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Abstract:  

New technologies, such as multiplex immunofluorescence microscopy (mIF), are being 

developed and used for the assessment and visualization of the tumor immune 

microenvironment (TIME). These assays produce not only an estimate of the abundance of 

immune cells in the TIME, but also their spatial locations; however, there are currently few 

approaches to analyze the spatial context of the TIME. Thus, we have developed a framework 

for the spatial analysis of the TIME using Ripley’s 𝐾, coupled with a permutation-based 

framework to estimate and measure the departure from complete spatial randomness (CSR) 

as a measure of the interactions between immune cells.  This approach was then applied to 

ovarian cancer using mIF collected on intra-tumoral regions of interest (ROIs) and tissue 

microarrays (TMAs) from 158 high-grade serous ovarian carcinoma patients in the African 

American Cancer Epidemiology Study (AACES) (94 subjects on TMAs resulting in 259 

tissue cores; 91 subjects with 254 ROIs). Cox proportional hazard models were constructed 

to determine the association of abundance and spatial clustering of tumor-infiltrating 

lymphocytes, cytotoxic T-cells, and regulatory T-cells, and overall survival. We found that 

EOC patients with high abundance and low spatial clustering of tumor-infiltrating 

lymphocytes and cytotoxic T-cells in their tumors had the best overall survival. In contrast, 

patients with low levels of regulatory T-cells but with a high level of spatial clustering 

(compare to those with a low level of spatial clustering) had better survival. These findings 

underscore the prognostic importance of evaluating not only immune cell abundance but also 

the spatial contexture of the immune cells in the TIME. In conclusion, the application of this 

spatial analysis framework to the study of the TIME could lead to the identification of 
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immune content and spatial architecture that could aid in the determination of patients that 

are likely to respond to immunotherapies. 

Keywords: co-localization, spatial clustering, immuno-oncology, cancer epidemiology 

 

1. Introduction  

Immunology has been a break-through area in the treatment of cancer(2, 3). One of the most 

important findings is the use of agents to block immune checkpoints to activate antitumor 

immunity. Immune checkpoints are the mechanism by which the immune system maintains 

self-tolerance. That is, immune checkpoints are regulators of the immune system and prevent 

the immune system from attacking “good” cells. In the case of cancer, the cancerous cells 

hijack this mechanism to protect themselves from being attacked by the immune system(4). 

The use of checkpoint inhibitors in the treatment of cancer has been a revolutionary approach 

and has resulted in the development of numerous checkpoint inhibitors, such as CTLA-4 and 

PD-1/PD-L1 inhibitors.  

 

Tumors with a dense infiltrate of lymphocytes, also known as tumor-infiltrating lymphocytes 

(TILs), are consistently associated with more favorable outcomes among cancer patients(5-

7). However, abundance alone may not explain a patient’s clinical outcome, and 

consideration of the spatial architecture of the immune tumor immune microenvironment 

(TIME) may shed new light on clinical outcomes and response to immunotherapies.  Lee, et 

al. showed that diffuse large B cell lymphoma tumors with similar densities of TILs had 

heterogeneous spatial patterns of cytotoxic T-cells(8), and a study in colorectal cancer 
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observed that cell-to-cell distances and spatial heterogeneity were more promising as 

prognostic biomarkers than cell densities(9).  

 

Many technologies have been developed to study the TIME. One study approach is the use 

of multiplex immunofluorescence (mIF) microscopy which provides both a summary of the 

number of cells positive for a given immune marker (e.g., abundance or density) but also the 

spatial locations of the positive cells. By having spatial locations of the cells positive for the 

various immune markers, one can determine spatial clustering and co-occurrenceof immune 

cells. mIF can be applied to both regions of interest (ROI) selected from a stained tumor slide 

or tissue microarrays (TMAs)(10). Many challenges arise with the use of data resulting from 

TMAs. In particular, the tissue area can become folded or ripped due to the “slicing” for 

different experiments, leading to imperfections in the shape and the ability to measure all 

cells in the area. These imperfections can lead to TMAs that have sections where no cells 

exist, as depicted in Figure 1A. In contrast, ROIs typically do not exhibit this artifact in the 

data acquisition (Figure 1B).   

 

The most common analysis of data from the TIME involves the use of the summary measures 

representing immune content in the entire sample (i.e., % of CD3+ cells, density). However, 

this type of analysis ignores the spatial architecture of the immune cells within the tumor, 

which can vary between tumors. As illustrated in Figure 1, some tumors show clustering of 

TILs (CD3+ cells; Figure 1C), while other tumors show more dispersion of TILs (Figure 

1D). While there have been studies that attempt to describe the relationship between spatial 

clustering of immune cells and patient outcomes using such measures as nearest-neighbor 
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distance (NND)(11), Hypothesized Interaction Distribution (HID) (12, 13), Morisita-Horn 

index(14), and Mander’s correlation coefficient(15), many approaches fail to account for 

issues related to: correlation between spatial and abundance measures of immune cells; 

edge/border effects;  normalization of measures across samples, and regions in which no cells 

were able to be measured(16, 17). Thus, we have developed a framework for the spatial 

analysis of the TIME using Ripley’s 𝐾(1), coupled with a permutation-based framework to 

estimate and measure the departure from complete spatial randomness (CSR) as a measure 

of the relationships and interactions between immune cells.  We applied this analysis 

framework to epithelial ovarian cancer (EOC), the deadliest gynecologic malignancy in the 

U.S.(18). Specifically, we will characterize the TIME and explore links between immune cell 

abundance and their spatial characteristics, and overall survival (OS) among EOC patients. 

