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Some Alternative Estimates of Oil Elasticities 
Melissa Lynes (U.S. Energy Information Administration) 

Studies on elasticities of oil demand vary greatly by regional focus and aggregation level and 
time horizon. Due to varying scopes of previous research, it can be difficult to know if changes 
in oil demand are different across countries. This study examines the short- and long-run price 
and income elasticities of oil demand. A Bayesian Vector Error Correction Model (BVECM) is 
used to determine the elasticities for three levels of aggregation – world-wide, OECD and non-
OECD, and regional. The varying degrees of aggregation will help determine if countries react 
similarly in the long run to changes in oil price and income. 
 

Projecting Long-Term World Oil Prices using a Structural Price Model 
Terry Yen (U.S. Energy Information Administration) 

Long-term projections of oil prices enable federal and state governments, industry decision 
makers, and other planners in government, the private sector, and the general public to make 
long-term assessments of energy market dynamics.  The world oil price (WOP) model is a 
structural model used by the U.S. Energy Information Administration (EIA) to help prepare its 
30-40 year assessments of international energy markets. The WOP takes analyst assumptions 
for both supply and demand by country/region and projects the real oil prices. The model was 
developed in EViews and solved as a system of nonlinear equations. 
 

Changing Dynamics of Volatility Spillovers in Agricultural and Energy Commodities 
Irene Xiarchos and Wesley Burnett (U.S. Department of Agriculture)  

This study uses a spillover index to examine the changing interrelations among corn and energy 
prices from 1997 to 2014. This index is based on the forecast error variance decomposition of a 
vector autoregressive model, allowing for endogenous volatility determinants like fundamentals 
and speculation. Structural break tests are performed and the sample split into two periods for 
comparing spillovers before and after 2006. Volatility spillovers between corn, crude oil, and 
ethanol prices increased substantially, yet each commodity’s past behavior explained the 
largest portion of its own variability. As sensitivity analysis the rolling-sample spillover index 
corresponds to historical market events. 
 

Optimally Reconciling Hierarchical Agricultural Forecasts 
Ryan Kuhns (Farmer Mac), Annemarie Kuhns and David Levin (U.S. Department of Agriculture) 

Hierarchical time series are prevalent in agriculture and many of the time-series forecast by the 
USDA Economic Research Service including food price inflation, farm income, farm sector debt, 
and farmland values. This research considers the impact of different aggregation methods, 
including optimal hierarchical reconciliation, on several agricultural time-series. To our 



 
 

 
 
 

 
Dynamic Volatility Spillovers in Agricultural and Energy Commodities* 

 
Irene M. Xiarchos† and J. Wesley Burnett‡ 

 
 

 
 

 
 

Abstract§ 
 

This study contributes to the literature by using a spillover index method to examine the changing 
interrelations among corn and energy future prices from 1997 to 2014. The spillover index is based upon a 
vector autoregressive model, which allows us to account for other determinants of agricultural and energy 
future prices, including economic fundamentals and market speculation. Utilizing structural break tests, we 
evaluate the influence of recent policies and market shifts. The overall sample is split into two separate sub-
samples (split in 2006) to compare the spillover activities across the two distinct periods of time. While 
each commodity’s past behavior explains the largest portion of its own variability, we find a substantial 
increase in relative volatility spillovers between corn, crude oil, and ethanol futures prices. As a sensitivity 
analysis, we extend our study by conducting a rolling-sample analysis of the volatility spillover index 
through time. As expected, the variations in the estimated volatility spillover index plot correspond to 
historical market events.  
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1 INTRODUCTION 
 

This study is concerned with the volatility of 
agricultural and energy future prices and recent 
influences that may have changed the transmission 
pattern of volatility between commodity markets. 
More specifically, we seek to better understand 
volatility spillover behavior among corn, crude oil, 
and ethanol (future) prices in the United States 
(U.S.), while accounting for the influence of 
speculation, inventory levels, and other 
macroeconomic determinants by using a recent 
methodology developed by Diebold and Yilmaz 
(2012).  
 
The study results show that each commodity’s past 
behavior explains the largest portion of its own 
variability, while the cross-commodity (volatility) 
spillovers explain a relatively smaller percentage. 
Nonetheless, unlike other studies, this methodology 
identifies a sizable (relative) increase in volatility 
spillovers among corn, ethanol, and crude oil after 
2006. More specifically, our estimates suggest that 
volatility in corn future prices increased on average 
by approximately eleven percent in the second sub-
sample period (2006 to 2014); likewise, the volatility 
in ethanol future price increased on average by about 
sixty-eight percent in the second sub-sample; 
whereas, crude oil future prices decreased slightly 
over the same period. Finally, our estimates suggest 
both direct and indirect volatility spillovers, which 
arguably could explain why past studies have found 
contradictory or mixed evidence for volatility 
spillovers between corn and crude oil prices.  
 
Historically, crude oil has been an input to 
agricultural production; and therefore, the direction 
of influence tended to go from crude oil prices to 
agricultural price, but not the other way around. 
Recent developments have altered this relationship: 
with an increase of corn utilized for ethanol and 
distiller’s dried grains with solubles (DDGS) 
production – from five to nearly forty percent – the 
relationship between agricultural and energy 
commodity prices has adapted to new market 
conditions (Abbott et al., 2008). A number of authors 
have suggested that in this new era, energy prices 
play a more important role in agricultural commodity 
prices (Gohin and Chantret, 2010; Tyner, 2010; 
Zhang et al., 2010). Yet, the literature is still mixed 
as to how oil and agricultural markets are related or 
integrated (Du and Hayes, 2009; Thompson et al., 
2009; Whistance and Thompson, 2010; Nazlioglu, 
2011; Nazlioglu and Soytas, 2011; Reboredo, 2012; 
Haixia and Shiping, 2013; Algieri, 2014).  

