document asks what methods are best for classifying

the DSLs to provide new information and insights. The Study

Design (section 5.2) is concerned with the efficacy of InSAR and

LiDAR Change Detection technologies as useful method to

classify DSLs. 

Define classes of DSLs within and across clusters using a suite of

physical attributes based on critical variables. These classes will

also be used to support future phases of the research strategy (i.e.,

which DSLs are most representative or illustrative for future research 

and modeling efforts based on the results of the classification

project). What are the critical independent (predictor) variables

necessary to define DSL classes?  

Sections 5.0 and 6.0 provide information about these variables and

their integration into future phases.  

The Scoping Document intended to define classes of DSLs based

on critical independent variables. The Study Design has no

distinction made between independent and dependent variables in

the statistical analyses. Instead, all variables mentioned in

sections 5.0 and 6.0 may be analyzed for correlations, because

some dependent variables may be critical to assessing sensitivity. 

Evaluate if certain classes of landslides have a high or low potential

for instability from forest practices and rank classes based on

multiple sources of empirical evidence.  

To test an initial hypothesis that DSLs can be effectively ranked

and classified based on multiple sources of empirical evidence,

and that certain classes of landslides have a particularly high or

low potential to experience an increase in instability from forest

practices. This document outlines an approach that would

subdivide landslides based on attributes such as lithology, size,

failure depth, and geomorphic position and correlate these with

velocity and extrinsic drivers (hydroclimate, land use, land

disturbance) to assess which landforms are most sensitive to

human disturbance.  

The Scoping Design and the Study Design share the same goal to

identify and evaluate landslide classes. However, the

methodologies differ, as described above in this table.
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5.06.0The work plan outlined in this report is meant to provide a basis to directly inform and 

support the overall deep-seated landslide research strategy by providing a robust set of data and 

tools to understand historical trends to calibrate models that will support the understanding of the 

intrinsic and extrinsic contributions to landform sensitivity. 
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LIMITATIONS 

BGC Engineering USA Inc. (BGC) prepared this document for the account of Washington State 

Department of Natural Resources. The material in it reflects the judgment of BGC staff in light of 

the information available to BGC at the time of document preparation. Any use which a third party 

makes of this document or any reliance on decisions to be based on it is the responsibility of such 

third parties. BGC accepts no responsibility for damages, if any, suffered by any third party as a 

result of decisions made or actions based on this document. 
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INTENT OF THIS DOCUMENT 

This document contains a technically complex and rigorous study design to interrogate 

deep-seated landslides in Washington, USA. The intent of the document is to guide a qualified 

consultant in addressing the critical research questions outlined in Section 1.0. The methodology 

outlined in this report provides a sufficient level of detail to guide a consultant with foundational 

expertise in the geological and kinematic understanding of deep-seated landslides and the 

application of remote sensing tools to develop a spatial understanding of the variability in landslide 

activity across the study area chosen.  

The field of leveraging large remote sensing datasets to evaluate spatiotemporal patterns of 

landslide behavior at scale is a rapidly evolving field. This document provides recommendations 

based on the authors’ current understanding of the state of science. However, it is recommended 

that the project team carefully evaluate advances at the project outset and alter the scope 

accordingly should new techniques be demonstrated that can advance the objectives of this 

study. In some portions of this document, the authors have determined it is premature to offer 

detailed workflows and instead point to potential frameworks and suggestions for data analysis. 

The state of the science at the time of evaluation should be brought to bear on the problem of 

evaluating landslide sensitivity in the context of forestry operations, and a great deal will be 

learned about the best analytical methods once initial data compilation and analysis is complete.  

For these reasons, it is recommended that any organization attempting to undertake this study 

demonstrates at a minimum the following qualifications: 

• The study should be overseen by a qualified geological engineer or engineering geologist 

with demonstrated understanding of landslide processes in complex glaciated and 

bedrock environments. As an example, the Washington State Department of Licensing for 

Geologists provides specific guidelines in Washington State as to the qualifications and 

experience required to undertake landslide studies. Professionals that have received their 

Licensed Engineering Geologist specialty license have demonstrated qualifications and 

experience in the following key areas: 

○ Knowledge of the geology of the state of Washington. 

○ Skill and ability in use of geotechnical field classification systems for soil and rock. 

○ Ability to recognize landforms from surficial and deep-seated geologic processes. 

○ Knowledge and ability to evaluate and analyze soil and rock mechanical 

relationships. 

○ Knowledge of the appropriate application of geotechnical laboratory testing 

methods. 

○ Ability to interpret and portray engineering geologic information and data three 

dimensionally, at a scale appropriate for site-specific applications. 

○ Knowledge and understanding of the principles of grading codes, as well as critical 

areas, shoreline, and other pertinent regulations. 
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• In addition to the foundational qualifications that an experienced geoscience professional 

brings to this study, the team executing the study should have demonstrated experience 

in the following areas: 

○ Advanced knowledge of the proposed tools and technologies, including, but not 

limited to, interferometric synthetic aperture radar (InSAR), lidar, database design, 

and physical and statistical modeling for landslide processes. This includes 

demonstrated project experience in the integration of various monitoring 

technologies to develop hypotheses related to kinematics of shallow and deep 

landslide processes. Demonstrated experience should include an evaluation of the 

limitations of each technology for understanding landslide kinematics.  

○ Experience with both remote and field-based landslide characterization, including 

velocity and activity estimates. This includes a demonstration of previous 

consideration of multi-sensor approaches to characterize local and regional 

velocity changes. This includes the demonstration of the understanding of the 

underlaying monitoring technologies and how these measurement techniques can 

be utilized to characterize landslide velocity trends. 

○ Advanced geospatial data analysis capabilities, including demonstrated project 

experience in generating multi-temporal spatial databases and integrating these 

databases into statistical and/or physically based landslide models.  

 



Washington State Department of Natural Resources, Deep-Seated Landslide Mapping and Classification Project March 14, 2024 

Study Design Project No.: 2365001 

WA DNR-DSLStudyDesignReport_Final_03.14.2024 Page 1 

BGC ENGINEERING USA INC. 

1.0 INTRODUCTION 

1.1. Project Background 

The Washington State Forest Practices Board (Board) approved a comprehensive package of 

forest practice rules in 1999 (Forests & Fish Report) adopted by the Washington state Legislature 

in 2001. 

The Washington forest practices Habitat Conservation Plan (HCP) lists a key resource objective 

under sediment as a “Functional objective” to:  

Provide clean water and substrate and maintain channel forming processes by minimizing to the 

maximum extent practicable, the delivery of management induced coarse and fine sediment to 

streams (including timing and quantity) by protecting stream bank integrity, providing vegetative 

filtering, protecting unstable slopes, and preventing the routing of sediment to streams 

(HCP, Schedule L-1, Appendix N).  

The Board’s Adaptive Management Program (AMP) is designed to provide science-based, 

technically sound recommendations and guidance in support of the resource objectives related 

to aquatic habitats and water quality outlined in the WA forest practices HCP. The Cooperative 

Monitoring Evaluation and Research (CMER) committee was formed to conduct research in 

support of the AMP meeting the HCP’s resource objectives, including empirically defining classes 

of deep-seated landslides (DSLs) based on critical variables controlling the occurrence and failure 

mode. 

In response to the Oso DSL in 2014, the WA Forest Practices Board directed CMER to update 

their DSL research strategy. To support the initiatives of the Board, the Upslope Processes 

Scientific Advisory Group (UPSAG) issued the Deep-Seated Landslide Research Strategy 

(UPSAG, 2019) and the Deep-Seated Landslide Mapping & Classification Project Scoping 

(Scoping) (UPSAG, 2020) documents to CMER. The Strategy document outlines a collection of 

successive and interrelated projects to determine if relative levels of landslide response to forest 

practices can be predicted by key observable characteristics of DSLs and/or their groundwater 

recharge areas. The Scoping document outlines a research plan to empirically define and 

characterize classes of DSLs based on critical variables that control the occurrence and type of 

landslide failure. This type of classification is part of a unique effort by the Washington State 

Department of Natural Resources (DNR) to develop a broader understanding of DSLs as they 

relate to natural processes and human disturbance. For this study a landslide will be classified as 

“deep” if the slide plane lies below the vegetation rooting zone, which is typically greater than 

10 feet (~ 3 meters), as defined in the Washington Forest Practices Board Manual 5/2016 

(WFPB, 2016). 

To support these efforts, BGC Engineering Inc. (BGC) was retained by the DNR to draft a study 

design for a mapping and classification project for DSLs in Washington State. This study design 

is one part of the broader Strategy scheme and combines two parts of the plan, including Project 

4.5 - Mapping and Project 4.6 – Classification (Figure 1-1).  
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1.2. Definitions and Acronyms 

The following definitions and acronyms are provided to explain in more detail some of the 

terminology used throughout this document. Some of the definitions included were sourced from 

the UPSAG Scoping document. 

• ALOS – Advanced Land Observing Satellite. 

• AMP – Adaptive Management Program. 

• Asc – Ascending satellite orbit (as related to InSAR data collection). 

• BDSL – Bedrock Deep-Seated Landslide. A deep-seated landslide with a failure plane 

within bedrock. 

• Board – Washington State Forest Practices Board. 

• CMER – Cooperative Monitoring, Evaluation and Research committee. 

• Critical Independent Variables – In terms of landslides and in the context of this study 

design, critical variables are those for which it has been determined through data-driven 

statistical analysis to have the strongest influence on landslide activity and sensitivity. 

• CSA – Canadian Space Agency. 

• DEM – Digital Elevation Model. 

• Desc – Descending satellite orbit (as related to InSAR data collection). 

• DNR – Washington State Department of Natural Resources. 

• DSL – Deep-seated landslide. A landslide with a body and failure plane. The failure plane 

lies below the tree root zone. This depth can range from ten to several hundreds of feet 

below the ground surface. Simple, rapid failures such as debris flows and debris 

avalanches are not deep-seated landslides regardless of failure depth. 

• ERS – European Remote Sensing satellite. 

• ESA – European Space Agency. 

• Forest practices – forestry-related activities on lands regulated by the Washington Forest 

Practices rules (i.e., timber harvest, road construction and rock quarrying). 

• GDSL – Glacial Deep-Seated Landslide. A deep-seated landslide with a body and failure 

plane within glacial deposits.  

• GIS – Geographic Information Systems. 

• Hydrologic sensitivity – the likelihood of landslide reactivation following a hydrologic 

change related to the movement and distribution of water.  

• Harvesting – In terms of forestry operations, this pertains to different processes by which 

timber is selected, fallen and removed from the landscape. Common examples of forest 

harvesting systems are clearcut, seed-tree, shelterwood, and selection harvest. Logging 

roads are associated with timber harvesting activities, which include original road 

construction and maintenance. 

• InSAR – Interferometric Synthetic Aperture Radar. 

• JAXA – Japanese Space Agency. 

• Landslide Class – A group of DSLs with similar characteristics. Classes of DSLs can occur 

in spatially discontinuous areas (i.e., in different clusters). 

• Landslide Cluster – A sampling unit encompassing proximal DSLs with similar 

geomorphologic, topographic, hydrologic, and stratigraphic settings. Preliminary clusters 
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will be established with GIS tools and may be refined with field data. The intent is that 

landslides in a cluster are located close together and their critical variables are 

homogeneous. The DSLs within a cluster are expected to respond to natural and 

anthropogenic triggers similarly, facilitating an analysis of sensitivity. 

• Landslide sensitivity – the likelihood of landslide reactivation or acceleration following a 

change in condition (e.g., toe erosion, ground disturbance, etc.). 

• LCD – Lidar Change Detection. 

• Lidar – light detection and ranging. 

• LoS – Line of Sight. When using InSAR for deformation measurement, the component of 

the displacement vector in the LoS of the satellite is being measured (vector between the 

satellite and the imaged surface). 

• LULC – Land Use/Land Cover. 

• NiSAR – NASA-ISRO Synthetic Aperture Radar (ISRO - Indian Space Research 

Organization). 

• PALSAR – Phased Array-type L-band instrument. 

• R1 – Radarsat-1. 

• R2 – Radarsat-2. 

• SAR – Synthetic Aperture Radar. 

• Scene – In the context of InSAR data satellite coverages, a “scene” is an individual image 

acquisition of SAR data.  

• Scoping – The Deep-Seated Landslide Mapping & Classification Project Scoping 

document. 

• SLIP – Streamlined Landslide Inventory Protocol. 

• SME – Subject Matter Expert. 

• Stack – In the context of InSAR data satellite coverages, a “stack” is a collection of 

overlapping, repeatedly-collected scenes covering the same spatial footprint over different 

time periods. 

• Strategy – The Deep-Seated Landslide Research Strategy document. 

• TPI – Topographic Position Index. 

• Trigger – The final factor that causes DSL failure at a moment in time. 

• USDA – United States Department of Agriculture. 

• UPSAG – Upslope Processes Scientific Advisory Group. 

• USGS – United States Geological Survey. 

• WGS – Washington Geological Survey. 

1.3. Problem Statement and Purpose  

DSLs in Washington State are complex, and their distribution and activity levels vary greatly 

because of both intrinsic and extrinsic factors. The Scoping document identifies a range of critical 

variables such as geologic materials, climate regimes, and timescales, and different geographic 

locations which may lead to different sensitivities to modern natural and anthropogenic landslide 

triggers. In particular, the AMP is interested in the potential effects of hydrologic inputs from 

forestry activities on the different classes of DSLs, especially at sites where landslides have the 
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potential to degrade fish habitat, water quality, or threaten public safety. Based on the complex 

and diverse context of Washington State and the specific focus of] forest practices rules on DSLs, 

it is a priority to create an applicable, effective, and geologically sound DSL classification system.  

The purpose of the current study design is to empirically classify and define DSLs across 

Washington which are inferred to represent a range of potential sensitivities to natural and forest 

practice triggers. The classification scheme will be based on critical variables with controlling 

influence over the occurrence and type of landslide failure. The landslide classes developed 

during this study will be used to target a subset of landslides for future focused efforts according 

to the Strategy: those landslide classes that may be prone to an increase in slope movement 

activity due to timber harvest or forest road construction. 

The overall Strategy (UPSAG, 2019) focuses on the following critical key questions from the 

CMER Work Plan: 

1. Can relative levels of landslide response to forest practices be predicted by key 

characteristics of deep-seated landslides and/or their groundwater recharge areas? 

2. Does harvesting of the recharge area of a deep-seated landslide promote its instability? 

3. Are unstable landforms being correctly and uniformly identified and evaluated for potential 

hazard? 

To address these questions, DNR has organized a series of complimentary and interdependent 

projects that are defined below in Figure 1-1.
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Figure 1-1. Conceptual linkages of the projects outlined in the Deep-Seated Landslide Research Strategy (UPSAG, 2020). 
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1.4. Critical Sub-Questions and Research Objectives 

This study design document will provide guidelines and a framework to leverage the rich dataset 

of mapped DSLs in Washington (e.g., Mickelson et al., 2017, 2019, 2020; Miller, 2016, 2017; 

Xu et al., 2021; Herzig et al., 2023) and to intersect these mapped regions with both physical 

(e.g., land cover changes, surface roughness) and velocity characteristics (e.g., velocity estimates 

from interferometric synthetic aperture radar, lidar change detection, or direct monitoring). This 

will support DNR in understanding the variability amongst DSLs in the specified study area and 

allow for an empirically supported and repeatable landslide classification schema which may 

inform probabilistic estimates on the future variability of landslide behavior, such as sustained 

movement, reactivation, or cessation. The study area including Whatcom, Snohomish, King, and 

Pierce Counties will be used to implement a proof-of-concept that will demonstrate how the 

intersection of mapped DSLs with remotely sensed data could support addressing the critical 

sub-questions and the research objectives. 

1.4.1. Critical Sub-Questions  

The critical sub-questions, from the CMER Scoping Document (UPSAG, 2020), specific to this 

current study design are as follows: 

1. What are the distinguishing characteristics among DSLs within similar geomorphic, 

topographic, stratigraphic, hydrologic, and climatic settings? 

2. Can activity levels of individual DSLs within and between clusters be linked to their 

sensitivity to hydrologic change? 

3. What are the critical variables necessary to define DSL classes? 

4. What data are necessary to estimate the relative sensitivity of DSLs within a class? 

5. Are there particular classes of DSLs that have a greater or lesser potential for instability? 

1.4.2. Research Objectives 

The outcomes of this study design will specifically address the following research objectives. As 

outlined in the Scoping document (UPSAG, 2020), these objectives directly explain the outcome 

of the acquisition and analysis of the data required to answer the key critical sub-questions.  

Research objectives defined by CMER (UPSAG, 2020) are as follows: 

1. Identify distinguishing characteristics within and between DSLs with similar geomorphic, 

topographic, stratigraphic, hydrologic, and climate settings. 

2. Investigate why landslides with similar characteristics may exhibit differences in activity 

level. Can activity levels of individual DSLs within and between clusters be linked to 

sensitivity to hydrologic changes or other? 

3. Develop causal mechanism hypotheses for individual landslides evaluated in the field. 

These mechanisms might be evident through hydrogeologic characteristics visible in 

active landslides. 

4. Determine the best remote sensing tools, field assessment and other methods to classify 

DSLs in a manner that will improve our understanding of the relative potential for DSL 



Washington State Department of Natural Resources, Deep-Seated Landslide Mapping and Classification Project March 14, 2024 

Study Design Project No.: 2365001 

WA DNR-DSLStudyDesignReport_Final_03.14.2024 Page 7 

BGC ENGINEERING USA INC. 

reactivation or accelerated movement. What data are necessary to estimate the relative 

sensitivity of DSLs within a class? 

5. Define classes of DSLs within and across clusters using a suite of physical attributes 

based on critical variables. These classes will also be used to support future phases of 

the research strategy (i.e., which DSLs are most representative or illustrative for future 

research and modeling efforts based on the results of the classification project). What are 

the critical independent (predictor) variables necessary to define DSL classes? 

6. Evaluate if certain classes of landslides have a high or low potential for instability from 

forest practices and rank classes based on multiple sources of empirical evidence. 
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2.0 PHYSIOGRAPHY AND GEOLOGICAL SETTING 

2.1. Study Area 

As part of the Scoping Document, UPSAG considered several study alternatives focusing on 

Glacial Deep-Seated Landslides (GDSLs) and/or Bedrock Deep-Seated Landslides (BDSLs) and 

targeting different geographic areas ranging from four counties up to nine counties in Western 

Washington. UPSAG’s preferred option (Alternative 2) considered the mapping and classification 

of both GDSLs and BDSLs across Whatcom, Snohomish, King, and Pierce counties (Figure 2-1). 

The following sections of this report will review the available data sources for coverage and quality 

and provide recommendations for a smaller area for which to execute a more detailed study. 

 
Figure 2-1. Maximum proposed study area in western Washington. 

2.1.1. Physiographic Regions and Geological Setting 

A rich tectonic, volcanic, and glacial history has developed several distinct physiographic 

provinces in Washington State. The study area of this project crosses three distinct physiographic 

regions, the Northern Washington Cascades, the Southern Washington Cascades, and the Puget 

Lowland, discussed below (DNR, n.d.; Figure 2-2). 
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2.1.1.1. Northern and Southern Washington Cascades 

The Cascade Range, spanning over 500 miles from northern California to British Columbia 

contains the highest peaks in Washington State and records a complex geologic history spanning 

the last 400 million years. Within western Washington, the Cascade Range is composed of 

various terranes that were accreted to North America that were then subsequently folded, buried, 

faulted, uplifted, and moved to their present location (Brown, 1987; Haugerud & Tabor, 2009; 

WGS, 2022a; 2022b). This complex assembly of metamorphic mélange, sedimentary, and 

intrusive igneous rocks was later intruded and partially covered by volcanic deposits of the 

Cascade volcanic arc (Haugerud & Tabor, 2009, WGS, 2022a).  

Despite the shared history of terrain accretion, tectonism, and volcanism, the Washington 

Cascades can be split into Northern and Southern physiographic regions based upon their 

geomorphic expressions and surficial geologic compositions (DNR, n.d.). The North Cascades 

physiographic region, which extends from Snoqualmie Pass in the south to the US-Canadian 

border in the north, is steep, rugged, and primarily exposes rocks of the various accreted terranes 

(WGS, 2022a; 2022b). The South Cascades physiographic region which extends south to the 

Columbia River, however, is dominated by surficial volcanic deposits derived from the Cascade 

volcanic arc and the Columbia River lava flows. Similar rocks of the older accreted terranes are 

present within the southern Cascades but are primarily buried by younger volcanic deposits 

(WGS, 2022a; 2022b). During the late Pleistocene, the Cordilleran ice sheet covered all but the 

highest peaks of the Northern Cascades (Porter & Swanson, 1998; Thorson, 1980) producing the 

ruggedness and higher relief within this area relative to the unglaciated southern Cascades. 

Alpine glaciers persist to this day within both physiographic regions, occupying the high elevation 

slopes.  

2.1.1.2. Puget Lowland 

During the Pleistocene, multiple glacial advances and retreats of ice sheets formed the 

modern-day Puget Sound and associated Puget Lowland, where most of Washington’s population 

currently resides (Armstrong et al., 1965; Easterbrook et al., 1967; Easterbrook, 1992; 

Mullineaux et al., 1965; Porter & Swanson, 1998). Sediments and erosional features left behind 

by the most recent of these glaciers, referred to as the Fraser Glaciation (Armstrong, 1965), 

dominate the landscape within the Puget Lowland. Deposits associated with the Fraser Glaciation 

range from coarse tills and outwash to fine-grained glaciolacustrine and glaciomarine deposits 

(WGS, 2022a; 2022b). These deposits have distinct markings on the landscape in various forms 

including moraines, flutes, terraces, drumlins, eskers, kettles, and kames. Stratigraphic 

sequences of different glacial deposits (e.g., outwash overlying till) play an important role in 

groundwater hydrology (Kahle & Futornick, 2012) and slope stability (e.g., Heller, 1981; 

Perkins et al., 2017) due the abrupt changes in material properties (e.g., grain size, degree of 

compaction, hydraulic conductivity).  
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Figure 2-2. Physiographic regions within the proposed study area (Data source: DNR). 
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3.0 DATA SOURCES 

The following sections describe suggested geospatial and tabular datasets covering the larger 

study area (Figure 2-1) which could assist in execution of the proposed study. As additional data 

sources become available, however, we recommend the evaluation and possible incorporation of 

those data. Further considerations regarding data assimilation and data analysis are discussed 

in Section 4.0. 

3.1. Geospatial Data 

The following provides an overview of the publicly available geospatial datasets that are available 

to support the project and therefore are considered as part of the design. 

