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Abstract 59 

A large fraction of monogenic disorders causes craniofacial abnormalities with 60 

characteristic facial morphology. These disorders can be diagnosed more efficiently 61 

with the support of computer-aided next-generation phenotyping tools, such as 62 

DeepGestalt. These tools have learned to associate facial phenotypes with the 63 

underlying syndrome through training on thousands of patient photographs. However, 64 

this “supervised” approach means that diagnoses are only possible if the disorder was 65 

part of the training set. To improve recognition of ultra-rare disorders, we created 66 

GestaltMatcher, which uses a deep convolutional neural network based on the 67 

DeepGestalt framework. We used photographs of 17,560 patients with 1,115 rare 68 

disorders to define a “Clinical Face Phenotype Space”. Distance between cases in the 69 

phenotype space defines syndromic similarity, allowing test patients to be matched to 70 

a molecular diagnosis even when the disorder was not included in the training set. 71 

Similarities among patients with previously unknown disease genes can also be 72 

detected. Therefore, in concert with mutation data, GestaltMatcher could accelerate 73 

the clinical diagnosis of patients with ultra-rare disorders and facial dysmorphism, as 74 

well as enable the delineation of novel phenotypes.  75 
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Introduction 76 

Rare genetic disorders affect more than 6.2% of the global population1. Because 77 

genetic disorders are rare and diverse, accurate clinical diagnosis is a time-consuming 78 

and challenging process, often referred to as the “diagnostic odyssey,2” and all 79 

informative clinical features have to be taken into consideration. A large fraction of 80 

patients, particularly those with neurodevelopmental disorders, exhibits craniofacial 81 

abnormalities3. If the facial phenotype (“gestalt”) is highly recognizable, such as in 82 

Down syndrome, it may also play an important role in establishing the diagnosis. 83 

Sometimes the gestalt is so characteristic or distinct that it reduces the search space 84 

of candidate genes or can be used to delineate novel phenotype-gene associations4. 85 

However, the ability to recognize these syndromic disorders relies heavily on the 86 

clinician’s experience. Reaching a diagnosis is very challenging if the clinician has not 87 

previously seen a patient with an ultra-rare disorder or if the patient presents with a 88 

novel disorder, both of which are increasingly common scenarios.  89 

With the rapid development of machine learning and computer vision, a considerable 90 

number of next-generation phenotyping tools have emerged that can analyze facial 91 

dysmorphology using two-dimensional (2D) portraits of patients5–13. These tools can 92 

aid in the diagnosis of patients with facial dysmorphism by matching their facial 93 

phenotype with that of known disorders. In 2014, Ferry et al. proposed using a Clinical 94 

Face Phenotype Space (CFPS) formed by facial features extracted from images to 95 

perform syndrome classification; the system in that study was trained on photos of 96 

more than 1,500 controls and 1,300 patients with eight different syndromes5. Since 97 

then, facial recognition technologies have improved significantly and constitute the 98 

core of the deep-learning revolution in computer vision14,15. The current state-of-the-art 99 

framework for syndrome classification, DeepGestalt (Face2Gene, FDNA inc, USA), 100 

has been trained on more than 20,000 patients and currently achieves high accuracy 101 
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in identifying the correct syndrome for roughly 300 syndromes12,16. DeepGestalt has 102 

also demonstrated a strong ability to separate specific syndromes and subtypes, 103 

surpassing human experts’ performance12. Hence, pediatricians and geneticists 104 

increasingly use such next-generation phenotyping tools for differential diagnostics in 105 

patients with facial dysmorphism. However, most existing tools, including DeepGestalt, 106 

need to be trained on large numbers of photographs, and are therefore limited to 107 

syndromes with at least seven images of different patients. The number of submissions 108 

to diagnostic databases of pathogenic variants, such as ClinVar17, has become a good 109 

surrogate for the prevalence of rare disorders. When submissions to ClinVar of disease 110 

genes with pathogenic mutations are plotted in decreasing order, most of the 111 

supported syndromes are on the left, indicating relatively high prevalence (Figure 1). 112 

For instance, Cornelia de Lange syndrome (CdLS), which has been modeled by 113 

multiple tools5,12, is caused by mutations in NIPBL, SMC1A, or HDAC8, as well as other 114 

genes, and has been linked to hundreds of reported mutations. However, more than 115 

half of the genes in ClinVar have fewer than ten submissions each (Figure 1). As a 116 

result, most phenotypes have not been modeled because sufficient data are lacking. 117 

Thus, the need to train on large numbers of photographs is a major limitation for the 118 

identification of ultra-rare syndromes. 119 

A second limitation of classifiers such as DeepGestalt is that their end-to-end, offline-120 

trained architecture does not support new syndromes without additional modifications. 121 

In order to model a new syndrome in a deep convolutional neural network (DCNN), the 122 

developer has to go through six separate steps (Supplementary Figure 1), including 123 

collecting images of the new syndrome; changing the classification head, which is the 124 

last layer of the DCNN; retraining the network; and more. In addition, the model cannot 125 

be used to quantify similarities among undiagnosed patients, which is crucial in the 126 

delineation of novel syndromes. 127 
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A third shortcoming of current approaches is that they are not able to contribute to the 128 

longstanding discussion within the nosology of genetic diseases about 129 

distinguishability. Syndromic differences have been hard to measure objectively18, and 130 

decisions to “split” syndromes into separate entities on the basis of perceived 131 

differences or to “lump” syndromes together on the basis of similarities have been 132 

made subjectively. Current tools are unable to quantify the similarities between 133 

syndromes in a way that could shed light on the underlying molecular mechanisms and 134 

guide classification. 135 

Our objective is to improve phenotypic decision support for rare disorders. Here we 136 

describe GestaltMatcher, an innovative approach that uses an image encoder to 137 

convert all features of a facial image into a vector of numbers. The encoder can also 138 

be thought of as the penultimate layer of a DCNN that was trained on known 139 

syndromes, such as DeepGestalt. The vectors resulting from the encoder are then 140 

used to build a CFPS for matching a patient’s photo to a gallery of portraits of solved 141 

or unsolved cases. The distance between cases in the CFPS quantifies the similarities 142 

between the faces, thereby matching patients with known syndromes or identifying 143 

similarities between multiple patients with unknown disorders and thereby helping to 144 

define new syndromes. Because GestaltMatcher quantifies similarities between faces 145 

in this way, it addresses all three of the limitations described above: (1) it can identify 146 

“closest matches” among patients with known or unknown disorders, regardless of 147 

prevalence; (2) it does not need new architecture or training to incorporate new 148 

syndromes; and (3) it creates a search space to explore similarity of facial gestalts 149 

based on mutation data, which can point to shared molecular pathways of 150 

phenotypically similar disorders. 151 

Results 152 
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The feature encoder of GestaltMatcher computes a Facial Phenotypic Descriptor (FPD) 153 

for each portrait image (Figure 2a). Each FPD can be thought of as one coordinate in 154 

the CFPS (Figure 2b). The distances between the FPDs in the CFPS form the basis 155 

for syndrome classification, delineation of novel phenotypes, and patient clustering. 156 

