
OpenWF Composition 1.0 API Quick Reference Card

http://www.khronos.org/openwf/© 2010 Khronos Group

Device - A WFCDevice[3] is an abstract device that is capable of

performing composition operations, typically a unit of graphics hardware.
Devices can vary in their support for specific input and output formats.

Device Attributes [4.1] of type WFCDeviceAttrib

Device Class [4.1.1] of type WFCDeviceClass

WFCint wfcEnumerateDevices(WFCint *deviceIds,
WFCint deviceIdsCount, const WFCint *filterList)

Populate a list of available devices with respect to the filter-list (could be WFC_NONE).

WFCDevice wfcCreateDevice(WFCint deviceId,
const WFCint *attribList)

Create a device with a known ID - could use WFC_DEFAULT_DEVICE_ID.

WFCint wfcGetDeviceAttribi(WFCDevice dev,
WFCDeviceAttrib attrib)

Retrieve capabilities for a specific device.

WFCErrorCode wfcDestroyDevice(WFCDevice dev)
Delete a specific device.

OpenWF Composition® is a standardized API for compositing and
serves as a low-level interface for two-dimensional composition
used in embedded and/or mobile devices. Target users are
windowing systems, system integrators etc. The API is
implementable on top of a wide range of hardware.
The header file to include is <WF/wfc.h>

• [n.n.n] refers to the section in the API Specification available at
www.khronos.org/openwf/.

• Blue are datatypes defined in the WFC spec.

• (r/w) – read/writable (r) – read only

• Brown are constant values defined in the WFC spec.

• Italic are parameter names in function declarations

Context - A WFCContext[5] stands for a visual scene description applied

to either an on-screen or off-screen target. It represents the state required
for a device to be used for composition of a scene. A scene consists of a
stack of Elements, added on top of WFC_CONTEXT_LOWEST_ELEMENT.

(See Element Ordering.). A Context is permanently bound to a target.

Context Attributes [5.1] of type WFCContextAttrib

Context type [5.1.1] of type WFCContextType

Rotation [5.1.4] – also used for element rotation

Context Creation and Destruction [5.1], [5.3] and [5.7]

WFCContext wfcCreateOnScreenContext(WFCDevice dev,
WFCint screenNumber, const WFCint *attribList)

WFCContext wfcCreateOffScreenContext(WFCDevice dev,
WFCNativeStreamType stream, const WFCint *attribList)

The offscreen context requires a stream to render into.

void wfcDestroyContext(WFCDevice dev, WFCContext ctx)

Commit Context Attribute Changes [5.4]

void wfcCommit(WFCDevice dev, WFCContext ctx, WFCboolean wait)
NOTE -Changes in attributes will take effect when calling wfcCommit.

Query Context Attributes [5.5] – single value / vector of values

WFCint wfcGetContextAttribi(WFCDevice dev, WFCContext ctx,
WFCContextAttrib attrib)

void wfcGetContextAttribfv(WFCDevice dev, WFCContext ctx,
WFCContextAttrib attrib, WFCint count, WFCfloat *values)

Set Context Attributes [5.6] – single value / vector of values

void wfcSetContextAttribi(WFCDevice dev, WFCContext ctx,
WFCContextAttrib attrib, WFCint value)

void wfcSetContextAttribfv(WFCDevice dev, WFCContext ctx,
WFCContextAttrib attrib, WFCint count, const WFCfloat *values)

WFC_CONTEXT_TYPE (r) On-screen or off-screen

WFC_CONTEXT_TARGET_HEIGHT (r) Size of the destination in pixels

WFC_CONTEXT_TARGET_WIDTH (r) Size of the destination in pixels

WFC_CONTEXT_LOWEST_ELEMENT (r) Reference to bottom element

WFC_CONTEXT_ROTATION (r/w) Rotation from src to dest

WFC_CONTEXT_BG_COLOR (r/w) RGBA vector – 0 ≤ value ≤ 1

WFC_CONTEXT_TYPE_ON_SCREEN
WFC_CONTEXT_TYPE_OFF_SCREEN

WFC_ROTATION_0 No rotation

WFC_ROTATION_90 Rotate 90 degrees clockwise

WFC_ROTATION_180 Rotate 180 degrees clockwise

WFC_ROTATION_270 Rotate 270 degrees clockwise

WFC_DEVICE_CLASS (r) - supports on-screen or not.