3.1.1. Geological Maps 

3.1.1.1. Map Scales and Coverage 

The WGS offers free, publicly available geologic maps in GIS format across the state of 

Washington at various scales. Seamless geologic map coverage is available across the state at 

scales of 1:500,000, 1:250,000, and 1:100,000 (WGS, 2022a; 2022b; 2019; 2016). The WGS also 

provides 1:24,000 geologic maps across portions of the state and are actively mapping additional 

quadrangles at 1:24,000 scale each year. Within the study area, 1:24,000 coverage is available 

across much of the western portions of Snohomish and King Counties but is only available in a 

small subset of quadrangles in Whatcom and Pierce counties (Figure 3-1). As such, the proposed 

study will likely rely on the 1:100,000 geologic map series (WGS, 2016) since it is the highest 

resolution of seamless coverage across the entirety of the study area. However, the study may 

use 1:24,000 maps where available. Geologic maps provide broad spatial distributions of geologic 

units. They do not provide site specific stratigraphy or consistent details about geologic 

heterogeneity. 

3.1.1.2. Geologic Attributes 

1:100,000 and 1:24,000 geologic maps produced by the WGS (2019; 2016) provide spatially 

referenced information on the various characteristics of surficial rocks and deposits within the 

mapped extent. Each map series is comprised of 12 feature classes with the following 

descriptions:  

1. Attitude_points (structural data) – geologic structural attitude measurement points (such 

as strike and dip of foliation). 

2. Contacts – lines representing the boundary between geologic units. Complements the 

geologic_unit_polygon feature class. 

3. Dikes – line representing individual igneous dikes, sills, and descriptive data. 

4. Faults – lines representing geologic faults. 

5. Folds – lines representing fold axes, showing the location and types of folds in bedrock. 

6. Geologic dates – points representing sample sites for geologic age data. 
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7. Geologic_unit_polygons – polygons defining the extent and label of each geologic unit. 

The label is an abbreviation that represents the age, lithology, and name of a geologic 

unit. 

8. Map_index – spatial location of all 1:24,000 or 1:100,000 scale data and their sources. 

9. Map_line – lines representing linear attributes and boundaries for Washington State. 

Specifically, the feature class contains arcs representing geologic units that, due to map 

scale, are too thin to be represented as polygons. It also includes isograds, glacial 

moraines, eskers, lineaments, paleosols, limits of continental glaciations, limits of alpine 

glaciations, landslide scarps, landslide arrows, terraces, scarps, cross section lines, 

streams, intermittent streams, map boundaries, contours, geophysical data collection 

lines, and strand lines (former shorelines). 

10. Map_point – point locations for geologic polygons that are important but are too small to 

show as polygons at the map scale. 

11. Misc_polygons – polygons representing geologic data for features other than geologic 

units, such as alteration zones, dike swarms, outcrops, geomorphic features, mineral 

resources, and descriptive data for areas of Washington State. 

12. Volcanic_vents – point locations for individual volcanic vents. 

Each map series also contains a related unit description table (unit_descriptions) which defines 

each unit and provides age, lithology, and full unit descriptions. 

The map attributes likely to be most useful for the purposes of landslide classification include the 

descriptions of geologic units and extents (geologic_unit_polygons and unit_descriptions) and 

structural data (attitude_points, faults, folds). 



Washington State Department of Natural Resources, Deep-Seated Landslide Mapping and Classification Project March 14, 2024 

Study Design Project No.: 2365001 

WA DNR-DSLStudyDesignReport_Final_03.14.2024 Page 13 

BGC ENGINEERING USA INC. 

 
Figure 3-1. Geologic map coverage within the proposed study area. 1:100,000 geologic mapping is 

shown by the colored regions and is symbolized following the Washington Geological 
Survey (2019) (Data source: DNR). 

3.1.2. Landslide Inventories 

BGC has identified seven unique landslide inventory datasets within the study area of this project. 

Many of these landslide inventories were compiled to accomplish different objectives and, as 

such, are mapped at various scales, record different landslide attributes, and are constructed 

using different methodologies (Table 3-1). Detailed landslide mapping from the WGS is 

considered the primary inventory data source, with other inventories considered supplementary 

inventory data. The following sections describe each landslide inventory. Recommendations for 

the integration of all inventories into a single dataset to be used for DSL classification are provided 

in Section 4.2.1. 
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Table 3-1. Summary of available landslide inventories and the attributes they provide. 

Inventories Citation Type Method 

Provided Landslide Attributes 

Failure 
Depth 

Reported 
Activity 

Cruden and 
Varnes (1996) 
Classification 

Estimate of 
Confidence 

Primary Landslide Inventory 

WGS Lidar-
Based 

Mickelson et al. 
(2017; 2018; 
2019; 2020; 
2022) 

Polygon Lidar x1  x1 x 

Supplementary Landslide Inventories 

WGS 
Compilation 

Washington 
Geological 
Survey (2022c) 

Polygon 
Map 
Compilation 

   x 

Non-Glacial 
Deep Seated 

Miller (2017) Polygon 
Literature 
Synthesis 

x2 x x  

Glacial Deep 
Seated 

Miller (2016) Polygon 
Literature 
Synthesis 

x2 x x  

Slow Moving 
InSAR 

Xu et al. (2021) Polygon InSAR  2007-2019   

DNR Recent 
Landslides 

DNR (2022) Point 
Public 
Reports 

 2015-2022   

Puget 
Lowland DSL 
Inventory 

Herzig et al. 
(2023) 

Polygon Lidar x2    

Notes: 

1. SLIP Landslides mapped by the Washington Geological Survey do not contain depth or classification information. 

2. Inventory only includes deep seated landslides, but specific depth not assigned. 

3.1.2.1. Washington Geological Survey Lidar-Based Landslide Inventory 

In 2017, The WGS developed a protocol for lidar-based mapping and characterization of existing 

landslides (Slaughter et al., 2017) closely following the Oregon Department of Geology and 

Mineral Industries landslide mapping protocol described in Special Paper 42 

(Burns & Madin, 2009). Using this protocol, the WGS has created detailed landslide inventories 

for the western portions of Pierce (Mickelson et al., 2017), King (Mickelson et al., 2019), Whatcom 

(Mickelson et al., 2020), and Snohomish (Mickelson et al., 2022a) Counties, and along the 

northern (Washington) side of the Columbia River Gorge (Mickelson et al., 2018) (Figure 3-2). In 

these locations, the lidar-based inventory has superseded the WGS statewide landslide 

compilation (Section 3.1.2.2). 

Following Slaughter et al. (2017), lidar-derived products are used to map landslide polygons and 

assign distinguishing attributes including: 

• Landslide material and movement type, following the classification framework of Cruden 

and Varnes (1996) 

• Qualitative confidence of the presence of a landslide (i.e., high, medium, or low) 
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• Relative age classification of landslide movement (e.g., prehistoric) and year of 

movement, if known 

• Geometry of landslide including the slope angle, headscarp height, failure depth, direction 

of movement, and volume of landslide material. 

In remote portions of the mapping areas, the authors mapped landslide polygons from lidar data 

but only assigned confidence ratings in a process termed Streamlined Landslide Inventory 

Protocol (SLIP; Slaughter et al., 2017). SLIP landslide mapping has fewer attributes compared to 

the more detailed landslide mapping but is faster to complete and generally used in regions with 

lower population density. 

 
Figure 3-2. Lidar-based landslide inventory mapping extents of Mickelson et al. (2017; 2018; 2019; 

2020; 2022). 

3.1.2.2. Washington Geological Survey Compiled Landslide Inventory 

The WGS provides an inventory of landslides compiled from a variety of mapping efforts across 

Washington (WGS, 2022c). Landslides within this compilation are derived from the following 

sources: 

• Landslides mapped within 1:24,000-scale and 1:100,000-scale geologic maps. 
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• Miscellaneous landslide mapping from the WGS, the DNR Forest Practices Division, and 

other federal and private entities.  

• Landslides mapped as part of Watershed Analysis efforts for the Washington Forest 

Practices Board (2016). Landslides within this dataset were mapped using aerial 

photographs, soil and geologic maps, field observations, and lidar, where available. 

• Large, reconnaissance-scale mapping of landslides following significant precipitation 

events. Landslides within this dataset are typically mapped using small-aircraft 

surveillance, aerial photography, satellite imagery, or lidar identification, with minimal field 

verification. 

• A study of near-shore landforms along the Salish Sea that have characteristics of 

deep-seated landslides but lack the thorough investigation necessary to classify these 

landforms as landslides. 

Because of the variety of datasets and methodologies contributing to this compilation, the detail 

and quality of assigned landslide attributes are inconsistent across the dataset. Most notably, the 

compilation does not include a consistent attribution of landslide depth or morphology.  

3.1.2.3. Glacial and Bedrock Deep-Seated Landslide Inventories 

In the Fall of 2015, UPSAG and CMER were directed by the Washington Forest Practices Board 

and Timber Fish and Wildlife Policy Committee to develop a scope of work for a focused literature 

review and synthesis of research assessing the effect of forest practices on groundwater recharge 

areas and deep-seated landslides in glacial materials. The resulting review and synthesis 

(Miller, 2016) raised additional questions regarding forest practices effects on the groundwater 

recharge, reactivation, and runout potential of non-glacial deep-seated landslides. As such, the 

literature review and synthesis were expanded by Miller (2017) to focus on non-glacial 

deep-seated landslides. Both works (Miller, 2016; 2017) included a geospatial inventory of 

deep-seated landslide polygons with attributes indicating the activity level (i.e., relict, dormant, 

recent), representative material from which the landslide is derived, and the landslide material 

and movement type following the classification framework of Cruden and Varnes (1996). 

3.1.2.4. InSAR-Identified Slow Moving Landslides 

Xu et al. (2021) evaluated synthetic aperture radar (SAR) satellite imagery to identify slow-moving 

landslides across the continental U.S. western coastal states of California, Oregon, and 

Washington. Landslide movement was detected by evaluating interferograms derived from ALOS 

PALSAR (Advanced Land Observing Satellite; Phased Array type L-band Synthetic Aperture 

Radar) images between 2007 and 2011, and ALOS-2 PALSAR-2 images between 2015 and 

2019. Within this dataset, each polygon represents the largest active area of the landslide 

captured by either ALOS PALSAR or ALOS-2 PALSAR-2. Xu et al. (2021) only reported 

landslides where the line-of-sight (LoS) displacements exceeded 5 mm over the data range 

processed. Therefore, the results likely do not capture the displacements for very slow moving 

landslides in the region. Landslide polygon attributes only include which time period showed 

landslide movement (i.e., 2007-2011, 2015-2019, or both); additional details on the amount or 
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rate of movement are not provided. No displacement time series data are provided with this 

inventory.  

3.1.2.5. Washington Department of Natural Resources Recently Reported Landslides 

Beginning in 2015, DNR has collected and continually reported point observations of landslide 

occurrence statewide (DNR, 2022). Point observations only record the date of the observation 

and provide a brief description; information on the landslide characteristics or extent is limited. 

Additionally, the accuracy of the point locations is likely not sufficient for detailed analysis. As 

such, the information provided by this dataset likely would not contribute to the inventory of 

deep-seated landslides but may help to confirm the activity level of a landslide already included 

in the inventory.  

3.1.2.6. Puget Lowland Deep-Seated Landslide Inventory 

In 2023, Herzig et al. published a new DSL inventory of 1,065 landslides in the Puget Lowlands. 

The inventory is entirely inside King County and was based on detailed mapping on high 

resolution lidar (1-meter pixel size) combined with field observations. They classify all landslides 

in the inventory as deep-seated, with deep-seated landslides defined as those with a slip plane 

located beneath the rooting depth of trees. They utilized the WGS lidar based inventory for King 

County (Mickelson et al., 2019) as a starting basis and performed more detailed mapping 

including field verification visits. This appears to be a quite high-quality inventory in terms of spatial 

accuracy, though the attributes provided are mostly geometrical (e.g., length, height to length 

ratio).  

3.1.3. Forest Operations Data 

Geospatial information on past forest operations is available through records of forest permit 

applications and orphaned or abandoned forestry roads provided by DNR Forest Practices 

Division (2022). Extents of previous and current forest applications are provided as polygons while 

forestry road records are provided as polyline segments. Both datasets provide statewide 

coverage. These records, corroborated by remote imagery analysis to verify timing of forest 

practices activities, may be compared with DSL landslide inventories to analyze the spatial and 

temporal relationships between forestry operations and DSL activity.  

3.1.4. Topographic Position  

The position of a landslide in the context of hillslopes, ridges, and valleys can have important 

implications regarding the sensitivity of the landslide. For example, landslides that initiate in upper 

hillslopes and deposit material on valley floors may be more susceptible to river flows and active 

undercutting than landslides that do not travel all the way to the valley floor. A metric for assessing 

landscape position in this manner is known as the Topographic Position Index (TPI), developed 

by Weiss (2001).  
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TPI classifies the landscape into valleys, ridges, flat sections, and various portions of the hillslopes 

(e.g., upper, middle, lower). As topography is a fractal feature, TPI is thus a scale-dependent 

method that can be used to identify large- or small-scale topographic features depending on 

variables selected when computing the TPI. For example, Figure 3-3 identifies large features 

(e.g., major river valleys, major ridges) in western Washington. During study execution, scale 

parameters for TPI should be explored to determine scales that are most relevant to the 

inventoried DSLs. Multiple TPI datasets may be warranted to capture landscape features of 

different scales and assist in the landslide class definitions.  

 
Figure 3-3. Example Topographic Position Index map for western Whatcom County for identifying 

range-scale features. Landslide deposits of Mickelson et al. (2020) are shown for 
reference (Data source: BGC, USGS). 

3.1.5. Land Use/Land Cover 

Land use/land cover (LULC) datasets provide spatially referenced categorical descriptors for each 

pixel of a satellite image. Common LULC classes include forests, agriculture, or built-up areas 

(e.g., Figure 3-4). As these data are developed from satellite imagery, they are thereby 

time-referenced as well, meaning that it is reasonable not only to identify present LULC 

categories, but also to track change in LULC through time. These types of data could be compared 
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with landslide inventories to evaluate anthropogenic or natural influence on DSL activity. 

Worldwide, time-enabled, 10-m resolution LULC data derived from the processing of Sentinel-2 

satellite imagery are available through Google Dynamic World (Brown et al., 2022). This service 

provides LULC data from June 2015 to present at a frequency of an updated classification every 

~2-5 days.  

 
Figure 3-4. Example of LULC in relation to mapped DSLs in western Whatcom County 

(Mickelson et al., 2020). LULC data is derived from Google Dynamic World 
(Brown et al., 2022) and represents conditions on June 1, 2021.  

3.1.6. Soil Maps 

The United States Department of Agriculture (USDA) Natural Resources Conservation Service 

provides spatial and tabular soil information for most of the United States, including western 

Washington (USDA, 2022). Soil information from these maps such as the soil type, typical depth 

of the soil profile, drainage class, and water table depth may be used for landslide sensitivity 

assessment particularly in relation to hydrologic properties (see Sections 5.2.5 and 5.4). 

3.1.7. Lidar Data 

3.1.7.1. Lidar in Washington State 

Lidar collection started in Washington State in 1996 and spurred the establishment of the Puget 

Sound Lidar Consortium – the first lidar management organization in Washington 

(Gleason & Markert, 2020). In 2015, Revised Code of Washington 43.92.025 was incorporated to 
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State Law, requiring the WGS to conduct lidar based mapping of seismic, landslide, and tsunami 

hazards in Washington (Gleason, 2016). This law initiated the development of a state-wide lidar 

collection, analysis, and dissemination program under the guidance of the Washington Office of 

the Chief Information Officer and the WGS. Using lidar to identify landslides is a well-established 

technique in the landslide community (e.g., Burns & Madin, 2009; Jaboyedoff et al., 2012) and 

lidar data have been a key underpinning for landslide inventory mapping by the Washington 

Geological Survey (Mickelson et al., 2017, 2019, 2020, 2022c) and others in the region 

(e.g., LaHusen et al., 2016). 

Lidar is currently available from acquisition campaigns spanning between 2002-2022 in various 

portions of Washington. Data quality has generally increased with time and has been consistent 

with the state of the practice at the time of collection due to close collaboration between 

Washington agencies and project collaborators such as the U.S. Geological Survey. Current data 

are collected at Quality Level 1 (QL1) specifications with a minimum aggregate return density of 

8 pulses per square meter (ppsm). Additionally, data are processed to digital elevation models 

(DEM) with a cell size of 0.5 meters. Return classification is consistent with American Society of 

Photogrammetry and Remote Sensing standard classifications (ASPRS, 2019). Based on 

preliminary, proof-of-concept, lidar analysis, lidar collected at least as long ago as 2006 is suitable 

for lidar change analytics (Section 5.2.3). 

3.1.7.2. Lidar Coverage in the Study Area 

In 2022, lidar is generally available over all portions of the study area where landslide mapping 

has been conducted. Multi-epoch data are also available, with between one and 10 epochs 

available for any given location in the study area. Figure 3-5 illustrates individual blocks of lidar 

data acquired by Washington State or partner agencies and in the Washington State Lidar 

database. Most frequent coverage is generally available along major river valleys in the study 

area such as the Nooksack (Whatcom Co.), North Fork Stillaguamish (Snohomish Co.), 

Snoqualmie and Cedar (King Co.), and Puyallup rivers (Pierce Co.). However, for virtually all 

landslides in the WGS Landslide Database (Section 3.1.2), at least two epochs of lidar are 

available. 
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Figure 3-5. Lidar coverage within the proposed study area. Warmer colors represent more epochs 

of collocated lidar (Data source: DNR). 

3.1.8. Synthetic Aperture Radar (SAR) Data 

3.1.8.1. InSAR Coverage Considerations 

Since 1991, a series of satellites with synthetic aperture radar (SAR) sensors, launched by several 

international space agencies, have collected coverages of data that can be utilized to support 

monitoring of ground deformation (Figure 3-6). These SAR data, when processed utilizing a 

technique called SAR Interferometry (InSAR), can in many cases map ground displacements as 

small as millimeters per year. While the ability to map this level of ground deformation is 

dependent on many factors related to the sensing parameters, the processing techniques, error 

introduced by atmosphere and topography, impacts of ground cover/vegetation and attributes of 

the ground movement itself, these data theoretically can provide a time history of deformation 

going back 30 years. 

Some of the key requirements to support building long term time histories of ground displacement 

using InSAR is that SAR data had to have been systematically collected and archived and must 

be accessible to download and process. At this time the only systematically global coverage of 
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freely available and easily accessible SAR data that is still operational has been obtained via the 

European Space Agency’s (ESA) Sentinel 1A and 1B satellites, which were launched in 2014 and 

2016, respectively. Historical data obtained by ESA’s ERS 1 and 2 (1991 to 2011), and Envisat-1 

(2002 to 2012) are also freely available and accessible through ESA. Radarsat-1 (1996-2013) 

and ALOS-1 (2004-2011) are also freely available but did not acquire standard coverages and 

therefore data are not always suitable for building an InSAR time series. There are also other 

satellites with SAR sensors that were launched by international space agencies where areas have 

been imaged based on government priorities or tasked on an on-demand basis for commercial 

purchase. With these satellites there are only existing stacks of data present if acquired for the 

above purposes and therefore data is not consistently available globally.
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Figure 3-6. Overview of the historic, current, and upcoming SAR satellites launched by various international space agencies. A pointed 

right-end on the bars shown indicates ongoing data collection, whereas a square end indicates a cessation in satellite 
acquisition.
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The SAR sensors operate in different wavelengths and acquire data in different orbital 

configurations and, potentially, imaging modes. These configurations have implications on the 

ability to quantify ground motion. The high-level considerations impacting the overall suitability of 

these SAR data to support mapping regional ground deformation will be discussed in more detail 

in Section 5.2.4. 

3.1.8.2. SAR Data Coverage for Study Areas 

The western coast of the United States is exceptionally data rich in terms of the availability of 

historical archives of SAR data coverages. These coverages include both C-Band and L-Band 

SAR data and often provide both ascending and descending look directions. When used together, 

these datasets provide opportunities to maximize spatial coverage and the ability to quantify 

ground displacement in terms of displacement direction and rates of movement. When discussing 

satellite coverages, each acquisition of SAR data is referred to as an individual “scene” while 

overlapping, repeatedly collected scenes covering the same area over different time periods is 

referred to as a “stack”. Typically, when assessing the feasibility of SAR data to generate time 

series data, discussion focuses on whether there are enough SAR scenes available for that 

analysis, which is referred to as the “stack depth”. 

The following provides an overview of the spatial and temporal attributes of the available C-Band 

and L-Band coverages over the specific counties. X-Band coverages are not currently considered 

as they are broadly not considered to be suitable to quantify ground movement in vegetated 

terrain. The details in relation to the available data coverages (footprints) and acquisitions are 

included in Appendix A and summarized in the following sections. 

3.1.8.2.1 C-Band (1992 to Present) 

3.1.8.2.1.1 ERS-1 and 2 (1991 to 2011) 

Launched by the European Space Agency (ESA) the ERS program consisted of two satellites, 

ERS-1 (launched in 1991) and ERS-2 (launched in 1995). These satellites had identical sensors 

and shared the same orbit, making the data suitable for interferometric processing. A significant 

amount of ascending and descending data, captured between 1992 and 2011, are available over 

the study area. Although this coverage is not temporally consistent, different footprints can be 

chosen to optimize the InSAR processing results. An overview of the spatial coverages of the 

ERS-1 and ERS-2 data in relation to the study area is provided in Appendix A, with the temporal 

properties of these coverages provided in Table 3-2. 
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Table 3-2. Overview of temporal characteristics of existing ERS-1 and ERS-2 coverages. 

County Ascending Descending 

Whatcom 
Complete coverage of study areas with 
sporadic acquisitions obtained between 
early 1993 to late 2011. Maximum stack 
depths of up to 25 scenes. 

Complete coverage of study area with 
relatively consistent acquisitions (gaps in 
2003-2005). Deep stacks available (>30 
scenes). 

Snohomish 

King 

Pierce 

3.1.8.2.1.2 Radarsat-1 (1996 to 2013) 

Launched in late 1995 by the Canadian Space Agency (CSA), Radarsat-1 (R1) was a hybrid 

sovereign/commercial SAR satellite that acquired data in areas of strategic need for the Canadian 

Government and allowed for the tasking of on-demand images commercially via MacDonald, 

Dettwiler and Associates (MDA). Based on this tasking arrangement, no standard coverages were 

typically available in areas outside of Canada. However, the review of the R1 archives 

encountered relatively good spatial and temporal coverage over portions of the study areas. An 

overview of the spatial coverages of the R1 data in relation to the study area is provided in 

Appendix A, with the temporal properties of these coverages provided in Table 3-3. 

In April 2019, the R1 archives were made freely available by the Canadian Space Agency and 

therefore there is no cost associated with obtaining the SAR data for processing. 

Table 3-3. Overview of temporal characteristics of existing Radarsat-1 coverages. 

County Ascending Descending 

Whatcom 

Existing coverages for southern half of 
county with temporally dense image 
stacks available between late 2004 to 
early 2008. 

Large portions of area covered by various 
footprints. Image stacks are typically less 
than 10 images and sporadically collected. 

Snohomish 
Partial coverage with various footprints 
with deep image stacks between early 
2005 to early 2008. 

