Ephraim City Well #2

PRELIMINARY EVALUATION REPORT

Contents

E	xecutiv	ve Su	ummary	
1	Inti	oduc	ction	1-4
	1.1	Sys	stem Information	1-4
	1.2	arce Information	1-4	
	1.3	Des	signated Person - R309-113-5	1-4
2	Del	linea	tion Report - R309-600-9(5)	
	2.1	Geo	ologic Data - R309-600-9(5)(a)(i)	
	2.1	.1	Stratigraphy	
	2.1	.2	Faults	
	2.1	.3	Well Location	2-7
	2.2	We	ll Construction Data – R309-600-9(5)(a)(ii) & (iii)	2-7
	2.3	Aqu	uifer Data – R309-600-9(5)(a)(iv)	
	2.4	Hyc	drogeologic Methods and Calculations – R309-600-9(5)(a)(vii)	2-9
	2.5	Map	p of DWSP Zones – R309-600-9(5)(a)(viii)	
	2.6	Prot	tected Aquifer Classification – R309-600-9(3) & (6)	2-13
3	Inv	entor	ry of Potential Contamination Sources – R309-600-10	
	3.1	List	t of Potential Contamination Sources – R309-600-10(1)	
	3.2	Pric	pritized Inventory of PCS – R309-600-10(1)	
4	Ide	ntific	cation and Assessment of Current Controls – R309-60-10(2)	
	4.1	Cur	rrent Control Identification – R309-600-10(2)(a),(b),(c), &(d)	
	4.1	.1	Active Wells	
	4.1	.2	Septic Tanks and Drain Fields	
	4.1	.3	City Parks	
	4.1	.4	Agriculture	
	4.1	.5	Automotive/Roads	
	4.1	.6	Medical/Dental	
	4.1	.7	Commercial/Industrial	
	4.2	Cur	rrent Control Assessment	
	4.2	.1	Active Wells	
	4.2	.2	Septic Tanks and Drain Fields	

4.2.3	City Parks	
4.2.4	Agriculture	
4.2.5	Automotive/Roads	
4.2.6	Medical/Dental	
4.2.7	Commercial/Industrial	
Land Ov	vnership Map – R309-600-13(2)(c)	
Land Us	se Agreements – R309-600-13(2)(d)	6-24
Referen		7-25
	4.2.3 4.2.4 4.2.5 4.2.6 4.2.7 Land Ov Land Us Reference	 4.2.3 City Parks 4.2.4 Agriculture

Figures

Figure 1:Ephraim City Location Map	1-3
Figure 2: Ephraim City Water Sources	1-5
Figure 3: Ephraim Well #2 Drinking Water Source Protection Zones	.2-11
Figure 4: Ephraim Well #2 Full Drinking Water Source Protection Zones	.2-12
Figure 5: Potential Contamination Source Location Map	. 3-19

Tables

Table 1: Preliminary Design Information	2-7
Table 2: Aquifer Model Information	2-8
Table 3: Drinking Water Source Protection Zone Information	2-9
Table 4: Potential Contamination Sources	3-14

Appendices

Geologic Map of Ephraim	Appendix A
Well Logs	Appendix B
WhAEM Model Output	Appendix C
Zoning Ordinance	Appendix D

Executive Summary

This report has been prepared to show the results of the preliminary evaluation for the new Ephraim City Well #2. This evaluation includes a determination of Drinking Water Source Protection (DWSP) zones, Potential Contamination Sources (PCS) within the zones, and evaluation of the

controls for the potential contamination sources for the well.

The Ephraim City waterworks is a public system serving the citizens of Ephraim. It currently consists of five storage tanks, 14 springs, and one existing well. In an effort to increase the resiliency of the system and provide water for future growth, the city is proposing the construction of a new well named Ephraim City Well #2 (Well #2).

Ephraim City is located about 100 miles south of Salt Lake City in the Sanpete Valley, roughly seven miles north of the city of Manti. Well #2 will be situated on the southwest side of town in a protected aquifer fed by the mountains to the east of the city. The well will be located in a valley fill bounded by bedrock, the San Pitch Mountains to the west, and the Wasatch Plateau to the east.

The source protection zones were delineated using the Wellhead Analytic Element Model (WhAEM)

produced by the United States Environmental Protection Agency (EPA) using information from previous reports. Ephraim City Well #1 (Well #1) impacts the zones for Well #2 so the flows in Well #1 were increased in anticipation of upgrades on Well #1 in the near future. PCS were determined using previous reports, supplemented by a field survey.

Well #1, Well #2, and the aquifer are currently well managed and protected. Ephraim City maintains land use ordinances and zoning laws to preserve and protect the aquifer.

1 Introduction

1.1 System Information

Ephraim City owns and operates a public water system (PWS) in Sanpete County, Utah. The official name of the PWS is Ephraim City. The water system number assigned by the Utah Division of Drinking Water (UDDW) is 20011. The address for the Ephraim City PWS is:

Ephraim City

5 South Main Street

Ephraim, UT 84627

The existing system consists of 14 springs, one well, five storage tanks, a hydropower plant, and appurtenant piping structures. A new well, named Ephraim City Well #2, will be added to the existing system as documented in this report. This system is a community system currently serving approximately 7,000 residents in the community.

1.2 Source Information

Well #2 will be a new source for the city of Ephraim, and it will be an individual well. It is yet to be constructed, but it will be located roughly southwest of the intersection of 400 West and 400 South on the southwest side of Ephraim City. The plans for Well #2 are being prepared, pending the construction of a test well in the area. Figure 2 shows the approximate location of the Well #2 and Ephraim's other drinking water sources.

1.3 Designated Person - R309-113-5

The name and address of the person currently designated to operate the PWS is:

Chad J. Parry Public Works Director Ephraim City 5 South Main Street Ephraim, UT 84627 Office: (435) 340-1255 Cell: (435) 283-4631

Figure 2: Ephraim City Water Sources

2 Delineation Report - R309-600-9(5)

2.1 Geologic Data - R309-600-9(5)(a)(i)

Ephraim City is located approximately 100 miles south of Salt Lake City in the Sanpete Valley. The city is situated on the east of the valley at the base of the Wasatch Plateau, to the west are wetlands surrounding the San Pitch River. Ephraim Canyon and Ephraim Creek cut through the Wasatch Plateau connecting with the valley bottom just east of the city. The city sits on alluvial deposits with relatively shallow bedrock which dips sharply near the center of the town (Main Street, or Highway 89). A full geologic study has been performed by the Utah Geologic Survey (UGS) and has been attached as Appendix A.

2.1.1 Stratigraphy

The stratigraphy information discussed in this section is taken from information and maps provided by the UGS (Utah Geological Survey 2017).

Alluvium (Holocene)

The valley floor near the river is primarily alluvium. It is unconsolidated material consisting of clay, silt, sand, granules, and sparse cobbles. The layers form broad even surfaces with low relief. Thicknesses range widely with a thickness of 50 feet being most common.

Coalesced Alluvial Fan Deposits (Holocene to Pliocene)

Farther away from the river, deposits of coalesced alluvial fans begin. This layer is similar to the alluvium with larger particle sizes ranging from silt and sand granules to cobbles with sparse boulders. The deposit was formed because of the overlap and interfingering of adjacent alluvial fans. This layer forms a broad, low, sloping apron at the foot of the adjacent hillsides.

Green River Formation (Eocene)

The Green River Formation forms two "islands" in the alluvial valley fill, just west of Ephraim City. The formation consists of limestone underlain by shale with a widely varying thickness of roughly 500 feet to 1,200 feet. The limestone is evenly bedded with thin sandstone and tuff layers. The limestone is dense and often forms resistant ledges and low cliffs. The shale is thin-bedded and friable, commonly forming gentle slopes.

Colton Formation (Eocene)

This layer is located on the east of the valley at the base of the hillslope. It consists of claystone and mudstone with local beds of siltstone, sandstone, and conglomerate. Additionally, there are sparse, interlayered beds of limestone. The layer ranges in thickness from roughly 325 feet to 850 feet.

Landslide Deposits (Holocene and Pliocene)

These deposits are located on the east of the valley on the base of the hillslopes. The deposits are a diverse mixture of fragments and shapes that have slid down slope to form chaotic rubble. The thickness varies widely depending on the size of the deposit with depths up to 150 feet locally.

Flagstaff Limestone (Eocene and Paleocene)

The limestone formation is farther up the mountain side with colors from light gray, to yellowgray, to brown. Red and pink is present near Jurassic red-beds. The layer is fine-grained and very dense, forming resistant ledges and prominent hogbacks. The layer ranges in thickness from 0 feet in the central portion of the Gunnison plateau to nearly 1,000 feet near Ephraim.

2.1.2 Faults

The UGS keeps a map of known faults in the state of Utah. According to their work, there are no known fractures or faults near the well or within the capture zones. The geological information for the area, including fault data are shown in the report in Appendix A.

2.1.3 Well Location

Well #2 will be located on the southwest of the city in unconsolidated valley fill. The material is uncemented, loosely arranged sediments ranging from clays and silts to coarse gravels. Well #1 is in an area with similar geologic and hydrogeologic features as Well #2. Well logs from Well #1 and other nearby wells nearby are shown in Appendix B and may be considered representative of the new well being drilled.

2.2 Well Construction Data – R309-600-9(5)(a)(ii) & (iii)

The depth and some of the design parameters will be based on data taken from a test well drilled prior to the construction of Well #2. A preliminary design has been prepared based on drilling logs of similar wells in the area. The preliminary design is summarized below.

Parameter	Estimated Value	Notes
Well Head Elevation	5505 ft	Estimated
Borehole Diameter	24"	
Casing Diameter	18"	Based on desired flow from the well
Total Depth	300 ft	Actual depth will be determined based on results of the test well
Perforated Zone	240 ft to 300 ft	Actual perforated zone will be determined based on test well
Screen	Slotted Perforated Casing and Gravel Pack	
Construction Method	Rotary or Cable Tool	Driller's preference
Pump	250 hp, 9 Stage, Shaft Driven	Dependent on available flow
Pump Depth	150 ft	
Maximum Flow Rate	1500 gpm	Pending information from test well

Table 1: Preliminary Design Information

Well #2 and its associated test well have yet to be drilled so no driller's logs are available. However, a log of Well #1 has been provided, as well as logs for a well farther north and Larson Well to the south. These logs are expected to be representative of Well #2 (see Appendix B).

2.3 Aquifer Data - R309-600-9(5)(a)(iv)

The information about the aquifer was taken from a Utah Department of Natural Resources Technical Publication (Wilberg and Heilweil 1996) and the existing Ephraim City source protection program (Jones & DeMille Engineering 2010). Well #2 will be drawing from the same aquifer as Well #1 in similar geologic conditions, so the parameters are assumed to be roughly equal.

The Hydraulic Conductivity used to model the aquifer was derived from the aquifer thickness and transmissivity in the source protection plan. The equation used to derive the conductivity is:

$$\frac{T}{b} = K$$

Where T = the transmissivity of the aquifer,

b = the aquifer thickness; and,

K = the Hydraulic Conductivity

The aquifer thickness is largely variable and determined at the time of drilling. The thickness used to determine the transmissivity in Well #2 is estimated and subject to change.

Wilberg and Heilweil designated three levels in the aquifer. The first lies between 0 and 50 feet, the second from 50 to 150 feet, and the final level extends below 150 feet. Well #2 will draw from the third and final level with Well #1.

The data used to describe the aquifer and model the source protection zones is described below.

Interior	Estimated Value	Notes
Hydraulic Conductivity	120 ft/day	Derived from Water Source Protection Plan
Hydraulic Gradient	0.00315 ft/ft	Water Source Protection Plan
Transmissivity	7,200 ft²/day	Calculated from Hydraulic Conductivity and Estimated Aquifer Thickness
Groundwater Flow Direction	South 85° W	Water Source Protection Plan
Effective Porosity	0.15	Water Source Protection Plan
Aquifer Thickness	60 ft	Estimate for Well #2 Location

 Table 2: Aquifer Model Information

2.4 Hydrogeologic Methods and Calculations – R309-600-9(5)(a)(vii)

Drinking water source protection zones were delineated using the WhAEM software provided by the EPA. WhAEM facilitates the creation of models with multiple wells, barriers, and complex aquifer properties for the purpose of delineating protection zones. The model can be created in real world coordinate systems with background images and linework. At its core, WhAEM uses the analytic element method via the GFLOW1 solver. The velocity through the aquifer is based on the equation:

$$v = K \times i \div n$$

Where K = the hydraulic conductivity,

i = the hydraulic gradient, and

n = The effective porosity.

The WhAEM model was produced using the aquifer data shown in the previous section and built to scale using base maps provided by the Utah Automated Geographic Reference Center. The existing well impacts the capture zones significantly and will likely see an increase in flows following renovation this year. The capture zones were modeled using the anticipated flows from the existing well. The capture zones are described in detail below.