 

2. Methods and Materials 

2.1 Study Population and Immunofluorescence Assays 

The African American Cancer Epidemiology Study (AACES) is a population-based case-

control study of 595 African American (AA) women with EOC residing in 11 geographic 

locations in the U.S. and 752 controls enrolled between December 2010 and August 

2016(19). Cases were identified through cancer registries and hospitals and were eligible for 

the study if they were aged 20-79 years, self-reported AA race, and resided in one of the 11 

geographic locations. Study participants completed a telephone survey at baseline, and for 

~90% of the cases, formalin-fixed paraffin-embedded (FFPE) tissue blocks of the primary 

tumor were procured. For 75% of cases with tissue, twenty-five sections were cut from each 

tissue block, and TMAs were created for the other 25%. A centralized pathology review was 
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completed to confirm diagnosis and histology. A systematic collection of vital status and 

follow-up data through linkages with cancer registries and the National Death Index (NDI) 

has been conducted annually. All participants provided verbal consent at the time of the 

baseline telephone interview, and written informed consent was obtained for the procurement 

of tissue specimens and collection of medical records. 

 

As the distribution of immune cells in the tumor microenvironment and their association with 

outcomes differ according to histotype (20), we focused on the most common and one of the 

deadliest histotypes, high-grade serous carcinoma (HGSC)(21), to limit contributions of 

disease heterogeneity. To determine immune profiles of these tumors, mIF staining was 

completed using the Opal™ chemistry and multispectral microscopy Vectra system (Akoya 

Biosciences). Tumors were stained for one panel including seven fluorophore-labeled 

markers: CD3, CD8, FOXP3, CD11b, CD15, DAPI and pancytokeratin (PanCK). After 

staining, slides were scanned, and image capture was performed with the Vectra®3 

Automated Quantitative Pathology Imaging System (Akoya Biosciences) with images are 

exported from InForm (Akoya Biosciences) and loaded into HALO (Indica Labs, New 

Mexico) for quantitative image analysis. Coordinates of the cell locations are based on pixels 

of the image where the image resolution is 0.4977 microns per pixel (Mpp). For these 

analyses, we focused on tumor-infiltrating lymphocytes (CD3+) and relevant T-cell subsets 

(CD3+CD8+ cytotoxic T-cells; CD3+FOXP3+ regulatory T-cells). In addition to TMAs, mIF 

was performed on whole slide images, where three ROIs from the intratumoral region of each 

tissue section were selected for analysis (e.g., 100% tumor cells by cellularity and PCK 

expression). A summary of the study participants is presented in Supplemental Table 1, 
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where 94 subjects were on TMAs (259 samples) and 91 subjects had ROIs (254 samples), 

with 27 subjects with both TMA and ROI data.  

 

2.2 Ripley’s 𝑲 and Complete Spatial Randomness 

In our proposed framework, the locations of the immune positive cells in the TIME can be 

thought of as a spatial point process. The arrangement of these cells may not follow the 

assumption of complete spatial randomness (CSR) for homogenous spatial processes, where 

positive cells occur at the same rate 𝜆 for the entire region. Attraction (clustering), repulsion, 

and competition (dispersion) are all examples of interactions that would lead to a violation of 

CSR.  Ripley’s 𝐾(1) and Besag’s	𝐿(22) are popular measures to quantify these interactions by 

counting the number of neighboring cells within a radius for each positive immune cell, 

normalizing by the maximum number of pairwise distances, and correcting for border effects. 

Figure Error! Reference source not found.1C shows an ROI that exhibits a spatial process that 

is close to CSR, while Figure 1D shows an ROI that violates the CSR assumption.  

 

A common measure to assess the CSR is Ripley’s 𝐾, which is computed at several rings with 

varying radii, 𝑟, to help understand how the point process changes with scale. The sample 

statistic for this quantity is estimated by: 

𝐾'	(𝑟) = (𝑛(𝑛 − 1))!"𝐴//𝑤#$𝟏(	23𝑥$: 𝑑3𝑥# , 𝑥$8 < 𝑟82
$%#

&

#'"

), 

where 𝑛 is the number of cells, 𝐴 represents the area of the region of interest, 𝑤#$ corresponds 

to the edge correction, and 𝟏2𝑥$: 𝑑3𝑥# , 𝑥$8 < 𝑟2 is an indicates whether the 𝑗() is a  neighbor of 

the 𝑖() cell (the Euclidean distance between cells 𝑖 and 𝑗 is less than 𝑟), where the expected value 
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for  𝐾'(𝑟) = 𝜋𝑟*. The edge correction accounts for undercounting of the number of neighboring cells 

when a cell on the periphery. The difference between the observed and expected values,  𝐸(𝐾'(𝑟)) =

𝜆!"𝐸(𝑁) = 𝜋𝑟*	 where 𝐸(𝑁) is the expected number of cells and 𝜆 is the intensity of the cell, helps 

determine the degree of regularity or clustering. A positive difference corresponds to a higher degree 

of clustering than expected, while a negative difference is evidence of a regular pattern existing(1, 23, 

24). Besag proposed the following modification to Ripley’s 𝐾, 𝐿(𝑟) = ?𝐾(𝑟)/𝜋, where the 

expected value is 𝑟. An advantage of analyzing 𝐿(𝑟) is that the expected value is grows 

linearly with 𝑟 as opposed to quadratically, additionally the square root is a commonly used 

variance stabilizing transformation(22). Using simulated data, Supplemental Figure 1 

illustrates the connection between the type of spatial arrangement of immune cells 

(Supplemental Figure 1A) (i.e., clustered or attraction, spatial randomness (CSR), or 

regularized or repulsion) and the degree of spatial clustering measured as L(r) – r 

(Supplemental Figure 1B)     

 

Both Ripley’s 𝐾 and Besag’s 𝐿 can be calculated in a univariate form as described above, or 

a bivariate form where you could explore co-occurrence of types of immune cells, for 

example, the spatial pattern of cytotoxic T-cells around regulatory T-cells. A general formula 

is given by  

𝐾'",*	(𝑟) = 	 (𝑛#𝑛$)!"	𝐴 / / 𝑤#$|(𝑥$: 𝑑3𝑥# , 𝑥$8 < 𝑟)|
$∈-!#∈-"

, 

𝐶"and 𝐶* are the set of cells that are determined to be in type 1 or 2, respectively. The expected 

value of  𝐸(𝐾'",*(𝑟)) = (𝜆"𝜆*)!"𝐴*	𝐸(𝑁"*) = 𝜋𝑟*,		where	𝐸(𝑁"*)	is the expected number of 

cells of type 2 within distance 𝑟 of a cell of type 1, and 𝜆" and 𝜆* are the intensity functions 
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for cell type 1 and 2, respectively. Similar adjustments have been proposed to linearize to aid 

in interpretation(25).  