Partial coverages by various footprints with 
deep image stacks between early 1999 and 
early 2008 

King Consistent coverage for large portions of 
the study area with consistent acquisitions 
between early 1999 and early 2008. 

Consistent coverage for large portions of 
study area with consistent acquisitions 
between early 1999 and early 2008. Pierce 

When reviewing the temporal coverage, it is apparent that there are areas where more frequent 

acquisitions have been targeted and therefore the utility of this data will vary based on the targeted 

areas prescribed in this design. 

3.1.8.2.1.3 Radarsat-2 (2007 to Present) 

The second of Canada’s Radarsat satellites, Radarsat-2 (R2) was launched in late 2005 with a 

similar acquisition model as R1. Therefore, SAR data was only collected over areas of strategic 

importance for the Canadian government, or areas where acquisitions were tasked for 

commercial purposes. When reviewing the R2 archives, only sporadic coverage primarily focused 
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over the western portion of Pierce County has been collected. If this area is one of the areas 

chosen for more detailed study, then the suitability of this data for InSAR processing would be 

evaluated with consideration that this data is currently only available on commercial basis through 

MDA. 

3.1.8.2.1.4 Sentinel-1A and 1B (2014 to Present) 

ESA’s Sentinel-1A and 1B missions provided the first systematic global acquisition of C-Band 

SAR data which is easily accessible and freely available. Similar to the ERS program, Sentinel 

1A and 1B provided identical imaging characteristics and were launched on the same orbital path. 

An overview of the spatial coverages of the Sentinel-1 A and B data in relation to the study area 

is provided in Appendix A, with the temporal properties of these coverages provided in Table 3-4. 

Table 3-4. Overview of temporal characteristics of existing Sentinel-1 coverages. 

County Ascending Descending 

Whatcom 
Complete coverage of all areas with 
consistent 12-day temporal revisit 
between early 2017 and late 2021. Deep 
stacks of data (>30 scenes) 

Complete coverage of all areas with 
consistent 12-day temporal revisit between 
late 2017 and late 2021. Deep stacks of 
data (>30 scenes) 

Snohomish 

King 

Pierce 

3.1.8.2.2 L-Band 

3.1.8.2.2.1 ALOS-1 (2006 to 2011) 

The Advanced Land Observing Satellite (ALOS) was an earth-imaging satellite launched by the 

Japanese Space Agency (JAXA) in January 2006 and collected imagery until May 2011. The 

ALOS satellite featured 3 instruments, including the Phased Array-type L-band SAR (PALSAR) 

instrument. While the ALOS satellite featured a systematic global observation strategy, the 

acquisition plans were targeted for systematic coverage by all 3 instruments. The PALSAR 

instrument acquisition strategy featured routine observations for 4 instrument modes, all of which 

are not interferometrically compatible. Nevertheless, the PALSAR acquisition strategy allowed for 

the collection of ScanSAR (30 m resolution) stacks of data suitable for InSAR processing for most 

areas of the globe. For the areas of interest, there are relatively good coverages of ALOS-1 data 

(shown in Appendix A) that are outlined below on Table 3-5. 
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Table 3-5. Overview of temporal characteristics of existing ALOS-1 coverages. 

County Ascending Descending 

Whatcom 
Complete ScanSAR coverage 2007-
early 2011 (some gaps in 2008-2009) 
with some stacks over 20 scenes deep. 

Majority of area covered with ScanSAR 
data but stack depths range from 3 to 6 
scenes and are likely not suitable for 
building displacement time-series. 

Snohomish Complete ScanSAR spatial coverage 
with intermittent coverage between early 
2007 and 2011. Stack depths range 
between 9 to 12 scenes. 

Majority of area covered with ScanSAR 
data but stack depths limited to a maximum 
of 7 scenes. 

King 

Pierce 

In September 2015, the ALOS-1 archived data were made freely available for download and are 

accessible through JAXA and various distribution centers. 

3.1.8.2.2.2 ALOS-2 (2014 to Present) 

JAXA’s second satellite of the ALOS mission, ALOS-2, was launched in May 2014, with priority 

coverages focused on the Japanese government requirements and commercial acquisitions 

available on a fee-for-tasking basis. With this model, consistent global coverages were not 

obtained, however, there were relatively consistent acquisitions of coarser ScanSAR data 

collected over the study areas, as shown in Appendix A and described in Table 3-6. 

Table 3-6. Overview of temporal characteristics of existing ALOS-2 coverages. 

County Ascending Descending 

Whatcom 

Regularly spaced coverages between 
late 2014 to 2022 with stack depth of 
up to 12 scenes. 

Regularly spaced coverages between late 
2014 to 2022 with stack depths of up to 12 
scenes. Image stacks of lower resolution 
ScanSAR data up to 64 scenes deep. 

Snohomish 

King 

Pierce 

The archived images over the study areas are available for commercial purchase through JAXA’s 

reseller, PASCO (https://alos-pasco.com/en/offer/). 

3.1.8.3. InSAR Feasibility for Study Area 

The design of the data acquisition and processing strategy will maximize the potential for 

accurately measuring true ground displacements. As discussed previously, the key 

considerations include the spatial coverage of data, the number of scenes that can be utilized for 

InSAR processing (stack maturity), and the wavelength of the data. Table 3-7 provides a 

preliminary assessment of the suitability of the data presented in Section 3.1.7.2 and Appendix A 

to provide high fidelity InSAR timeseries data for each of the counties in question. The data are 

rated as high (H), Medium (M) and Low (L) suitability based on the following criteria: 
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Likelihood of Success: 

• High (Green): Complete spatial coverage of the study area and deep stacks of data 

(>15 scenes of L-Band data or >30 scenes of C-Band data) that likely can be utilized to 

generate near-continuous displacement time series 

• Moderate (Yellow): Study areas are mostly/completely covered with some stacks that 

have at least 10 scenes of L-Band data or 20 scenes of C-Band data that could be utilized 

to generate displacement time series 

• Low (Red): Either there is poor spatial coverage, or the stack depths are insufficient to 

generate useful displacement time series. 

Even though areas are marked as having a High to Moderate likelihood of success based on 

spatial and temporal data coverages, there are other reasons why data may not be suitable for 

use, such as large orbital baselines, which may reduce the stack depth. Furthermore, C-band 

data will result in lower measurement point densities in the presence of vegetation. This being 

considered, any area marked as High to Moderate likelihood of success should be considered for 

acquisition and processing of data, especially for freely available data sources such as ALOS-1 

ScanSAR, ERS-1 and 2, Radarsat-1 and Sentinel-1. For ALOS-2 ScanSAR data, which is 

commercially available, it is recommended that only areas marked as High likelihood should be 

considered for acquisition and processing. 

Table 3-7. Summary of the Feasibility (High, Medium, Low) of Utilizing Existing SAR archived 
data to generate time series InSAR. 

Band Coverage Date Range 
Whatcom Snohomish King Pierce 

Asc Desc Asc Desc Asc Desc Asc Desc 

L 

ALOS-1 2006 - 2011 H L M L M L M L 

ALOS-2 2014 - 2022 M H M H M M M H 

C 

ERS-1/2 1992 - 2011 M H M H M H M H 

Radarsat-1 1996 - 2008 M M M M M H M H 

Radarsat-2 2012 - 2022 L L L L L L L L 

Sentinel-1 2017 - 2022 H H H H H H H H 

Notes: 

1. Asc: Ascending. 

2. Desc: Descending. 

3.2. Site-Specific Studies 

Site-specific studies of DSLs within the project area may provide additional details on the landslide 

properties beyond what is included within existing landslide inventories. These studies are 

available as published papers, academic theses, or geotechnical reports (either from government 
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agencies or consultants) and may contain valuable information from instrumentation monitoring 

(e.g., slope inclinometers, extensometers, GPS, survey monuments). Comparison of a subset of 

landslide classes and clusters (Section 5.2.5) with site specific studies, where available, may 

provide verification of the DSL classification schema proposed within this document. In our 

experience, long-duration site-specific instrumentation data are relatively rare, with few large 

landslides monitored with a regular temporal frequency. Where available, these data will also be 

site-specific and it will be important to not apply too great of an emphasis on monitoring data from 

one landslide. Because of these issues, site-specific data will be supplementary to the overall 

study. They will be very useful where available, and if sufficient data exist, using them to correlate 

remote-sensing derived findings will be a value-add to the program. However, the overall results 

of the study should not hinge on instrumentation data availability.  

Miller (2016; 2017) includes references to geotechnical reports or published works in his 

inventories of glacial and non-glacial DSLs and, as such, may serve as a starting point for seeking 

site-specific information. Because these works only include active DSLs identified before 2017, 

other means of identifying site specific studies should be utilized for DSLs which contain more 

recent information.  

Additionally, where available, forest practice applications (FPA) should be consulted for further 

evidence of activity state or field-based observations that can be useful in the classification. These 

reports may contain evidence of landslide activation that are missed via remote-sensing methods 

alone. Further, they may contain precursors to landslide activation such as ponding of water or 

changes in surface water drainage patterns. 
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4.0 DATA CONSIDERATIONS 

4.1. Dataset Size and Completeness 

Historically, studies aiming to evaluate factors influencing DSL activity were conducted on a single 

to a few DSLs that are studies in detail at a site-specific scale. This is because these studies were 

generally heavily field-oriented and often included subsurface investigations such as drilling or 

monitoring (e.g., soil moisture probes, piezometers, inclinometers). While useful, these methods 

are not applicable at a regional scale and can quickly become prohibitively expensive to conduct 

on a large population of landslides. It is not feasible to undertake detailed field investigations of 

the over 9,000 DSLs known in Washington, for example. Although this is true, these detailed 

studies are important to support extrapolation of the site-specific models developed across similar 

landslides within associated landslide groupings (classes or clusters). 

Satellite-derived remote sensing data is an increasingly viable alternative to study large 

populations of landslides. The spatial continuity and increasingly dense temporal coverage of 

these data give the alternative a great advantage of being able to interrogate large populations of 

landslides over the last 2-3 decades (as far back as 1992 depending on the availability of archived 

data), resulting in the ability to remotely capture many “landslide-years” of observations. For 

example, recent works by Xu et al. (2021) and Handwerger et al. (2022) use InSAR to make 

observations on the activity state of 617 and 38 landslides over a period of 13 and 6 years, 

respectively. These works resulted, therefore, in several thousand landslide-years of observations 

regarding the activity of DSLs in space and time.  

This current study design approach supports the collection of thousands to tens of thousands of 

landslide-years of observations to be used in the evaluation of landslide sensitivity to forestry 

activities. This may allow the further subdivision of the overall population into classes and clusters 

of landslides, following the expectation that in different regions or at different times, 

sub-populations of landslides may respond differently than others. This study will likely not be 

successful if only landslides that can be investigated with field methods are used in the analyses 

contained in this design. Furthermore, the spatial definition of key areas from the remotely sensed 

data will allow for targeted site-specific studies and/or monitoring to support subsequent program 

phases. 

Quality control of all data sources will be critical throughout the study execution. Errors could be 

propagated and, thus, should be considered wherever possible. Errors may be categorical 

(e.g., landslide type, mapped lithology) or numerical (e.g., LCD or InSAR derived velocities) and 

may come from original data sources or from those generated during the study execution. 

Throughout the study design, project members should routinely be checking for data accuracy. 

Part of this program includes manual analyst review of landslide polygons, specifically during the 

LCD and InSAR characterization work. This is an ideal time in the program to assess the accuracy 

of other attribute data associated with landslide polygons. Additionally, project check-ins with 

UPSAG and associated agencies and data transmittals should be shared to facilitate gathering 

others’ perspectives on classifications and methods.  
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4.2. Organization and Structure 

Since the modern computational revolution of the 1990s to present, dataset size and complexity 

has increased exponentially. Extracting meaningful information from these “big data” can be 

exceedingly difficult without appropriate planning. It also can pay dividends to plan for future 

unknowns when designing a large-scale study such as this one.  

This section describes some considerations in designing the data architecture for this program. 

The objective of this planning is to adequately prepare for the known program objectives but also 

provide a flexible framework to account for future potential uses of these data. These future 

potential uses could include application of the program to new geographic areas (e.g., additional 

areas inside or outside Washington), new data sources, and perhaps most importantly, new 

analytical techniques. 

4.2.1. Landslide Inventory Integration Procedure 

For this study design, we suggest integrating the landslide inventories described above into a 

single dataset that can be used to classify landslide properties and assign velocity classes. The 

most relevant attributes readily provided by available inventories for landslide classification 

include the depth of landslide movement, representative source material, movement type 

classification (Cruden & Varnes, 1996), activity level, and confidence in the landslide 

interpretation.  

The purpose of integrating inventories is not to suggest what areas of the landscape are 

experiencing landslides in modern day (e.g., are “active”). Instead, the effort aims to identify the 

maximum likely extent of present-day and geologically recent (i.e., since the last glacial period) 

landslides, and thus, to conservatively estimate areas of the landscape that may be sensitive to 

external perturbations such as forestry disturbances. This base layer of possible DSL locations 

will serve as the basis for where to perform further analysis. 

Given the variability in scale, quality, and coverage of the available landslide inventories, careful 

consideration should be paid to the landslide attributes and the methodology of the original 

source. In many locations, landslide polygons from different inventories may overlap and provide 

conflicting information on landslide attributes. Recognizing that virtually every landslide inventory 

is developed with slightly different methodologies, it can be useful to provide a quality score to 

each inventory when performing an integration of these different datasets. A quality score can 

capture different components of the mapping methodology. For example, was the inventory 

generated through mapping on high resolution lidar or only on coarse resolution topographic data 

(e.g., SRTM)? Was the inventory field verified or is it primarily composed of media reports? A 

quality ranking, thus, provides a basis for deciding which inventory takes precedent when overlaps 

occur or when conflicting information is provided by the different inventories. Further, it can 

provide the basis to omit data entirely or to warrant further confirmation of landslides from a given 

inventory prior to analysis. Mirus et al. (2020) provide a framework for this quality metric and we 

would encourage a similar methodology be used in this study. In Mirus et al. (2020), the authors 

use a ranking score of 1-8 (Fibonacchi sequence, i.e., 1, 2, 3, 5, 8) according to factors such as 
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the presence (or lack thereof) of field observations, the resolution of topography data used for 

mapping, the use of aerial imagery, the reliance on media reports, and more). The WGS inventory 

provides a separate confidence level attribute for each polygon (low, moderate, or high). This 

indicates how confident the mapping geologist was that the identified feature was a landslide, 

considering the clarity of the landslide headscarp, flanks, toe/deposit, and morphology (Slaughter 

et al., 2017). This WGS ranking may be used in conjunction with the Mirus et al. (2020) ranking 

system. One suggestion is to carry the Mirus et al. (2020) assigned score of 8 through to only 

“high” confidence WGS polygons. For “moderate” WGS polygons, perhaps a score of 5 is 

assigned, and for “low” confidence WGS polygons, perhaps a score of 3. Careful consideration 

here should attempt to carry all confidence metrics through to the final compiled inventory. 

We suggest that the detailed, lidar-based inventory provided by the WGS (Mickelson et al., 2017; 

2018; 2019; 2020; 2022) be the primary contributor to the overall landslide inventory because it 

is mapped using lidar at a scale appropriate to this work and contains relevant information on 

landslide depth, materials, and movement type. The WGS also field verifies a percentage of their 

polygons and uses aerial imagery where available. Mirus et al. (2020) ranks the WGS lidar based 

inventories as highest quality (score = 8). That said, more recent work by Herzig et al. (2023) 

overlaps areas also mapped by the WGS in the Puget Lowlands and in many cases, the Herzig 

et al. data overlap with WGS mapping (see Figure 4-1). We bring this up here to illustrate that 

even amongst high quality inventories, sometimes decisions will need to be made on an inventory 

by inventory basis and a simple quality score is only a guiding metric and does not provide a 

complete workflow. These quality ratings may be used by DNR in further assessments, whether 

they be office- or field-based. For example, DNR may opt to perform a more rigorous review of 

low-confidence features and a less rigorous review of high-confidence features. 

 
Figure 4-1. Comparison of two recent high quality landslide inventories from Herzig et al. (2023) 

and Mickelson et al. (2019) in King County, WA. Slopeshade base derived from DNR, 
King County Lidar 2021.  
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Other inventories may be used to supplement the WGS lidar-based inventory, depending on their 

methodologies and attributes provided. A suggested procedure for how to integrate the landslide 

inventories is shown in Figure 4-2. Comments on how the supplemental inventories may 

contribute relevant landslide information is described below: 

1. WGS Compiled Landslide Inventory (WGS, 2022c) – Because the WGS lidar-based 

inventory supersedes the WGS compiled inventory, the only landslides within this 

compilation that should be included within this study are those that fall outside the mapping 

areas of Mickelson et al. (2017; 2018; 2019; 2020; 2022). The attributes within the WGS 

compilation are highly variable aside from the confidence in the landslide existence. 

Therefore, the subject matter expert (SME) performing the proposed study will need to 

check that the polygon reasonably delineates a deep-seated landslide, estimate the 

landslide depth, representative source material, Cruden and Varnes (1996) classification, 

and activity level based on their professional judgement using contextual information such 

as geometrical relationships, available lidar datasets, geologic maps, or additional 

landslide inventories.  

2. Glacial and Non-Glacial DSL Inventories (Miller, 2016, 2017) – These datasets provide 

high-quality information on DSL source materials, movement type, and activity level but 

are limited in their extent and spatial coverage because they are primarily derived from 

landslides reported in several external data sources. Where landslides within this 

compilation overlap with the WGS lidar-based landslides, if appropriate, polygons may be 

merged to conservatively represent the deep-seated landslide extent. 

3. InSAR Derived Slow Moving Landslides (Xu et al., 2021) – These datasets provide 

information on the timing of landslide movement that may be incorporated with other 

existing inventories. Our preliminary review shows that all slow-moving landslides 

identified through InSAR (Xu et al., 2021) overlap with DSLs mapped by the WGS using 

lidar-based methods (Mickelson et al., 2017; 2018; 2019; 2020; 2022) within the WGS 

mapping extent. Similar to overlapping glacial and bedrock DSL inventories discussed 

above, we suggest that InSAR-identified landslides that overlap landslides from other 

inventories be merged to conservatively represent the potential area of landslide 

sensitivity. Landslide activity information provided by the InSAR datasets should be 

maintained within the database. 

4. DNR Recent Landslides (DNR, 2022) – The DNR recent landslide database would likely 

not contribute to the inventory compilation as it only provides point data of landslide 

observations and accuracy of the point locations are questionable due to the sourcing of 

these data from a variety of reporting agencies including media networks. This data, 

however, may be useful for determining the activity history of landslide polygons that 

intersect the recent landslide points features. Our preliminary review shows that 29 DSLs 

within the WGS lidar-based inventory intersect point observations of recent landslide 

activity. When reviewing the various landslide activity data obtained from LCD and InSAR 

these data points will be considered to gather additional insights into the timing of sudden 

landslide activity changes at the point locations. 

Puget Lowlands Landslide Study (Herzig et al., 2023) – Researchers from Washington, 

Oregon, and California produced an inventory of 1,065 deep seated landslides in the 



Washington State Department of Natural Resources, Deep-Seated Landslide Mapping and Classification Project March 14, 2024 

Study Design Project No.: 2365001 

WA DNR-DSLStudyDesignReport_Final_03.14.2024 Page 34 

BGC ENGINEERING USA INC. 

Puget Lowlands of western King County, WA. In many instances, the inventory overlaps 

with the WGS inventory for King County (Mickelson et al., 2019). The mapping was 

performed on 2021 vintage lidar (1-meter pixel size) and the resulting inventory includes 

several geometric attributes (e.g., height, length). The inventory does not include any field 

observations, though the authors did field verify some landslides. 
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Figure 4-2. Suggested approach to integrating various landslide inventories and additional 

geospatial datasets.  
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4.2.2. Addition of Time-Stamped Attribution 

In addition to integrating already cataloged data, the present study will include time-enabled 

tabular attribution of landslide velocities and potential LULC data. These data should be stored in 

tables containing at least the following attribute data: 

• Landslide unique identifier number 

• Date 

• Annualized displacement (i.e., velocity) or LULC classification (e.g., forest) 

• Method of estimating the attribute (e.g., lidar change detection, InSAR, instrumentation). 

The current schema of the WGS detailed landslide inventory does not account for this addition, 

however, with careful consideration, these data could be appended in a fashion suitable for future 

analysis. A simple solution is a table of date and inferred velocity or LULC classification that will 

be joined to the main database by use of a landslide unique identifier (e.g., object ID or landslide 

ID). A common field such as the landslide ID will ensure that many time-stamped data types and 

formats could be tied to individual landslides. Additional time-enabled attributes could be 

appended this way by developing additional joined tables.  

4.2.3. Flexibility for Future Modeling Efforts 

This effort and future projects in the DSL Strategy will require robust statistical modeling 

(e.g., logistic regression, principal component analysis, machine learning, and other exploratory 

statistical techniques). To support this, all components of data storage and architecture should be 

designed in a way that will support future modeling efforts. This means structuring data in a 

manner suitable for querying and quantification wherever possible and minimizing qualitative data 

such as free text fields and one-off considerations. It is imperative that data assimilation and 

compilation is structured from the beginning of a multi-year study like this one with such an end 

goal in mind. 

Focusing on integrating a single source of landslide attribute information with geolocation 

information and time-enabled tabular datasets will increase the utility of the data organization and 

assimilation tasks discussed in this study. Additionally, this will increase the flexibility of the 

dataset for future research and modeling efforts that may be part of the larger Strategy. 
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5.0 RECOMMENDED METHODOLOGY 

This section describes the methodology for further study refinement and execution of the proof-

of-concept study. A summary of the steps included is shown in Figure 5-1 below and discussed 

in more detail in subsequent sections.  

 
Figure 5-1. Study execution summary. 

5.1. Selection of Area for Proof-of-Concept Execution (Pilot Study) 

A significant part of this initial study focuses on the identification of data sources and their spatial 

and temporal coverage of the study area. Alternative 2 from the Scoping document included four 
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counties in western Washington. These counties coincide with the areas of detailed landslide 

inventory mapping from the WGS (Mickelson et al., 2017, 2019, 2020). With that in mind, this 

section discusses additional considerations in data coverage which may be useful to further define 

a targeted study area for this initial proof-of-concept. If linkages between forestry activities and 

DSL activity levels are identified, the developed workflows may be calibrated and tested to 

evaluate additional areas beyond this initial study area.  

The initial study area should include an overlap of high-quality data sources where it is expected 

that statistically robust relationships can be identified (Section 4.0). This design has considered 

the overall spatial and temporal coverage of the following key data sets: 

• Landslide inventory data: Focusing on the completeness of mapping utilizing modern 

techniques and high quality lidar base maps (Section 3.1.2.3) and the temporal resolution 

and value of mapping (e.g., InSAR derived slow moving landslides, Section 3.1.2.4). 