 
Regardless of the debated relationship between 
energy and agricultural markets, one would expect a 
connection between the commodities to manifest 
itself at least through short-run volatility spillovers. 
At a minimum, the market demand for corn is 
relatively more inelastic as more of the commodity is 
going to ethanol production. Further, we expect 
informational spillovers between corn and crude oil 
prices due to more tightly integrated markets for 
corn, crude oil, and ethanol. In other words, a trade of 
one commodity can provide information about the 
value of other commodities (particularly if a 
commodity’s value is correlated with another 
commodity’s intrinsic value) (Asriyan et al., 2015). 
For example, shocks in biofuel renewable 
identification number (RIN) markets, can create 
reactions to the regulated oil refineries.1 Du et al. 
(2011) find evidence of volatility spillovers among 
crude oil, corn and wheat markets after the fall 
season of 2006; however, the degree of transmission 
between agricultural and energy markets varies with 
different stochastic representations (Serra, 2011). 
 
This study’s objective is to gain additional insights 
about the increased integration of crude oil and corn 
markets. Mean and structural break tests evaluate 
possible structural shifts in the volatility of 
agricultural and energy prices relative to recent 
policy and market influences. Moreover, we conduct 
a spillover analysis with a method that allows for the 
consideration not only of crude oil and corn prices, 
but of several simultaneously determined series 
including factors that would affect storage and 
expectations of agricultural producers. Several past 
studies that examine volatility transmissions use 
sophisticated modeling techniques such as 
autoregressive conditional heteroskedasticity 
(ARCH) or generalized autoregressive conditional 
heteroskedasticity (GARCH) models, which often 
necessitate limiting the analysis to only two or three 
separate time series variables (Zhang et al., 2009; Du 
et al., 2011; Wang et al., 2011; Serra, 2011; Trujillo-
Barrera et al., 2012). Although informative to the 
broader literature, these studies do not (necessarily) 
account for other important determinants of volatility 
(Balcombe, 2011). An exception was offered by 
Serra and Gil (2013), who included the impact of 
stocks and interest rates; however, their specification 
did not allow for endogenously determined stock 

                                                             
1 A RIN is a 38-digit code assigned to biofuels that are registered 
with the Environmental protection Agency (EPA) for RFS2 
compliance. To help obligated parties manage obligations RINs are 
tradable while for year-to-year uncertainty, banked RINs from past 
years can help meet current year requirements. Thus RINs are used 
both for credit trading and compliance demonstration. 
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levels of corn, crude, or ethanol.  
 
Our volatility transmission analysis represents 
realized volatilities and is based on a vector 
autoregressive (VAR) model which allows for all of 
the variables within the system to be endogenously 
and simultaneously determined. Furthermore by 
bypassing the specification of a model of stochastic 
volatility (Preve et al., 2009) we do not have to worry 
about the degree of transmission between agricultural 
and energy markets being influenced from the 
specification choice. We measure the volatility 
spillovers based on a framework developed by 
Diebold and Yilmaz (2009, 2012) which uses the 
VAR price-volatility specification results. As a 
robustness check we evaluate the dynamics of 
spillovers relative to the time profile of policy 
influences and market conditions. 
 
2 LITERATURE REVIEW 
 
Agricultural price volatility has fluctuated over time. 
In general, volatility was: low in the 1960s; high in 
the 1970s; fell in the second half of the 1980s and the 
1990s; and, thereafter remained above the level of the 
1960s (Gilbert, 2006). There is still no general 
consensus as to the volatility of the agricultural 
commodities for the period after 2006. Gilbert and 
Morgan (2010) argued that volatility between 2006 
and 2008 is in line with past historical experience. On 
the other hand, Sumner (2009) looked at wheat and 
maize for the period 1866 to 2008 and found that the 
three-year period between 2006 and 2008 represented 
one of only a handful of periods when prices have 
been above the post-war trend – the last event 
occurring in the 1970s. According to Balcombe 
(2011) some commodities exhibit a positive time 
trend while others exhibit a negative time trend.  
 
In order to better understand the volatility behavior 
among agricultural commodities, Balcombe (2011) 
highlights the importance of considering the sources 
of volatility. For many years, the literature focused 
on the exchange rate and how changes to monetary 
policies transmitted instability to agricultural prices; 
however, in more recent years the literature has 
evolved to examine the impacts associated with 
speculation and the links between energy and 
agricultural markets (Saghaian, 2010). 
 
The influence of speculation in futures and options 
trading, particularly on food commodity markets, is 
still debated in the literature (Trostle et al., 2011). 
Gilbert (2010) and Gilbert and Morgan (2010) argued 
that speculation plays a role in agricultural 
commodity pricing behavior, whereas Irwin and 

Sanders (2011) concluded that there is little evidence 
that new speculators (including index funds) drove 
increased price movements. Harris and Büyükşahin 
(2009) suggest that speculation’s influence is limited 
to the short run, while in the long run (for example, 
over an annual time period) price movements likely 
reflect changes in market fundamentals. Abbott et al. 
(2008) go on to say that while the increase in trading 
volume in the futures markets have partially affected 
agricultural price volatility, it is impossible to 
determine whether speculative activities have 
affected price levels.  
 