The performance for all three of these use cases depends on the composition of the 157 

training set and the gallery. All benchmarking results described in this section, as well 158 

as those available through the web service, are based on data from Face2Gene (F2G). 159 

The F2G dataset was used to construct a CFPS consisting of 26,065 images from 160 

17,502 subjects who had been diagnosed with a total of 1,115 different syndromes, 161 

each supported by at least two cases. We divided the dataset into two categories, the 162 

rare dataset consisting of 816 ultra-rare and novel syndromes, representing 163 

syndromes that we aim to identify, and the frequent set, consisting of 299 syndromes 164 

already identified by DeepGestalt. The latter set of known syndromes was also used 165 

to train the encoder. Each category was further split into a gallery (90% of each 166 

syndrome) and a test set (the remaining 10% of each syndrome) (see the Online 167 

methods for details).  168 

Since F2G data cannot be shared, we compiled the GestaltMatcher database (GMDB), 169 

consisting of 4,306 images from 3,693 subjects with 257 different syndromes. This 170 

second data set is based on 902 publications, and further cases for which we obtained 171 

consent for sharing. All findings described in this section that are based on the F2G 172 

data can be reproduced qualitatively on the GMDB data and are listed in the 173 

Supplemental Material. 174 

Training on images of dysmorphism improves the performance of the FPD 175 

To investigate the importance of using a syndromic features encoder rather than a 176 

normal facial features encoder, we compared FPDs that are based on the same 177 

architecture, but trained on different data. The first encoder, which we refer to as Enc-178 
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healthy, was only trained on data from healthy individuals in CASIA-WebFace19. The 179 

second encoder, which we refer to as Enc-F2G (for Face2Gene), was first trained on 180 

the faces of healthy subjects and then fine-tuned by training on dysmorphic faces from 181 

the gallery of patients with frequent syndromes. All images were encoded separately 182 

for each encoder. We then evaluated the performance of the encoders on test sets of 183 

syndromes from the frequent set and from the rare set. The performance metric was 184 

the percentage of test cases (with known diagnosis) for which an FPD with the 185 

matching disorder was within the k closest diagnoses in the CFPS (the top-k accuracy). 186 

The features created by Enc-F2G performed better in the matching process than those 187 

created with Enc-healthy (Table 1). This emphasizes the importance of training the 188 

encoder on data from faces with dysmorphic phenotypes and not only on healthy faces. 189 

The features created by Enc-F2G improved the accuracy of matching within the top-190 

10 closest images from 31.46% to 49.12% for the frequent category. Furthermore, the 191 

top-10 accuracy improved from 21.77% to 29.56% for the rare syndromes, which do 192 

not overlap with the frequent syndromes. The larger relative improvement of 56% on 193 

the frequent test set versus 36% for the rare set could possibly be explained as Enc-194 

F2G being better suited to encode syndromes of the frequent set because it was 195 

previously trained on these disorders. Likewise, for some of the 816 novel disorders, 196 

the characteristic features were not yet optimally represented by Enc-F2G because 197 

features of these disorders were not part of the training set.  198 

The same trend of improvement by fine-tuning on a diverse but smaller set of 199 

syndromic photos is also seen on the public GMDB dataset (Enc-GMDB vs Enc-F2G 200 

in Supplementary Table 1). These results suggest that an encoder that is fine-tuned 201 

on as many syndromic faces as possible, such as DeepGestalt, is a better fit for the 202 

task of syndrome classification than one trained only on healthy faces. Moreover, 203 

DeepGestalt’s FPD provides a better generalization or clustering than the FPD 204 

encoded by CASIA for rare syndromes that it had not previously seen. 205 
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Syndromic diversity improves the performance on novel disorders 206 

Earlier definitions of the FPD were mainly based on training a network with a small 207 

selection of common and highly characteristic syndromes5,9. In principle, we could train 208 

GestaltMatcher’s encoder on all 1,115 different syndromes in our dataset. However, 209 

most of the facial phenotypes that have recently been linked to a gene are either ultra-210 

rare or less distinctive, and using a very unbalanced training set with many ultra-rare 211 

disorders linked to only few cases may add noise without substantial additional benefit. 212 

We therefore analyzed the influence of the number of syndromes on the encoder’s 213 

fine-tuning by incrementally increasing their number starting with the most frequent 214 

ones. Due to the imbalance among the disorders added each time, the improvement 215 

could be affected by the additional number of training subjects. Therefore, we used the 216 

same number of subjects for each syndrome. In this section, the test set consists only 217 

of disorders from the rare set that the encoder has not seen. The training procedure 218 

and averaging of the readout is described in detail in the Online methods.  219 

When we increase the number of training syndromes, the accuracy increases (Figure 220 

3). In general, the performance is also higher when more individuals per syndrome are 221 

used for training. Particularly when more than 50 syndromes are used, the curve for 222 

training with 20 subjects/syndrome is above the curve for 10 subjects/syndrome, and 223 

so on. The same trend is also shown in the public GMDB dataset (Supplementary 224 

Figures 2 and 3). 225 

Moreover, double the number of syndromes is better than double the number of 226 

subjects in most of the combinations (Supplementary Figure 4). The effect of doubling 227 

the number of syndromes used for training is greater when the base sample size is 228 

larger than 1200 subjects (Supplementary Figures 5 and 6). Therefore, both of the 229 

findings suggest that increasing the syndromic diversity in the training set improves the 230 

performance on novel disorders. 231 
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Top-10 accuracy plateaus when encoders are fine-tuned on more than 150 232 

syndromes 233 

In the previous section, we analyzed the impact of syndromic diversity in a balanced 234 

setting, that is, the dynamics of increasing the number of syndromes while keeping the 235 

size of the increments (the number of added subjects) equal. In this section we analyze 236 

the influence of the number of syndromes on model training in the real-world scenario; 237 

that is, when using all of the subjects per syndrome (Supplementary Figure 7). The 238 

top-10 accuracy improved considerably until about 150 syndromes, representing 239 

roughly 90% of the subjects in the entire training set. Almost doubling the number of 240 

syndromes to 299 with the remaining 10% of subjects only increases the performance 241 

marginally. From these dynamics, we can conclude that including additional 242 

syndromes beyond 299 for defining the FPD will provide little benefit, and we decided 243 

to proceed with the Enc-F2G encoder in the following section that is based on the 299 244 

syndromes described in the original DeepGestalt paper. 245 

Performance comparison between GestaltMatcher and DeepGestalt 246 

To validate the GestaltMatcher approach, we first worked with the 323 images of 247 

patients with 91 syndromes from the London Medical Database (LMD)20 that were 248 

already used for benchmarking the performance of DeepGestalt12. When using the 249 

frequent gallery, which contains syndromes that DeepGestalt currently supports, 250 