• Lidar data: Focusing on the largest number of epochs of data coverage, as well as 

optimizing where higher resolution point cloud data is available to support maximizing the 

resolution of detectable displacements (Section 3.1.5). 

• SAR data: Assessing where a combination of multi-look and multi-frequency data sets are 

available that provide spatial coverage of key landslide populations but also allow for 

longer term InSAR time series to be generated for a select subset of sites. Focus on 

L-band data for resolving displacements in vegetated environment of western Washington 

(Section 3.1.6). 

• Types of deep-seated landslides: Focus on a representative process type (e.g., slide, flow) 

and geomorphic position (e.g., valley, mid slope, upper slope) for the broader population 

of landslides in western Washington.  

• Other vector data such as geological mapping and scale, forestry operations, 

instrumentation, and geotechnical information. 

The coverage maps and discussion provided in Section 3.0 illustrate the relative spatiotemporal 

coverage of the available datasets. Based on these coverages, the following table identifies two 

potential initial study area locations (within the original Alternative 2 extents) for consideration. 

The areas outlined below should undergo further consideration prior to implementation of this 

study and are only provided here to illustrate how one may approach determining trial areas. The 

maps provided here (Figure 5-2) are insufficient for the level of detail required to make this 

determination, and an iterative review process with DNR should fine tune these areas with the 

selected contractor to implement the study design. 
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Table 5-1. Example targeted study areas and rationale. Additional areas should be considered 
based on data availability during study execution. 

Area Description 

1 
Western Whatcom County (Mount Baker to Lower Nooksack River) and the Upper 
Snohomish River System (Snoqualmie and Skykomish Rivers, including Upper Tolt and 
North Fork Snoqualmie) – 2,700 km2, >3,000 mapped DSLs 

Rationale: Western Whatcom County experiences a relatively high density of medium to large sized 
bedrock landslides and both detailed and supplementary landslide mapping is available. The area also 
encompasses geological diversity, including landslides initiating in glacial deposits, alluvial deposits, 
metamorphic rocks, sedimentary rocks, and igneous rocks. This area contains representative landslide 
types and geomorphic positions except for river valley landslides where undercutting may be a 
significant contributor to activity state. Adding the Snohomish River system, where these landslides are 
more numerous will address this deficiency. By itself, however, the upper Snohomish River system 
would not capture the landslide and geological diversity of western Whatcom. Additionally, up to six 
epochs of lidar coverage and stacks of ascending and descending ALOS-1 and ALOS-2 L-Band SAR 
data dating back to 2004 are available. Active historical and recent forestry operations are also 
recorded in the area. 

2 

Snohomish County (Sloan Peak to Snohomish) and the Snoqualmie River Valley (Fall City 
to Monroe, including Upper Tolt and North Fork Snoqualmie) – 3,600 km2, >4,350 mapped 
DSLs 

Rationale: Snohomish County has a relatively high density of small to large sized glacial and bedrock 
landslides and both detailed and supplementary landslide mapping is available. This area includes the 
SR-530 corridor and the Oso landslide. The area also encompasses geological diversity, including 
landslides initiating in glacial deposits, alluvial deposits, metamorphic rocks, sedimentary rocks, and 
igneous rocks. This area contains representative landslide types and landscape positions except for 
river valley landslides where undercutting may be a significant contributor to activity. Adding the 
Snoqualmie River Valley, where these landslides are more numerous will address this deficiency. 
Additionally, up to six epochs of lidar coverage and stacks of ascending and descending ALOS-1 and 
ALOS-2 L-Band SAR data dating back to 2004 are available. Active historical and recent forestry 
operations are also recorded in the area. 
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Figure 5-2. Potential targeted study areas in western Washington. 

The cost of study execution in terms of financial and human resources will scale proportionately 

with the size of the initial study area. The scope of the study, as coordinated with UPSAG, will 

therefore inform practical size limitations of the initial study area. A smaller study area will be both 

faster and less expensive to evaluate, though may lack statistical rigor and diversity to adequately 

characterize DSL sensitivity to both natural and forest practice triggers. During study execution, 

data availability should be updated and changes to available datasets should be considered when 

selecting a targeted study area. 

5.2. Velocity Characterization 

5.2.1. Background and Objectives 

A key objective of this Study Design is to investigate why DSLs with similar morphological and/or 

geological characteristics may exhibit differences in activity level and/or differences in response 

due to climate, weather, or forest management activities. The primary relationships of interest are 

between landslide triggering conditions (e.g., a wetting period, changes to surface water drainage) 

and changes in landslide displacement (e.g., Handwerger et al. 2022). This can be thought of as 

the response rate of a landslide and is typically related to depth to the sliding plane of the 
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landslide, material composition, and the ability for water to infiltrate at the surface. Shallower 

landslides originating in coarse grained material or highly fractured bedrock will likely respond 

fastest to changes in conditions, whereas deeper landslides originating in fine grained material or 

massive bedrock will typically respond slowest (Miller, 2017).  

Quantifying relationships between triggering conditions and landslide activity changes and 

providing a mechanistic explanation for it is one of the most formidable challenges in landslide 

science and is usually only resolved case-by-case (e.g., Lacroix et al., 2020). However, recent 

advances in remote sensing have allowed monitoring of landslide movement and velocities at a 

regional scale and may provide insights to spatial and temporal landslide activity characteristics 

for a population of landslides (e.g., Handwerger et al., 2022; Cignetti et al., 2023). To isolate these 

effects, it is necessary to understand the velocity of the inventoried deep-seated landslides. This 

may include a real velocity estimate (e.g., mm/yr), an estimate of the annualized displacement, or 

the status of the deep-seated landslide activity (e.g., active, dormant/relict). Regardless, an 

understanding of the activity state will be required to answer the stated research objectives. 

Where such data as LCD or InSAR is available, those landslides will be assigned an estimated 

activity level as can be determined utilizing each measurement technique. 

Precursory deformation prior to DSL collapse has been successfully identified using remote 

sensing technologies presented in this study design. The following are four examples of such 

works: Lato et al. (2019) used lidar change detection to identify precursory deformation in the 

vicinity of the Oso headscarp prior to the 2014 collapse. Morris et al. (2023) use InSAR and optical 

image pixel tracking to identify movement starting in 2015 at the release zone of the 2022 Chaos 

Canyon Collapse in Colorado. Van Wyk de Vries et al. (2021) used InSAR and optical image 

correlation to identify pre-collapse movement in the five years prior to the ultimate slope collapse 

in 2021 in Uttarakhand, India. Lacroix et al. (2020) identify precursory movement via InSAR over 

three years prior to a collapse of the Maoxian Landslide, China.  

5.2.1.1. Response Rate 

Luna and Korup (2022) recently completed a study in the Pacific Northwest where they 

investigated lag time between seasonal precipitation fluctuations and shallow landslide 

occurrence. Using Bayesian inference models, they found shallow landslide occurrence to lag 

seasonal increases in precipitation by three months for the aggregate dataset of five different 

landslide inventories in Oregon and Washington (Luna & Korup, 2022). Their models compared 

estimated rainfall conditions from the Parameter-elevation Regressions on Independent Slopes 

Model (PRISM, University of Oregon) with landslide date from five inventories, one of which was 

the WGS compiled landslide inventory described in this document.  

Their methods may be reproducible for smaller subsets of landslides and particularly for increases 

in displacement rate as opposed to the rapid failure date as was typically recorded for the shallow 

landslides they evaluated. While Luna and Korup (2022) relied only on a reported day of 

movement of a landslide, we understand DSLs are often moving for many days (or months or 

years), at varying rates. In other words, can we identify accelerations in persistently or episodically 
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moving DSLs and evaluate for lag relative to longer term hydroclimatic patterns or land use? 

Additionally, Luna and Korup (2022) evaluated precipitation only, whereas we also understand 

soil moisture may play a role in the onset of landslide activity.  

Initial studies conducted for DSLs in Western Canada by Froese et al. (2022) and in Western 

Europe by Distefano et al. (2023) have highlighted the potential application of large 

spatiotemporal hydroclimatic data sets to support understanding of landslide activity changes. 

This gives us an additional advantage in that we can compare precipitation and soil moisture data 

(see Section 5.4.3) to higher resolution displacement patterns to understand lag time of landslide 

classes and potentially individual landslides. Exploratory work will need to be conducted as a part 

of this study design to assess the feasibility of determining these lag times. 

5.2.1.2. Representative Landslide Velocity 

Assigning a single velocity value to a DSL will typically oversimplify the true deformation field. 

Instead, it is likely more accurate to establish a distribution of velocities. A three -dimensional 

velocity field is difficult to quantify and contains large uncertainties. Most work in the published 

literature to date relies on surface velocity fields from remote sensing (e.g., Booth et al., 2020) or 

point measurements from field instrumentation (e.g., Froese et al., 2022). Further complicating 

the characterization, the components of velocities can often be one-dimensional (e.g., horizontal, 

vertical) and not representative of the true three-dimensional movement vectors.  

These sources of uncertainty and inconsistency can be partially limited by assigning velocity 

classes to landslides instead of individual velocity values. Similar to evaluating a velocity 

time-series, variations in landslide velocity class through time can also illustrate inflection points 

between periods of acceleration, deceleration, or steady state activity. This is a poorly studied 

subject, and the present study will require new methodologies to be developed. However, the 

objective here is relatively straight forward: Design a workflow to calculate surface velocity fields, 

ideally with three-dimensional movement vectors, for thousands of landslides from remote 

sensing data (i.e., lidar, InSAR). This seems to be the most reasonable objective given the 

technologies discussed in this document and the scale of the program. For example, the proposed 

lidar change detection methods (Section 5.2.3) result in three-dimensional change vectors and 

InSAR can be used to decompose deformation into three-dimensional components (e.g., Sharifi 

et al. 2023).  

Recent work by Porter (2021), Porter et al. (2022), and van Veen et al. (2022) has made progress 

in categorizing landslide activity states and landslide types for the purposes of integrating into 

models that support the estimation of the likelihood of transition between velocity classes 

(condition states) utilizing Markov-Chain techniques. To model landslide velocity probability 

distributions, the authors related the landslide velocity condition states to the Cruden and Varnes 

(1996) landslide velocity classification (Table 5-2). In the original Cruden and Varnes 

classification, the Very Slow velocity class corresponds to landslides with a velocity ranging from 

16 mm/year to 1.6 m/year. Porter (2021) and Porter et al. (2022) subdivided the Very Slow velocity 

class into Class 2a (> 16 mm/year) and 2b (>160 mm/year) to facilitate better characterization of 
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the range of potential impacts from slides moving within this velocity range. The landslide velocity 

classes in Table 5-2 have been defined in terms of total annual landslide displacement criteria 

listed in the fourth column of the table. Further details about the proposed modified landslide 

velocity classification can be found in Porter et al. (2022). 

Table 5-2. Modified landslide velocity classification after Cruden and Varnes (1996). 

Class Description 
Typical 
velocity 

Proposed annual 
displacement 

criteria (m) 

Proposed mean 
annual 

displacement (m) 

7 Extremely rapid >5 m/sec --- --- 

6 Very rapid >3 m/min --- --- 

5 Rapid >1.8 m/hr --- --- 

4+ Moderate >13 m/month >16 64 

3 Slow >1.6 m/yr >1.6 6.4 

2b Very slow >160 mm/yr >0.16 0.64 

2a Very slow >16 mm/yr >0.016 0.064 

1 Extremely slow <16 mm/yr >0 0.005 

0 Dormant 0 mm/yr 0 0 

Recent work by van Veen et al. (2022) describes the application of regional remote sensed data 

to support the development of a landslide activity inventory for large slowly moving landslides 

along the Peace River in northeastern British Columbia. In this study lidar acquired in 2006, 2015, 

2019, and 2021 were utilized to detect changes. The LCD methodology utilized by van Veen et 

al. (2022) was able to estimate gross displacements with detectable limits between 15 and 50 cm 

between acquisitions separated by at least two years. The combination of this detection limit and 

time difference was typically able to characterize displacements in the velocity Class 2b or faster. 

Van Veen et al. (2022) also utilized ALOS-2 L-Band InSAR data collected over the study area 

during snow free periods for 2020 and 2021. 

For a given landslide, the annualized displacement is estimated by normalizing the measured 

displacement (via LCD or InSAR) by the time duration between acquisitions. One of the main 

findings by van Veen et al. (2022) is while the LCD data was able to provide definition for Velocity 

Class 2b and higher, the L-Band InSAR data better supported the velocity characterization for 

activity states 1 to 2a (<160 mm/year). Furthermore, temporal resolution of LCD or InSAR based 

methods are commensurate with the observational record of lidar or SAR acquisition, 

respectively. In other words, activity state estimates derived from LCD provide an activity state 

integrated over the duration between lidar acquisitions, which are typically a few years in 

Washington State. When lidar epoch acquisition spans two or more years, for example, it can be 

quite difficult to estimate the timing of activity state changes between collection dates and 

therefore, to estimate the conditions that may have triggered the change. Because InSAR 
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provides much more closely spaced temporal observations, activity state changes from InSAR-

based methods are often much better constrained compared to LCD derived methods. 

More recently, Cignetti et al. (2023) used C-band InSAR in Italy to characterize the velocity 

patterns of 279 landslides and assess if InSAR could reliably characterize movements and then 

assign relative landslide activity classes to existing mapped DSLs. The methodology applied by 

Cignetti et al. (2023) is explored further in Section 5.2.2. 

5.2.2. Methodology 

To best link various landslide classes and clusters in terms of current activity state and velocity 

transition sensitivity, a combination of complimentary data types is considered for this current 

design. The following sections will provide an overview of the specific data available over the 

study area and how, depending on the approach to processing the data, the results can be utilized 

to provide the most complete picture of the variability in landslide activity. The following staged 

approach is recommended: 

1. Characterizing Measurable Landslide Displacement: An initial stage would be to generate 

a multi-decadal picture as to which of the existing, mapped landslides have exhibited 

measurable displacement. This work would likely be completed in phases, beginning with 

comparison of one of the earlier lidar epochs with the most recent epoch to determine if 

any topographic change can be detected; where change is observed, processing of 

additional datasets could be completed in a subsequent phase. Based on the availability 

of high-quality Lidar and L-Band InSAR data, the focus would be as follows: 

a. Lidar Change Detection: Utilize available epochs of lidar data to generate overall 

displacement rates and annualized velocities for each combination of epochs. The 

specific lidar epochs should be considered for this phase of the study: 

i. Area 1a: 2005, 2006, 2009, 2013, 2017, 2022. 

ii. Area 1b: 2003, 2004, 2005, 2009, 2011, 2013, 2014, 2022. 

iii. Area 2: 2003, 2005, 2006, 2013, 2014, 2017, 2022. 

b. InSAR Processing: While there are both C-Band and L-Band coverages available, 

the processing of the ALOS ScanSAR L-Band data should be prioritized. Should 

there be sufficient budget, the processing of the Sentinel-1 C-Band data could also 

be considered. Where available the use of multi-look (ascending and descending) 

ALOS-1 and ALOS-2 data obtained between 2004 to 2011 and 2014 to 2022, 

respectively, should be utilized to provide definition as to velocity change trends 

between the lidar epochs to further define the temporal variability of velocities over 

time. From a costing perspective the initial priority would be to process the freely 

available archives of ALOS-1 data and then consider processing the commercially 

available ALOS-2 data. Based on the discussion regarding SAR data availability 

in Section 3.1.8.3, the following data sets warrant consideration for this task: 

i. Area 1a: 

1. ALOS-1 ScanSAR: Multiple image footprints cover this area for the 

Ascending track where between 12-20 images have been obtained 
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with relatively regular spacing between early 2007 and early 2011. 

The Descending footprints only have stack depths of up to 6 images 

and are not considered suitable to utilize to build InSAR time series. 

The ALOS-1 data is freely available, however there will be 

processing costs involved with generating the InSAR time series 

results. 

2. ALOS-2 ScanSAR: The primary ALOS-2 ascending and 

descending footprints that are centered over Area 1 consist of 12 

and 14 images, respectively, collected between late 2014 and 

mid-2022. While these stacks are not considered to be deep 

enough to provide high quality InSAR time series results there are 

likely valuable insights that can be gained to support the LCD 

analysis in mapping landslide activity. In addition, deep stacks (up 

to 64 images) of lower resolution ScanSAR data may be found to 

provide valuable data at a lower cost than the ALOS-2 Fine data. 

3. Option - Sentinel-1: While the C-Band Sentinel-1 data is not 

considered to be ideal for application in vegetated terrain, the fact 

that both the ascending and descending image stacks collected 

over this area are exceptionally deep (>50 images) for the time 

period between 2017-2022 provide additional data that can support 

the L-Band InSAR and LCD. As this data is freely available only the 

processing costs require consideration. 

ii. Areas 1b and 2: 

1. ALOS-1 ScanSAR: The ascending ALOS-1 coverages are spatially 

extensive over this area with stack depths ranging between 

12-15 images. While these stacks are not considered to be mature 

the fact that they are freely available makes them worthy of 

acquiring and processing. The spatial coverages of the descending 

footprints and the low number of images remote the processing of 

these data from consideration. 

2. ALOS-2 ScanSAR: There are both complete coverages of 

ascending and descending footprints over the study area with stack 

depths ranging between 12 and 15 images respectively. As there is 

a cost to acquire and process these data further work on feasibility 

(as discussed in Section 5.2.4.2 should be conducted prior to 

committing to purchase this data. As discussed for Area 1a, the use 

of the deep stacks (up to 64 images) of lower resolution ScanSAR 

data should also be considered. 

3. Option - Sentinel-1: As with Area 1a, there are very mature 

(>50 images) stacks of C-Band Sentinel-1 images available in both 

the ascending and descending look directions. While there are 

limitations in the ability of the C-Band SAR data to penetrate 
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vegetation, the freely available nature of the data and stack maturity 

warrant consideration to support characterization of activity 

between 2017 and 2022. 

2. Defining Velocity Trends: Once the landslides with measurable displacement have been 

identified, both the LCD results and L-Band InSAR can be utilized at the landslide specific 

scale to further delineate landslide displacement for DSLs in terms of the following 

groupings: 

a. No measurable displacement: Either InSAR data cannot be utilized based on 

geometrical considerations or displacements are below measurement thresholds 

for InSAR or LCD. 

b. Measurable displacement with no trend data: InSAR cannot be utilized based on 

geometrical considerations but total displacement over a time can be characterized 

by LCD.  

c. Measurable displacement trend below a defined threshold: InSAR expected to be 

able to reliably measure displacement based on geometrical considerations, but 

rates are below detectable limits for InSAR and LCD. 

d. Consistent and measurable displacement trend: InSAR measured displacements 

are above thresholds (clear signal) and are linear. 

e. Seasonal and measurable displacement trend: InSAR measured displacements 

above thresholds with consistent seasonal variability. 

f. Highly variable and measurable displacement trend (externally drivers): InSAR 

measured displacements with trends observed above the seasonal background. 

The above characterization will support the further delineation of landslide velocity condition 

states in relation to specific landslide types (Section 5.4.4.3). 

5.2.3. Lidar Change Detection (LCD) 

5.2.3.1. Background 

As multiple acquisitions (epochs) of lidar are completed through time over the same area, the 

ability to identify changes between datasets can add yet more detail to the timing and extent of 

landslide activity, in some cases facilitating the identification of precursor movements to larger 

landslide events (e.g., Lato et al., 2019) or of landslides yet to be identified through typical single 

vintage lidar analysis.  

The quality of lidar differencing results is highly dependent on the quality and resolution of the 

input datasets. In the change detection analysis, the dataset collected first (earlier in time) is 

referred to as the ‘baseline’ dataset, and the more recent dataset is referred to as the ‘active’ 

dataset. Data resolution is reported as average points per square meter in each dataset. Factors 

that contribute most significantly to variable point resolution across a scan region include the 

density of vegetation and slope angle. Areas with a greater density of vegetation typically have a 

lower density of bare-earth points than non-vegetated areas. Steeper slopes will typically have a 

lower point density than flat surfaces.  
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5.2.3.2. Methodology 

There are several methods for differencing lidar datasets that range in complexity and 

computational efficiency. Methodology can greatly influence the amount of noise and the quality 

of the results. Methods that describe 3-dimensional movement vectors should be employed for 

this study. Three common methods are described below: 

• The simplest method for lidar differencing is computing the difference in a pair of DEM, 

often referred to as a DEM of Difference (DoD). This method requires two homologous 

DEMs. Most modern DEMs are interpolated surface representations of corresponding lidar 

point clouds. The first source of error with this method is the interpolation that occurs when 

reducing a complex point cloud to a regularly spaced DEM. Additional error is introduced 

because a DoD represents vertical offset between two DEMs, even when surface change 

is not only in the vertical plane. 

• Surface based methods compute 3D distances between two surfaces or between a 

surface and a point cloud can increase accuracy and decrease noise in the lidar 

comparison process, but this typically comes at the expense of increased computational 

demand. Some common methods include: 

○ Cloud-to-mesh distance (Cignoni et al., 1998). 

○ Mesh-to-mesh distance (Aspert et al., 2002). 

• Point based methods increase accuracy further, decreasing noise and increasing the 

quality of the result. 3D point-based lidar differencing calculates the difference between 

two bare earth point cloud datasets along vectors representing the local normal of each 

individual point in the dataset (multiscale model-to-model cloud comparison, M3C2, Lague 

et al., 2013), or the shortest Euclidean distance between two datasets (cloud-to-cloud, 

Girardeau-Montaut et al., 2005). These methods are computationally expensive and have 

traditionally required datasets to be subdivided into smaller zones (typically less than 

30 million points per zone) for processing. This method produces enhanced results over 

DEM differencing or surface comparisons as the results represent a 3D change based on 

the full resolution of the point-cloud data. 

For highest accuracy of point-based comparisons, point clouds are typically co-registered via the 

iterative closest point alignment algorithm (ICP; Besl & McKay, 1992) before comparison. This 

reduces bias by minimizing systematic differences between the two datasets due to ground 

control and georeferencing errors at the time of data acquisition. 

Performing the ICP alignment and change detection is a very computationally expensive 

workflow. Most lidar change analysis today is conducted sequentially on computer processing 

units (CPU). An example of this is using Cloud Compare on a personal computer to perform the 

ICP alignment and then to implement the M3C2 algorithm. For small geographic extents, this 

method works well. Scaling the workflow to broad geographic regions such as the present study 

area (see Section 5.1), however, can quickly reach the limit of modern CPU architecture. Because 

the described workflow involves multiple independent calculations (e.g., calculating normal) and 

spatial queries (e.g., which points correspond between the two point clouds), moving the workflow 

to a parallel-optimized architecture decreases processing time by three orders of magnitude 
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(Weidner et al., 2022). Recent work by BGC has developed an approach to parallelize these 

computations on a graphics processing unit (GPU; Lato & Ferrier, 2022), increasing both 

efficiency and quality of results.  