In terms of the influence of energy markets 
Gardebroek and Hernandez (2013) showed that the 
correlation between crude oil and corn volatilities and 
between ethanol and corn volatilities increased after 
2007.  The past literature has for the most part 
focused on links between price (Serra et al., 2011; 
Serra, 2011). 
 
Examinations of volatility transmissions, between 
energy and agricultural markets, are scarce and the 
results for the degree of transmission depend on the 
methodology used (Serra, 2011). For example, Serra 
et al. (2011) who examined oil, ethanol and sugar 
prices between 2000 and 2008 for a parametric 
MGARCH BEKK representation found that 
feedstock price volatility increased with directly 
lagged instability and shocks in the energy markets 
and indirectly through covariance terms. Conversely, 
using a semi-parametric, multivariate generalized 
autoregressive conditional heteroskedasticity 
approach (restricted to separate pairwise analyses of 
the ethanol and oil market and the ethanol and sugar 
market respectively), Serra (2011) showed that 
energy (represented through ethanol) affected the 
feedstock market only indirectly through the 
covariance terms. Similarly, while Gardebroek and 
Hernandez (2013) show higher correlation between 
crude oil and corn markets after 2007 with a dynamic 
conditional correlation MGARCH (1, 1) model, they 
did not find evidence of volatility transmission from 
energy markets to grain market through a T-BEKK 
MGARCH (1, 1) representation. On the other hand 
Du et al. ‘s (2011) Bayesian analysis of a stochastic 
volatility model with Merton jump in return (SVMJ) 
finds increased volatility spillovers among crude oil, 
corn and wheats.  
 
In contrast to many past studies, our approach uses a 
historical measure of volatility (as opposed to an 
implied measure of volatility), which according to 
Regnier (2007) does not have as much of an 
influence on the results (i.e., our method does not 
specify a particular statistical model to represent 
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stochastic volatility).  
 
3 METHODOLOGICAL APPROACH 
 
3.1 Realized Volatility 
 
To represent the volatility for oil, ethanol and corn 
prices we examined historical measures of volatility, 
also referred to as realized volatility, which is an 
empirical measure of return variability for a given 
commodity for a specified time frame (Andersen et 
al., 2003). Andersen et al. (2001) showed that 
realized volatility can be an unbiased and highly 
efficient estimator of return volatility. It is easily 
computed from ex post observations of daily 
commodity prices. The benefit of treating volatility 
as observed rather than latent is that our modeling 
approach can be extended to directly include other 
endogenous covariates which determine the 
underlying commodity volatility. This approach is 
also consistent with Diebold and Yilmaz (2009, 
2012) – the methodological framework we followed 
in the current study – who used historical measures of 
volatility as calculated from underlying intra-day 
prices.  
 
The rational for using realized volatility as a measure 
of volatility comes directly from standard stochastic 
process theory.  A justification for calculating 
historical volatility, over other latent methods of 
calculation such as in ARCH or GARCH models, is 
that commodity prices are commonly found to be 
highly autocorrelated and mean reverting with 
stochastic volatility (Schwartz and Smith, 2000; 
Deaton and Laroque, 1992; Schwartz, 1997). 
Realized volatility can be advantageous over ARCH 
and other stochastic volatility models in that it: 
overcomes the curse-of-dimensionality problem by 
treating volatility as directly observable; and, it 
provides a more reliable estimate of integrated 
volatility leading to forecasting gains (Preve et al., 
2009). Regnier (2007) argued in favor of historical 
measures of commodity price series rather than 
choosing a specific model of stochastic volatility. 
Moreover, Andersen et al. (2003) posited that 
realized volatility is advantageous over traditional 
conditional heteroskedasticity models and stochastic 
volatility models, especially given its ease of 
implementation. 
 
Realized volatility is first computed by transforming 
the daily prices in levels to returns, 𝑟𝑟𝑡𝑡 , which are 
calculated as, 
𝑟𝑟𝑡𝑡 = ln � 𝑝𝑝𝑡𝑡

𝑝𝑝𝑡𝑡−1
�                                                     (1) 

 

where 𝑝𝑝𝑡𝑡 is the price in levels at period t. Consistent 
with Andersen et al. (2003) and Ederington and Guan 
(2004), the series are converted to realized volatility 
by taking the average weekly sum of squared 
deviations according to the following formula to 
 

𝑅𝑅𝑉𝑉𝑡𝑡 = 100 × �252
𝑛𝑛
∙ ∑ 𝑟𝑟𝑡𝑡+𝑖𝑖 2𝑛𝑛

𝑖𝑖=1              (2) 

 
where n denotes the number of trading days (five) in 
the specified time frame (we compute weekly 
volatility in the current study), and the number 252 is 
a constant annualizing factor.2 After converting the 
returns to (weekly measures of) realized volatility, 
the result for each observation is typically a decimal 
value that is less than 1.00, so we scale the volatility 
measure by 100 so that the observations can be 
interpreted as percentages in variability as opposed to 
decimal form.  
 