<u>Zone 1</u>

Zone 1 is a 100-ft radius around the well, measured from the center of the wellhead.

Zone 2

Zone 2, a 250-day travel time, is semi-circular in shape. The capture zone extends 2,082 feet upgradient from the wellhead, and 1,332 feet down gradient. The direction of flow is east to west at an assumed bearing of South 85° West. The maximum width across the zone is 3,021 feet.

<u>Zone 3</u>

Zone 3, a 3-year travel time, is more elliptical in shape with a straight section from interference with the existing city well. The capture zone extends 5,796 feet upgradient from the wellhead, and 1,921 feet downgradient. The direction of flow is as noted above. The maximum width of the zone is 5,349 feet.

<u>Zone 4</u>

Zone 4, a 15-year travel time, is a "rabbit ear" shape with a straight border from interference with the existing city well. The capture zone extends 20,275 feet upgradient from the wellhead, and 1,942 feet downgradient. The direction of flow is as noted above. The maximum width of the zone is 9,303 feet.

Parameter	Zone 1	Zone 2	Zone 3	Zone 4
Up Gradient Distance	50 ft	2,082 ft	5,796 ft	20,275 ft
Flow Bearing	S 85° W	S 85° W	S 85° W	S 85° W
Down Gradient Distance	50 ft	1,332 ft	1,921 ft	1,942 ft
Maximum Width	100 ft	3,021 ft	5,349 ft	9,303 ft

 Table 3: Drinking Water Source Protection Zone Information

The DWSPs were modeled with the existing city well. The interference from the existing well changes the shape of both protection zones dramatically as shown in Figure 3. Both sets of zones are included to show the interaction between them.

2.5 Map of DWSP Zones - R309-600-9(5)(a)(viii)

The map of the DWSP zones was developed by exporting the output from the WhAEM model into AutoCAD and overlaying the linework over a standard USGS Topographic Quadrangle Map. The map (see Figure 3) is shown in the standard 1:24,000 scale ($1^{"} = 2,000$ ft) with an additional map at 1:60,000 scale ($1^{"} = 5,000$ ft) as an additional reference due to the large size of the capture zones. The exact output of the WhAEM model are included as Appendix C.

Figure 3: Ephraim Well #2 Drinking Water Source Protection Zones

Figure 4: Ephraim Well #2 Full Drinking Water Source Protection Zones

2.6 Protected Aquifer Classification – R309-600-9(3) & (6)

Well #2 will be drilled into the aquifer previously determined to be a protected aquifer in the Water Source Protection plan for the PWS. In order to have a protected status the aquifer must have at least 30 feet of protective clay throughout the first and second capture zones of the well. It must also have a 100-foot grouted surface seal through the protective layer. The driller's log for Existing City Well #1 shows clay from two feet to 28 feet and 70 feet to 99 feet. As indicated in the source protection plan, the well logs in the area appear to indicate that these layers are continuous through much of the valley floor. We agree with the assessment that the conditions are met and conclude that Well #2 will be located in a protected aquifer.

3 Inventory of Potential Contamination Sources – R309-600-10

3.1 List of Potential Contamination Sources – R309-600-10(1)

This section provides a list of PCS located within Ephraim City. The list is drawn from the water source protection program prepared in 2010 (Jones & DeMille Engineering 2010), supplemented by a field survey conducted on March 29, 2018 to verify existing sources and add any new sources.

Rank	Name	Category	Hazardous Substance	Source Address	Contact Information	Zone
1	Larson Well	Well	Agricultural	360 W* Larson Lane	Ephraim City (435) 283-4631 5 S Main St Ephraim, UT 84627	2
2	House of Suds	Automotive	Oil, Lubricants, Automotive Fluids, Auto Supplies, Fuel	24 E 200 S	Tim Cox (435) 283-3030 24 E 200 S Ephraim, UT 84627	3
3	American Car Care	Automotive	Oil, Lubricants, Automotive Fluids, Auto Supplies, Fuel	450 S 50 E	Ephraim Tire Pros (435) 283-6956 450 S 50 E Ephraim, UT 84627	3
4	Geno's Automotive	Automotive	Oil, Lubricants, Automotive Fluids, Auto Supplies, Fuel	329 W 100 S	329 W 100 S Ephraim, UT 84627	4
5	Hermansen's Equipment	Automotive	Oil, Lubricants, Automotive Fluids, Auto Supplies, Fuel	1409 S Highway 89	Cameron Hermansen (435) 283-6536 1409 S Highway 89 Ephraim, UT 84627	3
6	Original Garage Collision Repair	Automotive	Oil, Lubricants, Automotive Fluids, Auto Supplies, Fuel	327 S Main St	Jason Dotson (435) 283-6200 327 S Main St Ephraim, UT 84627	3
7	Skyline Auto	Automotive	Oil, Lubricants, Automotive Fluids, Auto Supplies, Fuel	385 S Main St	Gary Ray (435) 283-4241 385 S Main St Ephraim, UT 84627	3

 Table 4: Potential Contamination Sources

Rank	Name	Category	Hazardous Substance	Source Address	Contact Information	Zone
8	RJs Tire and Quicklube	Automotive	Oil, Lubricants, Automotive Fluids, Auto Supplies, Fuel	650 S Main St	Russ Cox (435) 283-8473 650 S Main St Ephraim, UT 84627	3
9	Ephraim City Public Works	Automotive	Oil, Lubricants, Automotive Fluids, Auto Supplies, Fuel	780 S Main St	Ephraim City (435) 283-4631 5 S Main St Ephraim, UT 84627	3
10	IFA	Farm	Fertilizers, Insecticides	460 S Main St	(435) 283-4529 460 S Main St Ephraim, UT 84627	3
11	Turkey Sheds	Farm	Fertilizers, Insecticides, Animal Waste/By- Products	550 S Main St	Deena Anderson 2252 S Whipple Ct St George, UT 84790	3
12	Holman Orthodontics	Medical/ Dental	Medical Waste	35 E 400 S	(801) 405-8128 35 E 400 S Ephraim, UT 84627	3
13	Douglas Dentistry	Medical/ Dental	Medical Waste	41 W 700 S	Colton Douglas (435) 283-3800 41 W 700 S Ephraim, UT 84627	3
14	Ephraim Family Dental	Medical/ Dental	Medical Waste	309 S Main St	Wesley Thompson (435) 283-4081 309 S Main St Ephraim, UT 84627	3
15	Residential Septic System	Septic Tank	Septage	430 S 100 E	Mathew Sorenson 635 S Main St Manti, UT 84642	3
16	Residential Septic System	Septic Tank	Septage	800 S 100 E	Ron Keele 800 S 100 E Ephraim, UT 84627	3
17	Residential Septic System	Septic Tank	Septage	730 S 300 E	James Fullmer 730 S 300 E Ephraim, UT 84627	3
18	Hermansen's Equipment	Septic Tank	Septage	1409 S Highway 89	Cameron Hermansen (435) 283-6536 1409 S Highway 89 Ephraim, UT 84627	3

Preliminary Evaluation Report

Rank	Name	Category	Hazardous Substance	Source Address	Contact Information	Zone
19	RJs Tire and Quicklube	Septic Tank	Septage	650 S Main St	Russ Cox (435) 283-8473 650 S Main St Ephraim, UT 84627	3
20	Ephraim City Public Works	Septic Tank	Septage	780 S Main St	Ephraim City (435) 283-4631 5 S Main St Ephraim, UT 84627	3
21	Jorgensen's Chevrolet	Automotive	Oil, Lubricants, Automotive Fluids, Auto Supplies, Fuel	105 S Main St	Scott Miller (435) 283-4033 105 S Main St Ephraim, UT 84627	4
22	Turkey Sheds	Farm	Fertilizers, Insecticides, Animal Waste/By- Products	800 S* Highway 89	Chad Olsen (435) 851-2077 588 S 100 E Ephraim, UT 84627	4
23	King Dairy	Farm	Fertilizers, Insecticides, Animal Waste/By- Products	451 E Mill Road	Art King (435) 283-4304 451 E Mill Road Ephraim, UT 84627	4
24	Residential Septic System	Septic Tank	Septage	1085 S 100 E	Karl Bessey 1085 S 100 E Ephraim, UT 84627	4
25	Residential Septic System	Septic Tank	Septage	1115 S 100 E	William Kappel 1115 S 100 E Ephraim, UT 84627	4
26	Residential Septic System	Septic Tank	Septage	140 E* 1100 S	Darren Pead 77 S 470 E Manti, UT 84642	4
27	Residential Septic System	Septic Tank	Septage	170 E* 1100 S	William Kappel 1115 S 100 E Ephraim, UT 84627	4
28	Residential Septic System	Septic Tank	Septage	175 E 1100 S	Elliot Anderson 175 E 1100 S Ephraim, UT 84627	4
29	Residential Septic System	Septic Tank	Septage	1177 S 1200 E	Mark Wathen 1177 S 1200 E Ephraim, UT 84627	4

Rank	Name	Category	Hazardous Substance	Source Address	Contact Information	Zone
30	Residential Septic System	Septic Tank	Septage	113 E 1200 S	Wyatt Anderson 113 E 1200 S Ephraim, UT 84627	4
31	Residential Septic System	Septic Tank	Septage	139 E 1200 S	Spencer Dyches 139 E 1200 S Ephraim, UT 84627	4
32	Residential Septic System	Septic Tank	Septage	1046 S 300 E	Travis Cartright 1046 S 300 E Ephraim, UT 84627	4
33	Residential Septic System	Septic Tank	Septage	1060 S* 300 E	Gary Ray P.O. Box 583 Ephraim, UT 84627	4
34	Residential Septic System	Septic Tank	Septage	1066 S 300 E	Merilyn Hugentolber 1066 S 300 E Ephraim, UT 84627	4
35	Residential Septic System	Septic Tank	Septage	1160 S 300 E	Cless Young 1160 S 300 E Ephraim, UT 84627	4
36	Residential Septic System	Septic Tank	Septage	1239 S 300 E	Wildee Mortensen 1239 S 300 E Ephraim, UT 84627	4
37	Residential Septic System	Septic Tank	Septage	1290 S 300 E	Bennett Black 1290 S 300 E Ephraim, UT 84627	4
38	Residential Septic System	Septic Tank	Septage	409 S 500 E	Jon Larson 409 S 500 E Ephraim, UT 84627	4
39	Residential Septic System	Septic Tank	Septage	1011 S 825 E	Chris Jaussi 1011 S 825 E Ephraim, UT 84627	4
40	Residential Septic System	Septic Tank	Septage	1028 S 920 E	Vickie Butterfield 1028 S 920 E Ephraim, UT 84627	4
41	Residential Septic System	Septic Tank	Septage	1170 S* 920 E	Valear Jackman P.O. Box 557 Ephraim, UT 84627	4
42	Residential Septic System	Septic Tank	Septage	1093 E Canyon Rd	Ben Gordon 1093 E Canyon Rd Ephraim, UT 84627	4

Preliminary Evaluation Report

Rank	Name	Category	Hazardous Substance	Source Address	Contact Information	Zone
43	Residential Septic System	Septic Tank	Septage	1151 E Canyon Rd	Darrel Olsen 1151 E Canyon Rd Ephraim, UT 84627	4
44	Residential Septic System	Septic Tank	Septage	560 E* Canyon Rd	Joseph Cozzolino 1248 The Hideout Lake Ariel, PA 18436	4
45	Residential Septic System	Septic Tank	Septage	587 E Canyon Rd	Richard Stevens 587 E Canyon Rd Ephraim, UT 84627	4
46	Residential Septic System	Septic Tank	Septage	521 E Mill Road	Christine Ryhlick 521 E Mill Road Ephraim, UT 84627	4
47	Residential Septic System	Septic Tank	Septage	675 E Mill Road	Sherri Clark 675 E Mill Road Ephraim, UT 84627	4
48	Residential Septic System	Septic Tank	Septage	729 E Mill Road	Brian Thomson 729 E Mill Road Ephraim, UT 84627	4
49	Residential Septic System	Septic Tank	Septage	1003 S Red Knoll Ln	Don Olson 1003 S Red Knoll Ln Ephraim, UT 84627	4
50	Canyon View Park	Park	Fertilizers, Insecticides	650 S 100 E	Ephraim City (435) 283-4631 5 S Main St Ephraim, UT 84627	3
51	Heritage Park	Park	Fertilizers, Insecticides	30 S Main St	Ephraim City (435) 283-4631 5 S Main St Ephraim, UT 84627	4

* No address could be found for these locations. The address given is approximate.

3.2 Prioritized Inventory of PCS – R309-600-10(1)

The potential contamination sources are listed in order of priority in Table 4. This prioritization is not based on any past experience or issue with the sources listed. The rationale for the ranking is based solely on proximity to the well, potential for contaminants to reach the aquifer, and the relative toxicity of the source. A map has also been produced showing the sources in their physical locations (see Figure 5). The numbers on the map correspond to the rank number in Table 4.

