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Introduction 

Many government auditors routinely use random samples to estimate some 
unknown amount from a population of interest.  These populations frequently 
have a low occurrence rate of these items: such as incorrectly booked amounts, 
over-deductions, underpaid tax amounts, or overpaid claims.  In these cases, the 
samples may have only a few occurrences of the audit item of interest and many 
examples of correctly handled transactions.  In other words, errors typically will 
be rare and the sample will contain many zeros (correct items) and a few 
nonzeros (incorrect items).  

In addition to discovering errors, typically auditors will also want to estimate the 
total error amount.  This can be done using traditional statistical techniques that 
make certain assumptions.  The auditor, with a given confidence level, can 
compute a confidence interval around the projected total.  This confidence 
interval measures the precision of the projected total.  When the confidence 
interval is too wide, indicating that the projected total is tenuous, and increasing 
sample size is not an option, the auditor frequently will base his adjustment on 
the lower limit of the confidence interval (interval adjustment).  It is common for 
government agencies to base their adjustments on the lower limit rather than the 
projected total (the projected total is referred to as the point estimate).  For 
example, if a confidence interval is determined to be $80,000 ± $20,000, the 
point estimate would be $80,000 and the lower limit would be $60,000. 

It has been well known for many years that the traditional statistical techniques 
typically do not provide reliable confidence intervals when applied to typical audit 
populations encountered in government audits.1  For sample sizes normally used 
by government auditors, these techniques usually provide a lower limit that is too 
low, or in other words, too conservative.  Since no other practical alternatives 
have emerged up until now, the accepted procedure has been to use statistical 
packages that compute a confidence interval based on traditional statistical 
methods.  The excessively conservative nature of this method has simply been 
accepted.  

This article is intended to introduce government auditors to an alternate method 
in computing the lower limit that is more appropriate provided two ordinary 
conditions are met.  First, the samples contain only a few occurrences of the item 
of interest (less than thirty nonzeros in the sample).  This statement applies to 
any sample size.  And second, the number of items sampled as a percentage of 
the population, or sampling percentage, is low, say less than 10%.  This alternate 
method is called the bootstrap.  The bootstrap procedure will provide more 
realistic or reliable, that is not overly conservative, lower limits.2  We have some 
real life examples and computer simulations that illustrate how the bootstrap 
provides a higher lower limit when compared to traditional statistical 
computations.  Use of the bootstrap has become a viable methodology only 
through the emergence of the computer, given its intensive computational 
requirements, as we will demonstrate. 
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Traditional Statistical Appraisals 

Traditional statistical methods can be used to compute precision.  These 
computations, easily done by a computer, are too complex to fully explain here, 
so we will only give a brief explanation.  For example, in evaluating an audit 
sample, say we are 90% confident that the true unknown population amount is 
within $20,000 of the point estimate of $80,000.  There are various methods 
common in the auditing profession used to compute the point estimate.3  The 
lower and upper limits of the confidence interval here are $80,000 ± $20,000; that 
is $60,000 and $100,000, respectively.  It can also be said, using the same 
calculations, that we are 95% confident that the true population amount is at least 
$60,000 (the lower limit of the 90% confidence interval).4   If the confidence 
interval procedure is reliable, we can expect that 5% of the time this statement 
will be incorrect if sample after sample is drawn.   

But we know that in samples where the sampling percentage is under 10% and 
fewer than thirty errors are observed, traditional computations of the lower limit 
will be too conservative.  In other words, using the statistical tables to determine 
a 90% confidence interval, the lower limit statement will be incorrect far fewer 
than 5% of the time.  These tables are based on some assumptions that possibly 
cannot be applied to audit populations and sample sizes typically found in the 
government auditing profession.  Mindful of this, government agencies (such as 
the Internal Revenue Service, the Department of Health & Human Services, and 
many state Revenue Departments) have established policies about the minimum 
number of occurrences (nonzeros) in the sample that will allow the auditor to 
make an adjustment based on a projected amount from the sample.  These 
minimums (denoted as NZ) vary, but numbers such as NZ equal to three, five, 
six, or ten can be found to be the specified minimums.  We will also address the 
need for these minimums. We have found that auditors across the country are 
interested in what number should be used as a minimum and we have some 
interesting insights on this topic as a sidelight to the issue of how to appraise 
audit samples. 