 

Ideally, these point processes occur in a rectangular or circular region of space, however, the 

region where cells appear are not necessarily perfect rectangles or circles. To that end, we 

can still estimate Ripley’s 𝐾 over the convex hull of the cells measured in the sample. The 

convex hull is the smallest convex set that contains every cell and line segment connecting 

any to cells. The “edge effect” results from cells on the periphery of the tissue sample lose 

neighboring cells that are located outside the sampled region, also needs to be accounted for 

in the computation of Ripley’s 𝐾. Two common edge corrections are called isotropic and 

translation(26, 27). The translation edge correction is conducted by sequentially shifting the 

image by the distance between a cell and an adjacent cell where the weight depends on the 

amount of area that is in the intersection of the two images(23). An isotropic edge correction, 

for circular or rectangular regions, weights each pair of points based on how much of the 

circumference of a circle centered around one point and going through the other is outside of 

the region of interest. The translation and isotropic edge correction methods can 

accommodate settings when there are a small number of positive cells in the tissue 

samples(23). Additionally, little difference was observed in the estimate of Ripley’s 𝐾 using 

these two border correction methods to IF data, with a correlation value around 1.0 (data not 

shown).   

 

As many of the methods for spatial point processes were developed for the analysis of one 

dataset, normalization of the spatial measurements across multiple samples is needed. In the 
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proposed framework, normalization is completed by comparing the observed value of 

Ripley’s 𝐾 to the estimate of Ripley’s 𝐾 under CSR.  Unlike ROIs selected from whole tissue 

sections, TMAs have many cores with regions that are folded or torn; in these cases, it appears 

that there are no cells present at various locations. This will result in the appearance of the 

intensity function of the observed point process to not be constant across the entire region, 

while the true underlying process may have been homogenous. Hence, use of the theoretical 

expected value of 𝐾 and 𝐿 under CSR would not be appropriate. To overcome this challenge, 

a permutation approach is used to obtain a robust estimate of these spatial statistics under 

CSR. 

 

2.3 Permutation-based measure of CSR 

Non-parametric statistical methods are commonly used when models’ assumptions are not 

met. A class of non-parametric methods are those based on permutation or Monte-Carlo 

methods, where the sampling distribution of interest under the null hypothesis (i.e., CSR) is 

estimated by randomly assigning the labels and computing the desired statistic. This process 

is carried out many times and the resulting distribution of the statistic is an empirically 

derived distribution. In this context, each cell is labeled based on whether a certain marker is 

present or absent. Next, these labels are randomly assigned to each cell and the measure of 

spatial clustering is computed, maintaining the number of cells present and absent of a 

marker. This process is repeated a larger number of times resulting in an empirically derived 

sampling distribution under the null hypothesis (i.e., CSR) for the computed spatial statistics 

(i.e., Ripley’s K). Using this empirical distribution, the mean is computed and used as the 

estimate of these spatial statistics under CSR(28).  
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2.4 Association of immune cell spatial clustering and survival from ovarian cancer 

To measure the association of the level of spatial clustering of immune cells with clinical 

outcome, while also accounting for the abundance level, Cox proportional hazards models 

were used. Accounting for the abundance level is critical as computation of spatial measures 

require an adequate number of positive cells (i.e., negative relationship between abundance 

level and spatial clustering value, Supplemental Figure 2).   Depending on the outcome or 

phenotype of interest, other statistical models could be used (i.e., linear models in the case of 

a continuous outcome).   

 

In order to provide clinically interpretable results, the continuous measurement of abundance 

and spatial clustering were categorized (e.g., absent/present of immune marker, absent/low 

level/high level of abundance for immune marker). Typically, categorization takes place for 

each variable where values are assigned to groups depending on their relationship to the 

median, quartiles or some other threshold. Thus, an alternate for setting the pre-defined 

threshold is the “optimal cut-point”, which is selected to maximize the test statistic of interest 

(29, 30). From a statistical standpoint, the optimal cut-point is “data-snooping” since we are 

allowing the results from the statistical test to inform creation of categories of the 

variable(31). On the other hand, for discovery and hypothesis generation purposes, it is 

clinically useful to determine an optimal cut-point that can be validated in other studies with 

other technologies. Thus, for this study, we have chosen to use the “optimal” cut-point 

approach to determine thresholds that produce the largest difference in the survival curves.   
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A challenge in determining the optimal cut-points is that the number of samples in a 

group/category can get very small when categorizing across multiple variables. Thus, in the 

analysis to determine the association of immune cell abundance and spatial clustering, 

optimal cut-points were determined based on a grid search where the search was constrained 

to possible cut-points in which each group had at least 10% of samples (after removing 

samples with 0 abundance). This constrained approach ensured that each group had an 

adequate size for model stability. As Ripley’s 𝐾 is not estimable in the case of no immune 

cells in a sample, this produced 5 groups: no immune cells; low abundance and low spatial 

clustering; low abundance and high spatial clustering; high abundance and low spatial 

clustering; and high abundance and high spatial clustering. The model that is reported is the 

model that had the largest statistical significance due to the abundance and degree of spatial 

clustering for each marker. The log-ratio test comparing the models was used to isolate the 

effect of the five-group stratification.      