Figure 5: Potential Contamination Source Location Map

4 Identification and Assessment of Current Controls – R309-60-10(2)

The hazards identified in the zones are listed in Table 4.

4.1 Current Control Identification – R309-600-10(2)(a),(b),(c), &(d)

In general, the city currently enforces a Land Use Ordinance and watches future development and land use in the zones of the existing and planned well. The controls identified in this section, in conjunction with the land use ordinance, are considered adequate to ensure protection of the groundwater being used.

4.1.1 Active Wells

The Larson Well was drilled in 1934. The well consists of a steel casing and is used primarily for irrigation. There is no documented surface seal. Ephraim City purchased the well and owns the surrounding property. Third parties still own rights in the well, but Ephraim City can control any new construction in the area. There is very little chance for the wells to convey contaminants into the aquifer.

4.1.2 Septic Tanks and Drain Fields

All septic tanks must be constructed according to the standards set forth by the Utah Department of Environmental Quality (DEQ). There are no current controls regarding operation and maintenance of septic systems by private owners; however, local health departments regulate septic system installations designed for wastewater flows less than 5,000 gallons per day.

4.1.3 City Parks

Ephraim City employees assigned to spread pesticides and fertilizer should have received instruction and certification in their proper use from the Utah Department of Agriculture and Food (UDAF). UDAF also has a field inspector assigned to the area that provides training, instruction, and supervision over local applicators. There are also state and federal laws: namely the State Pesticide Control Act (SPCA) through the state of Utah, and the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) through the federal government, both of which provide rules through legislation.

4.1.4 Agriculture

As discussed in section 4.1.3, UDAF provides training in the use of pesticides and fertilizers. There are also laws in place to govern their proper use. In addition to those laws, the Clean Water Act and the Utah Water Quality Act provide additional source controls and permits required for any point or non-point discharge.

4.1.5 Automotive/Roads

The Utah Department of Transportation (UDOT) currently has no controls for potential contaminants from roadways. Automotive businesses are regulated regarding handling and disposal of potential contaminants under the Resource Conservation and Recovery Act (RCRA). Ephraim City ordinances also require that the Fire Chief conduct inspections for potential contaminants annually.

4.1.6 Medical/Dental

The medical and dental facilities are covered by the regulations regarding solid waste. The sources of medical or dental waste are educated regarding proper disposal of waste and fines for violating the regulations.

4.1.7 Commercial/Industrial

Hair salons, retailers, and regular commercial activity are each covered under the RCRA and solid waste disposal regulations.

4.2 Current Control Assessment

4.2.1 Active Wells

The Division of Water Resources regulates wells in Utah through Rule R655-4 of the Utah Administrative Code. These rules regulate construction and prevent contamination through construction standards regarding the casing, surface seals, and well caps. Regulations also control the abandonment of the wells. These standards prevent contaminants from entering the well and traveling into the aquifer. The State of Utah enforces the rule and the hazard is assessed to be adequately controlled. No further land management strategies will be planned and implemented unless conditions change.

4.2.2 Septic Tanks and Drain Fields

Management of septic tanks and drain fields is largely up to the operator. They are typically unmanaged until issues arise with the system. However, the systems are relatively shallow and hydraulically separated from the aquifer being drawn from. The low concentration of septic tanks and the shallow depth means that the potential for contamination is low, but the PCS is not completely controlled and will require a management program. No sewers or septic systems are present or will be allowed in Zone 1.

4.2.3 City Parks

As previously stated, UDAF has a field inspector assigned to the area that provides training, instruction, and supervision over local applicators. This training is regulated by state and federal laws: namely SPCA through the State of Utah, and FIFRA through the federal government, both of which provide rules through legislation. These laws limit and regulate the application and use of pesticides and fertilizers. Ephraim City enforces the rules for its employees. Therefore, the hazard is assessed as adequately controlled. No further land management strategies will be planned and implemented unless conditions change.

4.2.4 Agriculture

Landowners have training and resources for the adequate use of fertilizers, though some may choose not to use them. Some historical livestock operations exist in Zones 2 and 3 of the well. The requirements on these operations have changed substantially in recent years, with larger operations required to develop waste containment management plans and systems. These plans and systems are controlled and monitored by the Utah Division of Water Quality. In addition, Ephraim City enforces the Land Use Ordinances governing densities and quantities of livestock allowed in different zones (see Zoning Ordinance, Pages 92-104, Appendix D). The city will continue to watch development and ensure protection of the groundwater. No activities will be

allowed in Zone 1. These hazards are considered adequately controlled. No further land management strategies will be planned and implemented unless conditions change.

4.2.5 Automotive/Roads

UDOT currently has no controls for potential contaminants from roadways, though it manages salts and deicing fluids. The potential contamination from the roadways in Ephraim stem primarily from runoff bringing trace automotive fluids and materials into the aquifer. The low traffic volume through Ephraim and the low quantity of fluids and materials left on the roads would render the hazard negligible. This hazard is assessed as a negligible quantity and thus adequately controlled. No further land management strategies will be planned and implemented unless conditions change.

Automotive businesses are regulated regarding handling and disposal of potential contaminants under the RCRA. Ephraim City ordinances also require that the Fire Chief conduct inspections for potential contaminants annually. Ephraim City enforces their ordinances. The hazard is assessed as adequately controlled. No further land management strategies will be planned and implemented unless conditions change.

4.2.6 Medical/Dental

Medical and Dental waste is controlled under solid waste regulations (Rule R315, Utah Administrative Code) by the DEQ. Locally, Ephraim City enforces the rule and local businesses are well educated regarding the requirements. This hazard is assessed as adequately controlled. No further land management strategies will be planned and implemented unless conditions change.

4.2.7 Commercial/Industrial

Solid waste is controlled under solid waste regulations (Rule R315, Utah Administrative Code) by the DEQ. Locally, Ephraim City enforces the rule and local businesses are well educated regarding the requirements. This hazard is assessed as adequately controlled. No further land management strategies will be planned and implemented unless conditions change.

5 Land Ownership Map – R309-600-13(2)(c)

The well is located within Ephraim City limits. Ephraim City has enacted land use ordinances to protect the aquifer. The Land Use and Zoning Ordinances are included as Appendix D.

6 Land Use Agreements – R309-600-13(2)(d)

Ephraim City currently owns the entirety of Zone 1 surrounding the well. The city will maintain that buffer and prevent construction of any prohibited item. The city land use and zoning ordinances are attached in Appendix D for reference.

7 References

Jones & DeMille Engineering. 2010. "Ephraim City Source Protection Plan." Report.

- Utah Geological Survey. 2017. Aquifer Storage and Recovery Assessment: Phase 1 for the City of Ephraim, Utah. Salt Lake City: Utah Geological Survey.
- Wilberg, D. E., and V. M. Heilweil. 1996. Hydrology of Sanpete Valley, Sanpete and Juab Counties, Utah, and Simulation of Groundwater Flow in the Valley Fill aquifer. Technical Publication No. 113, Salt Lake City: State of Utah, Department of Natural Resources.

Appendix A

Geologic Map of Ephraim (Maps at Half Scale)

GEOLOGIC MAP OF THE EPHRAIM QUADRANGLE, SANPETE COUNTY, UTAH

by Hellmut H. Doelling, Paul A. Kuehne, and Douglas A. Sprinkel

MAP 275DM UTAH GEOLOGICAL SURVEY *a division of* UTAH DEPARTMENT OF NATURAL RESOURCES 2016 Appendix B: Resources Information

Lieutenant Governor

State of Utah DEPARTMENT OF NATURAL RESOURCES

MICHAEL R. STYLER Executive Director

Utah Geological Survey RICHARD G. ALLIS State Geologist/Division Director

November 5, 2018

Monique Robbins Franson Civil Engineers 1276 South 820 East, Suite 100 American Fork UT 84003

RE: Paleontological file search and recommendations for the Ephraim Well Project, Sanpete County, Utah
 U.C.A. 79-3-508 (Paleontological) Compliance; Request for Confirmation of Literature Search according to the UDOT/UGS Memorandum of Understanding.

Dear Monique:

I have conducted a paleontological file search for the Ephraim Well Project in response to your email of November 5, 2018

There are no paleontological localities recorded in our files within this project area. Quaternary, Tertiary and Recent alluvial deposits that are exposed along this project right-of-way have a low potential for yielding significant fossil localities (PFYC 2). Unless fossils are discovered as a result of construction activities, this project should have no impact on paleontological resources.

If you have any questions, please call me at (801) 537-3311.

Sincerely,

Martha Hayden Paleontological Assistant

State of Utah DEPARTMENT OF NATURAL RESOURCES

MICHAEL R. STYLER Executive Director

SPENCER J. COX Lieutenant Governor **Division of Wildlife Resources**

MICHAL D. FOWLKS Division Director

November 14, 2018

Monique Robbins Franson Civil Engineers 1276 South 820 East, Suite, 200 American Fork, Utah 84003

Subject: Species of Concern Near the Ephraim Drought Resilience Watersmart Projects

Dear Monique Robbins:

I am writing in response to your email dated November 1, 2018 regarding information on species of special concern proximal to the proposed Ephraim Drought Resilience Watersmart Projects located in Township 16 South, Range 3 East and Township 17 South Range 3 East, SLB&M in Ephraim, Utah.

The Utah Division of Wildlife Resources (UDWR) does not have records of occurrence for any threatened, endangered, or sensitive species within a ½-mile radius of the project area noted above. However, within a two-mile radius there are recent records of occurrence for Bonneville cutthroat trout, a species included on the Utah Sensitive Species List.

The information provided in this letter is based on data existing in the Utah Division of Wildlife Resources' central database at the time of the request. It should not be regarded as a final statement on the occurrence of any species on or near the designated site, nor should it be considered a substitute for on-the-ground biological surveys. Moreover, because the Utah Division of Wildlife Resources' central database is continually updated, and because data requests are evaluated for the specific type of proposed action, any given response is only appropriate for its respective request.

In addition to the information you requested, other significant wildlife values might also be present on the designated site. Please contact UDWR's habitat manager for the central region, Mark Farmer, at (801) 491-5653 if you have any questions.

Please contact our office at (801) 538-4759 if you require further assistance.

Sincerely,

Sarah Lindsey Information Manager Utah Natural Heritage Program

cc: Mark Farmer

United States Department of the Interior

FISH AND WILDLIFE SERVICE Utah Ecological Services Field Office 2369 West Orton Circle, Suite 50 West Valley City, UT 84119-7603 Phone: (801) 975-3330 Fax: (801) 975-3331 <u>http://www.fws.gov</u> http://www.fws.gov/utahfieldoffice/

In Reply Refer To: Consultation Code: 06E23000-2019-SLI-0045 Event Code: 06E23000-2019-E-00127 Project Name: Ephraim City Well October 31, 2018

Subject: List of threatened and endangered species that may occur in your proposed project location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 *et seq.*), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 *et seq.*), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/ eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

Utah Ecological Services Field Office

2369 West Orton Circle, Suite 50 West Valley City, UT 84119-7603 (801) 975-3330

Project Summary

Consultation Code:	06E23000-2019-SLI-0045
Event Code:	06E23000-2019-E-00127
Project Name:	Ephraim City Well
Project Type:	WATER SUPPLY / DELIVERY
Project Description:	Construct new city well, connection pipelines, and rehabilitate structure to create an emergency bypass.