A closer look at audit populations reveals that we really have a mixture of two 
populations.  We have many non-errors (zeros) and a few errors (nonzeros).  If 
the population error rate is say 10% or under, samples of 200 or less can be 
expected to have less than thirty errors in the sample.  We can assert that audit 
populations frequently have error rates of 10% or less, and that auditors may be 
reluctant or unable (due to limited audit resources) to use very large sample 
sizes.5  Yet traditional evaluation techniques are routinely applied to these 
samples when the bootstrap procedure may be a more reliable choice. 

The Bootstrap 

Traditional statistical techniques make assumptions that are generally valid, but 
in the case of low error rate populations, may not be appropriate.  The traditional 
approach (a parametric approach) assumes that the distribution of sample 
means is approximately normal.  In low error rate populations, the distribution 



 3

may be skewed unless a very large sample is taken.  The bootstrap typically is 
not affected by these assumptions.6  More importantly, as noted above, in nearly 
all cases the bootstrap lower limit will be much less conservative and more 
reliable.  As the following discussion will make clear, when about thirty or more 
errors are observed in the sample, the bootstrap and traditional methods will 
generally provide lower confidence limits that are nearly the same.   

Bootstrap procedures fall into the category of resampling methods.  That is, the 
sample results are resampled many times over.  The fundamental assumption 
when using bootstrapping is that the sample is representative of the underlying 
population. 

The bootstrap procedure begins in the usual way by obtaining a simple random 
sample from the population, say of size 200 items.  An error value (zero or 
nonzero) is established for each sample item.  To derive a bootstrap confidence 
interval, the following steps are carried out: 

1) Obtain say, 1000 new samples by sampling the original sample 
of 200 errors with replacement.  In sampling with replacement, 
the sampling units are returned to the population (in this case 
the original sample), and may be selected into the sample 
again.  Traditionally, auditors will select the initial sample 
without replacement.  The number of resamples can vary, but 
the more resamples, the better.  The size of each resample 
should be the same as the initial sample. 

2) For each of the 1000 resamples, derive the sample mean 
(average error dollar amount).  The sample mean is multiplied 
by the population count to arrive at an estimate of the population 
total. 

3) Arrange these 1000 population total error estimates in order, 
from smallest to largest.  One procedure for deriving a 90% 
confidence interval is to find the 5th and 95th percentiles of these 
1000 estimates; that is, the 50th estimate (the lower confidence 
limit) and the 950th estimate (the upper confidence limit).  Here, 
50 is (.05)(number of resamples) = (.05)(1000) and 950 is 
(.95)(number of resamples) = (.95)(1000). 

Clearly, to be practical, performing 1000 or more resamples will require a 
computer.7  

The procedure described in step three is referred to as the bootstrap confidence 
interval using the empirical percentiles.  An improvement over this procedure 
calculates the bias-corrected and adjusted (BCa) percentiles.8   For example, the 
BCa procedure for a particular sample may be to use the 11.0th and the 98.4th 
percentiles, that is, the 110th bootstrap estimate (the lower confidence limit) and 
984th bootstrap estimate (the upper confidence limit) when all the resample 
estimates are arranged smallest to largest.  The BCa percentiles vary from 
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sample to sample, require more computation, and generally are much more 
accurate.  For either procedure, at least 1000 resamples are recommended. 

An Example 

A simple random sample of 200 items (n = 200) is obtained from a population of 
5000.  Note that the sample size is 4% of the population size.  Through normal 
audit procedures, the auditor determined that the sample contained 191 zero 
values and nine nonzero errors with the following amounts: $104.23, $236.71, 
$250.56, $309.82, $324.15, $401.33, $653.58, $1114.60, and $1824.92. 