WFC_DEVICE_ID (r) – the ID of the device – could be
WFC_DEFAULT_DEVICE_ID

WFC_DEVICE_CLASS_FULLY_CAPABLE Support both on- and off-
screen rendering

WFC_DEVICE_CLASS_OFF_SCREEN_ONLY No on-screen compositing

Errors [2.11] – of type WFCErrorCode

Errors codes and their numerical values are defined by the
WFCErrorCode enumeration could be retrived by the following
function:
WFCErrorCode wfcGetError(WFCDevice dev).
The possible values are as follows:

Functions that returns handles could return the following error:

WFC_INVALID_HANDLE [2.6]

WFC_ERROR_NONE WFC_ERROR_OUT_OF_MEMORY
WFC_ERROR_ILLEGAL_ARGUMENT WFC_ERROR_UNSUPPORTED
WFC_ERROR_BAD_ATTRIBUT E WFC_ERROR_IN_USE
WFC_ERROR_BUSY WFC_ERROR_BAD_DEVICE
WFC_ERROR_BAD_HANDLE WFC_ERROR_INCONSISTENCY

Src3 MMI

Src1
Camera Src2

Video Src4
G

rap
h

ic

Src3 MMI

Src1
Camera Src1 α

Src2
Video

Src2
Mask

Src4
3D Graphics

with α channel

Image Providers
Context - draw area - off-screen or on-

screen

Destination
Rectangles

Source
Rectangle

Device
Device

Device

Source
Mask

Global
Alpha

Image with
Alpha

Channel

Scene - layout of
the transformed
images in the
context

http://www.khronos.org/openwf/

OpenWF Composition 1.0 API Quick Reference Card

The Khronos Group is an industry consortium creating open standards for

authoring and acceleration of parallell computing. Graphics and dynamic media on

a wide variety of platforms and devices.

See www.khronos.org/openwf to learn more about the Khronos Group. And

OpenWF

© 2010 Khronos Group http://www.khronos.org/openwf/

Image Providers - input to composition.

No valid attributes defined in the spec.

Source inputs [6.1] - WFCSource image data – could contain alpha
WFCSource wfcCreateSourceFromStream (WFCDevice dev,

WFCContext ctx, WFCNativeStreamType stream,
const WFCint *attribList)

void wfcDestroySource(WFCDevice dev, WFCSource src)

Mask inputs [6.2] - WFCMask per-pixel opacity data
WFCMask wfcCreateMaskFromStream(WFCDevice dev,

WFCContext ctx, WFCNativeStreamType stream,
const WFCint *attribList)

void wfcDestroyMask(WFCDevice dev, WFCMask mask)

Composition Elements [7] – of type WFCElement

A scene consists of zero or more Elements stacked over a background plane.
Composition is equivalent to blending each Element on top of the destination buffer
according to the relative ordering of the Elements with respect to alpha or mask
(WFCTransperencyType) . The result of composition is a 2D image. The source data,
that is content of source rectangle, is transformed to match destination rectangle
with respect to color format and size (using

WFC_ELEMENT_SOURCE_SCALE_FILTER).

WFCElementAttrib [7.1]

WFCScaleFilter [7.1.6]

WFCTransparencyType [7.1.7] - bitfield

Only the following combinations of transparency are possible:
• WFC_TRANSPARENCY_ELEMENT_GLOBAL_ALPHA | WFC_TRANSPARENCY_SOURCE
• WFC_TRANSPARENCY_ELEMENT_GLOBAL_ALPHA | WFC_TRANSPARENCY_MASK

Attribute Creation and Destruction [7.1] and [7.6]

WFCElement wfcCreateElement(WFCDevice dev, WFCContext ctx,
const WFCint *attribList)

void wfcDestroyElement(WFCDevice dev, WFCElement element)