 

For the co-occurrence analysis involving two types of immune cells with OS, the bivariate 

version of Ripley’s 𝐾 was used. As bivariate Ripley’s 𝐾 is only estimable when both types 

of immune cells are present in a sample, the level of spatial clustering was only computed 

when both immune markers were present. Five categories were defined as AAN, APN, PAN, 

PPL, and PPH, where the first letter corresponds to the (A)bsence or (P)resence of the first 

cell type, the second letter represents the (A)bsence or (P)resence of the second cell type, and 

the last letter describes the level of spatial clustering (N)one/(L)ow/(H)igh. The marker was 

defined as present if at least one cell was positive for the immune marker in the sample. The 

threshold to determine low vs high spatial clustering based on the value of bivariate Ripley’s 
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𝐾 led to the stratification which resulted in the smallest p-value from a log-ratio test 

comparing the models with just clinical information and a model with clinical information 

and the stratification based on abundance and spatial information. Note that the bivariate 

version of Ripley’s 𝐾 is not a symmetric statistic. That is, analysis is first completed using 

the cytotoxic T-cell as the “anchor” or center for the computation of Ripley’s 𝐾, followed by 

the analysis using the regulatory T-cells as the “anchor”. 

 

Using these pre-defined categories for the abundance and spatial clustering, association of 

each cell type and phenotype with OS following EOC was completed using Cox proportional 

hazards models for CD3+, CD8+, FOXP3+, CD3+CD8+, and CD3+FOXP3+. The model 

included clinical covariates of age at diagnosis and stage (I, II, III, IV) and accounted for the 

repeated measurements per tumor/subject.  Analysis was completed separately for the 

intratumoral ROIs and TMAs. For the analysis of the TMAs, analyses were based only on 

the immune marker data in the tumoral compartment of each core in order to compare 

findings between the intratumoral ROIs and the TMAs  (i.e., restricted analysis to the cells 

determined to be tumor based on PanCK marker and removed the cells within the stromal 

compartment).  All statistical analyses were completed using RStudio with R version 4.0.4.  

 

3. Results 

3.1. Quality Control and Assessment 

 

Prior to statistical analysis of the mIF data, quality assessment of the data was completed. In 

calling a cell as positive or negative for a marker, a machine learning algorithm within the 
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HALO (Indica Labs, New Mexico) software was used where a threshold was determined   

based on the intensity measurements. As the sensitivity and specificity of this method is not 

100%, there may be cases where a cell is classified for multiple phenotype combinations that 

are not possible, such as a cell being classified as both CD3+CD8+ (Cytotoxic T-cell) and 

CD3+FOXP3+ (regulatory T-cell or Treg) cell (Supplemental Figure 3). For this analysis, 

the locations for 1 – 87 cells on 133 out of 254 ROI samples and 1-73 cells on 63 out of 259 

TMA cores (Supplemental Figure 4) were retained, but not the phenotype identification of 

cytotoxic T-cell and Treg. Instead, these cells were just considered to be positive for CD3+.  

 

3.2. Estimate of degree of spatial clustering and CSR in TMAs and ROIs 

Following quality control, the levels of spatial clustering were estimated using the 

permutation-based value for CSR, where the degree of spatial clustering was computed as 

Ripley’s 𝐾 – CSR permutation. Figure 2 shows three TMA cores and the empirical sampling 

distribution of Ripley’s 𝐾 under CSR for marker CD3. The first row (A) corresponds to a 

TMA core that does not have large areas where cells are absent, the second row (B) displays 

a TMA core with a moderate number of missing cells, and the third row (C) shows a TMA 

core with an extensive level of missing cells. As the level of missing cells increases, the 

difference between the theoretical and permutation-based estimates for Ripley’s K under CSR 

can increases. Similarly, the histogram of the distance between the permutation-based 

estimate of CSR and theoretical estimates of CSR is presented in Figure 3 (TMA) and 

Supplemental Figure 5 (ROI). The mean of the difference (Theoretical estimate of CSR – 

Permuted estimate of CSR) is positive which indicates that the theoretical estimate of 

Ripley’s 𝐾 under CSR is overestimated, resulting in a biased estimate of the degree of spatial 
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clustering and incorrect association results with a phenotype of interest. In contrast, the 

Monte-Carlo estimate of Ripley’s 𝐾 under CSR would provide a more accurate measure of 

spatial clustering which accounts for the unevenness in the cell distribution measured in the 

sample.  

 

3.3. Analysis of spatial clustering using univariate Ripley’s 𝑲 and ovarian cancer survival 

3.3.1. Intratumoral ROIs 

Cox proportional hazard models were fit to assess the association of the abundance and spatial 

clustering of cells positive for CD3+ (T-cells), CD8+, FOXP3+, CD3+CD8+ (cytotoxic T-

cell), and CD3+FOXP3+ (regulatory T-cells), adjusting for age at diagnosis and stage, where 

the degree of spatial clustering was measured by the difference of the observed estimate of 

Ripley’s 𝐾 from the permutation-based estimate of Ripley’s 𝐾 under CSR.  The estimates of 

abundance and univariate spatial clustering were collapsed into five categorial groups as 

described in Section 2.4.  Table 1 presents the hazard ratio (HR) estimates for the different 

groups with the “None” group representing the reference group. Survival curves for all five 

models are presented in Figure 4A.  The optimal cut-point for determining high and low 

abundance was around 0.5 – 3% for the various cell types. Using the optimal cut-points for 

abundance (high vs low) and degree of spatial clustering (high vs low), there was evidence 

that EOC patients with high abundance and low spatial clustering (HL group) of CD3+, 

CD8+,  and CD3+CD8+ cells in their tumors had the best OS. When restricting the analysis 

to those samples with high abundance based on the optimal cut-point, a significant difference 

was observed in the survival curves between patients with low and high spatial clustering of 

CD3+ (HR = 0.22, 95% CI (0.11, 0.47)), CD8+ (HR = 0.07, 95% CI (0.01, 0.54)), and 
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CD3+CD8+ (HR and CI not estimable as no deaths in the high abundance / low spatial 

clustering group) immune cells, with EOC patients with low clustering having best survival 

(Supplemental Table 2). 