5.2.3.3. Interpretation and Limitations 

Positive model differences can be interpreted as gain of material (e.g., material accumulation, 

bulging), and negative model differences can be interpreted as a loss of material (e.g., material 

removal, erosion). Figure 5-3 illustrates the relative loss and accumulation of material through a 

simplified active landslide mass. Figure 5-4 illustrates a simplified example of riverbank erosion 

and how this process is reflected in lidar change detection results.  

There are several limitations with lidar change detection. One limitation is the inability to detect 

translational movement where the ground and slip surfaces are parallel; in this instance, the 

ground surface appears unchanged between the two datasets (Figure 5-3). Because the lidar 

data represents the surface topography at each date, the analysis reflects surface changes only 

and cannot necessarily be extrapolated to interpret slide movements at depth.  

Positive changes reflected in lidar change detection analysis represent the amount of change that 

occurred along the shortest distance vector between the two datasets, and not necessarily the 

maximum magnitude of the deformation (Figure 5-3 inset). For example, a landslide with a slope 

angle of 35° showing a measured shortest distance vector of 0.5 m in the zone of positive 

topographic change would imply an equivalent true horizontal change of 0.90 m. This limits our 

ability to detect deformation on some landslides using lidar change detection analysis. For areas 

of significant riverbank erosion, the shortest distance change measurements are often an 

underestimate of the total horizontal magnitude of erosion.  

Change detection results are limited by the temporal and spatial resolution of the datasets and 

the relative accuracy of the lidar points between each dataset (also referred to as data precision, 

or local accuracy).  

• Temporal Limitations: Because LCD results indicate change between the date of 

acquisition for each point cloud, the magnitude of results must be considered in concert 

with the time range between epochs and with the landslide process. A common method 

for assessing rate of change with LCD data is to normalize the magnitude of change by 

the number of years between acquisitions. This provides an annualized velocity estimate 

(e.g., mm/yr). In some cases, such as large, deep-seated landslides, this may be a fair 

approximation of the actual rates of movement of the landslide. In other cases, such as a 

rapidly moving debris flow, this annualized estimate may underestimate the actual velocity 

of the landslide when moving. This limitation in Washington, where most lidar acquisitions 

are separated by at least one year, will preclude this method from identifying seasonal 

velocity changes.  

• Spatial Limitations: The assessment of topographic change between lidar datasets of 

different point density can result in spurious change. For example, in regions of steep 

topography, ridges and valleys may not be well defined in the lower resolution lidar 

datasets but are mapped in the higher resolution datasets. The difference in data 
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resolution, and resultant interpretation of the topology between datasets, is mapped as 

‘change’ by the algorithms used. These regions are considered erroneous. Erroneous 

results may also occur where data quality is reduced due to heavy vegetation on slopes. 

Because landslides are not programmatically identified based on LCD results, these 

erroneous results can typically be identified during landslide identification by trained 

analysts. Noise derived from heavy and dense vegetation typically appears as an irregular 

ground movement signature and does not match the expected ground movement 

signature related to landslide activity.  

 
Figure 5-3. Simplified schematic diagram of translational landslide showing positive change in the 

direction of movement. The amount of change along the shortest distance vector can 
be used to calculate the true horizontal change. 

 
Figure 5-4. Simplified schematic diagram of riverbank erosion (negative change) and deposition of 

material. 

5.2.3.4. LCD-Based DSL Velocity Estimates 

The utility of LCD should be evaluated across the study area with all available vintages of 

Washington State lidar (Figure 5-5). LCD should be performed at least where multiple acquisitions 

of lidar intersect mapped landslide polygons. LCD results will be used to provide annualized 

velocity estimates for landslide polygons (Section 3.1.3), or potentially for areas of landslide 

polygons where differential movement is identified. Velocity classes will be designated according 
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to Table 5-2. Landslide process (e.g., slide, flow) should not inform the annualized velocity 

estimates, however, the landslide class for a given landslide polygon (see Section 5.2.5) can be 

used in conjunction with velocity estimates for further analysis.  

For this study design, BGC conducted a proof-of-concept lidar change detection analysis on data 

from 2006, 2013, and 2017 along the Nooksack River just south of Whatcom County. The intent 

of the proof-of-concept was to show an example of results obtained from processing Washington 

State lidar with the BGC patented GPU-based methodology (Lato & Ferrier, 2022), including data 

from an earlier epoch (i.e., 2006). Results illustrate the ability of these methods to detect 

landslides of different process types and geomorphology. Results were generally good with a limit 

of detection of approximately 1-3 feet (0.3 - 0.9 m) and are only expected to increase in precision 

with newer epochs of lidar. 

In mid-2023, BGC expanded this proof of concept to a contracted project for the DNR, completing 

approximately 11,000 km2 of lidar change detection between four epochs of lidar (2006, 2013, 

2014, 2017; BGC, 2023). The work was aimed at identifying landslides and providing situational 

awareness for land managers. 

Although BGC is currently advancing similar work in northeastern British Columbia and 

preliminary results are encouraging, to date, we are not aware of projects that have successfully 

demonstrated using LCD to programmatically characterize landslide velocity for thousands of 

landslides. We expect the present study will have to work to develop a new methodology to 

consistently and efficiently perform this. Our recommended approach would be to exploit statistics 

of LCD distributions inside each landslide polygon to estimate the rate (absolute or relative) of 

movement. In most cases, even in lidar -rich regions such as western Washington, LCD will only 

be able to estimate landslide velocity in several change detection periods. This will likely miss 

considerable nuance in developing a full velocity time series for each landslide but should identify 

landslides that are active versus inactive, and this understanding alone should help with sensitivity 

estimates (e.g., landslides that are already moving are likely more sensitive to further 

disturbance). For further consideration of LCD derived velocity time series, see Section 5.4.4.3.  
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Figure 5-5. Proof-of-concept of lidar change detection with Washington lidar along the Nooksack 

River, Skagit County (Data source: Washington Lidar Portal). Dashed black lines 
indicate landslides mapped as a part of the Forest Practices landslide geodatabase 
(Section 3.1.2). 

It is likely that an approach based on a non-parallelized (i.e., sequential) computational method 

will be greatly hindered with respect to processing time and accuracy. For this reason, we 

recommend a GPU-based approach or similar and significant consideration be given to the ability 

of a proposed method to perform large-scale LCD. Requesting a proof-of-concept example may 

be prudent during a request for proposal period to assess for efficiency and accuracy of any 

proposed approach. 

5.2.4. Interferometric Synthetic Aperture Radar (InSAR) 

5.2.4.1. Applications, Considerations, and Limitations 

Satellite InSAR is a technique by which radar satellite images can be used to track ground 

displacements with millimeter level precision. When satellite radar images are collected, 

electromagnetic microwaves are transmitted from the sensor and the backscattered waves are 

returned to the satellite. By collecting a stack of radar images over time, the difference in the 

phase of the returned electromagnetic wave (Figure 5-6) at each data point (scatterer) can be 
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used to calculate surface displacements (Pepe & Calo, 2017). The InSAR technique can only 

resolve movement magnitudes smaller than half the radar wavelength between two repeat images 

and between adjacent scatterers (Baek et al., 2020; Figure 5-6). The spatial data resolution, 

wavelength, and the time period between radar image acquisitions can vary depending on the 

satellite used. The precision of the displacement measurements depends on the number of 

processed images, (typically 15 images or more) and the temporal continuity of acquisitions.  

 
Figure 5-6. Radar phase difference measured between consecutive radar images. 

Although InSAR is a mature technology used to monitor displacement, the suitability for obtaining 

reliable displacement data for DSLs in Washington State will need to consider the following: 

• Geometry: The operational SAR sensors are in polar orbit, following a path between the 

North and South poles (also called the satellite heading or azimuth) (Figure 5-7a and b). 

The sensors are designed to look either to the left, or to the right with some satellites 

having the ability to switch between left and right-looking configurations. The SAR sensor 

transmits the signal, at an incidence angle, measured from vertical, with the surface 

(Figure 5-8c and d). The vector between the satellite and the imaged surface is known as 

the satellite Line-of-Sight (LoS). When using InSAR for deformation measurement, it is 

important to note that only the component of the displacement vector in the LoS of the 

satellite can be measured (Figure 5-9). The ability to detect displacement is therefore 

dependent on the orientation of the slope of interest with respect to the satellite LoS. Slope 

movements orientated perpendicular to the LoS direction will not be measurable by 

InSAR, and therefore the satellite imaging geometry needs careful consideration 

depending on the orientation of the slope of interest. The LoS geometry also makes the 

interpretation of the movement direction ambiguous. For example, in an ascending orbit 

with right-looking sensor, positive LoS values are consistent with movement 

predominantly upward or towards the west, and negative values are consistent with 

movement predominantly downward or towards the east (Figure 5-8c). For a descending 

orbit, positive values are consistent with movement predominantly upward or towards the 

east, and negative values are consistent with movement predominantly downward or 

towards the west (Figure 5-8d). By combining ascending and descending acquisitions, the 

vertical and east-west components of the real displacement vector can be resolved. The 

more detailed processing and screening methodology described in Section 5.2.4.2 

provides a process for determining which geometries of landslides can be expected to 

have InSAR displacement points that are able to represent mean velocities to support 

initial stages of classification. Considerations for utilizing LoS measurements to more 
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reliably characterize velocities of DSLs in terms of hypothesized kinematics are discussed 

in more detail in Section 5.2.1.2. 

• Vegetative Cover: In vegetated regions, longer wavelength L-band SAR data is 

recommended since it provides an improved ability to see through vegetation resulting in 

higher precision measurements. However, commercial L-band data archives are currently 

only available from two platforms (ALOS-1 and ALOS-2) which means that data coverage 

is sparse and not necessarily available for locations and timeframes of interest for 

landslide activity characterization. Although Sentinel-1 and Radarsat Constellation 

Mission (RCM) SAR data can also be used for InSAR measurements, the data are 

captured at shorter C-band wavelengths. While the C-band data have been used 

extensively for monitoring surface deformation using InSAR timeseries approaches, 

successful use-cases are generally confined to areas characterized by low vegetation 

densities. More recently, L-Band data from both ALOS-2 and the Argentine SAOCOM 

satellite have been utilized to successfully detect landslides and generate time series for 

DSLs in mountainous and vegetated terrain along the Columbia River in British Columbia. 

While these results are not yet reported in the peer-reviewed literature the findings have 

been reported publicly by BC Hydro (BC Hydro, 2021) and presented to the international 

landslide community (Mitchell et al., 2023). As part of the characterization of a specific 

large DSL along the Columbia River, called the St. Cyr Rockslide, the authors have 

reviewed the relative ability of C-Band and both fi and coarse L-Band data to provide both 

spatial and temporal coverage of displacement data but have also coupled this data with 

lidar-derived surface morphology and structural measurements to support development of 

a hypothesized kinematic model this DSL. Figure 5-7 shows a comparison of the spatial 

data coverages obtained from Sentinel-1, ALOS-2 Fine and ALOS-2 ScanSAR to 

demonstrate the potential spatial coverages that could be obtained utilizing the existing 

data archives described in Section 3.1.8.2. Note that for the proposed study design, the 

use of ALOS-2 ScanSAR is prescribed as the primary data set and has stack depths of 

over 60 scenes of data. In comparison, the ALOS-2 ScanSAR results show on the far right 

image below comprise of a series of less than 15 scenes, therefore the spatial density of 

displacement points would be expected to be significantly improved when compared to 

the results shown below. 

   
Figure 5-7. Spatial displacement data coverage for a large rock slide along the Columbia River in 

British Columbia for (left to right) Sentinel-1 C-Band, ALOS-2 Fine L-Band, ALOS-2 
ScanSAR L-Band data. 
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• Changing Ground Conditions (Coherence Loss): InSAR can measure displacement only 

in areas on the ground that have the same surface conditions between all image 

acquisitions. Such areas are said to be ‘coherent’. InSAR analysis will result in noise 

and/or “no data” where the ground surface is disturbed between two acquisitions 

(e.g., construction activities, surface material raveling, agricultural activities, snow cover, 

etc.). It is important to note that the presence of snow introduces signal noise and limits 

the ability to extract InSAR measurements. Therefore, annual data acquisitions are usually 

limited to periods that were deemed snow free which implies that the monitoring of slope 

movement in periods of snow cover will not be possible. In addition, land use change 

products (discussed in Section 5.4.2.8) could also be utilized to determine where ground 

conditions have changed significantly between SAR acquisitions in order to assess 

potential impacts on coherence and over which periods displacement could more reliably 

be characterized. 

• Rate of Displacement: In addition to the sensitivity to the presence of vegetation, the 

wavelength of the sensor also dictates the measurement precision and maximum and 

deformation rates measurable by InSAR. Using SAR data, line-of-sight surface 

movements between successive image acquisitions is measured as a fraction of the 

wavelength of the SAR signal. The accuracy of this phase measurement is dependent on 

the signal-to-noise ratio of the sensor, which tends to be higher for shorter wavelengths 

(Hanssen, 2003). Therefore, if no external sources of noise are present, shorter 

wavelength data are more sensitive to small scale movements. The wavelength of the 

sensor also informs a fundamental condition for radar interferometry, which is the 

maximum detectable deformation gradient. If deformation at the surface induces a phase 

difference greater than half the wavelength of the sensor, the deformation cannot be 

measured unambiguously. Any surface movement between successive image 

acquisitions that exceeds this maximum will result in phase noise and the movement will 

not be measurable by InSAR. As only a half of a wavelength of change can be quantified 

between successive scenes, the choice of wavelength is an important consideration 

depending on the anticipated deformation rates. The theoretical maximum measurable 

deformation between successive scenes equates to ~1.5 cm, ~2.8 cm and ~11.8 cm for 

X-band, C-band and L-band sensors respectively. Considering the best possible revisit 

intervals of SAR satellites, the maximum deformation rates measurable by operating 

sensors are 25.7, 42.5, 127, and 87 cm/year for TerraSAR-X, Sentinel-1, RCM, and 

ALOS-2 respectively (after (Crosetto et al., 2016)). This makes TerraSAR-X and 

Sentinel-1 only suitable for measuring the very slow to extremely slow landslide classes 

identified in Cruden and Varnes (1996). In contrast, the (theoretical) higher revisit 

frequency provided by RCM and the longer wavelength provided by ALOS-2 makes it 

suitable for the monitoring of slow to very slow velocity classes. As part of the study design, 

the use of ALOS-2 ScanSAR data is expected to provide the highest spatial density of 

displacement data points and be able to characterize slope displacements with rates up 

to those as reported above. For displacement rates above the maximum detectable limit 

it is expected that the LCD data will support understanding where these more active areas 

are and where future more detailed phase unwrapping may be required. For displacement 
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rates below the detectable limits for L-Band, consideration for processing of the Sentinel-1 

data stacks should also be considered. While the spatial coverage of data will not be as 

dense as for the L-Band data, it may provide more information on the landslides moving 

in the range of millimeters to tens of millimeters per year. 

• Steep Slope Distortions: Another consideration for regional InSAR monitoring programs 

is the potential impact of geometric distortion of SAR data in steep mountainous terrains 

(Dai et al. 2022). Due to the side-looking geometry of the SAR sensors, steep slopes 

facing away from the radar look direction may result in a radar shadow if the slope angle 

is greater than 90° - the incidence angle of the data. These slopes will not be measurable 

with data captured in that geometry and data from a different look-direction will be needed. 

Similarly, for steep slopes facing toward the radar, if the incidence angle of the signal is 

smaller than the slope angle, the signal returns from the slope bottom and the top is 

reversed, resulting in an effect known as layover (e.g., Dai et al. 2022). Slope movements 

in these situations will also not be measurable with InSAR data. The areas affected by 

geometric distortions for a particular SAR acquisition geometry can be modelled using an 

external digital elevation model. These geometric masks should be provided with any 

InSAR results as it will be important to understand where no data was available compared 

to where no movement was detectable.  

 
Figure 5-8. Satellite acquisition geometries and sign of the measured displacement relative to the 

satellite for the ascending orbit (“a” and “c”) and descending orbit (“b” and “d”). 
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Figure 5-9. Simplified schematic diagram illustrating the line-of-sight measurement of the true 

displacement.  

5.2.4.2. InSAR Processing and Slope Activity Classification 

While it is critical that the data coverages are collected with consideration of the above, the 

approach to the interferometric processing of the data will also be key as there are two primary 

requirements to support mapping of ground displacements: 

• Maximizing the spatial density ground displacement data over the chosen study area 

• Providing regularly spaced and reliable time series data to discern multi-year, seasonal 

and event driven displacements for the maximum number of landslides possible. 

When considering InSAR as a tool for the extraction of the ground movement history of an area 

of interest, the operational limitations of InSAR data and data acquisition implications need to be 

considered. These include the following and are discussed in more detail in Section 5.2.4:  

1. The selection of sensor wavelength, which has a bearing on the maximum measurable 

displacement and the influence of vegetation. 

2. The consideration of the satellite image acquisition geometry and look direction in relation 

to the anticipated surface displacement orientation. 

3. The satellite revisit frequency and archive data availability which has a bearing on 

applicability for historical assessments and/or ongoing (future) monitoring. 

4. Geometric distortions in steep terrain preventing InSAR measurement.  

The Study Design proposes to utilize a staged approach to characterize spatial and temporal 

velocity patterns following a methodology recently applied to DSLs in Northern Italy and outlined 

by Cignetti et al. (2023). This technique uses a combination of InSAR processing techniques, 

existing mapped landslides, and topographic data to provide initial broad screening of activity. To 

promote statistically robust characterizations, they used a multi-criteria exclusion procedure to 

evaluate for 1) the number and distribution of persistent scatterers, 2) number of voids, and 3) 

skewness of the first-order nearest neighbor distance prior to assigning a velocity characterization 
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to a given DSL polygon. The results categorized landslide velocities into inactive, low, medium or 

high velocity (less than 2.5 mm/yr, 2.5-5 mm/yr, 5-10 mm/yr, and greater than 10 mm/yr, 

respectively). Pattern of movement was categorized into bimodal, heterogeneous, or 

homogeneous. The pattern designation was a subjective measure attributed by the authors. 

Figure 5-9 provides an overview of the process flow for the methodology proposed by Cignetti et 

al. (2023). 
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Figure 5-10. Flowchart for InSAR Activity Classification modified after Cignetti et al. (2023). 
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The following section more specifically describes the Cignetti et al. (2023) approach, as it could 

be applied to the regional DSL pilot study. The Implementation Team could consider differing 

approaches to processing that achieve similar objectives but the Cignetti et al. (2023) approach 

is provided for initial guidance: 

• Two Step Advanced-DInSAR Processing: The objective of this phase is to a) utilize the 

entire SAR time series to characterize broad displacements over the period of record and 

b) define where higher quality Persistent Scatterers (PS) are present that can adequately 

describe spatiotemporal displacement trends. The approach demonstrated by Cignetti et 

al. (2023) involves first undertaking a broad Small Baseline Subset processing 

methodology on the data to estimate atmospheric and small-scale non-linear deformation 

and then apply a full resolution analysis utilizing Differential SAR Tomography to detect 

and estimate topography and residual deformation of the PS. The results of these two 

different processing techniques are combined to provide large scale deformation 

measurements. Specific considerations related to processing accuracy and phase 

unwrapping are described in more detail by Cignetti et al. (2023).  

• Post-Processing of A-DInSAR Derived Displacement Data: In some cases, the LoS InSAR 

displacement data may not be suitable for use in characterizing landslide velocities based 

on poor alignment of the SAR imaging geometry with the displacement vector of the DSL 

(Section 5.2.4.1). To understand where this is the case, post processing is undertaken to 

calculate which component of movement can (or cannot) be characterized on a slope. 

Results from this work should be used to remove PS data that are unlikely to accurately 

characterize deformation on a slope. 

• Definition of Velocities Along Slope: For DSLs that contain suitable geometries for 

evaluation, available topographic data is utilized to support projection of the LoS InSAR 

data onto the fall line of the slope. Sharifi et al. (2023) provide a review of various 

methodologies and associated limitations related to the projection of InSAR LoS data that 

should be reviewed and considered for this process. Processing both L-Band and C-Band 

SAR data from different look geometries may improve along-slope velocity projections. 

Although the projection of a mean velocity along slope may seem an over-simplification, 

it will allow for the relative understanding of landslide activity across various landslide 

classes and clusters. 

• Multi-Criteria Exclusion Procedure: For the PS that are expected to be able to reliably 

support characterization of slope activity, Cignetti et al. (2023) propose evaluating the 

number of PS points present in each DSL, the distribution of the PS points within the DSL, 

and the clustering of PS points. The objective of this procedure is to determine whether 

an activity state can accurately be assigned to a DSL. For example, a) few PS points or 

b) poor distribution of PS points on a DSL would preclude accurate activity state 

characterization. 

• Point Statistical Analysis: Following application of the multi-criteria exclusion procedure, 

the mean along-slope projected velocities are used to classify each DSL as Predominantly 

Active (PA) and Predominantly Inactive (PI). This is achieved by utilizing a GIS-based 

Point Statistics tool and comparing groupings of neighboring PS points to review 

deviations from mean velocities within a DSL. DSLs with deviations of -2.5 mm to 
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+2 mm/year were classified as PI and those outside of this range were classified as PA. 

While this section is focused on integration of the InSAR data, this stage of the assessment 

would also benefit from the integration of the regional LCD data. For DSLs where the LCD 

was able to characterize displacement, these DSLs would also be classified as PA. 

• Spatial Statistical Analysis: DSLs that have been defined as PA are then subjected to a 

GIS-based “Cluster and Outlier” analysis to start identifying statistically significant spatial 

clustering of DSLs with similar activity states. 

At the end of this process, the following products could support next levels of the assessment: 

• Map of DSLs with mean velocities projected along the slope fall line. DSLs where 

InSAR is not suitable for characterizing velocities will also be highlighted so there is 

not an assumption that these DSLs are moving slowly, but rather that there is not data 

available. 

• Map of all DSLs showing the number of threshold screening criteria defined in the 

multi-criteria exclusion analysis that have been met. This will support definition of a 

relative quality parameter for each DSL in terms of how representative the InSAR data 

are of the overall velocity trends for a DSL. 

• Map of DSLs classified based on their state of activity (PA or PI) with an indication of 

variability in temporal velocity trends for PA-DSLs.  

These outputs will support subsequent phases of the analyses as follows: 

• The magnitude and variability of velocities obtained from the PA-DSLs will be coupled 

with the slope classification (Section 5.3.1) to support the definition of clusters of DSLs 

with similar velocity classes. 

• The PA-DSLs will be used to identify DSLs where there are time series data that can 

be considered for integration into a displacement database to support initial 

exploration of trends, as discussed in Section 5.4.4.3. 

5.2.4.3. Application of InSAR Velocity data to Higher Sensitivity DSLs 

Following the above process, DSLs that have been defined as having adequate PS coverage and 

that have been classified as having varying displacement patterns with moderate to high variability 

will be evaluated in more detail. Each DSL will require careful consideration to ensure that the 

LoS measurement is coupled with the expected ground deformations to accurately describe the 

velocities. Important considerations will be as follows: 

• What are the hypothesized kinematics of the DSL at this location? 