From the example, we know that the point estimate of the total error is 
$130,500.9   Also, we can safely assume that the population has a low error rate 
since the sample error rate is 9/200 = 4.5%.  Using traditional appraisal 
techniques, the 90% confidence interval has a lower and upper limit of $36,600 
and $224,400, respectively.10 

A bootstrap confidence interval is obtained by sampling the initial sample say, 
1000 times with replacement and deriving the estimate of the population total 
error for each sample.11  To illustrate, the first resample might contain 192 zero 
error values and the following eight (0+0+1+0+2+1+1+2+1) nonzero error values 
selected from the original sample: 

# of Times 
Selected  0 0 1 0 2 1 1 2 1 

Value       140.23 236.71 250.56 309.82 324.15 401.33 653.58 1114.60 1824.92

The corresponding bootstrap estimate of the population total error amount would 
be $150,200.12  If we want 1000 resamples, then this procedure would be 
repeated 999 additional times and the resulting 1000 bootstrap estimates would 
be arranged from smallest to largest.  Confidence intervals can then be derived 
using both the Empirical and BCa methods.13 

Using Empirical Percentiles 

After arranging the 1000 bootstrap estimates from smallest to largest, the 50th 
and 950th estimates were $47,754 and $236,954.  Consequently, the 90% 
confidence interval for the total population error amount is from $47,754 to 
$236,954. 

Using BCa Percentiles 

The BCa percentiles for this sample were 13.256% and 99.068%.  The 
corresponding confidence interval is found by finding the (.13256)(1000) = 133rd 
bootstrap estimate and the (.99068)(1000) = 991st bootstrap estimate (when all 
estimates are arranged smallest to largest).  These were $67,838 (lower limit) 
and $288,780 (upper limit). 
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Observations 

1. Both bootstrap methods produced higher confidence limits than those 
obtained using the traditional method. 

2. The lower limit produced by the bootstrap BCa method is 85% higher than 
that produced by the traditional approach ($36,600 versus $67,838).  This is a 
typical result when using this bootstrap procedure on audit samples. 

Bootstrap Simulations 

A number of computer simulations were generated to gain insight as to the 
effects of audit sample sizes and error rates on the performance of the bootstrap 
confidence interval procedure versus the traditional method.  These simulations 
show that bootstrap confidence intervals are more reliable.14 

The Error Populations 

Error rates of 2%, 5%, and 10% were considered.  Three populations of error 
values, each having 5000 units, were created using the three error rates. 
Population #1 contained 4900 zero values and 100 nonzero values.  The mean 
error value is $16 and the total error amount is $80,000.  Similarly, error 
population #2 contains 4750 zero values, 250 nonzero values, with a mean error 
value of $40 and a total value of $200,000.  Error population #3 consists of 4500 
zero values, 500 nonzero values, has a mean error value of $80 and a total value 
of $400,000.15 

The Sample Sizes 

Sample sizes of 200, 300, 400, 500, and 600 were considered.  The expected 
number of nonzero errors in the sample (EE) ranged from four (2% x 200), to 
sixty (10% x 600).  The results show that the bootstrap procedure performed 
quite well even when a very small number of nonzero errors is expected in the 
sample; in particular, when EE is less than10. 

Minimum Number of Nonzero Errors in Each Sample 

In order to project a sample result to the entire population, government auditors 
may require a minimum number of nonzero errors.  For example, federal auditors 
within the Department of Health and Human Services require at least six nonzero 
errors.  Otherwise the sample results are not projected.  For this study, the 
minimum number of nonzeros (NZ) was set at three, six, and ten. 

The Simulation Runs 

For each sample size within each population, 5000 simple random samples were 
created (for a total of 75,000 initial samples).  For each generated sample, 1000 
bootstrap resamples were created.  Subsequently, for each of the 5000 created 
samples, a bootstrap confidence interval using the BCa bootstrap procedure was 
generated. 
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For simulations on each population, the following information was captured: 

A The percentage of the samples that contained the minimum 
number of nonzero errors (NZ).  Any samples that did not were 
discarded and ignored. 

B A 90% confidence interval using traditional procedures was 
derived for each sample if the sample contained the minimum 
number of nonzero errors (NZ).   The percentage of computed 
lower limits that were more than the actual population error is 
noted (this should be about 5% of the time). 