GestaltMatcher achieved 64.30% and 86.59% accuracy within the top-10 and top-30 251 

ranks, respectively, which was lower than the 81.28% top-10 accuracy and 88.34% 252 

top-30 accuracy achieved by DeepGestalt with a Enc-F2G softmax approach 253 

(Supplementary Table 2 and 3). However, when we used the gallery of all 1,115 254 

syndromes for GestaltMatcher (frequent + rare) which is a search space that is roughly 255 

four times larger, the top-10 and top-30 dropped by only 2.40 percentage points and 256 

5.17 percentage points, respectively (Supplementary Table 2). Moreover, we 257 
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performed the same evaluation on the F2G-frequent test set and GMDB-frequent test 258 

set. When the number of syndromes in the gallery was increased from 299 to 1,115, 259 

the top-10 and top-30 also dropped slightly by 2.27 and 3.77 percentage points for the 260 

F2G-frequent test set (Table 1). The results of the GMDB frequent test also dropped 261 

slightly while supporting more than twice the number of syndromes (Supplementary 262 

Table 1). These results indicate that the GestaltMatcher clustering approach is highly 263 

scalable and robust to adding new disorders, without the limitations of a classification 264 

approach. 265 

Matching undiagnosed patients from unrelated families 266 

In the second use case, we envision GestaltMatcher as a phenotypic complement to 267 

GeneMatcher21. To prove that we can match patients from unrelated families who have 268 

the same disease by using only their facial photos, we selected syndromes from 15 269 

recent GeneMatcher publications with titles containing the phrase “facial 270 

dysmorphism”. In contrast to the benchmarking of the previous section, the gallery now 271 

consists of subjects with rare syndromes to simulate undiagnosed subjects and as a 272 

consequence, ranks refer to individuals and not disorders. For the evaluation we still 273 

have to reveal in the end whether an individual from the gallery is a match for a test 274 

case or not. This implies that non-matching cases can harm the performance more 275 

than in the previous section. For instance, if the first matching individual is at rank 30, 276 

but the 29 non-matching individuals with higher similarity to the test case all together 277 

have only four non-matching disorders, then this match would contribute to the top-5 278 

accuracy in the previous section that matched on disorders but to the top-30 accuracy 279 

in this section that matches to individuals. Only the top-1 accuracy remains the same 280 

in both benchmarks. 281 

In this scenario, we matched 30 of 91 subjects and connected 26 of 79 families when 282 

using the top-10 criterion (Table 2 and Supplementary Figure 8). When using the top-283 
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30 rank, 48 of 91 subjects were matched, and 40 of 79 families were connected. Enc-284 

healthy, which is trained only with healthy subjects, matched only 40 out of 91 subjects 285 

and connected 34 out of 79 families using the top-30 rank (Supplementary Table 4). 286 

Hence, using the encoder trained with facial dysmorphic subjects improves the 287 

matching considerably. 288 

As an example, in a study of TMEM9422, eight of the ten photos in six different families 289 

were matched, and five of six families were connected within the top-10 rank. When 290 

the three test images in family 2 (F-2-5, F-2-7, F-2-9) were tested, the other five families 291 

were among those in the top-30 rank (Figure 4). The youngest brother, F-2-5, matched 292 

families 1, 3, 5, and 6, and one sister, F-2-7, matched families 1, 4, and 6. Another 293 

sister, F-2-9, matched families 1, 4, 5, and 6. The six families were recruited at five 294 

different institutes in India, Qatar, the United States (NIH Undiagnosed Diseases 295 

Network), and Switzerland, indicating that GestaltMatcher can also connect patients of 296 

different ethnic origins. However, a more systematic analysis of pairwise distances still 297 

revealed considerably smaller distances between subjects with de novo mutations and 298 

their family members than between these subjects and unrelated individuals 299 

(Supplementary Figure 9). This reflects similarities in the nonclinical features of the 300 

face, which is also higher within the same ethnicity and is a known confounding factor 301 

for the GestaltMatcher approach. However, it is a bias that can be attenuated23 and 302 

will also diminish over time when more diverse training data become available24. 303 

GestaltMatcher and human experts agree on syndrome distinctiveness  304 

We hypothesized that some of the ultra-rare disorders that were linked to their disease-305 

causing genes early on, such as Schuurs-Hoeijmakers syndrome in 2012,25 have 306 

particularly distinctive facial phenotypes. To systematically analyze the dependence of 307 

disease-gene discovery on the distinctiveness of a facial gestalt, we asked three expert 308 

dysmorphologists (S.M., N.E., and K.W.G.) to grade 299 syndromes on a scale from 1 309 
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to 3. The more easily they could distinguish the diseases, and the more characteristic 310 

of the disease they deemed the facial features, the higher the score. All three 311 

syndromlogists agreed on the same score for 195/299 syndromes, yielding a 312 

concordance of 65.2%. We then selected 50 syndromes as a test set and trained the 313 

model with the remaining 249 syndromes. We analyzed the correlation of the mean of 314 

the distinctiveness score from human experts with the top-10 accuracy that 315 

GestaltMatcher achieves for these syndromes without having been trained on them 316 

(Figure 5a, Supplementary Table 6). The Spearman’s rank correlation coefficient was 317 

0.400 (P = 0.004), indicating a clear positive correlation between distinctiveness score 318 

and top-10 accuracy. Syndromes with a higher average score tended to perform better, 319 

with Schuurs-Hoeijmakers syndrome being amongst the best-performing syndromes 320 

in GestaltMatcher. The analysis on 20 selected syndromes from the GMDB dataset 321 

also showed a positive correlation between distinctiveness score and top-5 accuracy 322 

(Supplementary Figure 10 and Supplementary Table 7).  323 

The correlation for GestaltMatcher accuracy and disease prevalence was not 324 

significant (P = 0.130; Figure 5b). This also means that ultra-rare disorders share a 325 

similar distribution of distinctiveness with more common ones, which is important for 326 

estimates about the performance of GestaltMatcher on novel phenotypes in the real 327 

world. 328 

Characterization of phenotypes in the CFPS 329 

When syndromologists cannot find a molecular cause for a patient’s phenotype in 330 

diagnostic-grade genes after extensive work up in the lab, it becomes a research case 331 

and they may compare the patient’s condition to known disorders. For example a 332 

potentially novel phenotype could be described as “syndrome XY–like” to build a case 333 

group for further molecular analysis through genome sequencing. In GestaltMatcher, 334 
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this is the third use case, and such comparisons can be supported by cluster analysis 335 

in the CFPS with the cosine distance as a similarity metric (Supplementary Table 8). 336 