 

 
Table 1: Results from survival analysis of the immune marker abundance and spatial clustering from the 
ROIs involving 91 subjects (254 ROIs). Degree of spatial clustering based on permutation-based 
estimate of CSR. Models were adjusted for age at diagnosis and stage. Group None is reference group. 

Marker Group* HR 

95% 
Confidence 
Interval for 

HR  

p-value 
for 

difference 
from 
None 

Overall     
p-value 

Cut-point used for 
group definition Number 

of 
Samples Abundance 

% 

Degree of 
spatial 

clustering 

CD3 

HH 1.77 [0.89, 3.51] 0.10 

5.0E-06 1.6 48.9 

12 
HL 0.43 [0.24, 0.79] 0.006 116 
LH 1.00 [0.64, 1.55] 1.00 64 
LL 1.02 [0.62, 1.68] 0.93 34 

CD8 

HH 0.74 [0.41, 1.33] 0.31 

5.1E-07 1.0 16.1 

103 
HL 0.05 [0.01, 0.39] 0.004 18 
LH 1.28 [0.83, 1.96] 0.26 57 
LL 1.02 [0.66, 1.56] 0.93 27 

FOXP3 

HH 0.49 [0.09, 2.68] 0.41 

3.8E-04 0.6 67.4 

11 
HL 0.62 [0.35, 1.1] 0.11 104 
LH 0.44 [0.2, 0.94] 0.03 20 
LL 1.32 [0.84, 2.08] 0.23 67 

CD3+ 
CD8+ 

HH 0.57 [0.28, 1.17] 0.13 

2.4E-06 2.7 15.8 

34 
HL ** ** ** 12 
LH 0.79 [0.49, 1.28] 0.34 95 
LL 1.06 [0.69, 1.61] 0.80 41 

CD3+ 
FOXP3+ 

HH 1.02 [0.55, 1.90] 0.95 

1.6E-03 1.2 29.2 

17 
HL 0.60 [0.30, 1.19] 0.14 28 
LH 0.38 [0.21, 0.68] 0.001 50 
LL 0.78 [0.51, 1.19] 0.25 77 

* HH=high abundance / high spatial clustering; HL = high abundance / low spatial clustering; LH = low 
abundance / high spatial clustering; LL = low abundance / low spatial clustering; None = no positive 
cells. 
**There were no deaths in the high abundance / low spatial group for CD3+ CD8+ cells thus the p-
value, CI, HR are not estimable.  
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3.3.2. Tumor compartment of TMAs  

Similar to the analysis of the ROIs, the analysis of the TMAs found that EOC patients with 

high abundance of CD3+, CD8+, FOXP3+, and CD3+CD8+ cells and low spatial clustering 

had the best OS, with this difference being significant (Figure 4B, Table 2). The EOC 

patients with no abundance of any of the immune markers tended to have the worse survival. 

In an analysis of the subset of EOC patients with high abundance of the TILs (CD3+), the 

difference in survival between patients with low and high clustering of TILs was statistically 

significance with better survival being observed for patients with low clustering of TILs (HR 

= 0.16, 95% CI (0.04, 0.64)) (Supplemental Table 2).  

 

3.4. Analysis of co-occurrence of CD3+CD8+ and CD3+FOXP3+ and ovarian cancer 

survival 

Bivariate analysis involving Ripley’s 𝐾 was completed to assess co-occurrence of cytotoxic 

T cells (CD3+CD8+) and regulatory T cells (CD3+FOXP3+), treating the CD3+FOXP3+ 

cell as the reference or “anchor” cell type. Results from the association of the measure of co-

location with OS is presented in Figure 5 and Table 3.  The results using CD3+CD8+ as the 

reference cell were similar (data not shown). Among the ROIs, patients with low co-

occurrence of cytotoxic T-cells (CD3+CD8+) and regulatory T-cells (CD3+FOXP3+) had 

the best survival, noting only 11 patients were in this group. In contrast, patients with high 

co-occurrence of cytotoxic and regulatory T cells had the worst survival (N = 166). However, 

these results were not confirmed in the TMA study. In the TMA analysis, patients with high 

co-occurrence had the best survival in the TMAs (N = 86). Additionally, when restricting 

analysis to samples in which both immune cell types are present in the ROIs, the EOC patients 
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with low co-occurrence of cytotoxic T-cells and regulatory T-cells had better OS (HR = 

0.463, CI = [0.26, 0.83], p-value = 0.009). However, similar analysis for the TMAs found 

that EOC patients with high co-occurrence of these two immune cells had better survival (HR 

= 1.762, CI = [1.14, 2.73], p-value = 0.0115).  

Table 2: Results from survival analysis of the immune marker abundance and spatial clustering from the 
tumor compartment of the TMAs involving 94 subjects (259 cores on TMAs).  Degree of spatial clustering 
based on permutation-based estimate of CSR. Models were adjusted for age at diagnosis and stage.  Group 
None is reference group. 

Marker Group* HR 

95% 
Confidence 
Interval for 

HR  

p-value 
for 

differenc
e from 
“None” 
group. 