C A 90% confidence interval using the BCa bootstrap procedure 
was derived for each sample if the sample contained the 
minimum number of nonzero errors.  The percentage of 
computed lower limits that were more than the actual population 
mean is reported (again, the closer this number is to 5%, the 
more reliable the procedure). 

D The percentage of time the traditional 90% confidence interval 
contained the population mean (ideally, this should be 90% of 
the time).  

E The percentage of the 90% BCa bootstrap confidence intervals 
containing the population mean (again, the closer this number is 
to 90%, the more reliable the procedure). 

F The average lower limit using the traditional approach. 

G The average lower limit using the BCa bootstrap approach. 

 

Examining the Results 

The simulation results for Populations #1, #2, and #3 are summarized in Tables 
1, 2, and 3 respectively.  The columns of the three tables report the information 
noted above (A – G).  If a sample fails to have at least the minimum number of 
nonzero errors (NZ) it was discarded and confidence intervals were not derived.  
If more than 50% of the 5000 generated samples failed to have the minimum 
number of nonzero errors (summarized in column A), the results are not reported 
(any conclusions drawn from the remaining samples would be highly suspect due 
to the limited number of usable samples). 

Column B.  These values clearly demonstrate how conservative the lower limit is 
using the traditional confidence interval, because these values should ideally be 
around 5%.  

Column C.  These values are the percentage of samples for which the lower limit 
exceeded the population mean using the BCa bootstrap procedure and (as for 
column B) should be about 5%.  The values in the three tables are roughly 3.5% 
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to 4%.  The lower limit for the bootstrap interval is still conservative but much 
closer to 5% than that produced by the traditional procedure. 

Columns D and E.  These two columns contain the percentage of the usable 
samples that contained the population mean, and should ideally be about 90%.  
The actual percentage of time that the intervals contained the mean is referred to 
as the coverage provided by this procedure.  Generally, the bootstrap procedure 
provided slightly better coverage than the traditional method. 

Columns F and G.  Columns F and G contain the average of the lower limits (in 
thousands of dollars) for each of the two confidence interval procedures.  The 
far-right column contains the increase in the lower limit using the BCa bootstrap 
interval.  As expected, on average, the bootstrap always provided for higher 
lower limits.  In many instances, the increase was dramatic. 

Notice that the percent gain in the lower limit values appears to be driven by the 
expected number of nonzero errors (EE).  The gain in the bootstrap lower limit 
over the traditional lower limit appears to be highly dependent upon EE as Figure 
1 clearly shows.  Figure 1 is a plot of EE versus the percent gain and shows that 
the expected gain is related to the expected number of errors and after about 30 
errors, the curve (or benefit to using the bootstrap) flattens out. 

 

What is Important.  We feel the auditor should know that a dramatic increase in 
the lower limit would be realized when using the BCa bootstrap procedure in low 
error rate situations, as shown in the “% Incr.” column of the tables.  Further, this 
increased amount is more reliable than a lower limit derived using the traditional 
approach. 

A Look at the Minimum Number of Nonzero Errors 

It appears that the minimum number of errors required to project a sample result 
is not a critical concern.  The results obtained by requiring three nonzero errors 
were just as reliable as those obtained when requiring six or ten nonzero errors. 
This conclusion also applies to the highly conservative intervals derived using the 
traditional approach.  Requiring ten nonzero errors would not be advisable since 
(1) there is a much higher chance of obtaining a sample not containing the 
minimum number of nonzero errors and (2) the confidence interval coverage (in 
column E) is often too large.  

Bootstraps on Actual Samples 

We have taken random samples found in actual audit situations and applied the 
bootstrap procedure.  These are summarized in Table 4.  Similar to the 
simulations, the bootstrap BCa lower limits are significantly larger when 

Insert Figure 1 here 
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compared to the traditional approach.   However, the percent gain in the lower 
limit is not as dependent on the expected number of nonzero errors (EE) as in 
the simulations (Figure 1), but still appears exponentially related to the number of 
nonzero errors found in the sample. 

Summary and Further Research 

The primary result to emerge from this study is that the auditing agency can 
expect a much larger amount when requesting an adjustment based on the lower 
limit of a bootstrap confidence interval.   Further, the confidence intervals are 
more reliable when compared to traditional methods. 