Project Location:

Approximate location of the project can be viewed in Google Maps: <u>https://www.google.com/maps/place/39.35596863627558N111.59457206726076W</u>

Counties: Sanpete, UT

Endangered Species Act Species

There is a total of 1 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

Flowering Plants

NAME	STATUS
Jones Cycladenia Cycladenia humilis var. jonesii	Threatened
No critical habitat has been designated for this species.	
Species profile: https://ecos.fws.gov/ecp/species/3336	

Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

WELL DRILLER'S REPORT State of Utah Division of Water Rights For additional space, use "Additional Well Data Form" and attach

Well Ide	entificatio	n					ίi.			a production and a second s			
	Non	-Pro	duct	ior	n We	211:	186500	3M00			WIN: 442153		
Owner	Note any cha Eph 5 S Eph	^{mges} raim outh raim	Cit Mai , UT	y C n {	Corj 846:	pora 27	tion	act Derson	-/Engineer				
Well Lo	cation	lote any a	changes		-	-	Conta	ict Persor	VEngineer:				
N 416 Location	E 347	fron	m th Idress.	e M	v4 o oximi	corn	er of s buildings,	ectior	1 09, Tow	mship 17S, 1	Range 3E, SL B&M #)		
Drillers .	Activity	S	tart Da	ate:		12	3 2018		Com	pletion Date:	9/01/2010		
Check all t If a replace	that apply: ement well,	X N provid	New [le locat	Retion	epair of ne	Do w well	eepen 🗆 C	lean 🗌 I	Replace P	ublic Nature of Us	feet east/west of the existing well		
DEPTH	(feet)	BO	REHC	DLE		-			-				
FROM	10	DIA	AMET	ER	(in)		DR	RILLING	METHOD		DRILLING FLUID		
	12:00		014	4" mud rotany							Bentonite.		
								and a sector					
Well Log	x	p	tin	ICON	ISOLI	DATER	CONSOL	DATED	1				
DEPTH FROM	(feet) TO	W A MEAN T E BL R High	C L A Y	S SA L N T D	GRAVEL	BOULER R	ROCK	C TYPE	COLOR	D (e.g., relative grain composi consistancy, w texture,degree	ESCRIPTION AND REMARKS %, grain size, sorting, angularity, bedding, tion density, plasticity, shape, cementation, ater bearing, odor, fracturing, minerology, of weathering, hardness, water quality, etc.)		
0	15		X										
15	20		34		X					malia			
30	35		X	XV	4					rearin	r		
35	40				X					fine			
40	60	1	4	XX						11110			
60	75				X					mediu	m		
75	86		X				1.10						
80	90			V	V								
90	100				X								
100	110			Y	X				- Mare - 10	madil			
Static Wa	iter Level							1		I nucli u			
Date Method of Point to Y Height of	3 of Water I Which Wa f Water L	Level M Level M lter Le evel re	Measu evel M ferenc	rem leasu ce po	V ent urem oint a	ater I So ent was bove	Level 4 ounde as Referen ground su	Ced	feet Fl If Flow ground 1.5 feet	owing? Yes Yes Capped Press Elev Temperature	ANO sure PSI ation degrees □C □F		
	4					ie Jui -					Well Log		

Construc	tion Inform	nation								ter service and the service of the s
DEPTH	(feet)	CASIN	IG		DEPTH	(feet)		REEN DA	ERFORATIONS	OPEN BOTTON
FROM	TO	CASING TYPE AND MATERIAL/GRADE	WALL THICK (in)	NOMINAL DIAM.	FROM	то	SCRE	EN SLOT SIZE	SCREEN DIAM. OR PERF LENGTH	SCREEN TYPE OR NUMBER PERI
0	100	Steel	.250	8	1.00	110		125	2.5	Ol mar
110	120	steel	.250	8	120	150		25	2.5	Simil
150	175	Steel	.250	8	175	185		125	2.5	SIran
185	200	Steel	.250	8	200	230		125	25	SIrou
230	290	Steel	.250	8	290	320		125	2.5	8/100
Well Head (Configuration	: Capper	4					Access	Port Provided?	No No
Casing Joint	Type:	welded			Perforator	Used:	1217	fo	ectory p	erforate
Was a Surfa	ce Seal Instai	led? ∯Yes □No	Depth of St	urface Seal:	30	feet		Drive Sho	e? I Yes INo	
Surface Seal	Material Pla	cement Method: Tre	mie	pipe					/	
Was a tempo	orary surface	casing used? Yes WNo If	yes, depth of ca	sing:	fe	et di	iamete	r:	inches	
DENIH	(reet)	SEAL MATERI	RFACE SEA	CK	VAL SEAL	L / FILT	ER P	ACK / PA	CKER INFORM	ATION
FROM	TO	and PACKER TYP	E and DESCRI	PTION		(ii	f appli	cable)	(lbs./gal., # bag	mix, gal./sack etc.)
0	50	3/4 hole	plug 1	pentor	nite.		18	Sack	<u> </u>	
00	95	14 minus	grau	le.l		10	CI	rt+		
45	100	7/4 hole pli	ig ben	toni	te	Ę	5 5	acks		
100	300	14 minus	grad	e(5	50 0	uft	-	
			0							
Well Deve	elopment a	nd Well Yield Test Infori	nation		allen og av sender Sender og allen			in the second		
DAT	Υ <mark>Γ</mark>	METHO		and the second			Ch	Units	DRAWDOWN	TIME
	L				Y	IELD	GPN	I CFS	(ft)	PUMPED (hrs & min)
833	1018	air lift			50	00	X		100	18 hr
ALA 1	7018	jetting			80	00	¥		220	9 hrs
8/20/2				<i>u</i>						
8/20/2										
Blao a	rmanent)					wer		Pur	nn Intake Denth-	feet
Pump (Per Pump Des	rmanent)				Horsepo	YY LL.			ip mane Depai	icci
Pump (Per Pump Dese Approxima	rmanent) cription: ate Maximu	Im Pumping Rate:	A		_ Horsepo Well D	Disinfecte	ed un	on Comple	etion? Dives Di	No
Pump (Per Pump Dese Approxima	rmanent) cription: ate Maximu	Im Pumping Rate:	vity additional	materials use	_ Horsepo Well D	Disinfecte	ed up	on Comple	etion? 🗆 Yes 🗆 1	No
Black a	rmanent) cription: ate Maximu s	um Pumping Rate: Description of construction acti Circumstances, abandonment p	vity, additional rocedures. Use	materials use additional w	Horsepo Well D ed, problems e vell data form	Disinfecte encountere for more s	ed up ed, ext space.	on Comple aordinary	etion? □Yes □1	No
Black a	rmanent) cription: ate Maximu s	um Pumping Rate: Description of construction acti Circumstances, abandonment p	vity, additional rocedures. Use	materials use additional w	Horsepo Well D ed, problems e vell data form	Disinfecte encountere for more s	ed up ed, ext space.	on Comple	etion? □Yes □1	No
Blad a	rmanent) cription: ate Maximu s	Im Pumping Rate: Description of construction action Circumstances, abandonment p	vity, additional rocedures. Use	materials use additional w	Horsepo Well D cd, problems e rell data form	Disinfecte encountere for more s	ed up ed, ext space.	on Comple	etion? □Yes □1	No
Pump (Per Pump Dese Approxima Comment	rmanent) cription: ate Maximu s	um Pumping Rate: Description of construction acti Circumstances, abandonment p	vity, additional rocedures. Use	materials use additional w	Horsepo Well D ed, problems e rell data form	Disinfecto encountere for more s	ed up ed, ext space.	aordinary	etion? 🗆 Yes 🗇	No
Bildo i a Pump (Pes Pump Desa Approxima Comment	rmanent) cription: ate Maximu s	um Pumping Rate: Description of construction acti Circumstances, abandonment p	vity, additional rocedures. Use	materials use	Horsepo Well D ed, problems e eell data form	Disinfecte	ed up ed, ext pace.	on Comple	etion? 🗆 Yes 🗇	No
Ø/20/3 Pump (Per Pump Deso Approxima Comment: Well Drill	rmanent) cription: ate Maximu s er Stateme	Im Pumping Rate: Description of construction acti Circumstances, abandonment p	vity, additional rocedures. Use	materials use additional w	Well D Well D ed, problems e <i>vell data form</i> rvision, accom	ding to aple	ed up ed, ext pace.	on Comple raordinary	etion? 🗆 Yes 📄	No
Ø/20/3 Pump (Per Pump Desi Approxima Comment: Well Drill Name_AL;	rmanent) cription: ate Maximu s = er Stateme L WELLS	Im Pumping Rate: Description of construction action Circumstances, abandonment p int This well was drilled and and this report is complective DRILLING, LLC	vity, additional rocedures. Use	materials use additional w	Horsepo Well D ed, problems e rell data form	ding to apj c and belie Licer	ed up ed, ext pace.	on Comple aordinary le rules and	etion? 🗆 Yes 🗋 1 regulations, 398	No

WELL DRILLER'S REPORT ADDTIONAL DATA FORM State of Utah Division of Water Rights

Owner None Well Locatio N 416 E Location Desc Well Log DEPTH (fee FROM TO 110 115 135	Non-P eany change Ephra 5 Sou Ephra 347 f 347 f 347 f 347 f scription: W A T E E R C O I 5 5 5	roduc s im C: th Ma im, T any chang rom t (addre	ses ss, I UNC CSLI ALI Y T	W4	We orp 462 4 c	11: ora 7 orn y to	1865003MC tion Contact Pc er of sect buildings, land	o erson/Engineer: ion 09, To narks, ground e	wnship 175, 1	ange 3E, SL B&M
Owner Note Well Locatio N 416 E Location Desc Well Log DEPTH (fee FROM TO 110 115 135	env change Ephra 5 Sou Ephra 347 f: 347 f: cription: WA T E R C U U S S S S S S S S S S S S S S S S S	s im C: th Ma im, T any chang rom t (addre	ses the SSS, I UNC SSS, I L I L I X Y T	W4	orp 462 4 C	ora 7 orn y to	tion Contact Po er of sect buildings, lands	erson/Engineer: ion 09, To narks. ground e	wmship 175, 1	ange 3E, SL B&M
Well Locatio N 416 E Location Desc Well Log DEPTH (fee FROM TO 110 11 115 13 135 15	Ephra 5 Sou Ephra 347 f 347 f scription: W A T E R 0 15 5 5 5 5 5 5 5 5 5 5 5 5 5	im C: th Ma im, I any chang rom t (addre	ses ss, I UNC C S L I A L Y T	W4	462 4 C	ora 7 orn y to	Contact Po er of sect buildings, land	erson/Engineer: ion 09, To narks. ground e	wmship 175, 1	ange 3E, SL B&M
Well Locatio N 416 E Location Desc Well Log DEPTH (fee FROM TO 110 11 115 13 135 15	ecription:	im, t any chang rom t (addre	SS, I UNC CSS, I L I Y T	W4 W4 DTOX	4 C 4 C	7 orn y to	Contact Po er of sect buildings, land	erson/Engineer: ion 09, To narks, ground e	wnship 175, 1	ange 3E, SL B&M
Well Locatio N 416 E Location Desc Well Log DEPTH (fee FROM TO 110 11 115 13 135 15	Note 347 f: scription: WW A T E R R O I 5 5 5	any chang rom t (addre P R B B L E High Low	ses the SS, I UNC C S L I L I L I Y T	W4	4 C imit	orn y to	Contact Pe er of sect buildings, lands	erson/Engineer: ion 09, Tc narks, ground e	wnship 175, 1	ange 3E, SL B&M
Well Locatio N 416 E Location Desc Well Log DEPTH (fee FROM TO 110 115 135	acription: WAATE R O 15 55	any chang rom t (addre P E R M E A B E E High Low	ss, I UNC CS LI AL Y T	W4	4 C timit	orn y to	er of sect buildings, landa	ion 09, To narks. ground e	wrnship 175, 1	ange 3E, SL B&M
N 416 E Location Desc Well Log DEPTH (fee FROM TO 110 11 115 13 135 19	347 f ecription: WA TE R R 0 15	rom t (addre	UNC CS LI A Y T	W4	imit G C A B	y to	er of sect buildings, landa	ion 09, To narks, ground e	www.ship 175, 1	ange 3E, SL B&M
DEPTH (fee FROM TO 110 11 115 13 135 19	ecription: WA TE R O IS 55	(addre	UNC CS LI AL Y T	CONS S A D	G C A B	y to	buildings, landi	narks, ground e	levation,local well	#)
DEPTH (fee FROM TO 110 11 115 13 135 19	ecription: WAATER O 15 55	(addre	SS, I UNC CS LI AL Y T	CONS S A D	G C A B	y to	buildings, landi	narks, ground e	levation, local well	*)
DEPTH (fee FROM TC 110 11 115 13	wa TE R 0 15	P E R M E E B L E High Low	UNC CS LI AL Y T	N D	G C A B	y to	DUILDINGS, landi	narks, ground e	levation, local well	
DEPTH (fee FROM TO 110 11 115 13 135 19	t) 0 15	PER MEAABLE High Low	UNC CS LI AL YT	S A N D	G C R O A B	B	CONSOLIDAT		and the second se	
DEPTH (fee FROM TO 110 11 115 13 135 19	et) O 15 55	High Low	Y T	AND	R O A B	0.00		ED	D	ESCRIPTION AND REMARKS
DEPTH (fee FROM TO 110 11 115 13 135 19	et) 0 15 55	High Low		1	IV IR	UH			(e.g., relative grain composi	%, grain size, sorting, angularity, bedding,
FROM TO 110 11 115 13 135 15	0 15 55	High Low		1	ELE	DF	ROCK TY	PE COLOR	consistancy, w	ater bearing, odor, fracturing, minerology,
110 11	15				S	R				or weathering, naroness, water quality, etc.)
135 13	55		X	GX	X			-		
135 19	1 1				X				cour	5-6
	55				X				medi	un
155 19	80			X	X				Simil	1
180 2	10			K	K				Siru	
210 23	35		X	X			-	arail		
235 20	90					X	Ghala	gray		
290 3:	20		1	\uparrow	-		Gaula	VEGI		
320 32	30		+	+	-		JUNAISTO	ine iano	r Ked	
000 00			-	+	-	1	Shale	Red 4	grey	
			+	+						
			-		-					
				$\left \right $	-					
				T						
				T		T				
			1	\square		+				
			+	$\left \right $	+	+			-	
			+	$\left \right $	+					
			-			+				
									"	
972-m										