If a novel disease gene has been identified and the similarities of the patients to known 337 

phenotypes outweigh the differences, OMIM groups them into a phenotypic series. On 338 

the gene or protein level, such phenotypic series often correspond to molecular-339 

pathway diseases, such as GPI-anchor deficiencies for hyperphosphatasia with mental 340 

retardation syndrome (HPMRS) or cohesinopathies for CdLS. For our cluster analysis, 341 

we sampled subjects in our database with subtypes of four large phenotypic series and 342 

found high intersyndrome separability in addition to considerable intrasyndrome 343 

substructure in Noonan syndrome, CdLS, Kabuki syndrome, and 344 

mucopolysaccharidosis. A t-SNE26 projection of the FPDs into two dimensions yielded 345 

the best visualization results (Supplementary Figure 11). Although any projection into 346 

a smaller dimensionality might cause a loss of information, the clusters are still clearly 347 

visible for the 743 subjects sampled from these four phenotypic series. This 348 

observation provides further evidence that characteristic phenotypic features are 349 

encoded in the FPDs. 350 

To demonstrate the separability of syndromes with facial dysmorphism, we also used 351 

t-SNE to project 4,353 images of the ten syndromes from the frequent set with the 352 

largest number of subjects and 872 images of ten non-distinct syndromes (syndromes 353 

without facial dysmorphism) into 2D space. In addition, we calculated the Silhouette 354 

index27 for both of these datasets. The FPDs of the frequent syndromes showed ten 355 

clear clusters of subjects (Supplementary Figure 12), but the t-SNE projection of 356 

subjects with non-distinct syndromes created no clear clusters. Moreover, the 357 

Silhouette index of the frequent syndromes (0.11) was higher than that of the non-358 

distinct syndromes (–0.005); the negative Silhouette index indicates poor separation 359 

of the non-distinct syndromes. 360 
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GestaltMatcher as a tool for clinician scientists 361 

The transition of a research case to a diagnostic case is best described by the process 362 

of matching unrelated patients in the CFPS who share a molecular abnormality until 363 

statistical significance is reached. We illustrate this process for the novel disease gene 364 

PSMC3 in a demonstration on the GestaltMatcher web service (Supplementary Figure 365 

13, www.gestaltmatcher.org). Ebstein et al. (not yet published) report 18 patients with 366 

a neurodevelopmental disorder of heterogeneous dysmorphism that is caused by de 367 

novo missense mutations in PSMC3, which encodes a proteasome 26S subunit. 368 

Although not all PSMC3 patients have the same facial phenotype, the proximity of two 369 

unrelated patients in the CFPS who share the same de novo PSMC3 mutation is 370 

exceptional. Their distance is comparable to the pairwise distances of patients with the 371 

recurring missense mutation R203W in PACS1, which is the only known cause of 372 

Schuurs-Hoeijmakers syndrome. On the one hand, the high distinctiveness of these 373 

two PSMC3 cases with the same mutation allows direct matching by phenotype. On 374 

the other hand, the pairwise similarities of 10 out of 18 patients in the CFPS for which 375 

portraits were available also hints that the protein domains have more than one 376 

function. The previously described scalability of GestaltMatcher makes an exploration 377 

of such similarities in the CFPS possible for any number of cases as soon as they have 378 

been added to the gallery of undiagnosed patients. 379 

Discussion 380 

GestaltMatcher’s ability to match previously unseen syndromes, that is, those for which 381 

no patient is included in the training set, distinguishes it from other approaches. Since 382 

matching of unseen syndromes is not only of importance for ultra-rare disorders but 383 

can be considered for the discovery of novel diseases, GestaltMatcher could also 384 

speed up the process of delineating new disorders. 385 
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Importantly, GestaltMatcher provides the flexibility to easily scale up the number of 386 

supported syndromes or the number of unsolved cases without substantial loss in 387 

performance. The LMD validation analysis revealed that the use of the softmax 388 

approach, that is classification based on the values of the last layer representing 389 

disorders, outperformed GestaltMatcher. However, the GestaltMatcher encoder, that 390 

is clustering in the CFPS with values of the penultimate layer representing features, 391 

demonstrated high scalability by yielding similar performance when the number of 392 

supported syndromes was increased from 299 to 1,115. Furthermore, the 393 

distinctiveness of a syndrome correlated with the performance (Figure 5a), whereas 394 

syndrome prevalence did not (Figure 5b). Thus, GestaltMatcher can match a syndrome 395 

with a distinguishable facial gestalt even if it is of extremely low prevalence. This 396 

enables us to avoid the long development flow currently required to support and 397 

discover novel syndromes (Supplementary Figure 1). Instead, matching can be offered 398 

instantly for all unsolved cases with available frontal images for which consent has 399 

been provided for inclusion in the tool. If the gallery is populated by cases with a 400 

disease-causing mutation in a diagnostic-grade gene, we consider this a diagnostic 401 

work-up. In contrast, if the gallery is populated by further undiagnosed cases, it is a 402 

use case comparable to GeneMatcher.  403 

GestaltMatcher’s framework also allows us to abstract the encoding of a dataset away 404 

from the classification task. For example, one can evaluate both phenotypic series and 405 

pleiotropic genes within a single CFPS, or obtain the most-similar patients for each of 406 

the matched syndromes, with minor computational cost (i.e., in real time). Furthermore, 407 

the GestaltMatcher framework computes the similarity between each of the test set 408 

images across the entire dataset of images. This similarity can be computed using 409 

different metrics, e.g., cosine or Euclidean distance. The results are then aggregated 410 

according to the chosen configuration. For example, image similarity can be 411 

aggregated at the patient level or the syndrome level. Furthermore, the dataset can be 412 
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filtered according to different parameters (such as ethnicity, disease-causing genes, or 413 

age) to further customize the evaluation. 414 

One of the key features of GestaltMatcher is the ability to match patients and quantify 415 

their syndromic similarity. For clinician scientists who often face two different tasks in 416 

their daily practice, this means: (1) assessing whether the patient’s phenotype is 417 

specific for a known disorder. If e.g. a variant of unclear clinical significance is found in 418 

a diagnostic grade gene, this would be considered as supporting evidence for the 419 

pathogenicity28,29. (2) assessing whether the phenotypic similarity of an unsolved case 420 

to other individuals without a diagnosis is high enough to form e.g. a case group that 421 

is further analyzed. This could e.g. result in the identification of potentially deleterious 422 

variants in a novel disease gene and would represent the phenotypic complement to 423 

existing matching approaches on the molecular level. Several online platforms, such 424 

as GeneMatcher, MyGene2 (https://mygene2.org/MyGene2), and Matchmaker 425 

Exchange30, already allow physicians to look for similar patients based on sequencing 426 

information, and over the past few years these platforms have enabled the matching 427 

of thousands of patients. However, although phenotypic data, encoded e.g. in HPO 428 

terms, are usually exchanged after contact has been established, automated facial 429 

matching technology has not yet been included in any of these platforms. 430 

Since its first proof of concept, in which GestaltMatcher was used to identify two 431 

unrelated patients from different countries with the same novel disease, caused by the 432 

same de novo mutation in LEMD24, our approach has successfully been applied to 433 

further ultra-rare disorders (Figure 1). We matched 40 of 79 different families in 15 434 

GeneMatcher publications by top-30 rank (Table 2 and Supplementary Figure 8), and 435 

11 candidate genes are currently under evaluation. This result shows the power and 436 

potential of GestaltMatcher to identify novel syndromes. Although the number of 437 

individuals and the diversity of their phenotypes will affect the performance, cases with 438 
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a high syndromic similarity will remain matchable due to the high dimensionality of the 439 