Statisticians have long been aware of the problems associated with appraising 
low error rate populations with traditional methods.  The simulations and actual 
data have demonstrated the dramatic improvement offered by using a bootstrap 
procedure.  Of the two bootstrap procedures introduced, the BCa method will 
generally provide more reliable results and is the procedure recommended for 
appraising low error rate samples.  The lower limit provided by the BCa 
methodology is still on the conservative side but far less conservative when 
compared to the traditional approach.  

The data, research and examples used in this article have utilized difference 
estimation, but we believe the same results may apply to other estimation 
methodologies such as ratio and regression estimation – but this will take further 
research.  
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Results for 2% Error Rate (Population #1) 

Sample Size (n) NZ A B C D E F G % Incr. 

n = 200 

(EE = 4) 

3 23.6 .3 3.7 88.6 90.1 4.9  30.9 530.6 
6 79.0 X X  X X X X X 

10 99.3 X X X X X X X 

n = 300 

(EE = 6) 

3 5.9 .6 3.9 83.9 86.1 13.4  33.1 147.6 
6 44.2 .5 3.6 96.4 95.1 21.9 44.2 101.8 

10 92.7 X X X X X X X 

n = 400 

(EE = 8) 

3 1.2 .6 3.4 82.3 86.0 19.1 35.4 85.6 
6 18.4 .7 3.9 91.9 91.8 23.4 40.6 73.9 

10 72.7 X X X X X X  X 

n = 500 

(EE = 10) 

3 .2 .5 3.2 84.5 88.6 24.6 38.6 57.2 
6 5.6 .7 3.6 87.9 90.6 26.9 41.3 53.3 

10 45.0 .7 3.7 97.5 95.3 35.2 50.4  43.0 

n = 600 

(EE = 12) 

3 0 .8 3.5 85.9 89.3 29.2 41.7 42.6 

6 1.6 .7 3.6 86.9 89.9 29.6 42.1 42.3 

10 21.7 .7 3.5 94.6 94.7 33.9 46.6 37.3 

Table 1 

Notes to Tables 1 – 3: 

 EE is the expected number of errors equal to the error rate times the sample size. 

 NZ is the minimum number of nonzero errors required to project the results.  If the minimum is not 
met, the sample is discarded. 

 A:  Percentage of samples discarded because NZ was not met.  If more than 50% of the simulations 
have been discarded, the information in columns B-G is not reported (labeled “X”). 

 B:  Percentage of traditional confidence intervals where the lower limit is greater than the total 
population error amount.  This should be at or near 5%. 

 C:  Percentage of BCa bootstrap confidence intervals where the lower limit greater than the total 
population error amount.  This should be at or near 5%. 

 D:  Percentage of traditional confidence intervals containing the total population error amount. This 
should be at or near 90%. 

 E:  Percentage of BCa bootstrap confidence intervals containing the total population error amount.  
This should be at or near 90%. 

 F:  Average lower limit for total error amount using traditional confidence intervals (x $1,000). 

 G:  Average lower limit for total error amount using BCa bootstrap confidence intervals (x $1,000). 



 10

Results for 5% Error Rate (Population #2) 

Sample Size (n) NZ A B C D E F G % Incr. 

n = 200 

(EE = 10) 

3 .2 .8 4.2 84.2 87.2 63.0 98.1 55.7 
6 5.8 .9 4.2 87.8 89.3 67.0 102.6 53.1 

10 44.9 .9 4.1 97.4 94.9 89.6 126.9 41.6 

n = 300 

(EE = 15) 

3 0 .8 3.8 86.5 88.9 85.6 111.4 30.1 
6 .3 1.2 4.2 87.1 89.2 86.4 112.3 30.0 

10 5.6 1.2 3.8 89.9 91.4 90.0 116.1 29.0 

n = 400 

(EE = 20) 

3 0 1.5 4.4 87.4 89.5 100.6 121.0 20.3 
6 0 1.2 4.1 87.5 89.3 100.4 120.9 20.4 

10 .4 1.4 3.7 87.5 89.6 100.1 120.7 20.6 

n = 500 

(EE = 25) 