Calculating realized volatility allows us to directly 
examine the structural breaks in the volatility series 
and how they relate to policy and structural changes 
in commodity markets.  Realized volatility may be 
more sensitive to structural changes than actual price 
observations, representing a proxy for information 
flows (or shocks) through time (Chan et. al., 1991). 
To evaluate the structural breaks, we used the 
methodology developed by Bai (1994) and Bai and 
Perron (1998). In order to carry out the tests, we 
implemented the “strucchange” package provided 
within the statistical program R 3.3.1 (Zeileis et al., 
2003). The breakpoint tests are essentially time series 
models estimated via a least squares algorithm that 
detects one or more structural breaks (dates) within 
the underlying time series observations (Bai and 
Perron, 2003). Estimating structural breakpoints is 
important because a failure to control for a structural 
break could affect forecast variances and ultimately 
lead to unreliable time series model estimates 
(Enders, 2009). As our empirical framework, outlined 
below, relies heavily on forecast variances, we used 
the structural breakpoint tests to provide more 
reliable spillover estimates between the agricultural 
and energy commodities. 
 
 
 
3.2 Vector Autoregressive Framework 
 
This study used a VAR model to analyze the 

                                                             
2 The constant is simply a normalizing factor to ensure that each of 
the underlying estimates are consistent according to the 
approximate number of trading days available within a year’s 
period. 
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relationship among corn price, crude oil price and 
ethanol price volatility. The benefit of using a VAR 
approach is that the model treats each of the series as 
endogenously determined within the system. In other 
words, the VAR approach allows us to account for 
numerous factors that may affect this relationship, 
including endogenously determined supply and 
demand fundamentals as well as market speculation.  
We employ a reduced-form VAR with a Choleski 
decomposition of the variance-covariance matrix of 
the residuals. VAR models have been criticized for 
being sensitive to the ordering of the variables within 
the system (Enders, 2009); however, we are able to 
circumvent this by exploiting a generalized VAR 
framework, which provides parameter estimates and 
forecasts that are invariant to the ordering of the 
variables (Koop et al., 1996; Pesaran and Shin, 
1998). The VAR reduced-form model can be 
expressed as follows: 
 
𝐲𝐲𝑡𝑡 = 𝐁𝐁1𝐲𝐲t−1 + 𝐁𝐁2𝐲𝐲𝑡𝑡−2 + ⋯+ 𝐁𝐁𝑝𝑝𝐲𝐲𝑡𝑡−𝑝𝑝 + 𝛆𝛆𝑡𝑡 ,           (3) 
 
where yt dnotes a k × 1 vector of explanatory 
variables, within the system, observed at time t. The 
term Bi denotes a k × k matrix of parameter estimates 
on the ith lagged observation of the explanatory 
variables. Finally, the term 𝛆𝛆t is k × 1 vector of 
normally-distributed errors. Each variable is 
expressed as a linear function of its own past values 
and the past values of all other variables within the k-
variable system. Each equation is estimated by 
ordinary least squares. The error terms can be 
interpreted as surprise movements or shocks in the 
variables after taking past values into account.  
 
3.3 Forecast Error Variance Decomposition 
 
Following the VAR framework presented in the last 
sub-section, we can now derive the variance 
decomposition, which separates the variation in an 
endogenous variable into the component shocks 
within the system (Enders, 2009). Put simply, the 
variance decomposition provides information about 
the relative importance of each random innovation in 
affecting the variables within the VAR.  
 
Provided that the reduced-form VAR model is 
covariance stationary, then the model can be written 
in moving average representation as 𝐲𝐲𝑡𝑡 = 𝐀𝐀(𝐿𝐿) ∙ 𝐮𝐮𝑡𝑡 , 
where 𝐿𝐿 is a lag operator, such that 𝐿𝐿 ∙ 𝑦𝑦𝑡𝑡 = 𝑦𝑦𝑡𝑡−1, and 
𝐀𝐀(𝐿𝐿) = �𝐈𝐈 − ∑ 𝐁𝐁𝑡𝑡−𝑖𝑖 ∙ 𝐿𝐿𝑖𝑖

𝑝𝑝
𝑖𝑖=1 �−1. The moving average 

implies that the current realization of a variable is 
composed of its own shocks and the other shocks 
within the system. To see this, we can expand the 
moving average notation as: 

 
𝐲𝐲𝑡𝑡 = 𝐀𝐀0𝐮𝐮𝑡𝑡 + 𝐀𝐀1𝐮𝐮𝑡𝑡−1 + 𝐀𝐀2𝐮𝐮𝑡𝑡−2 +⋯                      (4) 
 
Given the moving average representation, the error in 
forecasting 𝐲𝐲𝑡𝑡 in the future, for each horizon s, is:  
 
𝐲𝐲𝑡𝑡+𝑠𝑠 − 𝐸𝐸𝑡𝑡𝐲𝐲𝑡𝑡+𝑠𝑠 = 𝐀𝐀0𝐮𝐮𝑡𝑡+𝑠𝑠 + 𝐀𝐀1𝐮𝐮𝑡𝑡+𝑠𝑠−1 + 𝐀𝐀2𝐮𝐮𝑡𝑡+𝑠𝑠−2 +
⋯+ 𝐀𝐀𝑠𝑠−1𝐮𝐮𝑡𝑡+1.                                        (5) 
 
From equation (5), the variance of the forecasting 
error is: 
 
𝑉𝑉𝑉𝑉𝑉𝑉(𝐲𝐲𝑡𝑡+𝑠𝑠 − 𝐸𝐸𝑡𝑡𝐲𝐲𝑡𝑡+𝑠𝑠) = 𝐀𝐀0𝚺𝚺𝑢𝑢𝐀𝐀0′ + 𝐀𝐀1𝚺𝚺𝑢𝑢𝐀𝐀1′ +
𝐀𝐀2𝚺𝚺𝑢𝑢𝐀𝐀2

′ +⋯+ 𝐀𝐀𝑠𝑠−1𝚺𝚺𝑢𝑢𝐀𝐀𝑠𝑠−1
′ ,           (6)                              

 
where 𝚺𝚺𝑢𝑢 denotes the variance-covariance matrix of 
the estimated residuals. On the basis of the error-
forecasting variance formula, one can compute the 
share of the total variance of the forecast error for 
each variable attributable to the variance of each 
structural shock (Enders, 2009). 
 