Construc	tion Infor	matio	n (con't)								A Manufacture of the second	
DEPTH	(feet)			CASIN	∛G		DEPTH	(feet)		CREEN	ERFORATIONS T	OPEN BOTTO
FROM	то		CASING AND MATERIA	TYPE	WALL THICK	NOMINAL DIAM.	EDOM	TO	SCR	EN SLOT SIZE PERF SIZE	SCREEN DIAM. OR PERF LENGTH	SCREEN TYPE OR NUMBER PI
200	320	Ctppl		DORADE		(in)	FROM	10	-	(in)	(111)	(per round/interva
200	500	2	1001		1250	8			-			
			-						-		an a	t and states
				<u>x</u> 								+
									-			
					_							-
					_							
-					_		<u> </u>		-		· · · · · · · · · · · · · · · · · · ·	
				and the second second								
DEPTH	(feet)	-		SU	RFACE SEA	AL / INTER	VAL SEA	L/FILT	TER I	ACK / PAG	CKER INFORM	ATION
FROM	TO		SE and I	AL MATERIA	AL, FILTER PA	CK		Quantit	y of M	aterial Used	GROUT	DENSITY
									n appi	(cable)	(105./gai., # 0ag 1	mx, gal./sack e
									_			
			·						-			
-	3											
								10 ⁻¹ -				
					14							
											-	
							-				_	
-												
					ringta and a second						-	
						*					-	
								-				
					The second secon	14						
omment	s (con't)											
					i dan se			- 10-10-10-00			······	
					*						ш. 	
												and the second se
												· · · · · · · · · · · · · · · · · · ·
- Pro-			-							-		
Vell Drill	er Statem	ent	This well y	was drilled and	i constructed ur	der my super	vision, accor	ding to an	oplical	le rules and re	equilations	
			and this re	port is comple	te and correct to	o the best of n	ny knowledg	e and beli	ef.	ie fuies and re	-gulations,	
Name AL	u wells	DRI	LLING,	LLC	Prim or Type)			Lice	nse N	o	398	
	LAN	n	In	601	-					92	12010	

9/27/2018

Work Order: 18H1378 Project: Hanksville New Source

All Wells Drilling Attn: Lisa Wells P.O. Box 159 Hanksville, UT 84734

Client Service Contact: 801.262.7299

The analyses presented on this report were performed in accordance with the National Environmental Laboratory Accreditation Program (NELAP) unless noted in the comments, flags, or case narrative. If the report is to be used for regulatory compliance, it should be presented in its entirety, and not be altered.

Approved By:

DRAFT REPORT, DATA SUBJECT TO CHANGE

9632 South	500	West
------------	-----	------

www.ChemtechFord.com

						Lab Sam	ple No.: 18H1378	6-01
Name: All Wells Dr	illing				Sam	ple Date: 8/21/20	018 2:00 PM	
Sample Site: Ephraim Tes	t Well				Rece	eipt Date: 8/22/20	018 9:20 AM	
Comments:						Sampler: Kenny	Walker	
Sample Matrix: Water						Project: Hanksy	ville New Source	
BO Numbor:					Suc			
PO Nulliber.		. .				stem No		
Source Code:		Sample	e Point:		Report	to State:		
Parameter	Sample Result	EPA Max Contaminant Level (MCL)	Minimum Reporting Limit	Units	Analytical Method	Preparation Date/Time	Analysis Date/Time	Flag
Calculations								
Langelier Index @ 22 Deg. C Hardness, Total as CaCO3	-0.03 326		1.32	None mg/L	Calculation SM 2340 B	09/05/2018 08/23/2018	09/05/2018 08/27/2018	
Inorganic								
Alkalinity - Bicarbonate (as CaCO3)	295		1.0	mg/L	SM 2320 B	08/29/2018	08/29/2018	
Alkalinity - Carbonate (as CaCO3) Alkalinity - Hydroxide (as CaCO3)	ND ND		1.0	mg/L mg/L	SM 2320 B SM 2320 B	08/29/2018	08/29/2018	
Alkalinity - Total (as CaCO3)	295		1.0	mg/L mg/L	SM 2320 B SM 2320 B	08/29/2018	08/29/2018	
Ammonia as N	ND		0.2	mg/L	SM 4500 NH3 H	08/23/2018	08/23/2018	
Chloride	13	250	1	mg/L	EPA 300.0	08/22/2018	08/22/2018	
Color	5	15	0	Color Units	SM 2120 B	08/22/2018 13:00	08/22/2018 13:00	
Conductivity	656		1	umho/cm	EPA 120.1	08/30/2018	08/30/2018	
Cyanide, Free	ND	0.2	0.016	mg/L	SM 4500 CN-E	08/28/2018	08/28/2018	
Fluoride	0.2	4	0.1	mg/L	EPA 300.0	08/22/2018	08/22/2018	
MBAS Surfactants	ND	0.5	0.08	mg/L	SM 5540 C	08/23/2018 10:30	08/23/2018 10:30	
Nitrate as N	2.1	10	0.1	mg/L	EPA 300.0	08/22/2018 12:00	08/22/2018 20:40	
Nitrite as N	ND	1	0.1	mg/L	EPA 300.0	08/22/2018 12:00	08/22/2018 20:40	
Odor	ND	3	0	0 - 5 Scale	SM 2150 B	08/22/2018 13:00	08/22/2018 13:00	
рН	7.4		0.1	pH Units	SM 4500 H-B	08/22/2018 16:00	08/22/2018 16:00	SPH
Phosphate, ortho as P	0.03		0.01	mg/L	SM 4500 P-E	08/23/2018 13:00	08/23/2018 13:00	
Sulfate	34	250	1	mg/L	EPA 300.0	08/22/2018	08/22/2018	
Total Dissolved Solids (TDS)	340	1000	20	mg/L	SM 2540 C	08/22/2018	08/22/2018	
Turbidity	11	5	0.02	NTU	EPA 180.1	08/22/2018 16:30	08/22/2018 16:30	
Metals								
Aluminum, Total	0.2	0.2	0.05	mg/L	EPA 200.7	08/23/2018	08/27/2018	
Antimony, Total	ND	0.006	0.0005	mg/L	EPA 200.8	08/23/2018	08/28/2018	
Arsenic, Total	0.0006	0.01	0.0005	mg/L	EPA 200.8	08/23/2018	08/28/2018	
Barium, Total	0.095	2	0.005	mg/L	EPA 200.7	08/23/2018	08/27/2018	
Beryllium, Total	ND	0.004	0.001	mg/L	EPA 200.7	08/23/2018	08/27/2018	
Boron, Total	ND		0.05	mg/L	EPA 200.7	08/23/2018	08/27/2018	
Cadmium, Total	ND	0.005	0.0002	mg/L	EPA 200.8	08/23/2018	08/28/2018	
Calcium, Total	58.2		0.2	mg/L	EPA 200.7	08/23/2018	08/27/2018	
Chromium, Total	ND	0.1	0.005	mg/L	EPA 200.7	08/23/2018	08/27/2018	
Copper, Total	0.0019	1.3	0.0010	mg/L	EPA 200.8	08/23/2018	08/28/2018	
Iron, Total	0.19	0.3	0.02	mg/L	EPA 200.7	08/23/2018	08/27/2018	
Lead, Total	ND	0.015	0.0005	mg/L	EPA 200.8	08/23/2018	08/28/2018	
Magnesium, Total	43.9		0.2	mg/L	EPA 200.7	08/23/2018	08/27/2018	
Manganese, Total	0.006	0.05	0.005	mg/L	EPA 200.7	08/23/2018	08/27/2018	

www.ChemtechFord.com

9632 South 500 West Sandy, UT 84070

						Lab Samp	ole No.: 18H1378-	01
Name:	All Wells Drilling				Sam	ple Date: 8/21/20	018 2:00 PM	
Sample Site:	Ephraim Test Well				Rece	ipt Date: 8/22/20	018 9:20 AM	
Comments:					÷	Sampler: Kenny	Walker	
Sample Matrix:	Water					Project: Hanksv	ville New Source	
PO Number:					Sys	tem No.:		
Source Code:		Sample	e Point:		Report			
Paramete	Sample r Result	EPA Max Contaminant Level (MCL)	Minimum Reporting Limit	Units	Analytical Method	Preparation Date/Time	Analysis Date/Time	Flag
Metals (cont.)								
Mercury, Total Nickel, Total Potassium Total	ND ND 15	0.002 0.1	0.00020 0.005 0.5	mg/L mg/L mg/L	EPA 245.1 EPA 200.7 EPA 200.7	08/24/2018 08/23/2018 08/23/2018	08/24/2018 08/27/2018 08/27/2018	
Selenium, Total Silica, (as SiO2) Total	0.0012 13.3	0.05	0.0005 0.1	mg/L mg/L	EPA 200.8 EPA 200.7	08/23/2018 08/23/2018 08/23/2018	08/28/2018 08/27/2018	
Silver, Iotal Sodium, Total Thallium, Total	ND 18.2 ND	0.1	0.0005	mg/L mg/L mg/L	EPA 200.8 EPA 200.7 EPA 200.8	08/23/2018 08/23/2018 08/23/2018	08/28/2018 08/27/2018 08/28/2018	
Zine, Iotal	ND	5	0.01	mg/L	EPA 200.7	08/23/2018	08/2//2018	
Cardamates								
3-Hydroxycarbofuran Aldicarb Aldicarb sulfone Aldicarb sulfoxide	ND ND ND		1 1 1 1	ug/L ug/L ug/L ug/L	EPA 531.1 EPA 531.1 EPA 531.1 EPA 531.1	08/23/2018 08/23/2018 08/23/2018 08/23/2018	08/23/2018 08/23/2018 08/23/2018 08/23/2018	
Carbaryl Carbofuran Methomyl Oxamyl	ND ND ND ND	40 200	1 1 1 1	ug/L ug/L ug/L ug/L	EPA 531.1 EPA 531.1 EPA 531.1 EPA 531.1	08/23/2018 08/23/2018 08/23/2018 08/23/2018	08/23/2018 08/23/2018 08/23/2018 08/23/2018	
Herbicides								
2,4,5-TP (Silvex) 2,4-D Dalapon Dicamba	ND ND ND	50 70 200	0.440 0.220 2.20 1.00	ug/L ug/L ug/L	EPA 515.3 EPA 515.3 EPA 515.3 EPA 515.3	08/27/2018 08/27/2018 08/27/2018 08/27/2018	08/27/2018 08/27/2018 08/27/2018 08/27/2018	
Dinoseb Pentachlorophenol Picloram	ND ND ND	7 1 500	0.440 0.088 0.220	ug/L ug/L ug/L ug/L	EPA 515.3 EPA 515.3 EPA 515.3	08/27/2018 08/27/2018 08/27/2018	08/27/2018 08/27/2018 08/27/2018	
Pesticides								
Endrin Heptachlor Heptachlor epoxide Lindane	ND ND ND	2 0.4 0.2 0.2	0.022 0.088 0.044 0.044	ug/L ug/L ug/L ug/L	EPA 508.1 EPA 508.1 EPA 508.1 EPA 508.1	08/27/2018 08/27/2018 08/27/2018 08/27/2018	08/29/2018 08/29/2018 08/29/2018 08/29/2018	
PCB-1016 PCB-1221 PCB-1232 PCB-1232	ND ND ND	40 0.2 0.5 0.5	0.22 0.20 0.20 0.20 0.50	ug/L ug/L ug/L ug/L	EPA 508.1 EPA 508.1 EPA 508.1 EPA 508.1	08/27/2018 08/27/2018 08/27/2018 08/27/2018	08/29/2018 08/29/2018 08/29/2018 08/29/2018 08/29/2018	
PCB-1248	ND	0.5	0.50	ug/L ug/L	EPA 508.1	08/27/2018	08/29/2018	