• What are the hypothesized or known vectors of displacement for the DSL based on either 

site-specific monitoring or based on interpretation of surface morphology? 

• How is the satellite LoS aligned in relation to the hypothesized displacements across the 

DSL? 

• Is there shallower deformation superimposed on the DSL that would mask the movements 

of the DSL? In this case, are the InSAR LoS measurements reflecting deformation of the 

shallower movement, rather than the DSL? This can be resolved by comparing the 

deformation results with landslide inventory and lidar elevation data. For example, if 
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InSAR-derived displacements are identified only inside a mapped shallow landslide 

feature that occurs within a larger DSL, then it would be assumed that the shallow 

landslide is moving even though the larger DSL is not. 

• If no InSAR points are observed on the DSL but the surface morphology represents an 

active feature, are displacements too fast for the InSAR? Confirm this by reviewing LCD 

data. 

• If only one look direction of SAR data is available, is it possible to resolve the 1D LoS 

InSAR data onto the hypothesized DSL displacement vector to obtain a representative 

velocity condition date value? 

• If there is 2D InSAR data available, do the horizontal (East/West) and vertical components 

of the displacement support the hypothesized kinematic model for the DSL? Can these 

data support a more refined projection of the InSAR data onto the actual DSL 

displacement vector? 

These considerations will need to be made at each of the moderate to high variability DSL 

polygons to ensure that the velocity data obtained from the InSAR is projected appropriately to 

provide a realistic representation of the velocity along the true displacement vector for the DSL. 

It will also be imperative that the LCD data is utilized in conjunction with the InSAR results to 

support the understanding of the kinematic model and to ensure that the displacement results 

obtained from the two different technologies paint a common picture of the velocity trends at each 

site. As these technologies are complimentary, utilizing the results of each to support validation 

of the other will be an important component of this program. 

5.2.5. Pixel Tracking 

For DSLs where a review of displacement data obtained from LCD and InSAR identify phase 

jumps that don’t allow for characterization of higher velocity displacements, pixel tracking could 

be considered to quantify these displacements. Pixel tracking can be applied to SAR imagery, 

optical imagery (e.g., aerial, satellite), and lidar based digital elevation models to identify sub-pixel 

offsets between subsequent images of the same ground area. For the Pilot Study, a key 

consideration will be whether there are existing archived data sources available with spatial and 

temporal coverage suitable for application of pixel tracking to DSLs in the study areas. 

Pixel Tracking has been applied to glacier motion studies for decades 

(e.g., Bindschadler & Scambos, 1991; Strozzi et al., 2002; Berthier et al., 2005). Image 

co-registration and correlation methods have provided a means for estimating co-seismic 

horizontal deformation from imagery for nearly the same period (e.g., Van Puymbroeck et al., 

2000; Leprince et al., 2007). SAR-based pixel tracking has been used to produce long duration 

(e.g., years) time series estimates for landslide displacements, even in densely vegetated terrain 

(e.g., Singleton et al., 2014; Raucoules et al., 2020). Mazzanti et al. (2020) demonstrates the 

utility of pixel tracking from satellite imagery to provide a nearly year-long, short interval (days to 

weeks) displacement time series at the Rattlesnake Hills landslide in Yakima, WA. Booth et al. 

(2020) provides a framework for applying phase correlation techniques to subsequent DEMs for 

identifying predominantly horizontal landslide deformations. These technologies are proven in the 
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literature at estimating ground deformation and their application to landslides is increasing as the 

spatiotemporal resolution of available imagery and computational capabilities increase. 

In both academia and industry, pixel tracking is not utilized as intensively as LCD or InSAR 

methods for landslide displacement studies and the methodologies are not immediately 

operational to the same scale of LCD or InSAR. However, methods for extracting glacier velocities 

at scale do exist (e.g., Dehecq et al., 2015), giving promise that these methods could be refactored 

and applied specifically for landslide displacement estimates. A key consideration is the size of 

the features of interest, where DSLs in western Washington tend to be smaller than most studied 

glaciers.  

Methods for producing pixel tracking based displacement estimates vary according to the base 

dataset, however, all styles of pixel tracking fundamentally rely on image correlation: 

• SAR based pixel tracking is based on correlation of coherence or intensity images 

• Optical imagery-based pixel tracking is based on phase correlation between Fourier 

transformed images 

• DEM based pixel tracking is based on phase correlation between subsequent lidar derived 

DEMs. 

Developing a methodology to programmatically characterize many (e.g., thousands) landslides in 

terms of 1D or 3D velocity components would be a significant contribution to landslide science. 

Notably, the accomplishment of this task could complement LCD and InSAR limitations. Following 

are specific examples of how a robust pixel tracking program could compliment these other 

change detection techniques: 

• Accurately characterizing horizontal deformation from pixel tracking could complement the 

stated limitation of LCD in estimating pure translational movements (Section 5.2.3.3). This 

is especially notable in the current study given the rich lidar datasets available across 

western Washington. 

• Producing long duration, short interval displacement time series from SAR or optical 

imagery could complement the stated limitation of LCD in identifying seasonal or 

sub-seasonal velocity signals (Section 5.2.3.3).  

• Utilizing optical imagery-based pixel tracking could complement the stated limitation of 

InSAR analysis in identifying landslide displacements in landslides that are aligned roughly 

north or south, and orthogonal to look-directions of SAR sensors (Section 5.2.4). 

There are several relevant references that should be considered in developing this framework. A 

few examples are listed below with a short summary of their relevant workflows. 

• SAR based: Raucoules et al. (2020) provide a framework for utilizing ALOS-2 SAR 

imagery in a heavily vegetated environment for tracking deformation of a large landslide 

moving at approximately 1m/yr  

• Optical based: Mazzanti et al. (2020) provide a workflow for evaluating landslide 

displacement from high spatiotemporal resolution optical imagery in eastern Washington 

(more arid and less vegetated than the present study site) 

• DEM based: Booth et al. (2020) provide a framework for identifying low-magnitude and 

predominantly horizontal deformation estimates from subsequent lidar-derived DEMs. 
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Once completed, we expect the DSL velocity characterization workflows from pixel tracking based 

methods would be quite similar to the workflow summary from Cignetti et al. (2023; 

Section 5.2.4.2 and Figure 5-9). This follows that the results will include a series of points on a 

landslide have been characterized in terms of displacement through time. Similar consideration 

should be given to the quantity and distribution of points in terms of how to classify the DSL.  

5.3. Development of DSL Class Designations 

The sensitivity of a given landslide to external perturbations (e.g., slope or surface water flow 

modifications) is fraught with nuance and likely only resolvable by a site-specific detailed 

subsurface study. Therefore, the present study aims to characterize populations of landslides into 

Classes, which should maintain homogenous characteristics such as mapped lithology, area, 

volume, failure depth, geomorphic position, and recharge area. Clusters of landslides should be 

identified as subsets of classes. Clusters should be proximal in the landscape and would be 

expected to respond to external perturbations similarly. This study aims to develop estimates of 

sensitivity of both DSL classes and clusters.  

5.3.1. Landslide Classes 

Classes of landslides should be derived through data analysis and expert interpretation. Classes 

may be spatially discontinuous and present across larger regions. So long as the data support 

the definitions, there is no upper limit to how many classes could be defined. However, we expect 

the number of defensible landslide classes to likely be around ten and would primarily be defined 

based on the nature of the originating parent material, the degree of structural modification, the 

topographic position on the slope, the exposure to active processes (such as toe erosion), slope 

aspect and distributions of systematically mapped landslides. The statistical distribution of 

variables from existing landslide inventories will be helpful in identifying classes. With appropriate 

data management and organization, it may be feasible to apply machine learning approaches to 

aid in defining landslide classes (e.g., the k-means clustering algorithm; Likas et al., 2003).  

In Figure 5-9, we show the distribution of landslide area, estimated failure depth, and ground slope 

as reported by the WGS for over 9,000 landslides in western Washington. The results are 

displayed as a function of the geological class of the source zone material for each landslide 

(based on data from Section 3.1.2 and 3.1.3). These results illustrate that landslides initiating in 

alluvial and glacial deposits tend to be smaller in area with shallower failure depths than those 

landslides initiating in surficial bedrock or lightly weathered bedrock materials. This is consistent 

with the expected lower shear strength and generally low-lying topographic position (i.e., in 

valleys) of alluvial and glacial materials. The data do not, however, suggest that slope in the upper 

portion of the landslide is influenced by source zone material type. Because shallower and smaller 

landslides respond more quickly to external perturbations (Miller, 2016, 2017), it may follow that 

landslides initiating in alluvial or glacial deposits may similarly respond more quickly to external 

perturbations compared to landslides initiating in bedrock materials. Landslides initiating in alluvial 

and glacial materials, therefore, might be considered more sensitive, though further work (such 

as field investigations or local scale monitoring) would be required to support this claim and herein, 
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we show this only as an example of a data interrogation approach that could be considered when 

conducting the study. Further landslide characteristics that could be considered, along with their 

rationale, are discussed in Section 5.4.2. 

 
Figure 5-11. Boxplots illustrate area, estimated failure depth, and slope for landslides in five 

different geological classes. Each box extends vertically from the first quartile to the 
third quartile, with a line at the median. One takeaway from this figure is that landslides 
initiating in alluvium and glacial deposits are typically smaller in size and shallower 
than those initiating in more competent bedrock materials. 

For one example, Porter et al., (2022) subdivided deep-seated landslide types typically 

encountered in glacial sediments and flat-lying shale and mudstone bedrock into five class 

designations (Classes A-E, Table 5-3). Class designations were largely based on morphological 

interpretation of landslide size, process type, the presence of toe erosion, long-term weighted 

average displacement rates, and evidence of episodes of relatively more rapid movement. The 

designation did not include other variables like geology, land use, or topographic slope angle. 

These definitions are provided for example only and may or may not be applicable to DSLs in 

Washington State. 
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Table 5-3. Example class designations from Porter et al. (2022). 

Behaviour Type Type A Type B Type C Type D Type E 

Typical geology 
Relatively 
intact shales, 
mudstones 

Relatively intact 
shales, 
mudstones, 
residual soils, 
over 
consolidated 
glacial deposits 

Relatively intact glacial 
deposits, colluvium 
derived from shales, 
mudstones, residual soil 
and glacial deposits  

Colluvium 
derived from 
shales, 
mudstones, 
residual soil and 
glacial deposits  

Colluvium 
derived from 
shales, 
mudstones, 
residual soil 
and glacial 
deposits  

Typical failure 
mechanism 

Translational 
block slides 
and spreads 

Translational 
block slides and 
spreads 

Translational block 
slides and spreads, 
rotational slides, 
complex earth slides-
earth flows 

Translational 
slides, rotational 
slides, earth 
flows, complex 
earth slides-
earth flows 

Translational 
slides, 
rotational 
slides, earth 
flows, 
complex earth 
slides-earth 
flows 

Typical inclination of 
basal shear surface 

Sub-horizontal 
(0 to 5 
degrees) 

Sub-horizontal (0 
to 5 degrees) 

Similar to the residual 
friction angle 

Similar to the 
residual friction 
angle 

Sub-parallel to 
the ground 
surface 

Typical toe condition No toe erosion 
Toe erosion 
usually absent 

Toe erosion may be 
active 

Toe erosion 
often active 

Toe erosion 
almost always 
active 

Long-term annual 
probability of Class 4+ 
velocities 

1 in 20,000  1 in 6,500 1 in 2,000 1 in 650 1 in 200 

5.3.2. Landslide Clusters 

Clusters are most simply proximal landslides of a particular landslide class. For example, if one 

class of landslides was defined as a DSL initiating in alluvial materials due to river undercutting, 

then a grouping of these landslides in a particular river valley will constitute a cluster. Due to 

spatial proximity, these populations will likely respond similarly to external forcings such as 

hydroclimatic conditions or river flows. This becomes useful in sensitivity analysis when 

hydroclimatic conditions may cause a decrease in the sensitivity of a cluster of landslides in a 

drought-stricken area, even though the sensitivity of the overall class of landslide may not change.  

Present-day landslide velocity may further define a landslide cluster as this attribute is indicative 

of sensitivity of the landslide to further perturbation (Section 5.6). Therefore, a cluster of a 

particular landslide class may function similarly regarding displacement and activity state. For 

initial screening, the criteria provided in Section 5.4 would be utilized to assess activity state. 

Following the definition of landslide classes, clusters should be identified using spatial- and 

data-clustering techniques (e.g., kernel density estimates, k-means). Spatial- and data-clustering 

methods will provide first order groupings of spatially proximal landslides and landslides with 

similar attributes. From these initial clustering results, subject matter experts should revise cluster 

definitions. Clusters and potential outliers may be visited in the field, as needed. Landslide classes 

and clusters will drive the sensitivity assessment efforts described in Section 5.4.  
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5.3.3. Consultation with Experts 

Landslide practitioners have been working in western Washington for many years and have a rich 

level of experience with observing behavior and characteristics of DSLs. Selected geologists and 

geotechnical experts in western Washington should be consulted following the development of 

landslide classes to determine if based on their experiences, any populations of DSLs do not fit 

in a recommended class. This consultation phase will aim to incorporate the collective experience 

of the landslide community in class designations. 

5.4. Assessment of Landslide Sensitivity 

To assess how likely a landslide is to respond to future hydroclimatic events or human activity, an 

important first step is to understand past behavior. The focus is to assess both the spatial and 

temporal aspects of landslide activity at regional scale with a sufficient time sampling to evaluate 

a variety of natural and human-induced events and their impacts on landslide activity. The 

following sections outline a methodology that considers the spatial variation of landslide types 

and characteristics and couples these with spatially continuous data sets that characterize 

historical displacement trends for DSLs. These data sets will be integrated with regional 

hydroclimatic and land cover data to assess drivers for landslide activity change.  

5.4.1. Historical Displacement Trends 

Once landslide classes have been identified, the next step will involve building an understanding 

of how these various landslides have moved historically to form the basis to assess how sensitive 

they will be to future disruption. This will also support the definition/refinement of clusters. By 

utilizing the results obtained from the LCD and InSAR analysis, the goal of this phase would be 

to represent the absolute movements over time periods and/or extract velocity trends over time 

to assign to each polygon. The following spatial representations of velocity trends could support 

the sensitivity:  

• DSLs with no measurable displacements (InSAR and LCD): Any DSLs that have either no 

measurable displacement from the LCD analysis or have been classified as PI--DSLs 

during the InSAR assessment will be considered as relict or dormant features 

(e.g., Velocity Class 0, or possibly near the lower limit of Class 1). 

• DSLs with measurable displacements but no seasonal trend data (LCD): These would be 

DSLs where displacement has been characterized with LCD but were excluded from the 

InSAR assessment based on geometrical considerations.  

• DSLs with consistent displacement trends (InSAR): Any DSLs that have been identified 

as PA-DSLs in Section 5.2.4.2 and exhibit low variability in velocity. 

• DSLs with seasonal displacement trends (InSAR): These would be PA-DSLs that are 

described as having seasonal and low-magnitude velocity variations. 

• DSLs with a high variability in movements (InSAR): These would be PA-DSLs with 

moderate to high velocity variation that may correspond to more focused external drivers, 

such as hydroclimatic events or human activities. These DSLs may be representative of 

landslides that are highly sensitive to disturbance. More specifically this would be 
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characterized as very well-defined, shorter-term acceleration of landslide activity following 

observed disturbance of the landslide by toe erosion or human alteration of surface 

water/vegetation. It is likely that this set of landslides would be the initial focus on time 

series extraction to support the next phases of assessment. 

While each polygon in the inventory should be assigned with one of these broader classifiers, this 

does not preclude integrating the discrete velocity trends that can be extracted over the period for 

which displacement data is available. 

5.4.2. Landslide Characteristics for Sensitivity Assessment 

When reviewing the displacement data, it is likely that there will be variations in activity that may 

correlate with different landslide characteristics. These characteristics may be useful for both 

defining landslide classes (Section 5.3.1) and/or assessing the sensitivity of landslide classes. 

This section will describe if and how others in the literature have leveraged these landslide 

characteristics to assess sensitivity and how they may be most useful to the present study. During 

study execution, it is possible that limited or no relationships with some of these variables will be 

found. However, we believe there to be enough scientific merit and precedent that is worth 

cataloguing and evaluating the following variables in terms of landslide class sensitivity. 

5.4.2.1. Geology and Soils 

Geologic unit (surficial or bedrock) and soils units of a given landslide can have far reaching 

impacts on the response of a landslide to changing conditions. These include, for example, 

hydraulic conductivity parameters, structural characteristics such as the presence and orientation 

of discontinuities that could promote landsliding, or compositional properties such as enhanced 

clay content that can promote landsliding. For the purposes of this study, mapped geologic and 

soils units could assist in developing landslide classes. Once cataloged, geologic and soil 

materials should be ranked in terms of stability parameters and used in sensitivity assessments 

as a relativistic variable. For example, all things being equal, landslides originating in glacial 

materials will likely be more sensitive to changes in hydroclimate or surface drainage than large 

rockslides originating in metamorphic rocks. This is of course not a rule, but a relationship to be 

explored during data analysis.  

5.4.2.2. Slope and Aspect 

While slope is often reported as the single most important factor in shallow landslide initiation 

(e.g., Budimir et al., 2016), it is much less important in studies of deep landslide initiation and 

should generally be considered in context with the myriad other factors influencing DSL initiation 

(Burns & Mickelson, 2016). However, because DSLs occur at various positions within the 

Washington landscape, from river valleys to steep mountain flanks, we expect that slope may be 

useful in differentiating landslide classes (Section 5.3.1) and potentially landslide class sensitivity 

estimates. 

Topographic aspect is another related factor that may assist in both DSL class definition and 

sensitivity assessment. The primary mechanism by which aspect can influence DSL behavior or 
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sensitivity includes evaluating the geometric relationships between the downslope preferred 

direction of movement (i.e., the “fall line” direction) and any available geologic mapping that 

includes fracture, foliation, or other discontinuity information (Burns & Mickelson, 2016; 

Wooten et al., 2022). For example, if foliation or another weakness plane is dipping to the 

southwest, and a slope is similarly oriented such that the fall line of the topography is to the 

southwest, then perhaps this is an ideal geometric alignment for continued DSL activity and 

increased sensitivity. This relationship should be assessed for populations of DSLs in the present 

study with varying activity states but otherwise similar characteristics.  

5.4.2.3. Surface Roughness 

After activation, landslides are quite rough in texture and through time, natural geologic 

weathering processes smooth out topography across the landslide scar. Authors working in 

Washington and Oregon have successfully exploited this phenomenon to utilize surface 

roughness, as estimated from high resolution lidar, as a proxy for age -dating DSLs 

(LaHusen et al., 2016; Booth et al., 2017; LaHusen et al., 2020; Herzig et al., 2023).  

Surface roughness can be approximated by utilizing several methods to quantify heterogeneity in 

topographic variables (e.g., slope). For example, authors have explored the use of standard 

deviation of slope, root mean square height, direction cosine eigenvalues, Ricker wavelets, and 

others (Berti et al., 2013; Goetz et al., 2014; LaHusen et al., 2016).  

Most recently in Washington, Herzig et al. (2023) estimated the age of last activity of >1,000 DSLs 

in the Puget Lowlands using a calibrated surface roughness-age relationship. Nine radiocarbon 

dates collected by Herzig et al. and six dates collected by Booth et al. (2017) were used to 

calibrate the relationship within this inventory. Most ages clustered between approximately 

200 and 2,000 years before present. Therefore, the ages of more recent landslides (<100 years) 

are quite poorly constrained. This is typical of the literature, and to present, authors employing a 

surface roughness-age calibration approach (e.g., LaHusen et al., 2016; Booth et al., 2017; 

LaHusen et al., 2020) have primarily shown success at using the method to investigate only long 

term (102 to 105) landslide activity trends. However, these same studies often show a low degree 

of confidence in using the method to estimate more recent (<100 years) landslide activity trends 

(Figure 5-10).  
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Figure 5-12. Results from previous studies (LaHusen et al., 2020 and Herzig et al., 2023) illustrate 

the typical timescale of study for surface-roughness based methods for identifying 
landslide activity states. A dashed green line is shown at a landslide age of ~100 years. 
Note that below this value (0-100 years), the confidence bounds for both studies 
increase markedly. 

Given the high degree of variability in landslide morphology immediately following failure and the 

weathering characteristics in the immediate aftermath of a landslide, the methods are unlikely to 

provide significant insight into landslide activity along human timescales. Therefore, for this study, 

we propose to consider a surface roughness-age relationship (utilizing data from the previously 

referenced studies in Washington and Oregon) for the purpose of clustering dormant or relict 

landslides. However, it is unlikely this method will provide meaningful information regarding the 

present-day activity states of DSLs. 
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5.4.2.4. Depth to Rupture Surface 

As the depth of the rupture surface of a DSL increases, the rupture surface tends to become more 

disconnected from surface activities such as increased runoff or infiltration. This can increase lag 

time between disturbance and activity or can reduce the sensitivity of the landslide to changes in 

activity state. However, depth to rupture surface is a notoriously difficult parameter to estimate 

from surface observations alone. Of the compiled landslide inventories (Section 3.1.2), only the 

WGS inventory contains an estimate on failure depth. Failure depths in this inventory are 

estimated as a function of ground slope angle and head scarp height (Burns & Madin, 2009), 

however these methods are not widely agreed upon as a preferred solution 

(Burns & Mickelson, 2016).  

Jaboyedoff et al. (2020) provides a review of existing methods for estimating depth and does not 

converge on a single preferred method, but instead, suggests future efforts toward an adequate 

depth (and volume) estimation technique should include surface velocity data to facilitate a 

conservation of mass approach. This is encouraging, given the present study intends to catalog 

a rich dataset of surface velocities. During study implementation, consideration should be given 

to investigating the feasibility of integrating geometrical relationships with surface velocity fields 

to better estimate failure depth. We expect this would provide a great input in terms of landslide 

class sensitivity and would be a great contribution to the landslide community. However, as this 

is a formidable problem in landslide science, the project team should carefully consider the level 

of effort to do so and if the expected outcomes are worth the investment. 

5.4.2.5. Topographic Position 

For the present study, we expect the TPI could be useful for assisting in defining landslide classes. 

For example, this metric may assist in identifying DSLs that are in valleys or along lower slopes 

compared to those that are within middle to upper slope regions. The TPI algorithm can be applied 

to landscapes at various scales and the hyperparameter tuning will greatly influence results 

(De Reu et al., 2013). An example is shown in Figure 3-3, where we evaluate TPI at a broad scale 

(e.g., across tens of miles) across western Washington. Landslides that initiate and arrest in 

alluvial materials are expected to be most sensitive to river flows and due to their statistically 

shallow failure depths and small areas Figure 5-10), may respond relatively quickly to surface 

disturbances. Conversely, landslides that initiate and arrest in upper slopes underlain by more 

competent geologic materials may respond more slowly to surface disturbances. These 

relationships should be explored once landslides are attributed in terms of velocity and 

topographic position. 