3.4 Spillover Table and Index Based on the 
Variance Decomposition 
 
Diebold and Yilmaz (2009, 2012) developed an 
elegantly simple framework extracted from the 
forecast error variance decomposition.  Specifically, 
the framework allows for one to measure the fraction 
of the h-step-ahead (where again, h denotes the 
forecasting horizon) error variance in forecasting due 
to shocks in y1, shocks in y2, and so forth. They 
define own variance shares as the fraction of the h-
step ahead error variance in forecasting each 𝑦𝑦𝑖𝑖  due 
to shocks to 𝑦𝑦𝑖𝑖: 
 
∑ 𝑎𝑎2ℎ, 𝑖𝑖 ,𝑖𝑖
𝐻𝐻−1
𝑖𝑖=0 ,                                                             (7) 

 
where the term 𝑎𝑎ℎ,𝑖𝑖 ,𝑖𝑖

2  is an individual estimated 
element corresponding to the ith matrix, Ai, in the 
forecasting error variance, equation (6), presented 
above. 
  
Similarly they define cross variance shares or 
spillovers as the fraction of the h-step ahead error 
variances in forecasting each 𝑦𝑦𝑖𝑖 due to shocks to each 
𝑦𝑦𝑗𝑗,  i ≠ j:  
 
∑ 𝑎𝑎2ℎ, 𝑖𝑖 ,𝑗𝑗 .𝐻𝐻−1
𝑖𝑖=0                                                              (8) 

 
The spillover table presents the total average own 
and cross variance shares for each variable within the 
system for each period of investigation. It is an 
“input-output” decomposition of the spillover index. 
The spillover index measures the magnitude of 
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spillover activity in the entire system, i.e. the total 
spillover among all the endogenous variables for 
period H. 

 
 
The spillover index is a percentage on the closed 
interval [0, 1]; loosely speaking, the larger its value, 
the greater the spillover activity within the entire 
VAR system, during the defined (sub) sample period. 
The spillover table and the spillover index can be 
extended to separate sub-samples, for example in our 
study we examine changes in spillovers for the 
subsamples of 1997-2005 and 2006-2014. Moreover, 
given a sufficiently large number of observations, the 
investigator can analyze the spillovers over multiple 
sub-samples.  As a result, Diebold and Yilmaz (2009, 
2012) also advanced a rolling-sample regression 
analysis of spillovers through time. 
 
Spillovers through time can be extracted with a 
rolling-sample regression analysis creating the rolling 
spillover index plot. The methodology is identical to 
the process described above, only spillovers are 
estimated over multiple rolling periods (and VARs). 
For example in this study we present a 75-week 
rolling window. The resulting spillover indices are 
plotted out against time and can allow for 
comparisons of the VAR system spillover activity to 
documented market shocks. Hence, as a sensitivity 
analysis we use the rolling-sample spillover index to 
compare our estimation results to well-documented 
(past) market occurrences. More specifically, our 
rolling-sample spillover index plot will trace out and 
evaluate the spillover intensity during the different 
periods identified by Abbott (2013). According to 
Abbott (2013), as well as Hertel and Beckman (2011) 
volatility spillovers will vary over time and depend 
on policies and fundamentals. For example, a binding 
renewable fuel standard (RFS) and blend wall are 
generally associated with lower spillovers.3 
 
4 MODEL VARIABLES  
 
An explicit model for market volatility was first 
introduced by Brunetti and Gilbert (1995).4 In 
                                                             
3 The “blend wall” refers to the U.S. regulated level of ethanol 
gasoline that is required to be blended with traditional crude-oil-
based motor gasoline; currently, the U.S. requires a ten-percent 
minimum limit of ethanol to be blended with refined motor 
gasoline. The “wall” refers to the required minimum limit. 
4 Brunetti and Gilbert’s (1995) work is based on the competitive 
storage model (Williams and Wright, 1991; Wright and Williams, 

evaluating metal price volatility Brunetti and Gilbert 
(1995) considered influences from information 
assimilation, speculative pressure, physical 
availability, and other economic fundamentals. Price 
variability from informational influences occurred as 
market agents reacted to new information (including 
information from other related markets pertinent to 
this paper). Price variability from speculative 
pressure arose as traders adjusted to market positions. 
The physical availability explanation related more 
specifically to commodity markets where stocks can 
become low and impact price volatility; Brunetti and 
Gilbert (1995) focused on this aspect of volatility 
behavior and arrived at the explicit, endogenously 
determined non-linear inverse relationship between 
volatility and stocks, depicted in Figure 1, with a 
simple extension of the competitive storage model by 
Deaton and Laroque (1992).   
 
Volatility has been modeled empirically by Kim and 
Chavas (2002), Roach (2010) and Balcombe (2011). 
From this literature, we draw variables to accompany 
the price volatilities for crude oil, ethanol and corn in 
a VAR model representation, which allows for all the 
variables to be endogenously determined. 
Specifically, we include stocks for oil, corn, and 
ethanol and a separate speculation indicator for corn 
and oil markets. Speculation and stocks have been 
identified as endogenous factors in determining price 
volatility (Tadesse et al., 2014) which the VAR 
modeling framework accommodates as endogenously 
determined. We add two macroeconomic variables 
identified by Balcombe (2011): interest rate and 
exchange rate volatility. Thus, as premised by 
Brunetti and Gilbert (1995) our empirical 
representation of the volatility transmission between 
agricultural and energy markets accounts for: (1) 
informational considerations between agricultural 
and energy markets; (2) pressure on commodity 
pricing through market speculation; and, (3) 
fundamentals through inventories and interest rates.  
 