Overall 
p-value 

Cut-point used for group 
definition Number 

of 
Samples Abundance 

% 

Degree of 
spatial 

clustering 

CD3 

HH 0.55 [0.25, 1.19] 0.13 

6.7E-12 6.0 22.4 

26 

HL 0.14 [0.07, 0.30] 0 38 

LH 0.48 [0.29, 0.78] 0.003 111 

LL 0.80 [0.48, 1.32] 0.38 129 

CD8 

HH 0.39 [0.12, 1.31] 0.13 

7.3E-08 5.3 22.1 

9 

HL 0.11 [0.02, 0.50] 0.004 17 

LH 0.75 [0.44, 1.28] 0.29 67 

LL 0.86 [0.54, 1.36] 0.52 69 

FOXP3 

HH 0.30 [0.08, 1.20] 0.09 

3.8E-07 2.8 20.3 

9 

HL 0.10 [0.03, 0.34] 2.0E-04 10 

LH 0.62 [0.35, 1.11] 0.11 57 

LL 0.74 [0.48, 1.15] 0.18 97 

CD3+ 
CD8+ 

HH 0.39 [0.10, 1.61] 0.19 

7.5E-08 5.7 22.0 

9 

HL 0.12 [0.03, 0.49] 0.003 14 

LH 0.67 [0.39, 1.14] 0.14 51 

LL 0.85 [0.55, 1.29] 0.44 77 

CD3+ 
FOXP3+ 

HH 0.30 [0.09, 1.04] 0.06 

2.9E-08 1.7 29.9 

11 

HL 0.18 [0.08, 0.42] 1.0E-04 16 

LH 0.93 [0.53, 1.60] 0.78 34 

LL 0.60 [0.39, 0.92] 0.02 80 

*HH=high abundance/high spatial clustering; HL = high abundance/low spatial clustering; LH = low 
abundance/high spatial clustering; LL = low abundance/low spatial clustering; None = samples with no 
positive cells is the reference group.  
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3.5. Analysis of co-occurrence of CD3+CD8+ and CD3+FOXP3+ and ovarian cancer 

survival 

Bivariate analysis involving Ripley’s 𝐾 was completed to assess co-occurrence of cytotoxic 

T cells (CD3+CD8+) and regulatory T cells (CD3+FOXP3+), treating the CD3+FOXP3+ 

cell as the reference or “anchor” cell type. Results from the association of the measure of co-

location with OS is presented in Figure 5 and Table 3.  The results using CD3+CD8+ as the 

reference cell were similar (data not shown). Among the ROIs, patients with low co-

occurrence of cytotoxic T-cells (CD3+CD8+) and regulatory T-cells (CD3+FOXP3+) had 

the best survival, noting only 11 patients were in this group. In contrast, patients with high 

co-occurrence of cytotoxic and regulatory T cells had the worst survival (N = 166). However, 

these results were not confirmed in the TMA study. In the TMA analysis, patients with high 

co-occurrence had the best survival in the TMAs (N = 86). Additionally, when restricting 

analysis to samples in which both immune cell types are present in the ROIs, the EOC patients 

with low co-occurrence of cytotoxic T-cells and regulatory T-cells had better OS (HR = 

0.463, CI = [0.26, 0.83], p-value = 0.009). However, similar analysis for the TMAs found 

that EOC patients with high co-occurrence of these two immune cells had better survival (HR 

= 1.762, CI = [1.14, 2.73], p-value = 0.0115).  

 

4. Discussion and Conclusion 

In this research, we present a novel permutation-based analysis framework using Ripley’s 𝐾 

(univariate and bivariate) to explore the relationship between the degree of spatial clustering 

of immune cells with a clinical outcome. The application of this framework to study of the 
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TIME of EOC tumors from 158 African American EOC patients revealed that not only the 

abundance of 

 

In this research, we present a novel permutation-based analysis framework using Ripley’s 𝐾 

(univariate and bivariate) to explore the relationship between the degree of spatial clustering 

of immune cells with a clinical outcome. The application of this framework to study of the 

TIME of EOC tumors from 158 African American EOC patients revealed that not only the 

abundance of immune cells but also the degree of spatial clustering of immune cells within 

the TIME were associated with overall survival. EOC patients with high abundance and low 

spatial clustering of tumor-infiltrating lymphocytes (TILs) and cytotoxic T-cells had the best 

overall survival compared to EOC patients with tumors with no involvement of the studied 

immune cells. In contrast, patients with low levels and high spatial clustering of regulatory 

T-cells had better overall survival. These findings underscore the prognostic importance of 

Table 3: Results of co-occurrence of CD3+CD8+ (cytotoxic T-cells) and CD3+FOXP3+ (regulatory T-cells) 
using bivariate Ripley's K for the ROIs and TMAs.  Degree of spatial clustering based on permutation-
based estimate of CSR. Models were adjusted for age at diagnosis and stage.  The no cytotoxic T-cells 
and no regulatory T-cells (none) group/category is the reference group. 

Data 
Type CD3+CD8+ CD3+FOXP3+ 

(anchor) 

Degree of 
Spatial 

Clustering 
HR 95% CI for 

HR 
p-

value 
Overall    
p-value 

Number 
of 

samples 

ROI 

Absent Present None 0.98 [0.52, 1.85] 0.94 

1.5E-03 

16 

Present Absent None 0.66 [0.35, 1.26] 0.21 29 

Present Present High 1.34 [0.63,2.43] 0.54 166 

Present Present Low 0.57 [0.33,0.97] 0.04 11 

TMA 

Absent Present None 0.60 [0.30, 1.20] 0.15 

7.9E-05 

28 

Present Absent None 0.76 [0.38, 1.52] 0.44 47 

Present Present High 0.43 [0.24, 0.77] 0.004 86 

Present Present Low 0.73 [0.43, 1.25] 0.25 51 
ç 
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evaluating not only immune cell abundance, but also the spatial contexture of the immune 

cells in the TIME.  

