AEO2015

Table 8.1. Cost and performance characteristics of new central station electricity generating technologies

						Contingency Factors					
				Base	Project	Techno-	Total	Variable	Fixed	Heatrate ⁶	
				Overnight	Contin-	logical	Overnight	O&M⁵	0&M	in 2014	nth-of-a-kind
	Online	Size	Lead time	Cost in 2014	gency	Optimism	Cost in 2014 ⁴	(2013	(2013 \$/	(Btu/	Heatrate
Technology	Year ¹	(MW)	(years)	(2013 \$/kW)	Factor ²	Factor ³	(2013 \$/kW)	\$/mWh)	kW/yr.)	kWh)	(Btu/kWh
Scrubbed Coal New	2018	1300	4	2,726	1.07	1.00	2,917	4.47	31.16	8,800	8,740
Coal-Gasification Integrated Comb											
Cycle (IGCC)	2018	1200	4	3,483	1.07	1.00	3,727	7.22	51.37	8,700	7,450
IGCC with Carbon sequestion	2018	520	4	5,891	1.07	1.03	6,492	8.44	72.80	10,700	8,307
Conv Gas/Oil Comb Cvcle	2017	620	3	869	1.05	1.00	912	3.60	13.16	7,050	6.800
Adv Gas/Oil Comb Cycle (CC)	2017	400	3	942	1.08	1.00	1,017	3.27	15.36	6,430	6,333
Adv CC with Carbon sequestration	2017	340	3	1,845	1.08	1.04	2,072	6.78	31.77	7,525	7,493
Conv Comb Turbine ⁸	2016	85	2	922	1.05	1.00	968	15.44	7.34	10,783	10,450
Adv Comb Turbine	2016	210	2	639	1.05	1.00	671	10.37	7.04	9,750	8,550
Fuel Cells	2017	10	3	6,042	1.05	1.10	6,978	42.97	0.00	9,500	6,960
Adv Nuclear	2022	2234	6	4,646	1.10	1.05	5,366	2.14	93.23	10,479	10,479
Distributed Generation-Base	2017	2	3	1,407	1.05	1.00	1,477	7.75	17.44	9,015	8,900
Distributed Generation - Peak	2016	1	2	1,689	1.05	1.00	1,774	7.75	17.44	10,015	9,880
Biomass	2018	50	4	3,399	1.07	1.01	3,659	5.26	105.58	13,500	13,500
Geothermal ^{7,9}	2018	50	4	2,331	1.05	1.00	2,448	0.00	112.85	9,516	9,516
Municipal Solid Waste											
Conventional	2017	50	3	7,730	1.07	1.00	8,271	8.74	392.60	14,878	18,000
Hydropower ⁹	2018	500	4	2,410	1.10	1.00	2,651	5.76	15.15	9,516	9,516
Wind	2017	100	3	1,850	1.07	1.00	1,980	0.00	39.53	9,516	9,516
Wind Offshore	2018	400	4	4,476	1.10	1.25	6,154	0.00	73.96	9,516	9,516
Solar Thermal ⁷	2017	100	3	3,787	1.07	1.00	4,052	0.00	67.23	9,516	9,516
Photovoltaic ^{7,10}	2016	150	2	3,123	1.05	1.00	3,279	0.00	24.68	9,516	9,516

¹Online year represents the first year that a new unit could be completed, given an order date of 2014.

²A contingency allowance is defined by the American Association of Cost Engineers as the "specific provision for unforeseeable elements of costs within a defined project scope; particularly important where previous experience has shown that unforeseeable events which will increase costs are likely to occur."

³The technological optimism factor is applied to the first four units of a new, unproven design; it reflects the demonstrated tendency to underestimate actual costs for a first-of-a-kind unit.

⁴Overnight capital cost including contingency factors, excluding regional multipliers and learning effects. Interest charges are also excluded. These represent costs of new projects initiated in 2014.

⁵O&M = Operations and maintenance.

⁶For hydro, wind, solar and geothermal technologies, the heat rate shown represents the average heat rate for conventional thermal generation as of 2013. This is used for purposes of calculating primary energy consumption displaced for these resources, and does not imply an estimate of their actual energy conversion efficiency.

⁷Capital costs are shown before investment tax credits are applied.

⁸Combustion turbine units can be built by the model prior to 2016 if necessary to meet a given region's reserve margin.

⁹Because geothermal and hydro cost and performance characteristics are specific for each site, the table entries represent the cost of the least expensive plant that could be built in the Northwest Power Pool region, where most of the proposed sites are located.

¹⁰Costs and capacities are expressed in terms of net AC power available to the grid for the installed capacity.

Sources: For the AEO2015 cycle, EIA continues to use the previously developed cost estimates for utility-scale electric generating plants, updated by external consultants for AEO2013. This report can be found at http://www.eia.gov/forecasts/capitalcost/. The costs were assumed to be consistent with plants that would be ordered in 2012, and learning from capacity built in 2012 and 2013 has been applied in the initial costs above. Wind capital costs were updated for AEO2015 using recent reports from trade press and reports from Lawrence Berkeley National Laboratory. Site-specific costs for geothermal were provided by the National Renewable Energy Laboratory, "Updated U.S. Geothermal Supply Curve," February 2010.