CFPS. 440 

We therefore hope that GestaltMatcher will be readily integrated into other matching 441 

platforms to aid in determining which phenotypes should be grouped together into a 442 

syndrome or phenotypic series, as well as linking individual patients to a molecular 443 

diagnosis. 444 

Code availability 445 

GestaltMatcher is a partially proprietary framework. Although the source code for 446 

cropping the face cannot be shared, the architecture of the CNN, as well as a web 447 

service of the trained version of the tool is accessible for use by health care 448 

professionals free of charge at www.gestaltmatcher.org. 449 

Data availability 450 

The data that support the findings of this study are divided into two groups, sharable 451 

data (GMDB) and non-sharable data (F2G). GMDB is accessible via 452 

www.gestaltmatcher.org. Restricted data are curated from Face2Gene users under a 453 

license and cannot be published in order to protect patient privacy. 454 

Online methods 455 

Study approval 456 

This study is governed by the following Institutional Review Board (IRB) approval: 457 

Charité–Universitätsmedizin Berlin, Germany (EA2/190/16); UKB Universitätsklinikum 458 

Bonn, Germany (Lfd.Nr.386/17). The authors have obtained written informed consent 459 

given by the patients or their guardians, including permission to publish photographs. 460 

Face2Gene datasets 461 
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We collected images of subjects with clinically or molecularly confirmed diagnoses 462 

from the Face2Gene database (https://www.face2gene.com). Extracted, deidentified 463 

data were used to remove poor-quality or duplicated images from the dataset without 464 

viewing the photos. After removing images of insufficient quality, the dataset consisted 465 

of 26,152 images from 17,560 subjects with a total of 1,115 syndromes 466 

(Supplementary Table 9). 467 

GestaltMatcher was designed to distinguish syndromes with different properties. We 468 

separated syndromes by the number of affected subjects and whether they had 469 

already been learned by the DeepGestalt model. Supplementary Figure 14 provides 470 

an overview of how the dataset was divided. The current DeepGestalt approach 471 

requires at least seven subjects to learn a novel syndrome. We first used this threshold 472 

to separate the syndromes into “frequent” and “rare” syndromes. The objective of our 473 

study was to improve phenotypic decision support for “rare disorders”. However, 474 

frequent syndromes that are not associated with facial dysmorphic features cannot be 475 

modeled by DeepGestalt. We therefore further selected 299 frequent syndromes that 476 

possess characteristic facial dysmorphism recognized by DeepGestalt as “frequent 477 

syndromes”. The frequent syndromes were used to validate syndrome prediction and 478 

the separability of subtypes of a phenotypic series because these syndromes are 479 

known to have facial dysmorphic features that are well recognized by the DeepGestalt 480 

encoder. For rare syndromes, we sought to demonstrate that GestaltMatcher could 481 

predict a syndrome even if facial images were publicly available for only a few subjects. 482 

It is noteworthy that, for more than half of all known disease-causing genes, fewer than 483 

ten cases with pathogenic variants have been submitted to ClinVar (Figure 1). Of the 484 

1,115 syndromes in the entire dataset, 299 were frequent and 816 were rare. 485 

DeepGestalt cannot yet be applied to rare syndromes. 486 

We further divided each of these two datasets into a gallery and a test set. The gallery 487 

is the set of subjects that we intend to match, given a subject from the test set. First, 488 
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90% of subjects with each frequent syndrome were used to train the models, and the 489 

remaining 10% of subjects were used to validate the DeepGestalt training; the 90% 490 

then became the frequent gallery and the 10% were assigned to the frequent test set. 491 

For the rare dataset, we performed 10-fold cross-validation. In each syndrome, 90% 492 

and 10% of subjects were assigned to the gallery and test set, respectively. The test 493 

sets were designed to have the same distribution of distinctiveness as the training sets. 494 

Matching only within a dataset would not represent a real-world scenario. Therefore, 495 

the galleries of the two datasets were later combined into a unified gallery that was 496 

used to search for matched patients. 497 

Please note that the threshold of seven subjects to divide the dataset into frequent and 498 

rare is to compare GestaltMatcher to DeepGestalt, which both use the same training 499 

data. We could adjust this threshold higher or even remove this threshold in the future. 500 

GMDB dataset 501 

We collected images of subjects with clinically or molecularly confirmed diagnoses 502 

from publications and individuals that gave appropriate informed consent for the 503 

purpose of this study. This dataset can be used as a public training and test set for 504 

benchmarking and is available at GestaltMatcher Database 505 

(https://gestaltmatcher.gene-talk.de). 506 

At the time of the data freeze on 9 June 2021, the dataset consisted of 4,306 images 507 

of 3,693 subjects with a total of 257 syndromes from 902 publications (Supplementary 508 

Table 9). Six of the 3,693 subjects have not yet been published, but appropriate 509 

consent has been obtained. For a fair comparison with the Face2Gene dataset, we 510 

performed the data separation in the same way. The dataset was first split by the same 511 

threshold (seven subjects) into frequent and rare datasets, giving 139 syndromes in 512 

the frequent dataset and 118 syndromes in the rare set. Both datasets were also later 513 
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separated into gallery and test sets. The data split is shown in Supplementary Figure 514 

15. Of the 3,693 subjects in GMDB, 963 are also in Face2Gene dataset. To use the 515 

GMDB rare set as the test set for both the GMDB frequent set and the Face2Gene 516 

frequent set, we made sure that there is no syndrome that is in both the GMDB rare 517 

set and Face2Gene frequent set (Supplementary Figure 16). 518 

DeepGestalt encoder 519 

The preprocessing pipeline of DeepGestalt includes point detection, facial alignment 520 

(frontalization), and facial region cropping. During inference, a facial region crop is 521 

forward passed through a deep convolutional network (DCNN) and ultimately gives the 522 

final prediction of the input face image. The DeepGestalt network consists of ten 523 

convolutional layers (Conv) with batch normalization (BN) and a rectified linear 524 

activation unit (ReLU) to embed the input features. After every Conv-BN-ReLU layer, 525 

a max pooling layer is applied to decrease spatial size while increasing the semantic 526 

representation. The classifier part of the network consists of a fully connected linear 527 

layer with dropout (0.5). In this study, we considered the DeepGestalt architecture as 528 

an encoder–classification composition, pipelined during inference. We chose the last 529 

fully connected layer before the softmax classification as the facial feature 530 

representation (facial phenotypic descriptor, FPD), resulting in a vector of size 320. 531 

DeepGestalt was first trained on images of healthy individuals from CASIA-WebFace19, 532 

and later fine-tuned on a dataset with patient images (Face2Gene or GMDB). The 533 

encoder without fine-tuning on patient images was called Enc-healthy. The encoder 534 

later trained on 299 frequent syndromes in the Face2Gene dataset was named Enc-535 