www.ChemtechFord.com

9632 South 500 West Sandy, UT 84070

						Lab Samp	ole No.: 18H1378	-01		
Name: All Well	ls Drilling				Sam	ple Date: 8/21/20	18 2:00 PM			
Sample Site: Ephraim	n Test Well				Rece	eipt Date: 8/22/20	9:20 AM			
Comments:						Sampler: Kenny	Walker			
Somple Metrix, Weter				ille New Source						
Sample Matrix: water					-	Project. Hallksv	life New Source			
PO Number:					Sys	stem No.:				
Source Code:		Sample	e Point:		Report	Report to State:				
Parameter	Sample Result	EPA Max Contaminant Level (MCL)	Minimum Reporting Limit	Units	Analytical Method	Preparation Date/Time	Analysis Date/Time	Flag		
Pesticides (cont.)										
PCB-1254	ND	0.5	0.50	ug/L	EPA 508.1	08/27/2018	08/29/2018			
PCB-1260	ND	0.5	0.50	ug/L	EPA 508.1	08/27/2018	08/29/2018			
PCB - Total	ND	0.5	0.50	ug/L	EPA 508.1	08/27/2018	08/29/2018			
Toxaphene	ND	3	2.2	ug/L	EPA 508.1	08/27/2018	08/29/2018			
Semi-Volatile Compounds										
Alachlor	ND	2	0.44	ug/L	EPA 525.2	08/27/2018	08/29/2018			
Aldrin	ND		2.00	ug/L	EPA 525.2	08/27/2018	08/29/2018			
Atrazine	ND	3	0.22	ug/L	EPA 525.2	08/27/2018	08/29/2018			
Benzo (a) pyrene	ND	0.2	0.04	ug/L	EPA 525.2	08/27/2018	08/29/2018			
Bis (2-ethylhexyl) Adipate	ND	400	1.30	ug/L	EPA 525.2	08/27/2018	08/29/2018			
Bis (2-ethylhexyl) Phthalate	ND	6	1.30	ug/L	EPA 525.2	08/27/2018	08/29/2018			
Butachlor	ND		0.50	ug/L	EPA 525.2	08/27/2018	08/29/2018			
alpha-Chlordane	ND	2	0.44	ug/L	EPA 525.2	08/27/2018	08/29/2018			
gamma-Chlordane	ND	2	0.44	ug/L	EPA 525.2	08/27/2018	08/29/2018			
Chlordane - Total	ND	2	0.44	ug/L	EPA 525.2	08/27/2018	08/29/2018			
Dieldrin	ND		1.00	ug/L	EPA 525.2	08/27/2018	08/29/2018			
Hexachlorobenzene	ND	1	0.22	ug/L	EPA 525.2	08/27/2018	08/29/2018			
Hexachlorocyclopentadiene	ND	50	0.22	ug/L	EPA 525.2	08/27/2018	08/29/2018			
Metolachlor	ND		0.50	ug/L	EPA 525.2	08/27/2018	08/29/2018			
Metribuzin	ND		0.50	ug/L	EPA 525.2	08/27/2018	08/29/2018			
Propachlor	ND		0.50	ug/L	EPA 525.2	08/27/2018	08/29/2018			
Simazine	ND	4	0.15	ug/L	EPA 525.2	08/27/2018	08/29/2018			
Volatile Organic Compoun	ds									
1,1,1,2-Tetrachloroethane	ND		1.0	ug/L	EPA 524.2	08/23/2018	08/23/2018			
1,1,1-Trichloroethane	ND	200	0.5	ug/L	EPA 524.2	08/23/2018	08/23/2018			
1,1,2,2-Tetrachloroethane	ND		1.0	ug/L	EPA 524.2	08/23/2018	08/23/2018			
1,1,2-Trichloroethane	ND	5	0.5	ug/L	EPA 524.2	08/23/2018	08/23/2018			
1,1,2-Trichlorotrifluoroethane	ND		1.0	ug/L	EPA 524.2	08/23/2018	08/23/2018			
1,1-Dichloroethane	ND		1.0	ug/L	EPA 524.2	08/23/2018	08/23/2018			
1,1-Dichloroethene	ND	7	0.5	ug/L	EPA 524.2	08/23/2018	08/23/2018			
1,1-Dichloropropene	ND		0.5	ug/L	EPA 524.2	08/23/2018	08/23/2018			
1,2,3-Trichlorobenzene	ND		1.0	ug/L	EPA 524.2	08/23/2018	08/23/2018			
1,2,3-Trichloropropane	ND		1.0	ug/L	EPA 524.2	08/23/2018	08/23/2018			
1,2,4-Trichlorobenzene	ND	70	0.5	ug/L	EPA 524.2	08/23/2018	08/23/2018			
1,2,4-Trimethylbenzene	ND	70	1.0	ug/L	EPA 524.2	08/23/2018	08/23/2018			
1,2-Dichlorobenzene	ND	600	0.5	ug/L	EPA 524.2	08/23/2018	08/23/2018			
1,2-Dichloroethane	ND	5	0.5	ug/L	EPA 524.2	08/23/2018	08/23/2018			

