Isabel Gödl-Hanisch

Department of Economics, University of Notre Dame

 $\frac{\text{local HHI or}}{\text{local HHI or}}$ \bullet Different demand elasticities in local markets

-
- s_t monetary surprise (Nakamura and Steinsson, 2018) Market power channel
- Capital allocation channel $Z_{t,c}$ controls for national and local economic conditions Regional Giant Share
	-

Motivation Empirical Model Quantitative Model

-
-

$$
\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}
$$

$$
L_i^c,
$$

Bank Concentration and Monetary Policy Pass-Through $\left[\frac{1}{2}\right]$ **NOTRE DAME**

• **Rise in U.S. bank concentration** Local projections: Credit and Banking New Keynesian Model (Gerali et al., 2010)

- Average local Herfindahl-Hirschman Index (HHI) increased from 15% to 26% $r_{t+h,i,c} r_{t-1,i,c} = \frac{h}{i} + \frac{h_{S_t}}{s_t + \frac{h_{S_t}}{s_t}} \times \mathbf{X_{t,i,c}} + \theta^h \mathbf{X_{t,i,c}} + \eta^h$
- Asset share of giant banks increased from 10% to 60% during the same time
- **Research question:** How does the rise in bank concentration $\mathbf{X}_{t,i,c}$ county-level HHI, bank capital to assets ratio **Size-dependent bank capital requirements** alter monetary transmission? Bank types
-
-
- **Matters for:** Effectiveness of monetary policy, financial stability, •• Pass-through: $h + h(\bar{m}^X \pm 2sd^X)$ distributional effects

-
- Cross-sectional pass-through of monetary shocks to loan rates
- Contribution of local bank concentration and capitalization
- ² Uses theoretical model to rationalize empirical fndings • Accounts for differences across banks and branches
-
- ³ Uses quantitative model to assess macroeconomic impact
- Embeds theoretical model into New Keynesian model
• Quantifies change in transmission due to rising bank concentration
• Quantifies change in transmission due to rising bank concentration
-

Figure: IQR of 1-year hybrid ARM across surveyed branches and federal funds rate

-
- 50 b.p. higher for branches in high vs. low concentration markets **Rate Dispersion and Spreads** • 25 b.p. higher for banks with low vs. high capital ratios

•Amplifes pass-through to loan rates and transmission to lending \bullet Amplifies transmission to output; dampens effect on inflation

• Decrease in share of low-concentration markets (m) and regional banks (m) • Quantify change in transmission due to rising bank concentration • Calibration of banking sector to 1994 vs. 2019, accounting for: • Increase in markups (ϵ) and bank capital ratios (ν^b) over time

• Explicit modeling of bank market power and capital ratios Figure: Loan rate responses to ^a monetary shock for high/low state

- Average IQR across *banks* in the same market: 1.03 p.p.
- •Average IQR across *branches* of the same bank: 0.32 p.p.
-

Theoretical Model

$$
\max \Pi_i^c = r_i^{l,c} L_i^c(r_i^{l,c}) + r^f R_i^c - r_i^d D_i^c(r_i^{d,c})
$$

$$
\begin{aligned} \overline{\epsilon^{l,c}}\,,\bar{r}^{l,c},\bar{L}^{c})\\,\epsilon^{d,c},\bar{r}^{d,c},\bar{D}^{d})\\=D_{i}^{c}+K_{i}^{b,c} \end{aligned}
$$

-
-
-

Counterfactual: Rise in Bank Concentration

-
-
- Leads to a fattening of the Phillips curve

s.t.
\n**6** Bank capital requirement:
$$
K_i^{b,c} \geq \underbrace{\overbrace{\nu_i^b}}_{\text{location-specific}}
$$
 L_i^c ,
\n**8** Local loan demand: $L_i^c = f(r_i^{l,c}, e_i^{l,c}, \overline{r}^{l,c}, \overline{r}^{l,c}, \overline{r}^{l,c})$

s Local deposit supply: $D_i^c = f(r_i^{\prime}, \epsilon^{\omega, c},$ $i^{c} + R_{i}^{c} = D_{i}^{c}$

-
-
-
-
-

Contact Information

 $h + h(\bar{m}^X \pm 2sd^X)$
 $\stackrel{\leftrightarrow}{\cong} \frac{1}{2}$ Low $r_t^{l,r} = \frac{\epsilon^l}{\epsilon^l-1} R_t^r$ $r_t^{l,g} = \frac{\epsilon^l}{\epsilon^l-1} R_t^g$ $\left(1-\frac{b}{c}\right)$ + heterogeneity in banking sector along two dimensions: $l,r \;=\; \frac{\epsilon^l}{\epsilon} \; R^r \quad r^{l,g} \;=\; \frac{\epsilon^l}{\epsilon}$ $\frac{\epsilon^l}{\epsilon^l-1}R_t^r$ $r_t^{l,g} = 0$ $\frac{d}{dt}r^r = \frac{\epsilon^l}{\epsilon^l - 1}R_t^r$ $r_t^{l,g} = \frac{\epsilon^l}{\epsilon^l - 1}R_t^g$ m $h,r \;=\; \frac{\epsilon^h}{\epsilon} \; R^r \; \; r^{h,g} \;=\; \frac{\epsilon^h}{\epsilon}$ $\text{High} \ \ r_t^{h,r} = \frac{\epsilon^h}{\epsilon^h - 1} R_t^r \ r_t^{h,g} = \frac{\epsilon^h}{\epsilon^h - 1} R_t^g$ $\frac{g}{t}(1 - m)$

 \bullet $R_t^{r,g}$ depends on $\nu^b,$ calibrated to capital ratio by bank size

$$
\frac{dr_i^{l,c}}{dr^f} = \frac{\epsilon^{l,c}}{\frac{(\epsilon^{l,c}-1)}{\epsilon^{l,c}-1}} + \frac{\epsilon^{l,c}}{(\epsilon^{l,c}-1)} \underbrace{\nu_i^b \frac{d\phi_i}{dr^f}}_{capital\ allocation} \n\frac{channel}{channel}
$$

- Dispersion and spreads higher in times of low rates Pass-through varies across banks due to differences in ν_i^b • Pass-through varies across locations due to differences in $\epsilon^{l,c}$
	-