F2G. The encoder trained on 139 frequent syndromes in GMDB was named Enc-536 

GMDB. In the following sections, we have several encoders trained on different 537 

subsets of the Face2Gene and GMDB datasets. The summary of all the encoders used 538 

in this study is shown in Supplementary Table 5. To compare GestaltMatcher and 539 
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DeepGestalt, we used a model using softmax for predicting syndromes, which we 540 

called “Enc-F2G (softmax)”. This model is the same as Enc-F2G; the only difference 541 

is that Enc-F2G (softmax) used softmax in the last layer for prediction, as in 542 

DeepGestalt, and Enc-F2G used the cosine distance of FPDs for prediction. 543 

Our first hypothesis was that images of patients with the same molecularly diagnosed 544 

syndromes or within the same phenotypic series, and who also share similar facial 545 

phenotypes, can be encoded into similar feature vectors under some set of metrics. 546 

Moreover, we hypothesized that DeepGestalt’s specific design choice of using a 547 

predefined, offline-trained, linear classifier could be replaced by other classification 548 

“heads”, for example, k-Nearest Neighbors using cosine distance, which we used for 549 

GestaltMatcher. 550 

Descriptor projection: Clinical Face Phenotype Space 551 

Each image was encoded by the DeepGestalt encoder, resulting in a 320-dimensional 552 

FPD. These FPDs were further used to form a 320-dimensional space called the 553 

Clinical Face Phenotype Space (CFPS), with each FPD a point located in the CFPS, 554 

as shown in Figure 2. The similarity between two images is quantified by the cosine 555 

distance between them in the CFPS. The smaller the distance, the greater the similarity 556 

between the two images. Therefore, clusters of subjects in the CFPS can represent 557 

patients with the same syndrome, similarities among different disorders, or the 558 

substructure under a phenotypic series. 559 

Evaluation 560 

To evaluate GestaltMatcher, we took the images in the test set as input and positioned 561 

them in the CFPS defined by the images of the gallery. We calculated the cosine 562 

distance between each of the test set images (for which the diagnoses were known in 563 

this proof-of-concept study) and all of the gallery images. Then, for each test image, if 564 
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an image from another subject with the same disorder in the gallery was among the 565 

top-k nearest neighbors, we called it a top-k match. We then benchmarked the 566 

performance by averaging the top-k accuracy (percent of test images with correct 567 

matches within the top k) of each syndrome to avoid biasing predictions toward the 568 

major class. We further compared the accuracy of each syndrome in the frequent and 569 

rare syndrome subsets to investigate whether GestaltMatcher can extend DeepGestalt 570 

to support more syndromes. To compare its performance on predicting syndromes with 571 

DeepGestalt, we first performed image aggregation on the syndrome level before 572 

calculating top-k accuracy, which means that only the nearest image of each syndrome 573 

will be taken into account.  574 

London Medical Dataset validation analysis 575 

We compiled 323 images of patients diagnosed with 91 frequent syndromes from the 576 

LMD19 and used this as the validation set for frequent syndromes. We first evaluated 577 

the validation set using softmax, which is a DeepGestalt method. To compare the 578 

performance with that of GestaltMatcher, we evaluated the performance of 579 

GestaltMatcher on two different galleries: a gallery of frequent syndromes consisting 580 

of 19,950 images of patients with 299 syndromes, and a unified gallery consisting of 581 

22,298 images of patients with 1,115 syndromes. We then reported the top-k accuracy 582 

and compared the results of these three settings (DeepGestalt with softmax, 583 

GestaltMatcher with frequent gallery, and GestaltMatcher with unified gallery). 584 

Rare syndromes analysis 585 

To understand the potential for matching rare syndromes, we trained an encoder, 586 

denoted Enc-F2G-rare, on 467 out of 816 rare syndromes with more than two and 587 

fewer than seven subjects. Ninety percent of the subjects were used to train Enc-F2G-588 

rare and were later assigned to the gallery. The remaining 10% of subjects were 589 
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assigned to the test set. We then compared the performance of Enc-F2G-rare and 590 

Enc-F2G using cosine distance and the softmax classifier. 591 

Matching undiagnosed patients from unrelated families 592 

We selected 15 articles published from 2015 to 2019 in which GeneMatcher was used 593 

to establish an association of a gene with a novel phenotype with facial dysmorphism 594 

from unrelated families. In total, these studies contained 108 photos of 91 subjects 595 

from 79 families. The details are shown in Table 2. The 15 genes were not among the 596 

Face2Gene frequent syndromes, so we can consider them each as a novel phenotype 597 

to the model. We performed leave-one-out cross-validation on this dataset; that is, we 598 

kept one photo as the test set, and we assigned the rest of the photos to a gallery of 599 

3,533 photos with 816 rare syndromes to simulate the distribution of patients with 600 

unknown diagnosis. We then evaluated the performance by top-1 to top-30 rank. If a 601 

photo of another subject with the same disease-causing gene from an unrelated family 602 

was among the top-k rank, we called it a match. 603 

Moreover, we used top-k rank to measure how many unrelated families were 604 

connected. If one unrelated family was among the test photo's top-k rank, the families 605 

were considered to be connected at that rank. How many families were matched to at 606 

least one unrelated family was also represented. 607 

When using the GeneMatcher data, we did not perform syndrome aggregation 608 

because aggregation cannot be performed if the syndrome is not known. Instead, we 609 

matched patients rather than predicting disorders. 610 

Syndrome facial distinctiveness score 611 

To evaluate the importance of the facial gestalt for clinical diagnosis of the patient, we 612 

asked three dysmorphologists (co-authors Shahida Moosa, Nadja Ehmke, and Karen 613 
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W. Gripp) to score the usefulness of each syndrome’s facial gestalt for establishing a 614 

diagnosis. Three levels were established:  615 

1. Facial gestalt can be supportive in establishing the clinical diagnosis. 616 

2. Facial gestalt is important in establishing the clinical diagnosis, but diagnosis 617 

cannot be made without additional clinical features. 618 

3. Facial gestalt is a cardinal symptom, and a visual or clinical diagnosis is 619 

possible based only on the facial phenotype. 620 

We then averaged the grades from the three dysmorphologists for each syndrome. 621 

Syndrome prevalence 622 

The prevalence of each syndrome was collected from Orphanet (www.orpha.net). Birth 623 

prevalence was used when the actual prevalence was missing. If only the number of 624 

cases or families was available, we calculated the prevalence by summing the 625 

numbers of all cases or families and dividing by the global population, using 7.8 billion 626 

for the global population and a family size of ten for each family31. 627 

Unseen syndromes correlation analysis 628 

To investigate the influence of prevalence and distinctiveness score on the 629 

performance of novel syndromes with facial dysmorphism, we selected 50 frequent 630 

syndromes and kept them out of the training set. The 50 syndromes were selected to 631 

have evenly distributed distinctiveness scores and prevalence distribution; the 632 

distributions are shown in Supplementary Figure 17 and Supplementary Table 6. The 633 

encoder (Enc-F2G-exclude-50) was trained on 90% of the subjects from the other 249 634 

frequent syndromes. In addition, we performed random downsampling to remove the 635 

confounding effect of prevalence. For each iteration, we randomly downsampled each 636 

syndrome by assigning five subjects to the gallery and one subject to the test set. We 637 

then averaged the top-10 accuracy of 100 iterations. We calculated Spearman rank 638 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 22, 2021. ; https://doi.org/10.1101/2020.12.28.20248193doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.28.20248193
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 