5.4.2.6. Toe Condition 

Toe condition is a subjective measure of how actively the toe is exposed to erosional forces, most 

often in the form of active river erosion. An example of how this measure can be used in landslide 

class definitions is shown in Table 3-3. As to sensitivity, landslides actively undergoing toe erosion 

(e.g., Figure 5-4) are likely more sensitive to further perturbations compared to those that are not 

actively undergoing toe erosion. The kinematics of how modern-day toe erosional processes can 
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influence landslide sensitivity are similar to the influence glacial debuttressing can impart on 

historic landslides (e.g., Lacroix et al., 2020 and references therein). 

5.4.2.7. Forestry Activities 

Though the literature is rich with works pertaining to forestry activities’ influence on shallow 

landsliding (e.g., Jakob, 2000; Imaizumi et al., 2008; Goodman et al., 2023), virtually no work has 

been published to date on the influence of forestry activities on DSL activity. In his review, Miller 

(2017) did not identify any studies that investigated the causal relationships between forestry 

activities and DSL activity. As of 2024, we did not identify any studies that have been added to 

the literature since Miller’s review. 

However, several factors that influence DSL behavior (e.g., soil hydrology and overland flow 

patterns) are indeed influenced by forestry activities (Miller, 2017 and references therein). This 

gives weight to the hypothesis driving this study design – that forestry activities can and do impart 

an influence on DSL behavior.  

It is well established in the shallow landslide community that there is a period after logging ceases 

when elevated risk of landsliding is present (e.g., Goodman et al., 2023). This tends to be due to 

root decay processes and loss of hydrologic contributions made by local ecology (e.g., 

evapotranspiration, canopy interception). It perhaps is reasonable to expect a similar relationship 

to hold in the potential effects of forestry activities on DSL behavior, however, the duration of 

influence is likely different.  

For this study design, forestry operations data (Section 3.1.3) should be considered in terms of 

landslide class definitions and sensitivity assessments. Landslides that are proximal to 

documented forestry operations may be considered more sensitive to further disturbance. The 

date of forestry operations will be important, and much is unknown about these effects, their 

timing, and their mechanics. Findings from this work will be a strong contribution to the 

understanding of DSL behavior in the face of forestry operations both in Washington and the 

greater Pacific Northwest.  

5.4.2.8. Land Use/Land Cover Change 

LULC (Section 3.1.5), and particularly anthropogenic changes to LULC, is an increasingly 

discussed topic in terms of shallow landslide susceptibility (Pacheco Quevedo et al., 2023). 

However, very little work has been published to date in terms of the effects of LULC change on 

DSL behavior. This study should consider identifying LULC patterns proximal to active and 

inactive landslides to assess for correlations. No correlation may be found and LULC data may 

not be overly useful in assessing sensitivity, however, the easy availability of LULC data may 

provide insights to how LULC is influencing DSL behavior in Western Washington.  

5.4.3. Evapotranspiration and Hydrology 

Hydroclimate and land cover drive landslide activity by influencing surface and subsurface 

hydrologic conditions. It will be important to establish correlations between seasonal or multi-year 
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fluctuations in velocity to hydrology of these landforms. While it is not practical to quantify the 

surface and near surface hydrogeology at any single location, there are publicly available 

geospatial data sets that can be utilized to develop qualitative/semi-quantitative correlations with 

historical landslide activity. Some of the key publicly available datasets that can be considered to 

support this assessment include the following: 

• Hydroclimatic Data: Globally continuous modelled hydroclimatic data sets dating back to 

1950 are available from the European Center for Medium-Range Weather Forecasting 

(ECMWF) and NASA. These data sets integrate satellite-derived data with ground and 

aerial observations to model a wide array of hydroclimatic, atmospheric and ground 

conditions over time. Froese et al. (2022) provides an example as to how these types of 

data have been utilized to support understanding of the sensitivity of different landslides 

to broader decadal and seasonal soil moisture change and these data sets are likely 

considered to be foundational to support the development of regional correlations in the 

study area. 

• Precipitation Data: Developed and made available by the National Oceanographic and 

Atmospheric Administration (NOAA) the NCEP North American Regional Reanalysis 

(NARR) data set provides a high-resolution combined model and assimilated dataset of 

precipitation data over North America that is available back to 1979. While there are many 

different parameters reported in this dataset, key parameters driving water infiltration, such 

as precipitation and snowmelt are expected to be key data sets to support the sensitivity 

analyses. 

• Topographic Recharge Area: Area of the land surface that is draining to the upper portions 

of a DSL will also be a consideration in understanding how regional hydroclimate and 

precipitation drive landslide processes at the local level. Figure 5-10 provides a distribution 

of recharge areas to over 6,000 DSLs in western Washington. We understand that the 

groundwater recharge area often differs from topographic recharge areas for DSLs, 

however, topographic drainage area serves as a proxy for recharge area and is a metric 

that can be computed at scale with existing datasets. By combining geological and soils 

maps (see bullet below) with these data, we may be able to further subdivide watersheds 

based on an estimate of recharge potential. As the percentage of a watershed that is 

harvested increases, so does the annual water yield of the basin, given the loss in 

evapotranspiration and canopy interception (Moore & Wondzell, 2005; Miller, 2017). This 

increase in yield can increase subsurface drainage, especially in geologic materials that 

have high permeabilities, and potentially destabilize DSLs (Miller, 2017). 

• Land Cover/Land Use: As discussion in Section 3.1.5, there are extensive global data sets 

available that provide change in relation to lands use and land cover that can be assessed 

both qualitatively and quantitatively in conjunction with other data sets to assess the 

relative impact of these surface changes on landslide activity. Variables such as 

vegetative cover (in terms of quantity and quality) and human disturbance, when 

integrated into the same spatial and temporal frames as the other data sets can allow for 

quantification as to the relationships between these factor and other extrinsic drivers and 

assess the relative importance in relation to landslide activity changes. 
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• Soils Data: It is expected that national and state soils data, such as publicly disseminated 

by the USDA will provide important information as to the types and drainage 

characteristics of near surface soils which will also support understanding the relative 

susceptibility of landslides to water infiltration and impacts on landslide activity. Coarser 

and shallower soils are likely to communicate hydrologic signals more rapidly to the 

subsurface, potentially increasing the sensitivity of DSLs initiating in these soils. 

 
Figure 5-13. Distribution of DSL recharge area illustrates most landslides drain between 

100-100,000 m2. Drainage area computed via TauDEM in OpenTopography 
(Tarboton, 2005) DEM source: USGS. 

The above publicly available datasets can be used to illustrate how different temporal and spatial 

scale hydroclimatic variables can influence landslide activity. Figure 5-10 and Figure 5-11 provide 

spatial and temporal depictions of modeled soil moisture obtained from the ECMWF’s ERA-5 

dataset and precipitation and snowmelt obtained from NOAA’s NARR data set in relation to the 

multi-year period around the Oso landslide in March 2014. 
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Figure 5-14. ERA-5 (Level 4) Standard Deviations from Historical Monthly Mean Soil Moisture for 

March 2014 (Data source: Hersbach et al., 2020). 

Figure 5-14 provides a spatial representation of ERA-5 derived soil moisture for March 2014 in 

terms of standard deviation from monthly mean (1950 to present) of modeled soil moisture. Based 

on this review, the near surface soil conditions (modelled at 1-3 meters below ground surface) 

were wet of normal (0.5 to 1.5 Standard Deviations from Mean) related to the 72-year record.  

Figure 5-13 provides a time series extracted from the same data set at the location of the Oso 

Landslide and provides a time series view of the soil moisture in terms of standard deviation from 

the monthly mean soil moisture and the 2-year rolling average of the same metric. Also provided 

are the modelled precipitation (24-hour and 60 day cumulative) and snow melt (daily and 60-day 

cumulative). When reviewing the soil moisture data, monthly soil moisture values are 1.5 standard 

deviations above mean, but not the highest observed during this period. Perhaps the most 

interesting observation is provided by the 2-year rolling standard deviation from mean which 

illustrates that the four-year period (2010-2014) preceding the Oso landslide event (Washington) 

was a prolonged period of above average soil moisture. This type of analysis may be useful in 

suggesting causal mechanisms between hydrologic conditions and landslide activity. However, it 

will be important to evaluate potential causal mechanisms with regard to groundwater flow 

pathways between near surface zones and DSL failure zones which may be deep and/or within 

confined aquifer zones. 
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Figure 5-15. Hydroclimatic Data time series at the Oso Landslide. (Top) ERA-5 (Layer 4) soil moisture depicting the monthly standard 

deviation from mean (Blue line) and the 2-year rolling deviation from the monthly mean (Red Line). (Bottom) Precipitation 
(24-hour and 60-day cumulative) and Snow Melt (24-hour and 60-day cumulative). The green dotted line represents March 
2014 (Data Source: Hersbach et al., 2020).
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When coupled with soil moisture data, available precipitation and snowmelt data can further 

contribute to the understanding of landslide activity states in addition to rainfall-only thresholds 

(e.g., Iverson et al., 2015). Figure 5-15 provides an overview of a subset of the precipitation 

(24-hour and 60 day cumulative) and snow melt (daily and 60-day cumulative) to understand 

whether there were any “pulses” of water infiltration that would coincide with the March 2014 

landslide in this example. When reviewing Figure 5-15, there is a local maximum in both 

cumulative snow melt and precipitation in March 2014 that likely contributed to a significant 

increase in water infiltration at this location. This focused pulse of water infiltration, coupled with 

the historically high antecedent soil moisture may have played a role in the timing of the landslide 

at Oso. 

While the above graphics and description are meant to highlight how these publicly available 

datasets can be utilized to support understanding as to the drivers of activity change on a 

qualitative basis, they may also be harnessed, along with robust displacement data sets to 

attempt to quantify these relationships. 

5.4.4. Assessment of Combined Impacts 

The preceding sections have outlined how various critical variables influence sensitivity of 

landslides. The determination of the sensitivity of landslides to external variables may be 

conducted at various scales (landslide classes, clusters, or even individual landslides). The goal 

of this section is to describe considerations and methods for assessing sensitivity of landslide 

classes or clusters, as defined in Section 5.3. 

5.4.4.1. Data Compilation and Organization 

The next step of the assessment is to compile spatial and temporal data to support cluster 

sensitivity assessment (Section 5.4.4.4). The database (Section 4.2) should be populated with 

attributes collected thus far in the study and with velocity-based condition states and time series 

results. Datasets in Table 5-4 have been described elsewhere in the document and Table 5-4 

should not be used as an exhaustive attribute list. We provide this simply to illustrate a potential 

attribute list and corresponding options. 

Table 5-4. Potential attribute list and categories for compiling information on each DSL. 

Data Category Subcategories Relevant Study Design Sections 

Geology 

Unit 

Lithology 

Proximity to Faults 

Degree of Metamorphism 

3.1.1, 5.4.2.1 

Topography 

Roughness 

Convexity 

Aspect 

Slope 

3.1.3, 3.1.7, 5.4.2.2, 5.4.2.3, 5.4.2.4 
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Data Category Subcategories Relevant Study Design Sections 

Landslide Attributes 

Location 

Dimensions 

Topographic Position 

3.1.2, 3.1.4, 5.4.2.5 

Landslide 
Classification 

Class  

Cluster  
5.3 

Activity Classification 

Active/Inactive (A/I) 

Mean Velocity (mm/yr) 

Variability (L, M, H) 

5.4.1, 5.2.3.4, 5.2.4.2, 5.2.4.3 

Displacement Time Series 5.2 

Hydroclimate 
Precipitation (mean) 

Soil Moisture (mean) 
5.4.3 

Land Use Category 3.1.5, 5.4.2.8 

Forestry Activities 
Distance 

Date 
3.1.3, 5.4.2.7 

Table 5-4 provides only a sample of what we expect would be many tens of attributes and 

corresponding categories. Following analysis, this attribute list should be considered by the 

project team and stakeholders as it will serve as the basis for the sensitivity assessments. 

5.4.4.2. Data Visualization and Exploration 

Once data are organized and accessible to landslide subject matter experts on the project team, 

exploratory data analysis should be conducted to explore relationships such as: 

• Bi-variate relationships: Comparing variables such as Activity State or Mean Velocity 

directly to independent variables such as geological unit, topographic position, surface 

roughness, slope aspect to assess strength of relationships 

• Multi-variate relationships: Comparing combinations of independent variables to review 

the relationship with Activity State or Mean Velocity to visually identify trends that may 

support further review. 

The focus of the above exploratory analysis is to test a series of hypotheses that have been 

developed in relation to the linkages between landslide activity and the suite of independent 

variables (and combinations of variables) defined during the study to assess which trends or 

outliers require more specific study and more robust statistical review. 

5.4.4.3. Velocity Time Series Analysis 

Velocity time series data, based on methods described in this report thus far, will fundamentally 

consist of a series of points within landslide polygons that describe the velocity for a given time 

step. In the case of InSAR or pixel tracking, there may be displacements for many time steps, 

facilitating the development of a long duration, short interval time series. In contrast, LCD results 
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will only contain displacements for up to a few time steps, commensurate with the number of lidar 

datasets available for any given location.  

From these velocity time series data, there are several useful outcomes and potentially more 

information to extract from time series analysis. The simplest metric to extract from these data is 

a binary classification of if a landslide has moved faster than the lower limit of detection for a given 

method. This classification would indicate to DNR which landslides have already fallen below a 

factor of safety of one and are therefore likely susceptible for further disturbances and are the 

most highly sensitive landslides in the inventory. These data, even in the case of LCD derived 

time series, would be useful in the same context as presented in Cignetti et al. (2023). 

More advanced analysis should seek to identify temporal clusters of accelerations or 

decelerations in landslide velocity. In terms of the temporal component, Urgilez Vinueza et al. 

(2022) offer a framework for identifying accelerations or decelerations in InSAR displacement time 

series data that is fundamentally based on fitting piecewise linear functions to cumulative 

displacement time series (Figure 5-16.) The example shown from Urgilez Vinueza et al. (2022) is 

from a single pixel within a landslide. However, the present study should consider statistically 

valid methods of performing a similar analysis for all pixels in a landslide or on an aggregate 

cumulative time series dataset (e.g., the mean of all pixels in a landslide). In an appropriate 

computational environment, this could provide a scalable method for identifying the timing of 

accelerations and decelerations for a large population of landslides. If SAR or optical image pixel 

tracking is successful (Section 5.2.5), we expect similar methods could be applied to those 

displacement time series data.  

 
Figure 5-16. Example from Urgilez Vinueza et al. (2022) illustrating a two-stage method for detecting 

accelerations or decelerations from cumulative displacement InSAR time series data. 
The first stage includes omitting outliers (blue crosses in panels a-b). The second stage 
includes fitting a piecewise linear function to the data as shown in panels c-d). 
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The temporal analysis of lidar-derived time series data (i.e., from LCD or lidar -derived pixel 

tracking) will be much simpler, given the much coarser resolution of the time series. For example, 

it is unlikely that lidar-derived displacement data will contain more than several velocity estimates 

over the period of record, given the number of epochs of lidar available in western Washington 

(generally less than 10). However, temporal analysis of lidar-derived data is still important 

because it will be a critical resource for evaluating movement patterns of landslides that moving 

faster than is suitable for InSAR analysis and will still have several useful outcomes: 

• Confirm if landslides are moving at velocities that exceed the capability of InSAR analysis 

and require application of another processing approach, such as pixel tracking, to develop 

time series data. 

• At generally 1- to 3-year intervals, determine the velocity class of landslides and see if 

landslides are consistently moving or are experiencing accelerations and decelerations, 

even though details on these changes will be slightly subjective and open to interpretation. 

• Provide estimates on velocity for landslides that are poorly oriented given the geometry of 

InSAR. 

• Corroborate the InSAR derived temporal analysis for landslides moving at approximately 

velocity class 2a, a rate that others have shown can be detectable by both InSAR and 

high-quality LCD (Section 5.2.1.2). 

• A key outcome of the temporal analysis is to provide the means to then identify spatial 

and temporal clusters of landslide accelerations or decelerations. This will be fundamental 

to testing the hypothesis that regional hydroclimatic drivers are causing regional activity 

changes to landslides (with an unknown lag time).  

5.4.4.4. Cluster Sensitivity Analysis 

There are many approaches that could be used for further qualifying the influence of landslide 

attributes discussed herein. Perhaps the simplest approach would rank the influence of velocity 

trends, material properties, geomorphic setting, or evapotranspiration/hydrology on landslide 

sensitivity to external perturbations. This relativistic ranking may allow DNR to estimate which 

landslides are most sensitive to a proposed project when the project may impact many landslides. 

The following steps are recommended to support this approach: 

• Once displacement data is available, each existing landslide polygon would be reviewed, 

and the following validation and data entry completed: 

○ Landslide extents, area, and estimated volume are entered into the database. This 

would be completed utilizing the information available in the existing inventories 

and checked with basic DEM-based volume estimation techniques 

(e.g., Jaboyedoff et al., 2020). 

○ Source zone/parent material is confirmed in relation to position of landslide, 

available mapping, and expert judgement. To support this step, the highest point 

of any mapped landslide polygon would be reviewed in relation to both the 

estimated depth to the failure plane and the mapped geological unit to estimate 

which unit the landslide initiated in. 
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○ Observations of external modification due to natural toe erosion or human activity 

would be noted based on a visual review of landslide toe conditions and the 

temporal land use and land cover data sets. 

○ Each mapped landslide would be assigned a screening activity level based on the 

observations from the LCD and InSAR data using the criteria outlined in 

Section 5.4.1. 

○ Each existing landslide polygon would be assessed with the context of the 

displacement data obtained from the LCD and InSAR to assess whether any 

modifications to the polygon boundaries would be required (reduction or 

expansion) to ensure that a representative landslide volume is entered into the 

database. This delineation will be based on activity level and expert judgement 

using knowledge of the geological framework, surface morphology and spatial 

deformation trends. 

• Following the validation and update of the polygon data, initial visual observations and/or 

spatial analysis would be undertaken to delineate broad landslide classes based on 

geologic parent material, structural controls, and spatial densities of mapped landslides. 

• Within each broad landslide class, attributes such as external modification, surface 

roughness, and the initial activity screening may be utilized to subdivide the classes into 

clusters based on proximity and activity level. 

• As a next phase, each of the various broad activity categories outlined in Section 5.4.1 

would then be reviewed to assign specific velocity condition states across the timeframe 

for which displacement is available, such that velocity trend data is accessible in the 

database. 

• For the activity trends observed in the classification above, cluster-specific analysis would 

build on this displacement trend data and couple it with available hydroclimatic, 

precipitation, land cover and land use data (with the ability to review spatial and temporal 

changes for all data sets) in order to break out relationships observed. 

• Each polygon in clusters defined as being most sensitive to disturbance would then be 

assigned velocity condition states that would be used as the basis for analyses outlined in 

Section 5.6. 

Pending an understanding of data organization and completeness (Section 4.0), quantitative data 

driven approaches, such as applied for regional landslide correlations in Norway 

(Krogli et al., 2018) may be applicable for identifying statistically meaningful landslide attributes 

or correlations between intrinsic and extrinsic landslide factors and landslide activity. Additional 

evaluation would be afforded by nearly continuous time-series information on landslide velocity 

and extrinsic factors such as hydroclimatic conditions. 

The sensitivity of DSLs to surface modifications (e.g., changes to surface drainage, land cover, 

or vegetative removal) or hydroclimatic patterns (e.g., increased rainfall or snowmelt) can be 

estimated by observing high temporal resolution displacement data such as that from InSAR. 

These data are key to understanding the latency or memory of DSLs and to estimate how quickly 

or easily they may start to respond to surface changes. As discussed in Section 5.3.1 and Miller 

(2016, 2017), large and deep landslides in fine grained materials are likely the slowest to respond 
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to hydroclimatic trends or surface modifications. This follows from the fact that the shear surface 

in these landslides is physically more distant from the ground surface and fine-grained materials 

act as a buffer in transmitting hydrologic response from the ground surface. Conversely, DSLs 

initiated in coarse-grained or loosely consolidated materials and with a relatively shallow failure 

depth may experience the most rapid response to surface changes. The present study should 

assess the rate of velocity change (i.e., acceleration) in relation to these extrinsic perturbations.  

Forestry activities may influence the observed lag time between hydroclimatic changes and 

landslide activity. This could be due to the effects of forestry on local hydrology, such as reducing 

evapotranspiration, canopy interception capacity, or removing structural root masses. Landslide 

accelerations should be assessed in the context of historical forestry activity data 

(e.g., Section 3.1.3 or 5.4.2.6) and historical hydroclimatic trends. If velocity patterns of a landslide 

within or adjacent to forestry operations are consistent with velocity patterns of nearby landslides 

of a similar morphology (i.e., within the same landslide cluster), it could be possible that the 

forestry operations did not have much influence on the landslide activity. However, if the landslide 

within or adjacent to the forestry operations showed a greater acceleration compared to other 

landslides in the cluster, further interrogation should be performed. Examples of this further 

analysis could include using SAR-derived soil moisture trends (e.g., Bauer-Marschallinger et al., 

2018) to assess if the removal of vegetation coincided with a commensurate increase in soil 

moisture over a duration significant enough to potentially destabilize the landslide. If the cluster 

of the given landslide had previously been shown to have a lag time of months, then a very short 

duration increase in soil moisture (e.g., days) following forestry activities may not be significant 

enough to activate the landslide. Soil moisture is but one variable in the equation of landslide 

activity and, thus, findings from Section 5.4.3 should be included in this assessment. 

While the above sections describe how geospatial data and office-based assessment would be 

utilized to classify and organize landslides, the areas that are determined to be most sensitive to 

disturbance will likely benefit from field verification. It is expected that field verification would 

consider the hypotheses derived from the office-based assessments and review local conditions 

to assess validity of assumptions. 

5.5. Field Verification 

The field verification of the insights derived at the cluster-level from existing mapping and remotely 

sensed data will be important to provide confidence in the classification and support the 

development of field data collection procedures. As an example, as visual observations as to 

landslide velocity are extremely difficult to accurately quantify for velocity classes lower than Class 

3 (Table 5-2) the DNR may choose to identify clusters that have been historically active and/or 

demonstrated to be sensitive to disturbance, to review field-based activity indicators that had been 

collected previously, or select DSLs with no prior field observations for field verification, in order 

to assess how correlated these visual indicators were to the actual activity levels. Conversely, if 

there are areas for which decades of field observations indicate that a landslide is active, but the 

remote sensed data does not reflect this, the ability of these techniques to measure displacement 

in certain conditions would also require evaluation.  
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Once specific areas have been classified, it is expected that landslide clusters will be prioritized 

by UPSAG and will require some level of field validation by DNR to have confidence in the 

classification. In addition, the remote sensing analyses may identify areas with outliers that may 

require field data to clarify. During the study execution, each of the DSLs will be classified based 

on a collection of geological and morphological attributes and documented landslide activity 

(discussed in Section 5.2). To confirm that conditions on the ground agree with the office-based 

classification, the visual observations listed in Table 5-4 will be considered to support the 

classifications. Note this verification is not intended to verify individual features (e.g., ponded 

water or vegetation type), but instead to support the remote sensing-based DSL class 

assignment. 