To account for speculative market activities, we used 
data for non-commercial long and short positions of 
corn and crude oil futures prices – the data series are 
provided by the U.S. Commodity Futures Trading 
Commission (CFTC) (U.S. Commodity Futures 
Trading Commission, 2009).  To measure market 
speculation, we estimated “net speculator positions,” 
which is a measure of total daily long positions less 
total daily short positions (Hedegaard, 2014). To 
normalize the net speculator positions, the difference 
was divided by the total number of daily open interest 
positions on the Chicago Mercantile Exchange, a 

                                                                                           
1982, 1984; Deaton and Laroque, 1992).  
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measure referred to as speculative pressure.  
Agricultural commodity futures have become 
increasingly appealing as financial vehicles (Aulerich 
et al., 2009).  In both the 2007-to-2008 and 2010-to-
2011 period, the relationship between rising crop 
prices and a rising share of long positions held by 
non-commercial investors shows some general 
correlation, but does not necessarily indicate any 
causal effects (Trostle et al. 2011). Gilbert (2010) and 
Gilbert and Morgan (2010) argued that speculation 
plays a role in agricultural commodity pricing 
behavior, whereas Irwin and Sanders (2011) 
concluded that there is little evidence that new 
speculators (including index funds) drove increased 
price movements. Yet, if non-commercial investors 
affect prices, their influence is likely temporary and 
takes place over shorter time periods, and thus could 
likely be observed in terms of price volatility rather 
than price in levels (Trostle et al., 2011; Harris and 
Büyükşahin, 2009).  
 
Stock-over-use (also known as stocks-to-
disappearance) are typically used to represent the 
inverse relationship of stocks to price volatility (Kim 
and Chavas, 2002; Balcombe, 2011; Serra and Gil, 
2011). Similar to Stigler and Prakash (2011), we 
relied on forecasts for corn stocks over use. Corn 
stocks and use data are based on monthly projections, 
which are reported in USDA’s “World Agricultural 
Supply and Demand Estimates” (U.S. Department of 
Agriculture, 2013). Using a cubic spline method, we 
interpolated from monthly to weekly values to make 
the level of observation for stocks-over-use 
consistent with the rest of the analysis within the 
study (Hagan and West, 2006). Weekly crude oil and 
ethanol stocks and use data were obtained from the 
U.S. Energy Information Administration (2015).  
 
According to Balcombe (2011), interest rates are an 
important macroeconomic factor that can have a 
direct effect on the price of commodities, since they 
represent affect the cost of holding stocks. Exchange 
rates represent the prices that producers receive once 
they are deflated into the currency of the domestic 
producer, which Balcombe (2011) pointed out can 
affect prices and inventories. The 3-month Treasury 
bill (constant maturity) and exchange rate data were 
obtained from the St. Louis Federal Reserve Bank 
(2015).  We chose short-run interest rates as we 
expect a shorter lag in the reaction time between 
macroeconomic activity and investment behavior 
within the futures market. The exchange rate is 
measured as the trade-weighted U.S. dollar index, 
which is a weighted average of the foreign exchange 
value of the U.S. dollar against the currencies of a 
broad group of major U.S. trading partners (St. Louis 

Federal Reserve Bank, 2015). Following Balcombe 
(2011) the data is converted to a realized volatility 
measure, as per equation (2). 
 
Definitions, data frequency, and sources for the 
variables are presented in Table 1. Since corn, 
ethanol and crude oil futures are converted to weekly 
volatility measures, all other series were also 
converted to weekly observations. Consistent with 
Areal and Taylor (2002), a logarithmic 
transformation was applied to the realized volatility 
measure of the explanatory variables because it 
improved the skewness and kurtosis profiles, 
indicating that the variables are approximately 
distributed as log-normal.  Many other studies have 
also observed that a natural log transform of realized 
volatility provides a much closer approximation to a 
normal distribution, contrary to (non-log 
transformed) realized volatility, which often departs 
considerably from normality (Andersen et al. 2003, 
Koopman et al. 2005, Preve et al. 2009, Brunetti and 
Gilbert 1995).  Table 2 shows how the log-
transformed realized volatility measures compared to 
non-transformed, realized volatility and adjusted 
mean absolute deviation (AMAD) as historical 
measures of volatility.  AMAD is an alternative 
measure of historical volatility, argued by Ederington 
and Guan (2004) to outperform realized volatility and 
GARCH models. The logarithmic transformed 
realized volatility indeed provided a much closer 
approximation to a normal distribution in comparison 
to both non-transformed realized volatility, and the 
AMAD volatility indices. This is most clearly 
indicated by the skewness and kurtosis profiles of the 
series. (A normally distributed series is characterized 
by approximately zero skewness and a kurtosis of 
three).  
 
Summary statistics for the realized volatility 
measures (based on underlying daily futures prices), 
stocks-over-use, and net speculator positions are 
presented in Table 3. Daily corn and crude oil futures 
prices are available from 1997 to 2014, thus our 
baseline of analysis for the multivariate model is 
limited from 1997. Ethanol futures prices are 
available from only 2005, so spot prices were used 
for the period 1997 to 2005. For the period of 2005 to 
2014, we estimated a 0.95 Pearson’s r correlation 
coefficient between ethanol spot and future prices. 
Therefore, the ethanol spot and future prices are 
highly correlated with one another. 
 