Comparison of the value of Ripley’s 𝐾 under the assumption of CSR (complete spatial 

randomness) based on theoretical derivation based on area or based on the permutation-based 

estimate found that the theoretical value overestimates the true value of Ripley’s 𝐾 under 

CSR (Figure 3), with the bias more pronounced when the level of missing cells or “holes” is 

large (Figure 2). This will result in a biased estimate of the degree of spatial clustering that 

would impact downstream association analyses (i.e., biased and incorrect hazard ratios, 

confidence intervals and p-values). Many of the proposed methods being used for the spatial 

analysis of digital pathology data being applied, particularly in the setting of TMAs, such as 

nearest neighbor distances are not correcting for this “missingness” in cell measurements and 

thus are prone to incorrect estimation of the degree of clustering/co-localization. An 

additional strength of the proposed statistical framework is that the degree of clustering can 

be estimated for an entire TMA or ROI or focused on just the tumor or stromal compartments.  

 

However, there are many challenges in completing the spatial analysis of the TIME, with 

many areas requiring further research. One challenge in using Ripley’s 𝐾 is selection of the 

proximity parameter (𝑟 or radius). Often, the selection of this value is based upon prior 

knowledge or based on practical considerations. For the present analysis of ovarian cancer 

tumors, we chose to use Ripley’s 𝐾 a 𝑟 = 25	to measure the level of clustering of immune 

cells in a small area (or radius).  A possible choice of the proximity parameter is to compute 

Ripley’s 𝐾 at several values of 𝑟 and select the value that has the greatest difference from 

CSR(14, 32).  However, this implementation would likely lead to different proximity 
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parameters being used for each image and would make the spatial measure not comparable 

across images. Another approach would be to treat the estimates of Ripley’s 𝐾 as the various 

𝑟 values as a function or trajectory and applying functional data analysis (FDA), which allows 

for linking entire spatial trajectory to be associated with a phenotype(33-35). 

 

Another challenge that arises when applying Ripley’s 𝐾 is that many samples may have zero 

cells that express the marker of interest (i.e., “immune cold tumors”). For these cases, spatial 

clustering is undefined. To accommodate this case in the survival analysis, a category was 

defined in which samples with zero abundance and no spatial clustering was constructed. 

This challenge was amplified in the bivariate analysis in which both cell types had to be 

present in the sample for estimation of spatial co-localization.  Additionally, using the  

optimal cut-point is a popular method for determining categories for a continuous variable 

(i.e., percent abundance, density), however, these methods have been shown to inflate the 

type I error rate (36-39) with the optimal cut-point varying between studies.  

 

In conclusion, this paper illustrates a permutation-based approach for estimating the degree 

of spatial clustering when studying the TIME. This approach addresses the unique challenges 

of tumor samples, such as, regions where cells cannot be measured due to the limitation of 

the sample preparation. The application of this approach also showed that in African 

American patients with EOC that not only the abundance but the level of spatial clustering 

of CD3+ and CD3+CD8+ cells in the tumor is related to survival, where EOC patients with 

low level of clustering had better survival compared to those with high level of spatial 

clustering. The application of this spatial analysis framework to the study of the TIME could 
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lead to the identification of immune content and spatial architecture that could aid in the 

determination of patients that are likely to response to immunotherapies.  Additionally, the 

proposed spatial analysis approach is also applicable to the analysis of data off technologies 

that are being used to study the TIME, such as CyTOF (time-of-flight mass cytometry) and 

imaging mass cytometry (IMC).  
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Figure Legends: 
 
Figure 1: Example of IF data from (A) a TMA core sample and (B) an intra-tumoral region 
of interest (ROI).  As illustrated in the two example figures, TMAs tend to have more “holes” 
and uneven cell density as compared to ROIs. Examples of clustering patterns observed in 
the intra-tumoral ROIs; (C) location of the CD3+ cells in which the pattern is close to 
complete spatial randomness (CSR); and (D) location of CD3+ cells in which the pattern 
deviates from CSR. 
 
Figure 2:   The empirical distribution of Ripley’s K under CSR generated by permutation 
with the translational edge correction for r = 50 and 100 for CD3+ cells. The observed value 
of Ripley’s K is represented by blue dotted line, the mean of the permutation-based CSR 
distribution is represented by the vertical black solid line, and the theoretical CSR computed 
assuming no “holes” in the tissue sample image is the vertical red line. As the level of missing 
cells increases (i.e., more “holes”) there is larger difference between the estimate of CSR 
based on theoretical computation using area and the estimate of CSR based on the mean of 
the empirically derived distribution.    
 
Figure 3: Histogram of the difference between the theoretical estimate and the permuted 
estimate of CSR for the 94 TMA samples for CD3+, CD8+, CD3+CD8+ (cytotoxic T-cell), 
FOXP3+ and CD3+FOXP3+ (Regulatory T-cell or Treg). The dashed black line represents 
the mean of distribution. 
 
Figure 4: Predicted survival curves from Cox proportional hazard models for the CD3+, 
CD3+CD8+, and CD3+FOXP3+ cells where the degree of spatial clustering was based the 
permutation-based estimate of Ripley’s K under CSR (i.e., observed Ripley’s K – the mean 
of the empirical distribution of Ripley’s K under CSR); (A) results from intra-tumoral ROIs 
(91 subjects, 254 samples); (B) results from tumor compartment of TMAs (94 subjects, 259 
samples).  Models adjusted for age at diagnosis and stage within a repeated measures analysis 
framework. 
 
Figure 5: Predicted survival curves from Cox proportional hazard models for the degree of 
cooccurrence of CD3+ FOXP3+ and CD3+ CD8+(reference cell type) cells was based the 
permutation-based estimate of Ripley’s K under CSR (i.e., observed Ripley’s K – the mean 
of the empirical distribution of Ripley’s K under CSR); (A) results from intra-tumoral ROIs 
(91 subjects, 254 samples); (B) results from tumor compartment of TMAs (94 subjects, 259 
samples).  Models adjusted for age at diagnosis and stage within a repeated measures analysis 
framework. 
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Supplemental Figure Legends: 
 
Supplemental Figure 1: Example displaying the behavior of Besag’s L when a point process 
exhibits clustering, complete spatial randomness, and dispersion (left to right). The locations 
of the points are plotted in panel A, and the trajectory of Besag’s L - r  with different values 
of r is plotted in panel B showing that as points are more evenly spread that Besag’s L – r 
decreases.  
  