 

correlation coefficients for the following two pairs of data: between top-10 accuracy 639 

and the syndrome’s distinctiveness score, and between top-10 accuracy and the 640 

prevalence of syndromes collected from Orphanet. 641 

The same analysis was also performed on the GMDB dataset. We selected 20 642 

syndromes from GMDB frequent instead of 50 syndromes because the GMDB dataset 643 

is smaller than the Face2Gene dataset, and we trained the Enc-GMDB-exclude-20 on 644 

the remaining 119 frequent syndromes. The details of the 20 selected syndromes and 645 

the results are reported in Supplementary Table 7. Please note that we report the top-646 

5 accuracy in the GMDB dataset instead of top-10 accuracy because of the smaller 647 

number of syndromes in the gallery. 648 

Analysis of number of training syndromes and subjects 649 

In this analysis, we evaluated the influence of training with additional syndromes and 650 

subjects to the novel disorders. To avoid an imbalance among the syndromes, we used 651 

the same number of subjects for each syndrome. We first used four different settings 652 

for the number of subjects: 10, 20, 40, and 80. However, not all syndromes have the 653 

four numbers of subjects we mentioned above for training: for 10, 20, 40, and 80 654 

subjects, there are 242, 156, 84, and 40 syndromes. We then defined the ordering of 655 

syndromes we added each time. To add the same syndromes for the four numbers of 656 

subjects each time, we first sorted syndromes with the number of subjects in 657 

descending order. To avoid bias due to having specific disorders added at each position, 658 

we then performed random sorting five times within each of the intervals [1:40], [41, 659 

80], [81, 150], and [151, 240] to generate five different lists of syndromes. Thus, the 660 

ordering from common disorders to rare disorders was by interval rather than by 661 

syndrome. For example, Kabuki syndrome might be in the 9th position in the first list, 662 

but in the 20th position in the second list, but in each randomly sorted list Kabuki 663 

syndrome is in the first interval. 664 
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For each of five different lists of training syndromes, we performed the same training 665 

described as follows. We first trained X number of syndromes with ten subjects, where 666 

X = 10 to 240, incremented at an interval of ten syndromes. As mentioned above, there 667 

are only 156 syndromes with more than 20 subjects. Thus, we trained syndromes with 668 

20 subjects with X = 10 to 150 syndromes with the same increment of ten syndromes. 669 

We performed the same process for 40 and 80 subjects, with maximums of 80 and 40, 670 

respectively. 671 

For each setting (number of subjects, number of syndromes), we had five models. We 672 

then encoded the photos separately with each model and tested them on the rare 673 

syndromes, which had not been seen by the models. In the end, we averaged the 674 

performance by the five models and report the top-10 accuracy for each setting in 675 

Figure 3. We also used the models described above to encode the GMDB dataset, 676 

tested them with the GMDB rare set, and report the results in Supplementary Figure 2. 677 

Because the GMDB dataset is smaller than Face2Gene dataset, we were not able to 678 

use the same number of subjects and syndromes to perform the analysis. For the 679 

GMDB dataset, we used 10, 20, 40 for the number of subjects, and the syndrome 680 

intervals of [1, 10], [11, 40], and [41, 80]. The results of training on GMDB and testing 681 

of the GMDB rare set are shown in Supplementary Figure 3. 682 

We next wanted to compare two scenarios, double the number of training syndromes 683 

and double the number of training subjects. For example, we first set training on ten 684 

subjects for each of ten syndromes as the base setting, then compared this 685 

performance to training ten subjects for each of 20 syndromes (double syndromes) 686 

and training 20 subjects for each of ten syndromes (double subjects). The base setting 687 

had 100 subjects in total. Double syndromes and double subjects each had 200 688 

subjects. This comparison allows us to understand the different influence of adding 689 
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more syndromes and adding more subjects. The results are shown in Supplementary 690 

Figures 4-6. 691 

Analysis of number of training syndromes in real-world scenario 692 

In this analysis, we trained the encoders with different numbers of syndromes to 693 

simulate the real-world scenario. The difference to the previous section is that we used 694 

all available subjects with each syndrome for the training. To make a fair comparison, 695 

we first used the same ordering of syndromes as in the previous section, and we added 696 

a fifth interval of [241, 299]. For each of the five lists of syndromes, we then trained 16 697 

encoders, each with a different number of training syndromes. The interval of 698 

syndromes was 20 in this analysis due to the long training time. For example, we used 699 

the first ten syndromes in the training list for the first encoder. For the second encoder, 700 

we trained on the first 30 syndromes, and continually increased the number of 701 

syndromes for each subsequent encoder by 20 until we reached 299 syndromes. Thus, 702 

we simulated how syndromes would be included in model training in the real world. We 703 

took the rare syndromes as the test set. We then averaged the performance of five 704 

models with the same number of training syndromes and report the top-10 accuracy in 705 

Supplementary Figure 7. 706 

  707 
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Figures and tables 708 

 709 

Figure 1: Subsets of disorders supported by DeepGestalt and GestaltMatcher. 710 

The lower x-axis shows examples of disease genes, and the upper x-axis is the 711 

cumulative number of genes. The y-axis shows the number of pathogenic submissions 712 

in ClinVar for each gene. The numbers on the curve indicate the number of 713 

submissions for each of the indicated genes. Most of the rare disorders that 714 

DeepGestalt supports have relatively high prevalence based on their ClinVar 715 

submissions, e.g. Cornelia de Lange syndrome (CdLS) which is caused by mutation in 716 

NIPBL, SMC1A, or HDAC8, among other genes. Disease genes such as PACS1 cause 717 

highly distinctive phenotypes but are ultra-rare, representing the limit of what current 718 

technology can achieve. The first novel disease that was characterized by 719 

GestaltMatcher is caused by mutations in LEMD2. A candidate disease gene 720 

associated with a characteristic phenotype that can be identified by GestaltMatcher is 721 

PSMC3.  722 
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 723 

Figure 2: Concept of GestaltMatcher. a, Architecture of a deep convolutional neural 724 

network (DCNN) consisting of an encoder and a classifier. Facial dysmorphic features 725 

of 299 frequent syndromes were used for supervised learning. The last fully connected 726 

layer in the feature encoder was taken as a Facial Phenotypic Descriptor (FPD), which 727 

forms a point in the Clinical Face Phenotype Space (CFPS). b, In the CFPS, the 728 

distance between each patient’s FPD can be considered as a measure of similarity of 729 

their facial phenotypic features. The distances can be further used for classifying ultra-730 

rare disorders or matching patients with novel phenotypes. Take the input image as an 731 

example: the patient’s ultra-rare disease, which is caused by mutations in LEMD2, was 732 

not in the classifier, but was matched with another patient with the same ultra-rare 733 

disorder in the CFPS4. 734 
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 735 