 
5 EMPIRICAL RESULTS 
 
5.1  Preliminary Analysis  
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Important changes after 2000 in biofuel policies and 
the financialization of commodities altered the 
relationships among corn, ethanol and crude markets. 
Structural changes should be reflected in data-driven 
structural break tests. We follow the methodology of 
Bai and Perron (1998, 2003) to test for structural 
breaks without specifying specific dates a priori. The 
results, provided in Figure 1, indicate breaks occurred 
in October of 2005 (the 95% confidence interval 
suggests the break occurred between May and 
December of 2005) and January of 2012 (the 95% 
confidence interval suggests the break occurred 
between June of 2011 and June of 2012) for the corn 
futures price volatility series.  For the crude oil 
futures price volatility series, the structural break test 
estimates suggest breakpoints in October of 2002, 
March of 2007, and November of 2009. The 
corresponding 95% confidence intervals for the three 
estimated (crude oil futures) breakpoints are as 
follows: May 2002 – March 2004, May 2006 – April 
2007, and October 2009 – May 2010. Additionally, 
we found structural breaks for December of 2000, 
July of 2005, and February 2011for ethanol price 
volatility. The 95% confidence interval for ethanol 
futures are: July 2000 – November 2001, April 2004 
– September 2005, and December 2010 – April 2012, 
respectively. 
 
The financialization of commodity markets, is 
arguably demonstrated by the structural break point 
of the net speculator positions in oil and corn in 
2002.5  It also translates to a structural break in price 
volatility for crude, but not corn. Speculation for 
crude (as measured by net speculator positions over 
open interest) also indicated a break in March of 
2000, which was within the confidence interval of the 
corn market speculation. The structural break for 
speculation in crude can be further explained for the 
year 2000 by of the meteoric rise in crude oil prices 
that began around the year 2000 and ultimately 
reached a high of $147 per barrel in July of 2008. By 
contrast throughout the 1980s and 1990s, crude oil 
had a tendency to trade for less than $25 per barrel 
(adjusted for inflation) on the New York Mercantile 
Exchange. There is still some debate as to the cause 
of the increase in crude oil prices during the 2000s; 
however, most experts agree that is attributable to 

                                                             
5 After the turn of the century, the market experienced new 
investment inflows to various commodity futures indices that 
totaled approximately $200 billion from early 2000 to June 30, 
2008 (Cheng and Xiong, 2013). The new investors primarily had 
financial interest in the markets and were not hedging physical 
commodities – in other words, the investors were using these 
commodities as an asset class to diversify their own financial 
portfolios. 

geopolitical instability and rising global demand 
during that period (Kailing, 2008). Speculation for 
corn and crude shared a break point in 2009 with 
crude oil futures price volatility which arguably 
corresponds with the global recession (2008-2009). 
 
Corn market speculation has a distinct break in 2005 
it shares with corn and ethanol price volatility. This 
annual break point notably corresponds to the 
passage of the renewable fuel standard (RFS), with 
biofuel mandates starting at 4 billion gallons in 2006 
and reaching 7.5 billion gallons in 2012 (Figure 2). 
As the share of corn used in biofuel production 
increased to 20% by 2006, and was expected by 
virtue of the RFS to increase even further in the 
coming years, a structural change was manifested not 
only in ethanol price volatility, but also in corn price 
volatility and corn speculation.  California’s ban on 
MTBE in 1999 had already allowed for ethanol to 
become the dominant fuel additive in the Oxygenated 
Fuels the Reformulated Gasoline Programs which 
coupled with USDA’s CCC Bioenergy Program in 
2000 marked the turning point in the ethanol 
industry. This is manifested as the first structural 
break in ethanol price volatility after 2000: ethanol 
capacity began to expand rapidly, and production 
more than doubled between 1999 and 2004 (Duffield, 
Xiarchos, Halbrook, 2008). An additional structural 
break for ethanol volatility is manifested in 2011, 
with limitations increasing in corn ethanol from 
changes in RFS2, concerns over the blend wall, and 
the expiration of the Volumetric Ethanol Excise Tax 
Credit (VEETC) by the end of 2011.  
 
Given the policy framework and prior emphasis in 
the literature, along with correspondence of structural 
breaks (within conference interval ranges) for corn, 
ethanol, and crude oil, we mark the turn of 2006 as a 
common threshold for evaluating the realized 
volatility in corn futures prices. To determine 
whether the means (of the separate price series) differ 
across the two sub-samples (1997-2005 and 2006-
2014), we employed mean-comparison tests 
(multivariate Anova tests) for the realized volatility 
series. A list of the descriptive statistics (across 
separate sub-samples) and the multivariate Anova 
test results are provided in Table 4. The test results 
imply that the average realized volatilities for corn, 
crude and ethanol price series are statistically 
different across the sub-samples. Further, the 
descriptive statistics suggest that the realized 
volatility of corn futures increased by over ten 
percent in the latter sub-sample (2006-2014), whereas 
the realized volatility in crude futures decreased by 
over five percent in the same period. The realized 
volatility of ethanol futures also increased. These 
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results imply that the increase in corn (future) price 
volatility is not due to increased volatility in oil 
prices as suggested by Balcombe (2009). 
 