Supplemental Figure 2:  The relationship between the percent of CD3+ cells and degree of 
spatial clustering has a exponentially decaying relationship (A). Plots (B) and (D) (colored 
red in plot A), and (C) and (E) (colored green in plot A) are two ROIs which have two 
approximately the same percent of CD3+ but different levels of spatial clustering. 
 
Supplemental Figure 3:  Histograms showing the difference between the theoretical and 
permutation estimate of CSR for 254 ROIs and 5 cell types. The black dashed vertical line 
corresponds to 0. 
 
Supplemental Figure 4: Histograms showing the quantity (left column) and percentage 
(right column) of CD3+ cells removed from ROIs (top row) and TMAs (bottom row) due to 
them being classified as both CD3+CD8+ and CD3+FOXP3+. 
 
Supplemental Figure 5: Scatter plots showing the cytoplasm intensity, which is used to 
classify cell positivity, for FOXP3 (Opal 540) and CD8 (Opal 570). These four plots show 
varying degree of phenotype misclassification and illustrates the challenge of making 
univariate or bivariate intensity threshold for classifying higher dimensional spaces.     
 
 
 
Supplemental Tables:  
 
Supplemental Table 1: Summary of the demographics of the 408 women in the AACES 
study, and by type of available images. 
 
Supplemental Table 2: Results from survival analysis of the immune marker abundance and 
spatial clustering from the ROIs and TMAs only considering samples with high abundance. 
Degree of spatial clustering based on permutation-based estimate of CSR. Models were 
adjusted for age at diagnosis and stage. Group HH is reference group 
 
 
 
 
 
 
 
 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 29, 2021. ; https://doi.org/10.1101/2021.04.27.21256104doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.27.21256104
http://creativecommons.org/licenses/by-nc-nd/4.0/


30 
 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 29, 2021. ; https://doi.org/10.1101/2021.04.27.21256104doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.27.21256104
http://creativecommons.org/licenses/by-nc-nd/4.0/


A B

C D

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 29, 2021. ; https://doi.org/10.1101/2021.04.27.21256104doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.27.21256104
http://creativecommons.org/licenses/by-nc-nd/4.0/


Stroma
Tumor

CD3+

A

B

C

0 10 20 30 40

0 10 20 30 40

0 10 20 30 40

0

5000

10000

15000

0

5000

10000

15000

20000

0

3000

6000

9000

Radius

E
st

im
at

e

2000 2500 3000

2000 4000 6000

2000 3000 4000

0

50

100

150

200

0

50

100

150

0

200

400

600

Estimate

Estimate
Observed K
Permuted CSR
Theoretical CSR

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 29, 2021. ; https://doi.org/10.1101/2021.04.27.21256104doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.27.21256104
http://creativecommons.org/licenses/by-nc-nd/4.0/


CD3+ CD8+ FOXP3+ CD3+ CD8+ CD3+ FOXP3+
50

100
150

200

−100 0 100 −100 0 100 −100 0 100 −100 0 100 −100 0 100

0

25

50

75

0

25

50

75

100

0

25

50

75

100

0

30

60

90

Theoretical Estimate of CSR − Permuted Estimate of CSR

co
un

t

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 29, 2021. ; https://doi.org/10.1101/2021.04.27.21256104doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.27.21256104
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.00

0.25

0.50

0.75

1.00

0 500 1000 1500 2000 2500
Time (Days)

S
ur

vi
va

l r
at

e
CD3+A

0.00

0.25

0.50

0.75

1.00

0 500 1000 1500 2000
Time (Days)

S
ur

vi
va

l r
at

e

CD3+B

0.00

0.25

0.50

0.75

1.00

0 500 1000 1500 2000 2500
Time (Days)

S
ur

vi
va

l r
at

e

CD8+

0.00

0.25

0.50

0.75

1.00

0 500 1000 1500 2000
Time (Days)

S
ur

vi
va

l r
at

e

CD8+

0.00

0.25

0.50

0.75

1.00

0 500 1000 1500 2000 2500
Time (Days)

S
ur

vi
va

l r
at

e

FOXP3+

0.00

0.25

0.50

0.75

1.00

0 500 1000 1500 2000
Time (Days)

S
ur

vi
va

l r
at

e

FOXP3+

0.00

0.25

0.50

0.75

1.00

0 500 1000 1500 2000 2500
Time (Days)

S
ur

vi
va

l r
at

e

CD3+ CD8+

0.00

0.25

0.50

0.75

1.00

0 500 1000 1500 2000
Time (Days)

S
ur

vi
va

l r
at

e

CD3+ CD8+

0.00

0.25

0.50

0.75

1.00

0 500 1000 1500 2000 2500
Time (Days)

S
ur

vi
va

l r
at

e

CD3+ FOXP3+

0.00

0.25

0.50

0.75

1.00

0 500 1000 1500 2000
Time (Days)

S
ur

vi
va

l r
at

e

CD3+ FOXP3+

Group None HH HL LH LL

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 29, 2021. ; https://doi.org/10.1101/2021.04.27.21256104doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.27.21256104
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.00

0.25

0.50

0.75

1.00

0 500 1000 1500 2000 2500
Time (Days)

S
ur

vi
va

l r
at

e
A

0.00

0.25

0.50

0.75

1.00

0 500 1000 1500 2000
Time (Days)

S
ur

vi
va

l r
at

e

B

Group AAN APN PAN PPH PPL

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 29, 2021. ; https://doi.org/10.1101/2021.04.27.21256104doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.27.21256104
http://creativecommons.org/licenses/by-nc-nd/4.0/

