AEO2025 Carbon Capture, Allocation, Transportation, and Sequestration (CCATS) Working Group Meeting

Office of Integrated and International Energy Analysis June 5, 2024


NEMS needs a new module to represent carbon capture

- Current National Energy Modelling System (NEMS) representation is the Capture, Transport, Utilization, and Storage Submodule (CTUS)
- CTUS is very difficult to update and maintain:
 - Code is distributed across multiple NEMS modules.
 - Sources of CO₂ supply are not modeled consistently.
 - CTUS does not model a centralized market.
 - CTUS is written in Fortran and GAMS.
- A new module is an opportunity for EIA to start from a blank slate, incorporating methods and data that were unavailable when CTUS was written.

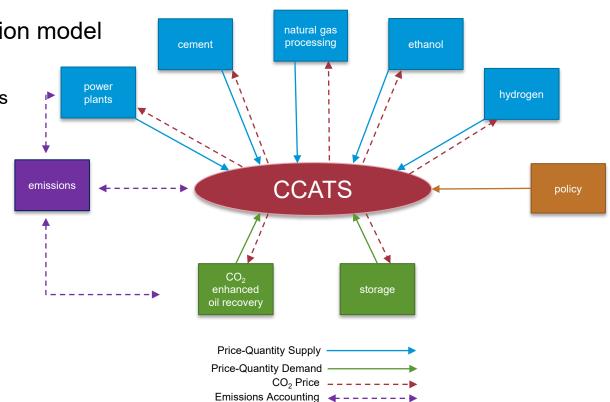
We will implement CCATS for AEO2025

- CCATS will include updated network, market, and policy representations.
- Optimization model based on endogenously produced CO₂ supplies:
 - Model results will include supply allocations and prices.
- CCATS is designed to be flexible and accommodate potential future changes.
- CCATS will be written in Python using the "pyomo" optimization library.

WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES, DO NOT QUOTE OR CITE 3 BECAUSE RESULTS ARE SUBJECT TO CHANGE

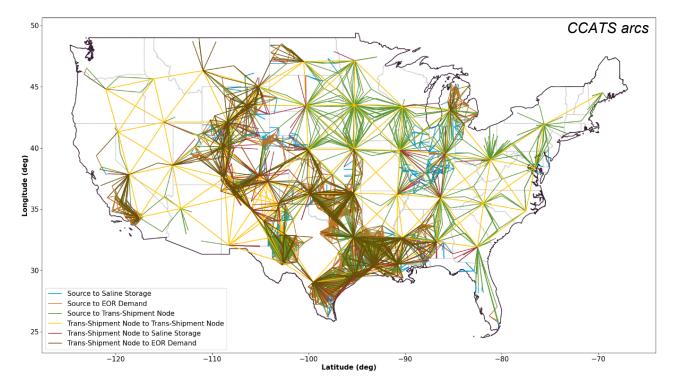
Market representation requirements

- Potentially economical sources of CO₂ supply with significant carbon capture potential
- CO₂ enhanced oil recovery (EOR) demand and CO₂ sequestration in saline formations
- CO₂ transportation with pipelines, including existing pipeline network
- 45Q tax credit
- Centralized optimization allocating CO₂ supply to demand, after assessing various costs and policy incentives


CCATS requires high-resolution data and assumptions

- CO₂ Sources: National Energy Technology Laboratory (NETL) Carbon Capture Retrofit Database
- Transportation: NETL CO₂ Transport Cost Model
- Existing Pipeline Infrastructure: Department of Transportation (DOT) National Pipeline Mapping System
- Storage: NETL Saline Storage Cost Model

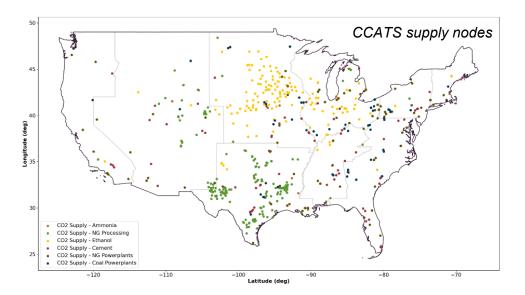
Model structure


- CCATS is an optimization model that projects:
 - CO₂ transportation flows
 - CO₂ EOR demand
 - CO₂ storage
 - CO₂ prices

WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES, DO NOT QUOTE OR CITE 6 BECAUSE RESULTS ARE SUBJECT TO CHANGE

CO₂ network

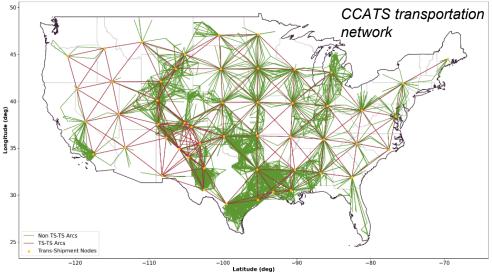
- Node types:
 - Supply
 - Trans-shipment
 - CO₂ EOR
 - Storage
- Arc types:
 - Existing
 - Potential



WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES, DO NOT QUOTE OR CITE 7 BECAUSE RESULTS ARE SUBJECT TO CHANGE

CO₂ supply representation

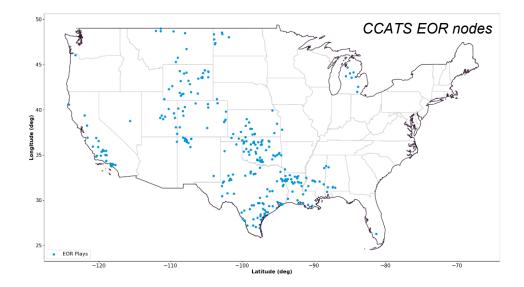
- CO₂ supply from NEMS is at a census-division level:
 - Too highly aggregated for CCATS to have meaningful results
- CCATS will disaggregate these volumes at point-source facilities:
 - Based on NETL CCRD Retrofit
 Database



WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES, DO NOT QUOTE OR CITE 8 BECAUSE RESULTS ARE SUBJECT TO CHANGE

CO₂ transportation

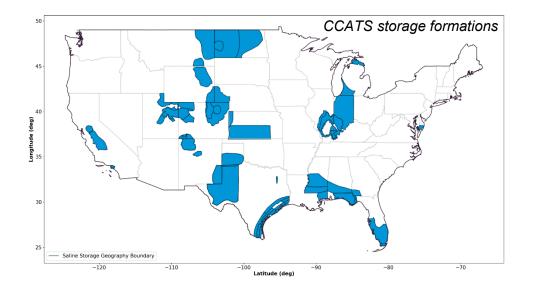
- By pipeline only
- New pipelines include different diameters and pumps:
 - Directly from supply to demand or sequestration (*spur*)
 - Pass through trans-shipment nodes (*trunk*)



WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES, DO NOT QUOTE OR CITE 9 BECAUSE RESULTS ARE SUBJECT TO CHANGE

CO₂ EOR representation

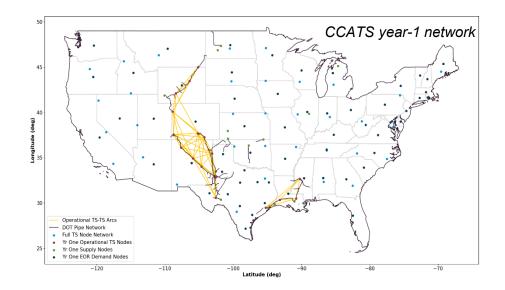
- CO₂ demand is limited to endogenous demand from the Hydrocarbon Supply Module (HSM).
- EOR is represented at the geological formation and county level.



working group presentation for discussion purposes, do not quote or cite 10 because results are subject to change

CO₂ storage representation

- Limited to onshore storage in the Lower 48 U.S. states
- Saline formations from the NETL Saline Storage Cost Model
- Excludes overlaying protected state and federal lands, and urban areas



WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES. DO NOT QUOTE OR CITE 11 BECAUSE RESULTS ARE SUBJECT TO CHANGE

Initial network for early model years

- Existing carbon capture facilities
- Existing pipeline network as trans-shipment nodes
- Existing CO₂ EOR demand at the state or Texas RRC level
- Existing CO₂ sequestration volumes assigned to closest saline formation

Policy representation

- 45Q tax credits as legislated in the Inflation Reduction Act:
 - CO_2 capture projects must begin construction by 2033 to qualify.
 - CO_2 capture projects must meet minimum CO_2 capture volume thresholds.
- CCATS is designed to be flexible to support future policy changes.

Model formulation

- Optimization problem solves for optimal CO₂ flows, transportation investment, and sequestration investment that minimizes total system costs:
 - Operations costs, investment costs, and policy incentives
- Constraints:
 - Transportation capacity (changing over time with investment)
 - Demand capacity
 - Sequestration capacity (changing over time with investment)

We expect to report results by census division

- CO₂ supply volumes
- CO₂ EOR demand volumes
- CO₂ sequestration volumes
- CO₂ prices

WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES. DO NOT QUOTE OR CITE 15 BECAUSE RESULTS ARE SUBJECT TO CHANGE

CCATS core team

- Anna Cororaton
- Will Sommer
- Kendyl Partridge
- Jeff Bennett
- Janea Dixon
- Estella Shi

anna.cororaton@eia.gov

william.sommer@eia.gov

kendyl.partridge@eia.gov

jeffrey.bennett@eia.gov

janea.dixon@eia.gov

estella.shi@eia.gov

For more information

U.S. Energy Information Administration home page | www.eia.gov

Annual Energy Outlook | www.eia.gov/aeo

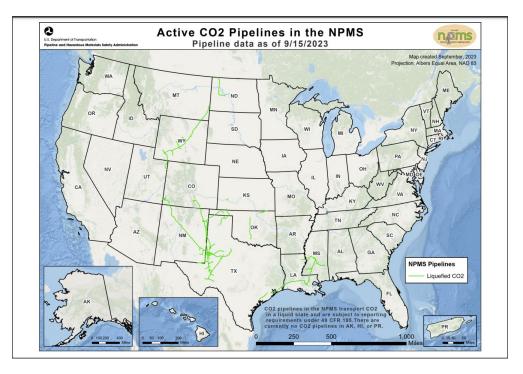
Short-Term Energy Outlook | <u>www.eia.gov/steo</u>

International Energy Outlook | www.eia.gov/ieo

Monthly Energy Review | www.eia.gov/mer

Today in Energy | www.eia.gov/todayinenergy

State Energy Profiles | <u>www.eia.gov/state</u>


Drilling Productivity Report | www.eia.gov/petroleum/drilling/

International Energy Portal | http://www.eia.gov/international/overview/world

Active CO2 Pipelines

WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES. DO NOT QUOTE OR CITE 19 BECAUSE RESULTS ARE SUBJECT TO CHANGE