3 0 1.7 4.1 88.6 90.4 111.1 128.0 15.2 
6 0 1.2 3.9 88.0 90.0 109.4 126.2 15.4 

10 0 1.4 3.4 88.2 90.3 109.4 126.4 15.6 

n = 600 

(EE = 30) 

3 0 1.6 3.8 89.3 90.6 117.9 132.3 12.2 

6 0 1.4 3.5 90.7 91.6 118.0 132.7 12.5 

10 0 1.6 3.9 90.0 91.1 117.6 132.1 12.3 

Table 2 
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Results for 10% Error Rate (Population #3) 

Sample Size (n) NZ A B C D E F G % Incr. 

n = 200  

(EE = 20) 

3 0 1.5 4.4 87.6 89.2 204.2 244.9 20.0 

6 0 1.6 4.4 86.8 88.7 203.8 244.7 20.1 

10 .3 1.3 4.2 87.0 88.4 202.6 243.3 20.1 

n = 300 

(EE = 30) 

3 0 1.6 4.4 88.1 89.1 237.2 266.1 12.2 

6 0 1.5 4.5 89.6 90.0 240.1 269.2 12.1 

10 0 1.8 4.0 88.6 90.3 238.4 267.2 12.1 

n = 400 

(EE = 40) 

3 0 2.2 4.5 89.0 89.7 259.7 282.4   8.7 

6 0 1.8 4.0 88.9 89.9 257.7 280.3   8.8 

10 0 1.7 3.9 89.4 90.4 257.7 280.4   8.8 

n = 500 

(EE = 50) 

3 0 2.1 4.4 90.0 90.3 273.0 291.6   6.8 

6 0 1.9 3.7 90.5 91.3 273.4 292.0   6.8 

10 0 1.8 4.2 91.0 91.1 273.6 292.3   6.8 

n = 600 

(EE = 60) 

3 0 2.1 4.1 90.9 91.8 284.0 299.8   5.6 

6 0 2.0 3.7 90.9 91.2 283.2 298.9   5.5 

10 0 2.3 4.1 91.0 91.4 285.4 301.2   5.5 

Table 3 
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Results from Actual Samples 

H 
Sample 

 
 

I 
Sample 
Size (n) 

 

J 
Nonzero 
Errors 

 

K 
Traditional 

Lower Limit 
95% Conf. 

L 
Bootstrap BCa 
Lower Limit 
95% Conf. 

% Incr. 
 
 

1 365 3 -1,273,609 104,791 108.2 
2 300 6 180,935 277,856   53.6 
3 365 8 1,611,222 6,178,412 283.5 
4 365 10 1,085,248 7,007,027 547.7 
5 247 10 16,923 19,976   18.0 
6 300 11 725,080 875,401   20.7 
7 120 12 11,687 13,359   14.3 
8 365 13 59,614 75,371   26.4 
9 300 13 167,383 182,820     8.9 

10 300 15 187,831 208,231   10.9 
11 300 18 664,749 774,963   16.6 
12 300 30 411,956 425,947     3.4 

Table 4 

Notes to Table 4: 

 All samples have come from simple random samples from various sales and use tax audits done by the 
Washington State Department of Revenue within the last year. 

 The lower limits are 95% one-sided using a difference point estimator. 

 In each case, the sampling percentage is less than 10%. 

 For sample 1, the percent increase was computed using |(L - K) / K| x 100.  For samples 2 – 12 the 
increase was computed in the same manner as used for tables 1-3, that is (L - K) / K x 100. 
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Benefit Using the Bootstrap 

 

Percent Gain in the Lower Limit as a Function of the Expected 
Number of Nonzero Errors (EE) 

Figure 1 
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Endnotes 

                                                 
1 Panel on Nonstandard Mixture of Populations, Statistical Models and Analysis in Auditing: A Study of 
Statistical Models and Methods for Analyzing Nonstandard Mixtures of Distributions in Auditing, 
Washington, D.C. National Academy press, 1988. 

2 Upper limits, using traditional techniques are also too low (not conservative enough).  Although upper 
limits are not dealt with in this article, the bootstrap also provides for more reliable upper limits. 