Querying Element Attributes [7.3] single value / vector of values

WFCint wfcGetElementAttribi(WFCDevice dev, WFCElement element,
WFCElementAttrib attrib)

WFCfloat wfcGetElementAttribf(WFCDevice dev,
WFCElement element, WFCElementAttrib attrib)

void wfcGetElementAttribiv(WFCDevice dev, WFCElement element,
WFCElementAttrib attrib, WFCint count, WFCint *values)

void wfcGetElementAttribfv(WFCDevice dev, WFCElement element,
WFCElementAttrib attrib, WFCint count, WFCfloat *values)

Setting Element Attributes [7.4] single value / vector of values

void wfcSetElementAttribi(WFCDevice dev, WFCElement element,
WFCElementAttrib attrib, WFCint value)

void wfcSetElementAttribf(WFCDevice dev, WFCElement element,
WFCElementAttrib attrib, WFCfloat value)

void wfcSetElementAttribiv(WFCDevice dev, WFCElement element,
WFCElementAttrib attrib, WFCint count, const WFCint *values)

void wfcSetElementAttribfv(WFCDevice dev, WFCElement element,
WFCElementAttrib attrib, WFCint count, const WFCfloat *values)

Element Ordering [7.5] – layering of images in the scene graph

wfcInsertElement() with a subordinate of WFC_INVALID_HANDLE inserts the
element at the bottom of the scene

void wfcInsertElement(WFCDevice dev, WFCElement element,
WFCElement subordinate)

void wfcRemoveElement(WFCDevice dev, WFCElement element)

WFCElement wfcGetElementAbove(WFCDevice dev,
WFCElement element)

WFCElement wfcGetElementBelow(WFCDevice dev,
WFCElement element)

Rendering [8] – Note context inactive when created.

User driven compositing – call wfcCompose for every frame to render.

void wfcCompose(WFCDevice dev, WFCContext ctx, WFCboolean wait)

Autonomous compositing – implementation decides when rendering is needed when
context is active.

void wfcActivate(WFCDevice dev, WFCContext ctx)

void wfcDeactivate(WFCDevice dev, WFCContext ctx)

Renderer and extension information [10]

WFCint wfcGetStrings(WFCDevice dev, WFCStringID name,
const char **strings, WFCint stringsCount)

WFCboolean wfcIsExtensionSupported(WFCDevice dev,
const char *string)

WFC_ELEMENT_DESTINATION_
RECTANGLE

(r/w) Placement of transformed image
in context coordinates

WFC_ELEMENT_SOURCE (r/w) Handle to image provider

WFC_ELEMENT_SOURCE_RECTANGLE (r/w) Sub area in source coordinates

WFC_ELEMENT_SOURCE_FLIP (r/w) Flipping the source or not

WFC_ELEMENT_SOURCE_ROTATION (r/w) Rotation in 90 degrees angles

WFC_ELEMENT_SOURCE_SCALE_FILTER (r/w) Quality of scaling

WFC_ELEMENT_TRANSPARENCY_TYPES (r/w) Blending type for this element

WFC_ELEMENT_GLOBAL_ALPHA (r/w) Apply global alpha

WFC_ELEMENT_MASK (r/w) Handle to mask source

Synchronization [9] – compositing and other EGL client APIs

could be synchronized using EGLSyncObjects
void wfcFence(WFCDevice dev, WFCContext ctx,

WFCEGLDisplay dpy, WFCEGLSync sync)

WFC_SCALE_FILTER_NONE Nearest-neighbor replication (required)

WFC_SCALE_FILTER_FASTER Low resource requirements (optional)

WFC_SCALE_FILTER_BETTER High quality filtering (optional)

WFC_TRANSPARENCY_NONE 0 (default)

WFC_TRANSPARENCY_ELEMENT_GLOBAL_ALPHA (1 << 0)

WFC_TRANSPARENCY_SOURCE (1 << 1)

WFC_TRANSPARENCY_MASK (1 << 2)

http://www.khronos.org/openwf