Name: All Wells Drilling Sample Date: %21/2018 2:00 PM Sample Site: Eprinim Test Well Receipt Date: %22/2018 9:20 AM Commonts: Sample Matrix: Water Project: Hanksville New Source PO Number: System No:: System No:: System No:: System No:: Source Code: Sample Contaminant Report to State: Note: Note: Valid Degrad Contaminant Report to State: Note: Note: Note: 12-Dehloropropate ND 5 0.5 ugl. EPA532 08/23/2018 08/23/2018 13-5: Trinnehylberzene ND 1.0 ugl. EPA532 08/23/2018 08/23/2018 13-5: Dehloropropane ND 0.5 ugl. EPA532 08/23/2018 08/23/2018 13-5: Dehloropropane ND 0.5 ugl. EPA532 08/23/2018 08/23/2018 13-5: Dehloropropane ND 0.5 ugl. EPA532 08/23/2018 08/23/2018 14. D							Lab Samp	ole No.: 18H1378-	·01
Sample Site: Epinaim Test Well Receipt Date: % 2/2/018 9:20 AM Comments: Sample Matrix: Water Project: Hanksville New Source PO Number: System No.: System No.: System No.: Source Code: Sample Matrix: Nummer System No.: Source Code: Sample Reporting Report to State: Nummer Po Number: Sample Site: Nummer Nummer Parameter Sample Comminiant Reporting Level (NCL) Nummer Nummer Nummer 1.3-5:Trinsethylbenzene ND 1.0 ug1. EPA 534.2 0823/2018 0823/2018 1.3-5:Trinsethylbenzene ND 1.0 ug1. EPA 534.2 0823/2018 0823/2018 1.3-5:Dichorosponzene ND 0.5 ug1. EPA 534.2 0823/2018 0823/2018 1.3-5:Dichorosponzene ND 0.5 ug1. EPA 534.2 0823/2018 0823/2018 1.3-Dichorosponzene ND 0.5 ug1. EPA 534.2 0823/2018 0823/2018	Name: A	ll Wells Drilling				Samj	ole Date: 8/21/20	018 2:00 PM	
Comments: Sampler Kenny Walker Sample Matrix: Water Project: Hanksville New Source PO Number: System No.: Source Code: Sample Point: Report to State: Source Code: Sample Containent Report to State: Nanaytical Preparation Analytical Parameter Sample Containent Report to State: Nanaytical Preparation Analytical 12Dichloropopane ND 5 0.5 ugl. EPA 54.2 08/23/2018 08/23/2018 13Dichloropopane ND 5 0.5 ugl. EPA 54.2 08/23/2018 08/23/2018 13Dichloropopane ND 1.0 ugl. EPA 54.2 08/23/2018 08/23/2018 13Dichloropopane ND 5.05 ugl. EPA 54.2 08/23/2018 08/23/2018 2-Dichloropopane ND 1.0 ugl. EPA 54.2 08/23/2018 08/23/2018 2-Dichloropopane ND 1.0 ugl. EPA 54.2 08/23/2018 08/23/2018 2-Dichloropopane	Sample Site: E	phraim Test Well				Rece	ipt Date: 8/22/20	9:20 AM	
Sample Matrix: Water PO Number: Fright: Hukaville New Source Samce Code: Sample Point: Report to State: Samce Code: Sample Contaminant Resorting Minimum Contaminant Level (MCL) Reporting Limit Preparation Method Analysis Date/Time Preparation Date/Time Analysis Date/Time 1.2.Dekhoropopane ND	Comments:						Sampler: Kenny	Walker	
Point Project in allus fue for would be approximated for which the approximate for would be approximated for which the approximate for would be approximate for which the approximate for would be approximate for which the approximate for the approximate form	Or much Matrice II	τ.,						illa Navy Cauraa	
PO Number: System No.: Source Code: Sample Sample Contaminant Report to State: Earnater EPA Max Level (MCI) Minimum Event (MCI) Analytical Limit Preparation Method Analytical Preparation Preparation Date/Time Analytical Date/Time Preparation Date/Time Figs 1.2-Dichloroponzane ND 5 0.5 ug/L EPA 534.2 08/23/2018 08/23/2018 1.3-Dichloroponzane ND 0.5 ug/L EPA 534.2 08/23/2018 08/23/2018 2.2-Dichloroponzane ND 1.0 ug/L EPA 534.2 08/23/2018 08/23/2018 2.2-Dichloroponzane ND 1.0 ug/L EPA 534.2 08/23/2018 08/23/2018 2.2-Dichloroponzane ND 5 0.5 ug/L EPA 534.2 <th>Sample Matrix: W</th> <th>/ater</th> <th></th> <th></th> <th></th> <th></th> <th>Project: Hanksv</th> <th>The New Source</th> <th></th>	Sample Matrix: W	/ater					Project: Hanksv	The New Source	
Source Code: Sample Result Contaminant Level (MCL) Reporting Limit Report to State: Validie Preparation Date/Time Analytical Level (MCL) Preparation Date/Time Analytical Date/Time Preparation Date/Time Analytical Date/Time Preparation Date/Time Analytical Date/Time Preparation Date/Time Analytical Date/Time Preparation Date/Time Analytical Date/Time Preparation Date/Time Preparatio Date/Time Preparation Date/Time	PO Number:					Sys	tem No.:		
PrameterEPA Max RenaftMinimu PopulationAnalytical PopulationPreparation PopulationAnalytical PopulationParameterND50.5ugl.EPA 524.20823/201808/23/201813.5-TinnethylbenzeneND1.0ugl.EPA 524.20823/201808/23/201813.5-TinnethylbenzeneND1.0ugl.EPA 524.208/23/201808/23/20181.3-DichlorobenzeneND1.0ugl.EPA 524.208/23/201808/23/20181.3-DichlorobenzeneND0.5ugl.EPA 524.208/23/201808/23/20181.3-DichlorobenzeneND0.5ugl.EPA 524.208/23/201808/23/20182.2-DichloropopaneND1.0ugl.EPA 524.208/23/201808/23/20182.ChlorothueneND1.0ugl.EPA 524.208/23/201808/23/20182.ChlorothueneND1.0ugl.EPA 524.208/23/201808/23/2018BenzeneND1.0ugl.EPA 524.208/23/201808/23/2018BromoschloromethaneND1.0ugl.EPA 524.208/23/201808/23/2018BromoschloromethaneND1.0ugl.EPA 524.208/23/201808/23/2018ChlorothereND1.0ugl.EPA 524.208/23/201808/23/2018ChlorothereND1.0ugl.EPA 524.208/23/201808/23/2018ChlorothereND1.0ugl.EPA 524.20	Source Code:		Sample	e Point:		Report	to State:		
Volatile Organic Compounds (cont.) 1.2-Dichlorobytenzene ND 5 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 1.3-Dichlorobytenzene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 1.3-Dichlorobenzene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 1.3-Dichlorobenzene ND 75 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 2.2-Dichlorobene ND 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 2.4-Chlorotolucne ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Benzene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Bromochloromethane ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Bromochloromethane ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Bromochloromethane ND 1.0 ug/L EPA 524.2 </th <th>Parameter</th> <th>Sample Result</th> <th>EPA Max Contaminant Level (MCL)</th> <th>Minimum Reporting Limit</th> <th>Units</th> <th>Analytical Method</th> <th>Preparation Date/Time</th> <th>Analysis Date/Time</th> <th>Flag</th>	Parameter	Sample Result	EPA Max Contaminant Level (MCL)	Minimum Reporting Limit	Units	Analytical Method	Preparation Date/Time	Analysis Date/Time	Flag
1,2-Dichloropropane ND 5 0.5 ug/L EPA 524.2 0823/2018 08/23/2018 1,3,5-Timethylbenzene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 1,3-Dichlorobenzene ND 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 1,3-Dichlorobenzene ND 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 2,2-Dichloropropane ND 7.5 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 2,Chlorobropropane ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 2,Chlorobropane ND 5 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 Bernzene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Bromochoromethane ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Bromochoromethane ND 5 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Carbon Ertachloride ND 5 1.0	Volatile Organic Con	1pounds (cont.)							
1.3.5-Timethylbenzene ND 1.0 ug/L EPA 524.2 08.23/2018 08/23/2018 1.3-Dichlorobenzene ND 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 1.4-Dichlorobenzene ND 75 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 2.2-Dichloropropane ND 75 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 2.2-Dichloropropane ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 2.2-Dichloropropane ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Bromobenzene ND 5 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 Bromobenzene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Bromobenzene ND 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 Bromobenzene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Chorobenzene ND 1.0 ug/L EPA 524.2 <t< td=""><td>1,2-Dichloropropane</td><td>ND</td><td>5</td><td>0.5</td><td>ug/L</td><td>EPA 524.2</td><td>08/23/2018</td><td>08/23/2018</td><td></td></t<>	1,2-Dichloropropane	ND	5	0.5	ug/L	EPA 524.2	08/23/2018	08/23/2018	
1,3-Dichlorobenzene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 1,3-Dichloropropane ND 75 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 2,3-Dichloropropane ND 75 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 2,3-Dichloropropane ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 2,-Dichloropropane ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Benzene ND 5 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 Bromochloromethane ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Bromochloromethane ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Bromochloromethane ND 5 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Carbon Tetrachloride ND 5 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Chlororothane ND 1.0 <	1,3,5-Trimethylbenzene	ND		1.0	ug/L	EPA 524.2	08/23/2018	08/23/2018	
1,3-Dichloropropane ND 75 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 2,2-Dichloropropane ND 75 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 2,2-Dichloropropane ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 2,2-Dichloropropane ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 2,-Chiorotoluene ND 5 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 Benzene ND 5 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 Bromodichoromethane ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Bromodichoromethane ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Carbon Tetrachloride ND 5 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Chloroptenzene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Chloroptorene ND 7.0 1	1,3-Dichlorobenzene	ND		1.0	ug/L	EPA 524.2	08/23/2018	08/23/2018	
1.4-Dichlorobenzene ND 75 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 2.2-Dichloropropane ND 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 2.2-Dichloropropane ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 2Dichloropropane ND 5 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 Benzene ND 5 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 Bromochloromethane ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Bromochrom ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Bromochrom ND 5 ug/L EPA 524.2 08/23/2018 08/23/2018 Bromochrom ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Carbon Tetrachloride ND 5 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Choropethane ND 70 1.0 ug/L EPA 5	1,3-Dichloropropane	ND		0.5	ug/L	EPA 524.2	08/23/2018	08/23/2018	
2.2-Dickloropropane ND 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 2Chlorotoluene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 4-Chlorotoluene ND 5 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 Benzene ND 5 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 Bromochloromethane ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Bromochloromethane ND 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 Bromochromethane ND 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 Bromochromethane ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Carbor Tetrachloride ND 5 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Chlorothane ND 10 ug/L EPA 524.2 08/23/2018 08/23/2018 Chlorothane ND 70 1.0 ug/L EPA 524.2	1,4-Dichlorobenzene	ND	75	0.5	ug/L	EPA 524.2	08/23/2018	08/23/2018	
2-Chlorotoluene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Benzene ND 5 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 Benzene ND 5 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 Bromodichloromethane ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Bromodichloromethane ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Bromodichloromethane ND 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 Bromodichloromethane ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Chlorobenzene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Chlorobenzene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Chlorobenzene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Chloror	2,2-Dichloropropane	ND		0.5	ug/L	EPA 524.2	08/23/2018	08/23/2018	
4-Chlorobluene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Benzene ND 5 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 Bromobenzene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Bromobenzene ND 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 Bromofenne ND 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 Bromofenne ND 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 Bromofenne ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Carbon Tetrachloride ND 5 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Chlorobenzene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Chlorooftane ND 70 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 cis-1,3-Dichloroptene ND 70 1.0 ug/L EPA 524.2 08/23/2018	2-Chlorotoluene	ND		1.0	ug/L	EPA 524.2	08/23/2018	08/23/2018	
Benzene ND 5 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 Bromobenzene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Bromobinomethane ND 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 Bromodichloromethane ND 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 Bromodichloromethane ND 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 Bromothane ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Chlorobenzene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Chloroform ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Chloroform ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Dibromochloropropene ND 70 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Dibromochloropro	4-Chlorotoluene	ND	-	1.0	ug/L	EPA 524.2	08/23/2018	08/23/2018	
Bromochenzene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Bromochloromethane ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Bromochloromethane ND 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 Bromochloromethane ND 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 Carbon Tetrachloride ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Chlorobenzene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Chlorobethane ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Chloromethane ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Chloromethane ND 7.0 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Dishomochloromethane ND 7.0 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018	Benzene	ND	5	0.5	ug/L	EPA 524.2	08/23/2018	08/23/2018	
Bromochloromethane ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Bromodichloromethane ND 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 Bromoform ND 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 Bromoform ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Carbon Tetrachloride ND 5 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Chlorosthane ND 100 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 Chlorosthane ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Chlorosthane ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Chlorosthane ND 7.0 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Chlorosthane ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018	Bromobenzene	ND		1.0	ug/L	EPA 524.2	08/23/2018	08/23/2018	
Bromodichloromethane ND 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 Bromoform ND 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 Bromomethane ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Carbon Tetrachloride ND 5 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Chlorobenzene ND 100 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 Chlorotethane ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Chlorotethane ND 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 Chlorotethane ND 70 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Dibromothoromethane ND 70 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Dibromothoromethane ND 5 1.0 ug/L EPA 524.2 08/23/2018	Bromochloromethane	ND		1.0	ug/L	EPA 524.2	08/23/2018	08/23/2018	
Bromotim ND 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 Bromomethane ND 5 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Carbon Tetrachloride ND 5 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Chlorobenzene ND 100 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 Chlorobethane ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Chlorobethane ND 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 Cisi-1,2-Dichloroethane ND 70 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Cisi-1,3-Dichloropropene ND 70 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Dibromothane ND 5 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Dibromothane ND 5 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Dibromothane ND 5	Bromodichloromethane	ND		0.5	ug/L	EPA 524.2	08/23/2018	08/23/2018	
Bromonethane ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Carbon Tetrachloride ND 5 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Chlorobenzene ND 100 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 Chlorobentane ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Chloromethane ND 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 Chloromethane ND 70 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Chloromethane ND 70 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Dibromochloromethane ND 70 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Dibromochloromethane ND 5 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Dibromochloromethane ND 5 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Ethyl Benzene ND <	Bromoform	ND		0.5	ug/L	EPA 524.2	08/23/2018	08/23/2018	
Carbon lefrachioride ND 5 1.0 ug/L EPA 524.2 0.8/25/2018 08/25/2018 Chlorobenzene ND 100 0.5 ug/L EPA 524.2 0.8/23/2018 0.8/23/2018 Chlorobenzene ND 1.0 ug/L EPA 524.2 0.8/23/2018 0.8/23/2018 Chloroform ND 0.5 ug/L EPA 524.2 0.8/23/2018 0.8/23/2018 Chloromethane ND 1.0 ug/L EPA 524.2 0.8/23/2018 0.8/23/2018 Cisi-1,3-Dichloropropene ND 70 1.0 ug/L EPA 524.2 0.8/23/2018 0.8/23/2018 Dibromochlaromethane ND 5 1.0 ug/L EPA 524.2 0.8/23/2018 0.8/23/2018 Dibromochlaromethane ND 5 1.0 ug/L EPA 524.2 0.8/23/2018 0.8/23/2018 Dishoromothane ND 700 0.5 ug/L EPA 524.2 0.8/23/2018 0.8/23/2018 Ethyl Benzene ND 1.0 ug/L <td< td=""><td>Bromomethane</td><td>ND</td><td>5</td><td>1.0</td><td>ug/L</td><td>EPA 524.2</td><td>08/23/2018</td><td>08/23/2018</td><td></td></td<>	Bromomethane	ND	5	1.0	ug/L	EPA 524.2	08/23/2018	08/23/2018	
Chlorobenzene ND 100 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 Chloroethane ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Chloroothane ND 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 Chloroothane ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Chloroothane ND 70 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Chloroothane ND 70 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Cisi-1,3-Dichloroopropene ND 70 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Dibromochloromethane ND 5 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Dibromomethane ND 700 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 Ethyl Benzene ND 1.0 ug/L EPA 524.2 08	Carbon letrachloride	ND	5	1.0	ug/L	EPA 524.2	08/23/2018	08/23/2018	
Chlorednane ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Chloroform ND 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 Chloromethane ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 cis-1,2-Dichloroethene ND 70 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 cis-1,3-Dichloropropene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Dibromoethane ND 5 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Dibromoethane ND 5 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Dibromoethane ND 700 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 Betra stellorobutatiene ND 700 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 Isopropylbenzene ND 1.0 ug/L EPA 524.2 08/23/2018<	Chlorobenzene	ND	100	0.5	ug/L	EPA 524.2	08/23/2018	08/23/2018	
Chloroform ND 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 Chloromethane ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 cis-1,2-Dichloroethene ND 70 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Dibromochloromethane ND 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 Dibromochloromethane ND 5 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Dibromochloromethane ND 5 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Dibromochlaroe ND 700 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 Ethyl Benzene ND 700 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 Isopropylbenzene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Methyl tert-Butyl Ether (MTBE) ND 1.0 ug/L EPA 524.2	Chioroetnane Chioroetnane	ND		1.0	ug/L	EPA 524.2	08/23/2018	08/23/2018	
ChloromethaneND1.0ug/LEPA 524.208/23/201808/23/2018cis-1,2-DichloroetheneND1.0ug/LEPA 524.208/23/201808/23/2018DibromochloropreneND1.0ug/LEPA 524.208/23/201808/23/2018DibromochloromethaneND5ug/LEPA 524.208/23/201808/23/2018DibromomethaneND51.0ug/LEPA 524.208/23/201808/23/2018DichlorodifluoromethaneND51.0ug/LEPA 524.208/23/201808/23/2018DichlorodifluoromethaneND7000.5ug/LEPA 524.208/23/201808/23/2018BenzeneND7000.5ug/LEPA 524.208/23/201808/23/2018HexachlorobutadieneND1.0ug/LEPA 524.208/23/201808/23/2018IsopropylbenzeneND1.0ug/LEPA 524.208/23/201808/23/2018Methyl tert-Butyl Ether (MTBE)ND1.0ug/LEPA 524.208/23/201808/23/2018NaphthaleneND51.0ug/LEPA 524.208/23/201808/23/2018n-Butyl BenzeneND1.0ug/LEPA 524.208/23/201808/23/2018n-Propyl BenzeneND1.0ug/LEPA 524.208/23/201808/23/2018p-IsopropyltolueneND1.0ug/LEPA 524.208/23/201808/23/2018sec-Butyl BenzeneND1.0ug/LE	Chioroform	ND		0.5	ug/L	EPA 524.2	08/23/2018	08/23/2018	
Cis-1,2-Dienfordenene ND 70 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Dibromochloromethane ND 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 Dibromochloromethane ND 5 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Dibromothane ND 5 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Dichlorodifluoromethane ND 5 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Ethyl Benzene ND 700 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 Hexachlorobutadiene ND 700 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 Isopropylbenzene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Methyl tert-Butyl Ether (MTBE) ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Naphthalene ND 5 1.0	chioromethane	ND	70	1.0	ug/L	EPA 524.2	08/23/2018	08/23/2018	
Cls-1,5-Dichologiopene ND 1.0 ug/L EPA 524.2 06/25/2018 08/25/2018 Dibromochloromethane ND 5 ug/L EPA 524.2 08/23/2018 08/23/2018 Dibromomethane ND 5 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Dichlorodifluoromethane ND 5 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Ethyl Benzene ND 700 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 Isopropylbenzene ND 700 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 Isopropylbenzene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Methyl tert-Butyl Ether (MTBE) ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Naphthalene ND 5 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 n-Butyl Benzene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 n-Propyl Benzene ND 1.0	ais 1.2 Dishlanannanan	ND	70	1.0	ug/L	EPA 524.2	08/23/2018	08/23/2018	
Dibromochloromethane ND 5 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Dibromomethane ND 5 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Dichlorodifluoromethane ND 700 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 Ethyl Benzene ND 700 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 Hexachlorobutadiene ND 700 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 Isopropylbenzene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Methyl tert-Butyl Ether (MTBE) ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Methylene Chloride ND 5 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Naphthalene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 n-Propyl Benzene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 sec-Butyl Benzene ND </td <td>Dilana and the second second</td> <td>ND</td> <td></td> <td>1.0</td> <td>ug/L</td> <td>EPA 524.2</td> <td>08/23/2018</td> <td>08/23/2018</td> <td></td>	Dilana and the second second	ND		1.0	ug/L	EPA 524.2	08/23/2018	08/23/2018	
Dironnonnennane ND 5 1.0 ug/L EPA 524.2 08/25/2018 08/25/2018 Dichlorodifluoromethane ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Ethyl Benzene ND 700 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 Hexachlorobutadiene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Isopropylbenzene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Methyl tert-Butyl Ether (MTBE) ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Naphthalene ND 5 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 n-Butyl Benzene ND 5 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 n-Propyl Benzene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 n-Propyl Benzene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 sec-Butyl Benzene ND 1.0 ug/L	Dibromocnioromethane	ND	5	0.3	ug/L	EPA 524.2	08/23/2018	08/23/2018	
Dictribution durindor of the dig/L EPA 324.2 08/23/2018 06/23/2018 Ethyl Benzene ND 700 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018 Hexachlorobutadiene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Isopropylbenzene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Methyl tert-Butyl Ether (MTBE) ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Methylene Chloride ND 5 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Naphthalene ND 5 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 n-Propyl Benzene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 n-Propyl Benzene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 n-Propyl Benzene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 sec-Butyl Benzene ND 1.0 ug/L EPA 524.2 08/23/2018 <td< td=""><td>Dioromomethane Dioblana diffuanamathana</td><td>ND</td><td>5</td><td>1.0</td><td>ug/L</td><td>EPA 524.2</td><td>08/23/2018</td><td>08/23/2018</td><td></td></td<>	Dioromomethane Dioblana diffuanamathana	ND	5	1.0	ug/L	EPA 524.2	08/23/2018	08/23/2018	
Entry Benzene ND 700 0.3 ug/L EFA 324.2 08/23/2018 08/23/2018 Hexachlorobutadiene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Isopropylbenzene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Methyl tert-Butyl Ether (MTBE) ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Methylene Chloride ND 5 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Naphthalene ND 5 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 n-Butyl Benzene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 n-Propyl Benzene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 p-Isopropyltoluene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 sec-Butyl Benzene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Styrene ND 1.0 ug/L EPA 524.2	Ethyl Bonzono	ND	700	1.0	ug/L	EPA 524.2	08/23/2018	08/23/2018	
Interaction of outable in the system ND 1.0 ug/L EFA 324.2 08/23/2018 08/23/2018 Isopropylbenzene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Methyl tert-Butyl Ether (MTBE) ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Methylene Chloride ND 5 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Naphthalene ND 5 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 n-Butyl Benzene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 n-Propyl Benzene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 n-Propyl Benzene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 sec-Butyl Benzene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Styrene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018	Huiyi Benzene Hawaahlarahutadiana	ND	/00	0.5	ug/L	EFA 524.2	08/23/2018	08/23/2018	
No 1.0 ug/L EFA 324.2 08/23/2018 08/23/2018 Methyl tert-Butyl Ether (MTBE) ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Methylene Chloride ND 5 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Naphthalene ND 5 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 n-Butyl Benzene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 n-Propyl Benzene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 p-Isopropyltoluene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 sec-Butyl Benzene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Styrene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018	Icopropulbonzono	ND		1.0	ug/L	EPA 524.2	08/23/2018	08/23/2018	
Methyl feltebulyl Euler (MTBE) ND 1.0 ug/L EFA 324.2 08/23/2018 08/23/2018 Methylene Chloride ND 5 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Naphthalene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 n-Butyl Benzene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 n-Propyl Benzene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 p-Isopropyltoluene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 sec-Butyl Benzene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Styrene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018	Isopiopyioenzene Mathul tart Putul Ethar (MTE	PE) ND		1.0	ug/L	EFA 524.2	08/23/2018	08/23/2018	
Nucley lete Chloride ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Naphthalene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 n-Butyl Benzene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 n-Propyl Benzene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 p-Isopropyltoluene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 sec-Butyl Benzene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Styrene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018	Methylene Chloride	ND	5	1.0	ug/L	EFA 524.2	08/23/2018	08/23/2018	
n-Butyl Benzene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 n-Propyl Benzene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 p-Isopropyltoluene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 sec-Butyl Benzene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 styrene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018	Nanhthalene	ND	5	1.0	ug/L	EFA 524.2	08/23/2018	08/23/2018	
n-Propyl Benzene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 p-Isopropyltoluene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 sec-Butyl Benzene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Styrene ND 100 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018	n-Butyl Benzene	ND		1.0	ug/L ug/I	EPA 524.2	08/23/2018	08/23/2018	
ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 sec-Butyl Benzene ND 1.0 ug/L EPA 524.2 08/23/2018 Styrene ND 100 0.5 ug/L EPA 524.2 08/23/2018	n-Pronyl Benzene	ND		1.0	110/I	EPA 574 2	08/23/2018	08/23/2018	
ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018 Styrene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018	n-Isopropyltoluene	ND		1.0	ч <u>ь</u> , г. 119/I	EPA 574 2	08/23/2018	08/23/2018	
ND 100 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018	sec-Butyl Benzene	ND		1.0	ч <u>ө</u> , Е 119/Г.	EPA 574 2	08/23/2018	08/23/2018	
	Styrene	ND	100	0.5	ug/L	EPA 524 2	08/23/2018	08/23/2018	
tert-Butylbenzene ND 1.0 ug/L EPA 524.2 08/23/2018 08/23/2018	tert-Butylbenzene	ND	100	1.0	ug/L	EPA 524.2	08/23/2018	08/23/2018	
Tetrachloroethene ND 5 0.5 ug/L FPA 524.2 $0.8/23/2018$ $0.8/23/2018$	Tetrachloroethene	ND	5	0.5	ч <u>ө</u> , Е 119/Г.	EPA 574 2	08/23/2018	08/23/2018	
Toluene ND 1000 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018	Toluene	ND	1000	0.5	ug/L	EPA 524.2	08/23/2018	08/23/2018	
trans-1,2-Dichloroethene ND 100 0.5 ug/L EPA 524.2 08/23/2018 08/23/2018	trans-1,2-Dichloroethene	ND	100	0.5	ug/L	EPA 524.2	08/23/2018	08/23/2018	