3 Some of the methods include difference estimation, ratio estimation or regression estimation. 

4  For this illustration, $60,000 can be interpreted as a 95% lower limit (bound) of a one-sided confidence 
interval (we are 95% confident that the true population amount is at least $60,000) or as the lower limit of a 
90% two-sided confidence interval (we are 90% confident that the true population amount is between 
$60,000 and $100,000).  In general, the lower limit of an A% two-sided interval can be interpreted as a 

 )%
2

50(
A

  lower bound. 

5  The question of how large of a sample is required using traditional evaluation approaches has been 
addressed in several studies: 

 John Neter and James Loebbecke, Behavior of Major Statistical Estimations in Sampling 
Accounting Populations: An Empirical Study, New York, American Institute of Certified 
Public Accountants, 1975. 

 Alan H. Kvanli, Y. K. Shen and L.Y. Deng, A Construction of Confidence Intervals for the 
Mean of a Population Containing a Large Number of Zero Values, Journal of Business & 
Economics, Vol. 16, No. 3, 1998, pp. 362-8. 

 
6 In the bootstrap it is not required to assume that the distribution of sample means is normal.  Since this 
procedure makes no assumptions regarding the distribution of sample means, it is called a nonparametric 
method of deriving a confidence interval.  A recent research article recognized this advantage, and 
recommended the bootstrap to audit populations: 

 Gary C. Biddle, Carol M. Bruton, and Andrew F. Siegel, A Computer-Intensive Methods in 
Auditing: Bootstrap Difference and Ratio Estimation, Auditing: A Journal of Practice and 
Theory, Vol. 9, No. 3, Fall 1990, pp. 92 - 114 

7 For more information on bootstrap procedures, refer to: 

 An Introduction to the Bootstrap by Bradley Efron and Robert J. Tibshirani (New York: 
Chapman & Hall/CRC, 1998) 

 Bootstrap Methods and their Application by A.C. Davison and D.V. Hinkley (New York: 
Cambridge University press, 1998) 

 
8 In the textbook by Efron and Tibshirani (mentioned in the previous endnote), they discovered that in 
actual practice, the percentile confidence interval had to be corrected for two factors, bias and acceleration.  
As a result, they derived the (generally more reliable) bias-corrected accelerated bootstrap confidence 
interval, or BCa interval.  Refer to this textbook for a more detailed explanation of the BCa procedure. 
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9 From the information provided, we can compute the sample mean and the standard deviation to be $26.10 
and $164.05, respectively.  The point estimate is calculated as follows: 

   500,130$10.265000   

10 A sample of 200 using 90% confidence interval will have a t-value of 1.6525 (from statistical tables).  
The upper and lower limits are calculated: 

   900,93$
5000

2005000

200

05.164
6525.15000 







   

400,224$900,93$500,130$limitupper   

$36,600900,93$$130,500limit  lower   
11 Note that one must sample the original sample with replacement to avoid repeatedly obtaining the 
original sample for each resampling.  Bootstrap procedures always involve sampling the original sample 
with replacement. 

12 The estimate from this resample can be computed: 

                               
200,150$

200

92.1824160.1114258.653133.401115.324282.309056.250171.236023.14000192
5000 






 

 
13 The BCa confidence intervals in this study were derived using S-Plus.  Other statistical packages, such as 
SAS, SPSS, and MINITAB, to our knowledge, are not able to compute BCa confidence intervals.  The 
authors have an Excel-based template (available upon request) for computing BCa confidence intervals 
when using a simple random sample. 
 
14 In a computer simulation, an error population is created with a known mean error value and a known 
total error amount.  Samples are randomly selected from this population and a confidence interval for the 
total error amount is derived for each sample. If the confidence level is set at 90%, then a reliable 
confidence interval procedure is one for which (approximately) 90% of the generated samples produce a 
confidence interval that contains the (known) population total error amount.  A similar definition applies to 
a procedure that produces a reliable 95% lower bound, whereby (approximately) 95% of the generated 
samples produce a lower limit that is less than or equal to the (known) population total error amount. 
15 The nonzero errors are exponentially distributed and have a mean and standard deviation of $800. 