Table 5-5. Sample visual observations to support validation of slope classification. 

Slope 
Dimensions 

Slope 
Morphology 

Lithology/ 
Stratigraphy 

Vegetation Water 
Human 

Modification 
Ground 

Movement 

Angle 

Total length 

Smooth 

Undulating 

Benched 

Ridged 

Geologic origin 
or parent 
material, degree 
of lithification 
(bedrock, glacial 
sediments) Fine 
grained (clay or 
silt) 

Coarse grained 

Cover type 
and density 

Observations 
of distressed 
and/or curved 
trees 

Ponded water 
on slope 

Quality of 
slope 
drainage. 

Disruption of 
natural 
drainages 

Observations 
of vegetation 
removal 

Any road 
construction 

Any material 
stockpiling 

Stepped/Benched 
Slopes 

Hummocky Ground 

Actively moving 
slopes in area 

As part of the ground-based validation of the landslide classification by DNR (or their consultants), 

a structured digital field data collection form and protocol would be developed and used to confirm 

that ground conditions are as expected and whether there are any site-specific conditions that 

require further consideration or modifications to the sensitivity analysis. 

5.6. Interim Methods to Estimate Future Behavior (Markov-Chain Analysis) 

A goal of the broader UPSAG DSL Strategy is to understand the potential sensitivity of DSLs to 

forestry related activities relative to other trigger mechanisms, and thus the probability that DSL 

activity and velocity will increase with surface disturbances. In the interim, however, data 

aggregation techniques discussed in this study may be useful for extracting information regarding 

future landslide behavior.  

Markov-Chain analysis can be used to combine landslide behavior type and current velocity to 

assign velocity class probability distributions for annual model timesteps. The model outputs can 

be used to support landslide hazard and risk assessments and lifecycle cost models. This method 

can be implemented where a velocity history of a given DSL is known or can be reasonably 

inferred (Section 5.2). Results of the analysis indicate the probability that a DSL class will 

transition to faster or slower velocity class over a given future time period, generally decadal in 

scale. The approach has been successfully applied to several engineering consulting 

assignments in central British Columbia and across the Western Canada Sedimentary Basin 

(e.g., Porter, 2021; Porter et al., 2022, van Veen et al., 2022). The suitability of implementing this 
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method regionally across western Washington will be understood following the data assimilation 

and velocity characterization tasks described above. 

It is expected that landslides that are observed to be moving slowly near the beginning of the 

study period of record will exhibit more frequent transitions to higher velocity classes over the 

period of record when compared to landslides that do not appear to be moving at the beginning 

of the period of record. In other words, it is more common for landslides that are already moving 

to accelerate compared to those that are dormant or relict. Furthermore, the expectation is that 

the observed frequency of velocity class transitions will be greater for faster moving landslides 

compared to slower moving landslides. If the study results validate these expectations, they will 

provide good justification for using landslide velocity as a key variable to predict the relative 

sensitivity of landslides to disturbance from timber harvesting using Markov Chains.  

Relying on expert interpretation from local landslide subject matter experts, Markov-Chain velocity 

class transition matrices represent the probability of transitioning from one landslide velocity class 

to another (or staying in the same velocity class). In the present study, these matrices could be 

developed for the representative landslide classes (Section 5.2.5). This could be done by first 

estimating the long-term average distribution of the velocity classes for each type of landslide as 

determined by InSAR and lidar change detection (i.e., the total number of “landslide years” spent 

in each velocity class over the period of record). This provides a representation of the target 

limiting state vector that should be generated by a reasonably well-calibrated Markov Chain 

transition matrix when the model is run for several hundred annual timesteps. Next, for each 

mapped landslide and each year of record, the number of observed transitions from and to each 

possible velocity class could be counted. These provide a first estimate of the transition 

probabilities that form the transition matrix for each type of landslide. Next, the models derived 

from the preliminary transition matrices could be run for several hundred timesteps and the model 

outputs compared with the target limiting state vectors. And finally, through experience, 

judgement, and trial and error, the transition probabilities in the preliminary transition matrices 

could be adjusted to improve the calibration of each model.  

If implemented here, DNR may gain access to a tool to generate meaningful probability estimates 

regarding the likely future condition state of DSLs while continuously working toward future goals 

for the research program (e.g., physically based or statistical slope stability models). 
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6.0 ADDITIONAL DATA CONSIDERATIONS 

This section provides a brief discussion of potential additional data considerations that may be 

explored during the execution phase of the study to support the various linked projects as part of 

the larger Strategy. An example of potential additional data includes landslide and slope stability 

inventories and studies by other agencies, for instance the compilations of the Washington 

Department of Transportation Unstable Slope Management Program (WSDOT USMP). BGC 

understands the WSDOT USMP has been active for many years, and although the data would be 

constrained to transportation corridors and is intentionally different, the information could provide 

patterns and indications of sensitivities to natural attributes and anthropogenic changes. The 

study should incorporate all relevant and applicable data sources available at the time of 

execution, including those not listed in the following sections.  

6.1. Targeted Site-Specific Data Collection 

While the remotely sensed data will provide a temporally and spatially continuous regional 

representation as to deformation trends, recent studies by Froese et al. (2022) highlight the 

importance of gathering site-specific displacement data to link external drivers with velocity state 

transitions. The daily to weekly observations provided by ground sensors, such as slope 

inclinometers or Global Positioning System (GPS) sensors, at instrumented landslides can 

provide critical understanding as to the sensitivity of local scale landslides to inputs such as 

increased moisture. To supplement the remotely sensed data, the team conducting the project 

execution is advised to assess whether site specific data exists or could be installed in the future 

that can better represent the transient conditions at more sensitive landslide clusters/locations 

and the following data sources could be considered: 

• Continuous displacement records – Froese et al. (2022) has demonstrated the utility of 

integrating near-continuous displacement data obtained from Slope Acceleration Arrays 

(SAA) with global hydroclimatic data coverages to assess the correlations with different 

rates/amounts of gross water infiltration with the onset of slope accelerations. These 

continuous data would be important to confirm hypotheses regarding the differing 

contributions of snow melt, precipitation, and longer-term soil moisture trends in relation 

to accelerations of different types of landslides in the study area. 

• Local climate stations – As discussed above with respect to displacement data, it would 

be of value in the project execution phase to select more highly sensitive landslide 

locations/clusters to provide actual ground measurements of near surface hydrology/soil 

moisture. This could be achieved with the installation of climate stations that collect data 

on precipitation, snow depth, temperature, and soil moisture to support calibration with 

regional data models. 

Both types of point source data would provide significant benefit to additional project phases, 

specifically Projects 4.8, 4.9 and 4.10 from the Strategy (Figure 1-1). Regional data and insights 

would be utilized to target locations for local data collection. These local data would then be 

utilized to increase site specific understanding of water infiltration and potential slope 
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destabilization. These local models can then further inform regional modeling efforts, forming a 

recurring cycle of regional to local understanding of DSL dynamics in western Washington. 

6.2. Future Data Availability and Project Integration 

The current study design considers technologies and data that are available at the time of the 

presentation of this report but there are significant advances in data availability that will likely 

evolve future application of the study guidance for other areas within Washington. One significant 

advancement will be the availability of freely available standard coverages of L-Band SAR data 

obtained from the NASA-Indian Space Research Organization (ISRO) NiSAR satellite. This 

satellite currently has a launch window that opens on January 29, 2024, and could have up to six 

months of data coverages available for processing in the fall of 2024. By having both ascending 

and descending standard coverages of L-Band data, more sensitive landslide clusters could likely 

be monitored and reassessed on a more regular manner to support more detailed 

characterization. 

In addition, the ability to continually integrate continuously collected displacement data into 

analytical models to refine the understanding as to the linkages between hydroclimate, land use, 

and displacement will allow the evolution of the models to enhance the ability to support seasonal 

decision making around activities in sensitive terrain. It is considered that these new data sets 

would provide specific value to Projects 4.7, 4.8, 4.9 and 4.10 (Figure 1-1).  
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7.0 TECHNICAL LIMITATIONS 

The critical research questions being addressed in this study (Section 1.4) are very challenging 

relative to the state of the science in 2023. Any study attempting to provide insight into these 

questions will include an inherent level of uncertainty. This is particularly true when attempting to 

address the questions for landslide populations that span large geographic areas.  

A large component of this uncertainty stems from the fact that the study has yet to be undertaken 

and there are a great many unknowns in what the study will uncover about the velocity 

characterizations of known deep-seated landslides. Rapid increases in landslide activity or 

velocity are relatively rare. That is, the activity of a given landslide typically remains constant 

through time, punctuated by small and relatively short duration changes to activity. This study 

attempts to identify these relatively rare transitions within the limited time frame of the available 

remote sensing data. The more of these transitions the study can identify, the more opportunity 

we will have to interrogate the relationship between the transition and external variables 

(e.g., hydroclimate, geology). If the available InSAR, lidar, and other datasets do not identify many 

transitions, our opportunities for further evaluation will be limited. The likelihood of success of this 

approach, therefore, is unknown at present, because the velocity characterization work has yet 

to be performed. BGC undertakes similar evaluations of regional landslide activity across Western 

Canada on an on-going basis utilizing a combination of LCD, InSAR, and field data to support 

regional understanding of landslide activity in relation to operational decision making. Based on 

the similarity of the ground conditions and relatively rich coverage of data, BGC considers that 

the approach outlined in this study design would provide significant value for the application 

proposed in western Washington. The architecture of this study aims to begin at the broadest 

grouping of the landslide population (e.g., >2500 landslides in proposed Study Area 1) and then 

to subdivide based on various attributes into landslide classes and ultimately clusters. The 

working thesis underpinning this approach is that the characterization work will provide sufficient 

detail around landslide activity patterns such that subdivisions can yield additional insight into the 

potential for increased landslide activity. For example, if a cluster of landslides is identified to 

respond similarly to changing hydroclimatic conditions, perhaps in the future, if a transition is 

identified at one of the landslides in the cluster, the remaining landslides in the cluster may be 

nearing a similar transition.  

Further uncertainty is due to the complex interplay between driving and resisting forces for a 

deep-seated landslide. Even intensive studies of single landslides are fraught with nuance to the 

landslide in question (e.g., Badger & D’Ignazio, 2018). Therefore, uncertainties around an 

evaluation of many thousands of deep-seated landslides must be considered carefully in the use 

and utility of the results. Primary sources of uncertainty in regard to driving and resisting forces 

include, but are not limited to, the following: 

• Site-specific hydrogeologic considerations including the presence, absence, or condition 

of geological units that may promote or impede groundwater flow 

• Unknowns regarding the site-specific history of a given landslide at geologic timescales 

• Spatial resolution of available data including geological maps and hydroclimatic data. 
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Executing this study will provide a more informed basis around uncertainty in the results and in 

how to best apply the results to assessing deep-seated landslide susceptibility in Washington. 
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8.0 PROJECT DELIVERABLES AND NEXT STEPS 

A complete list of project deliverables should be agreed upon between the qualified contractor 

selected to complete the study and DNR, but should at minimum, consist of: 

• A report describing the study execution and findings 

• Digital data transmittal including the project final database (Section 4.2) in a format 

preferred by DNR (e.g., ESRI Geodatabase). 

Findings of the Study should be integrated into the larger Strategy. The Study was designed with 

a forward-looking approach to assessing sensitivity of landslides (see item 4.7 in Figure 1-1). This 

is likely a GIS-based geospatial workflow that will need to be designed in a future effort and is not 

covered here. The objective of designing and populating the database for this Study, however, is 

to facilitate future statistical estimates on the sensitivity of landslides and to aid selection of DSLs 

for field-based testing of forest practice treatments and calibration of hydrologic models. 

Specifically, by undertaking the Study as outlined in this report, the qualified contractor should be 

able to provide guidance in relation to other portions of the overall program, including: 

• Project 4.7: GIS-Based Stability and Sensitivity Tool Kit – It is expected that the assembly 

of the structured landslide database and the satellite-derived hydroclimatic data to support 

the Study can be used as a foundation to build analytical tools to support modeling 

sensitivity of landslide classes or clusters. 

• Project 4.9: Physical Modeling Project – The classification of landslide classes and 

clusters in the study are expected to highlight differences in landslide performance that 

may help focus localized studies that integrate a deeper understanding of the subsurface 

conditions and external drivers to develop physical models that are able to replicate the 

observed performance. 

• Project 4.10: Monitoring Project – The application of the various remote sensing 

technologies to characterize landslide activity will provide important learnings to inform the 

design of future monitoring programs. This may include providing guidance on future lidar 

acquisitions, selection of targeted local monitoring programs, or development of plans for 

the integration of data from future SAR missions, such as NiSAR. 

• Projects 4.11: Modeled Evapotranspiration Refinement Project – The assembly of the 

satellite-derived hydroclimatic datasets can be utilized to support further 

evapotranspiration modeling to support landslide sensitivity assessments. 
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9.0 CONCLUSIONS 

The contribution of both intrinsic and extrinsic factors to deep-seated landslide mapping and 

classification is a complex subject. An understanding of landslide velocity transitions, the 

availability of emerging remotely sensed data sets and developments in data integration platforms 

and analytical techniques are allowing the geoscience and engineering communities to better 

understand trends in activity and sensitivity. This Study Design Report lays out a framework and 

specific design guidance for a regional proof-of-concept Pilot application that would provide 

statistical rigor around understanding regional drivers for velocity changes and which specific 

landslide classes and clusters are more sensitive to different external drivers. The focus of the 

study is to develop linkages that support the understanding of the landslide types and 

characteristics that are sensitive to forestry activities and related ground disturbance and could 

lead to velocity transitions for these types of landslides.  

Study areas proposed by DNR are relatively data-rich in relation to the availability of existing 

geological and landslide mapping and publicly available remotely sensed data (both airborne and 

satellite-based). An approach to mapping and classification has been proposed and specific 

sub-regions identified to maximize the likelihood of developing robust relationships. These 

locations have been chosen based on the quality of existing landslide inventory coverage, the 

density of mapped landslides, the amount of repeat lidar data sets available, and the spatial and 

temporal density of archived SAR data that could support generating InSAR deformation data. 

Based on these criteria, the following subregions have been identified as options for where to 

potentially execute the Mapping and Classification Pilot: 

• Area 1a and 1b: Western Whatcom County (Mount Baker to Lower Nooksack River) and 

the Upper Snohomish River System (Snoqualmie and Skykomish Rivers, including Upper 

Tolt and North Fork Snoqualmie) – 2,700 km2 

• Area 2 (includes 1b): Snohomish County (Sloan Peak to Snohomish) and the Snoqualmie 

River Valley (Fall City to Monroe, including Upper Tolt and North Fork 

Snoqualmie) – 3,600 km2. 

Each of the above study areas has been selected to provide a cross section of landslide classes 

and clusters that provide a statistically robust data set to assess the sensitivity of landslides to 

natural processes and human disturbance. For each of the potential targets, a strategized 

region-specific program of velocity data collection and processing would be undertaken, and 

these data would be integrated into a structured data schema for mapped landslides in the region. 

It is expected that the following velocity/displacement data would be integrated at each landslide 

polygon: 

• Confirmation of presence or absence of measurable displacements across collection 

period for data utilized 

• Annualized displacements to support screening different relative landslide activity zones 

• Discrete velocity trend data to understand potential correlation to seasonal or multi-year 

trends in hydroclimatic conditions, surface vegetation change and/or human modification 

of the ground surface. 
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The above observations would be entered into a database with an architecture designed to utilize 

these data sets into various modelling efforts for the DSL Mapping and Classification Project and 

other projects that contribute to the broader Strategy. To develop a data-driven understanding of 

linkages between the velocity trends and extrinsic factors (such as hydroclimatic influences and 

human disturbance), the design report has outlined key publicly available datasets that could be 

integrated with velocity data and provided a high-level example of how these data could be utilized 

in Washington State. 

Should the project be executed as outlined in this Study Design, it is expected that the products 

derived from the project would contribute to the overall study objectives as follows: 

1. To identify distinguishing characteristics within and between DSL classes in the study 

area: Section 5.2.5 provides a methodology that uses statistics derived from the existing 

landslide inventories to support designation of landslide classes and the use of different 

geological and morphological attributes and measured landslide activity to define landslide 

clusters. 

2. To determine why landslides with similar characteristics may exhibit differences in activity 

level: Section 5.4 provides suggestions on how to integrate and evaluate spatial and 

temporal data to link both physical and transient conditions to differences in landslide 

activity state. 

3. To develop causal mechanism hypotheses for individual landslides evaluated in the field. 

These mechanisms might include hydrogeologic characteristics visible in active 

landslides: In Section 5.4.1 there is an overview provided as to a stepwise process 

outlining how high-quality velocity and displacement observations will be linked to 

landslide inventory polygons and organized by landslide classes and clusters. The collated 

data will be integrated with hydroclimatic and land cover datasets to attempt to identify 

relationships between landslide attributes and these external drivers. Section 5.5 reviews 

where field verification can be utilized to support validation of causal mechanisms inferred 

from the remote sensed data assessment. 

4. To determine the best remote sensing tools, field assessment and other methods to 

classify DSLs in a manner that will aid our understanding of the greater or lesser potential 

for DSL reactivation or accelerated movement: Sections 3.0 and 5.0 provide an overview 

of the existing remotely sensed data and considerations for integration to best support the 

classification tasks. The application of the existing archived remote sensing data will 

support understanding as to which tools are most effective in deriving the critical variables 

and will support the optimization of data collection for future focus areas. 

5. To define classes of DSLs within and across clusters using a suite of physical attributes 

based on critical variables. These classes will also be used to support future phases of 

the research strategy (i.e., which DSLs are most representative or illustrative for future 

research and modeling efforts based on the results of the classification project): Sections 

5.0 and 6.0 provide significant detail around these variables and integration into future 

phases. 

6. To test an initial hypothesis that DSLs can be effectively ranked and classified based on 

multiple sources of empirical evidence, and that certain classes of landslides have a 

particularly high or low potential for instability from forest practices. This document outlines 
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an approach that would subdivide landslides based on attributes such as lithology, size, 

rupture depth, geomorphic position, and correlate these with velocity and extrinsic factors 

(hydroclimate, land use, land disturbance) to assess which landforms are most sensitive 

to human disturbance. 

When considering the overall research Strategy (UPSAG, 2020), the workplan outlined in this 

report is meant to provide a basis to directly inform and support the overall Strategy by providing 

a robust set of data and tools to understand historical trends to calibrate models that will support 

the understanding of the intrinsic and extrinsic contributions to landform sensitivity. Some of the 

other applications of the study inputs would be to:  

• Support planning data acquisition and mapping to support expanding these 

methodologies to other regions 

• Assessing how new technology advances and data availability, such as NASA’s upcoming 

NiSAR mission, can be integrated into future studies 

• Targeting specific landslide clusters or landslides where more detailed studies could be 

undertaken to understand the interaction between hydroclimate, hydrology and landslide 

activity. 
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10.0 CLOSURE 

We trust the above satisfies your requirements at this time. Should you have any questions or 

comments, please do not hesitate to contact us. 

Yours sincerely, 

BGC ENGINEERING USA INC. 
per: 

Corey Scheip, Ph.D., P.G. (N.C.) Corey Froese, M.Sc., P.Eng., P.Geo. 
Senior Geoscientist Principal Geological Engineer 

Reviewed by: 

Michael Porter, M.Eng., P.Eng., LEG (Washington) 
Principal Geological Engineer 

JMF/MJP/saa/th 
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A.1. INTRODUCTION 

As part of the assessment into the feasibility of utilizing satellite interferometric synthetic aperture 

(InSAR) to support mapping landslide velocities in western Washington, a review of the available 

SAR data archives over the study area provided by the Washington State Department of Natural 

Resources (DNR) has been completed. Figure A-1 provides an overview of the existing SAR 

satellites that have been collecting data since late 1991. These coverages include both C-Band 

and L-Band SAR data which have different strengths and weaknesses when considering 

integration into the project design. 

A sufficient number of SAR scenes over the imagery time period are required for time-series 

processing of ground displacements. Some coverages listed below lack sufficient temporal 

density in some areas to create a meaningful displacement time series. Please refer to the 

accompanying report for more information regarding the number of images required for a given 

duration and further considerations in leveraging InSAR processing for displacement estimates. 

 
Figure A-1. SAR coverages considered for study design. 

Whether any of these data can be utilized to undertake InSAR processing over the study area is 

dependent on both the spatial and temporal coverages of these data. The following provides an 

overview of the existing SAR data coverages available over Whatcom, Snohomish, King and 

Pierce Counties for the period between 1992 and present. 
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A.2. C-BAND COVERAGES 

A.2.1. ERS-1 and ERS-2 (1992 to 2008) 

 

 
Figure A-2. Descending ERS spatial (top) and temporal (bottom) coverage of the study area. 
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Figure A-3. Ascending ERS spatial (top) and temporal (bottom) coverage of the study area. 
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A.2.2 Radarsat-1 

 

 
Figure A-4. Descending Radarsat-1 spatial (top) and temporal (bottom) coverage over the study 

area. 
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Figure A-5. Ascending Radarsat-1 spatial (top) and temporal (bottom) coverages of the study area. 
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A.2.3 Radarsat-2 

 

 
Figure A-6. Descending Radarsat-1 spatial (top) and temporal (bottom) coverage of the study area. 
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Figure A-7. Ascending Radarsat-1 spatial (top) and temporal (bottom) coverage of the study area. 
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A.2.4. Sentinel-1 (2014 to Present) 

 

 
Figure A-8. Descending Sentinel-1 spatial (top) and temporal (bottom) coverages over the study 

area. 
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Figure A-9. Ascending Sentinel-1 spatial (top) and temporal (bottom) coverage over the study area. 
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A.3 L-BAND COVERAGES 

A.3.1. ALOS-1 (2006 to 2011) 

 

 
Figure A-10. Descending ALOS-1 spatial (top) and temporal (bottom) coverage over Whatcom 

County. 
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Figure A-11. Descending ALOS-1 spatial (top) and temporal (bottom) coverage over Whatcom 

County. 
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A.3.3.1 Snohomish to Pierce 

 

 
Figure A-12. Descending ALOS-1 spatial (top) and temporal (bottom) coverage over Snohomish, 

King and Pierce Counties. 
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Figure A-13. Ascending ALOS-1 spatial (top) and temporal (bottom) coverage over Snohomish, 

King and Pierce Counties. 
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A.3.2 ALOS-2 (2014 to Present) 

 

 
Figure A-14. Descending ALOS-2 spatial (top) and temporal (bottom) coverage over the study 

area. 
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Figure A-15. Ascending ALOS-2 spatial (top) and temporal (bottom) coverage over the study area. 

 