9632 South 500 West Sandy, UT 84070

Xylenes, total

Certificate of Analysis

08/23/2018

08/23/2018

			Lab Sample No.: 18H1									
Name: All	Wells Drilling				Sam	ple Date: 8/21/20	018 2:00 PM					
Sample Site: Eph	raim Test Well				Rece	ipt Date: 8/22/20	018 9:20 AM					
Comments:					;	Sampler: Kenny	Walker					
Sample Matrix: Wate	er					Project: Hanksv	ville New Source					
PO Number:					Sys	System No.:						
Source Code:		Sample	e Point:		Report	to State:						
Parameter	Sample Result	EPA Max Contaminant Level (MCL)	Minimum Reporting Limit	Units	Analytical Method	Preparation Date/Time	Analysis Date/Time	Flag				
Volatile Organic Comp	ounds (cont.)											
trans-1,3-Dichloropropene	ND		1.0	ug/L	EPA 524.2	08/23/2018	08/23/2018					
Trichloroethene	ND	5	0.5	ug/L	EPA 524.2	08/23/2018	08/23/2018					
Trichlorofluoromethane	ND		1.0	ug/L	EPA 524.2	08/23/2018	08/23/2018					
Vinyl Chloride	ND	2	0.5	ug/L	EPA 524.2	08/23/2018	08/23/2018					

10000

ND

0.5

ug/L

EPA 524.2

Report Footnotes

Abbreviations

ND = Not detected at the corresponding Minimum Reporting Limit.

1 mg/L = one milligram per liter or 1 mg/Kg = one milligram per kilogram = 1 part per million. 1 ug/L = one microgram per liter or 1 ug/Kg = one microgram per kilogram = 1 part per billion. 1 ng/L = one nanogram per liter or 1 ng/Kg = one nanogram per kilogram = 1 part per trillion.

Flag Descriptions

SPH = Sample submitted past method specified holding time.

Data Comparisons

Values reported in **RED** exceed Primary Drinking Water standards. Values reported in **BLUE** exceed Secondary Drinking Water standards. **BLANK** values in the MCL column indicate no standard.

	BOR IN ALL LAND	100 A		DRINKING W	VATER SAIV	IPLES OF	NLY	2												
CHEMTECH - FORD ANALYTICAL LABORATORY															(CHAI	NO	FC	USTO	DY
COMPANY:	MPANY: All Wells Drilling								в	ILLING	ADD	RESS:								
DDRESS:	P.O. Box 159	P.O. Box 159 Hanksville, UT 84734							BILLING CITY/STATE/ZIP:											
CITY/STATE/ZIP:	Hanksville, UT 84734								PURCHASE ORDER:									- 🌔		
HONE #:	435-542-3451	FAX:															CHE	CHEMTECH-FORD		
ONTACT:	Lisa Wells	PROJECT	Hanksvil	le New Source			_				_						_		ABORATORIES	
EMAIL:	hanksvilleclerk@gmail.com		TURNAROUND TIME REQUIRED*:																	
						-		* Expe	edited	turnar	ound s	ubject	to add	litiona	l cha	rge				
	State System Number	-	Se	end to State			TE	STS R	EQUE	STED	-	_	-	-	-		-	-	Ba	teria
					1			П	Π				Π	T	T				R = Rou	tine
			,	Yes No												hear	ed)		I = Inve	stigative
	-		-								11						herat	1	RP = R	epeat
			Se									Dreed	Enum	1	R	PEAT				
	Please fill in all blue	highlighted area	as. Thank	you!			Ino									ilon i	coli (OF	t = Original Location
							N S									u t	ш +	(tun	DN	= Upstream = Downstream
Lab Use Only		CLIENT SAMP		MATION			Ne									form	form	te Co		
+1378	LOCATION	DATE	TIME	FACILITY ID (source code)	POINT CODE (DBP)	Field: Residua Chlorine	Public									otal Col	otal Col	IPC (Pla		LAB FAIL Ref
-01	Ephraim Test Well	8/21/18	2Pm				X				Ħ	-		1			-	-		
2	2									_										
3	a.	-			1					-	+	-	\vdash	-			-			
4	h	-					-			-	+	-	+	+	-		-			
6	I.									-		-	++	+	1		+			
7	l.																			
8	8,									-										
6). 		-						N	-	+	-		-	-		-			
1	Sampled by: [print]	lle lailtha	Sampled by: [si	gnature] / ///	11.16	- /	ON	JGE	4	NOT		_	Ten	np (C	•):	11-				
	Special Instructions:	TIS WITTING	1	Nº 1et	eval	C	80	nnles	receiv	ved ou	teide t	he EP	A rec	mme	ndo	te	2			-
		17	A temperature range of 0-6 C° may be rejected.																	
	Relinquished by: [signature]	Received by: [si	Received by Ising MILL N/11/2 Date/Time G-27-10						10.2-											
	Relinquished by Isionaturel	Received by 14	anature	el de	-		100	re		Dat	le/Time	X	00	×	10	- 7-ac				
	Relinquished by: [signature]	Received by: [si	gnature	e]		-				Dat	le/Time	9								
	CHEMTECH-FORD 9632 South 500 West Sandy, UT 84070	Payr 26-18	ment	Term	s are Clie	net 30 ent agi	days ees to	OAC. pay c	. 1.5% collec	6 inte	costs	charge and a	e per ittorn	mo ey's	nth (189 fees.	% per annum).				
			5	FORMA	runount_	712.00														
			0	VISAMO	Initials.	an														
																				Daga 8 c

Work O	rder # _ 	+1378			-			CHEMTECH FORD LABORATORIES Sample Receipt	
Delivery N	lethod:		_					, / ¬	CHEMTECH-FORD
Walk-in		ourier		d Party	aboratory			Receiving Temperature $4,3$ °C	Sample Condition (check If yes)
			amples	5		þy Cie			Containers Intact
		Chemtech Lot #	ofsub	Digp	d in Re		Misc		COC/Labels Agree
Sample #	Container	or Preservative	umber	-	Nes	Itered	Volume (oz/mL)	Comments	Preservation Confirmed
-01	R(1-2)			7	x				Received on Ice
	AQ/1-2				1				Correct Containers(s)
	C	852							Sufficent Sample Volume
· · · · · ·	AP								Headspace Present (VOC)
	M	067							Temperature Blank
	N	868							Received within Holding Time
	J(1-3)	786							
	K([-3)	768							Plastic Containers
	U(1-2)	787							B- Miscellaneous Plastic
	$\nabla^{} q$							I vial broken & other	C- Cyanide Qt (NaOH) E- Coliform/Ecoli/HPC
			Τ					with headspace. Client	F- Sulfide Qt (Zn Acetate)
				\square		1		Wants to run.	M- Metals Pint (HNO3)
	+			\vdash	-+		2004	Analogy	N- Nutrient Pint (H2SO4)
	9					_	asume	Viniser	S- Sludge Cups/Tubs
	_					_			Q- Plastic Bag
			\downarrow	\square	_				
									D- 625 (Na2S2O3) G- Glass Unpreserved
									H- HAAs (NH4CI)
				$\left \right $	\rightarrow	_			J- 508/515/525 (Na2SO3)
	1								K- 515.3 Herbicides O- Oil & Grease (HCl)
					Τ				P- Phenois (H2SO4)
			+	┼┤	-				Т- ТОС/ТОХ (НЗРО4)
									U- 531 (MCAA, Na2S2O3)
									W- 8260 VOC (1:1 HCl)
			1			_			X- Vial Unpreserved
			+	┼╌┤	_		ļ		Y- 624/504 (Na2S2O3)
									Z- Miscellaneous Glass