Figure 3: Influence of the number of syndromes included in model training. The 736 

x-axis is the number of syndromes used in model training. The y-axis shows the 737 

average top-10 accuracy of testing on the rare set. Each line uses the same number 738 

of subjects per syndrome, which is shown in the key. For each point, we train the 739 

models five times with five different splits, and average the results. The null accuracy 740 

(the expected value if the encoder returned random predictions) is 1.2% (10/816). 741 
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 742 

Figure 4: Pairwise ranks of subjects with mutations in TMEM94. Each label 743 

consists of family numbering and subject numbering, which are the same as in the 744 

original publication22. For example, F-2-7 means the seventh subject in the second 745 

family. Each column is the result of testing the image indicated at the bottom of the 746 

column. The number in the box is the rank to the corresponding image in the gallery. 747 

The fourth column starting from the left is the result of testing F-2-5, and the fourth row 748 

from the bottom shows that F-1-1 has a rank of 2 for F-2-5. In the fifth to seventh rows 749 

from the bottom are the ranks from family 2, which is the same family that F-2-5 is from. 750 
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 751 

Figure 5: Correlation among syndrome prevalence, distinctiveness score, and 752 

top-10 accuracy. a, Distribution of top-10 accuracy and distinctiveness score. The 753 

Spearman rank correlation coefficient was 0.400 (P = 0.004). b, Distribution of top-10 754 

accuracy and prevalence. The Spearman rank correlation coefficient was –0.217 (P = 755 

0.130) The details of each syndrome can be found in Supplementary Table 6 using the 756 

syndrome ID shown in the figure; syndrome 5 is Schuurs-Hoeijmakers syndrome. The 757 

y-axis shows the average top-10 accuracy of the experiments over 100 iterations. 758 

759 

a b

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 22, 2021. ; https://doi.org/10.1101/2020.12.28.20248193doi: medRxiv preprint 

https://doi.org/10.1101/2020.12.28.20248193
http://creativecommons.org/licenses/by-nc-nd/4.0/


35 

 

Table 1: Performance comparison between classification and clustering with 760 

different encoders on sets of known disorders. 761 

Test set Model 

Images 
Supported 

syndromes 

Null top-1 

accuracy 
Top-1 Top-5 Top-10 Top-30 

Gallery Test 

F2G-frequent Enc-F2G (softmax) - 2,669 299 0.33% 35.94% 52.45% 63.91% 78.13% 

F2G-frequent  Enc-F2G 19,950 2,669 299 0.33% 21.06% 39.62% 49.12% 67.98% 

F2G-frequent  Enc-healthy 19,950 2,669 299 0.33% 10.69% 23.69% 31.46% 50.80% 

F2G-rare Enc-F2G  2,348.8 1,183.3 816 0.12% 13.66% 23.62% 29.56% 40.94% 

F2G-rare Enc-healthy 2,348.8 1,183.3 816 0.12% 9.46% 16.87% 21.77% 31.77% 

F2G-frequent Enc-F2G 22,298a 2,669 1,115c 0.09% 20.15% 37.81% 46.85% 64.21% 

F2G-frequent Enc-healthy 22,298a 2,669 1,115c 0. 09% 9.70% 22.51% 29.80% 48.24% 

F2G-rare Enc-F2G  22,298.8b 1,183.3 1,115c 0. 09% 7.07% 14.19% 17.67% 24.41% 

F2G-rare Enc-healthy 22,298.8b 1,183.3 1,115c 0. 09% 4.02% 8.84% 11.73% 16.61% 

The DCNNs of Enc-F2G (softmax), Enc-F2G, and Enc-healthy have the same architecture. 762 

Enc-F2G (softmax) and Enc-F2G training were initiated with CASIA-WebFace and further fine-763 

tuned on photos of patients in the Face2Gene frequent set. The Enc-F2G (softmax) model is 764 

the same as Enc-F2G, but using the softmax values of the layer instead of cosine distances 765 

between the FPDs in the CFPS. For the top-1 to top-30 columns, the best performance in each 766 

set is boldfaced. The numbers of images and syndromes in the rare set are averaged over ten 767 

splits. Enc-F2G outperformed Enc-healthy on both types of syndromes, showing the importance 768 

of fine-tuning on patient photos for learning facial dysmorphic features. The top-10 accuracy of 769 

Enc-F2G only drops by 2.27 percentage points after increasing the number of cases in the 770 

gallery and almost quadrupling the number of supported syndromes from 299 to 1,115. 771 

a Number of images in frequent gallery and rare gallery. 772 

b Average of ten splits in the frequent gallery and rare gallery. 773 

c Number of syndromes in the frequent gallery and rare gallery. 774 

  775 
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Table 2: Matching of novel phenotypes on a GeneMatcher validation set.  776 

Gene PMID 
Total families 

(Subjects) 

Connected families (subjects)a 

Top-10 Top-30 

BPTF32 28942966 6 (6) 0 (0) 2 (2) 

CCDC4733 30401460 4 (4) 0 (0) 0 (0) 

CHAMP134 27148580 4 (4) 2 (2) 4 (4) 

CHD435 27616479 3 (3) 0 (0) 0 (0) 

DDX636 31422817 4 (4) 4 (4) 4 (4) 

EBF337 28017373 6 (7) 0 (0) 0 (0) 

FBXO1138 30679813 17 (17) 5 (5) 9 (9) 

HNRNPK39 26173930 3 (3) 3 (3) 3 (3) 

KDM3B40 30929739 9 (9) 0 (0) 2 (3) 

LEMD24 30905398 2 (2) 2 (2) 2 (2) 

OTUD6B41 28343629 4 (9) 3 (4) 3 (6) 

PACS242 29656858 6 (6) 0 (0) 2 (2) 

TMEM9422 30526868 6 (10) 5 (8) 6 (10) 

WDR3743 31327508 4 (4) 2 (2) 3 (3) 

ZNF14844 27964749 3 (3) 0 (0) 0 (0) 

Total - 79 (91) 26 (30) 40 (48) 

Average - - 32.91% (32.97%) 50.63% (52.75%) 

a Number of families (subjects) matched by a photo from another family in the top-10 or top-30 777 

rank. 778 

In the discovery mode for novel phenotypes, all cases in the gallery are without diagnosis. For 779 

the performance readout, only the correct disease gene of a match is revealed. For individuals 780 

of the TMEM94 study, e.g. eight out of ten subjects had an image from another family within 781 

the top-10 rank, and five of the six families had at least one subject from another family in their 782 

top-10 rank. For top-30 all subjects and families matched. This table is based on the ranks from 783 

the similarity matrices in Figure 4 and Supplementary Figure 8. The accuracy of connected 784 

subjects corresponds to the accuracy of using Enc-F2G on the F2G-rare test set in the Table 1 785 

in discovery mode in the gallery of almost the same size.  786 

  787 
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