As demonstrated by Figure 1(a), corn price volatility 
does appear to be larger in magnitude in the 2006-to-
2015 period (over the 1997-to-2005 period), and the 
structural break test results suggest that this change in 
volatility is not merely a transitory phenomenon. On 
the same token, Figure 1(b) seems to suggest a larger 
magnitude in ethanol price volatility (this is 
demonstrated by the larger amplitude of the volatility 
spikes following the year 2005) in the second sub-
sample. The Anova test, in Table 4, corroborates this 
finding (i.e., there is statistical difference between 
mean in the separate sub-samples), and the summary 
statistics demonstrate a large difference in the 
average levels of volatility (for ethanol prices) across 
the two separate sub-samples. Based on the structural 
break tests and the mean-comparison tests, we 
performed two separate spillover analyses (based on 
the VAR estimation results) for the different sub-
sample periods: 1997 to 2005 and 2006 to 2014.  
 
5.2 Spillover Tables  
 
Following the procedure outlined in Diebold and 
Yilmaz (2009), we next estimated the spillover tables 
and index based upon the VAR results. The majority 
of diagnostics suggested that four lags were the 
optimal specification for the VAR model – that is, the 
four-lag specification produced the smallest forecast 
errors within the entire system of equations.  
However, specifying only four lags led to significant 
serial autocorrelation within the model’s residuals.6 
In order to balance the tradeoff between over-
parameterization and autocorrelation, we report the 
estimated results based on an eight-lag model. As a 
robustness check we varied the lag length of the VAR 
and determined the estimates (in this case, the 
forecast error variance decompositions) were 
insensitive to alternative lag specifications. 
Moreover, all cases contained stable characteristic 
roots (not provided). The coefficients in a VAR 
model are not presented; they are often imprecisely 
estimated and not of much interest to the 
investigator.7 We focus on the more useful spillover 
                                                             
6 Recall from the discussion in Section 3, the moving average 
representation of the VAR, which forms the basis of the forecasts 
within the spillover analysis, assumes no serial autocorrelation. 
7 As a VAR analysis consists of a system of equations, the number 
of coefficient estimates can often be overwhelming. For example, 
considering that we have ten endogenous variables and one 
exogenous variable (the constant term), and an eight-lag 
specification, the number of estimated coefficients is 145. VAR 
models are more often used for forecasting purposes and policy 
analysis (Robertson and Tallman, 1999). 

analysis based on forecast error variance 
decomposition, so we proceed by examining the 
spillover tables and indexes. 
 
The spillover tables for each sub-sample (1997-2005 
and 2006-2014) are provided in Tables 5 and 6. The 
ijth entry in the table is the estimated contribution to 
the forecast error variance of variable i coming from 
innovations to variable j (Diebold and Yilmaz, 2009). 
The off-diagonal column sums are labeled as 
“Contribution to Others,” whereas the off-diagonal 
row sums are labeled as “Contribution from Others.” 
The sum of either the columns or rows across 
variables yields the numerator in the spillover index. 
The column or rows sums, including diagonals, are 
labeled as “Contribution including own.”8 The sum 
of “Contribution including Own” across variables 
yields the denominator of the spillover index.  
 
The spillover tables for each sub-sample (1997-2005 
and 2006-2014) are provided in Tables 5 and 6. The 
ijth entry in the table is the estimated contribution to 
the forecast error variance of variable i coming from 
innovations to variable j (Diebold and Yilmaz, 2009). 
The off-diagonal column sums are labeled as 
“Contribution to Others,” whereas the off-diagonal 
row sums are labeled as “Contribution from Others.” 
The sum of either the columns or rows across 
variables yields the numerator in the spillover index. 
The column or rows sums, including diagonals, are 
labeled as “Contribution including own.”9 The sum 
of “Contribution including Own” across variables 
yields the denominator of the spillover index.  
 
The spillover table provides an “input-output” 
decomposition of the spillover index (Diebold and 
Yilmaz, 2009). Using this interpretation, Table 5 
reveals that during the 1997-to-2005 period 
innovations (shocks) to crude oil price volatility 
accounted for only 0.2% of the error variance in 
forecasting ten-week ahead corn price volatility; 
whereas, innovations to corn price volatility were 
responsible for only 0.5% of the error variance in 
crude oil price volatility. In general, Table 5 does not 
reveal a great deal of volatility spillovers among the 
three commodities (corn, crude oil, and ethanol). 
That is, own-historical volatility explains a large 
portion of own-series error variance. Specifically, 
corn price volatility is responsible for 89.6% of its 
own error variance in the 1997-to-2005 period as 
demonstrated in Table 5. Over the sample period, 

                                                             
8 Note that for ease of exhibition, these totals only appear at the 
bottom of the Table. 
9 Note that for ease of exhibition, these totals only appear at the 
bottom of the Table. 
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crude oil price volatility accounted for 93.3% of its 
own error variance and ethanol price volatility 
accounted for 92.9% of its own error variance. The 
total contributions from the other variables to corn 
price volatility, listed in column under the title “From 
Others,” is only 10%; likewise, the total contributions 
from others to crude and ethanol were both 7%. As 
Table 5 demonstrates, stocks-over-use in ethanol and 
corn received the most influence from the other 
variables within the system at (20% and 16%, 
respectively) followed by exchange rate and corn 
speculation (at 13% and 12%). 
 
By comparison of Table 5 and 6 we can remark about 
the difference in the results between the first and 
second sub-samples. The volatility spillover index 
(representing total volatility within the system) 
increased in the second sub-sample 2006-2014, going 
from 10.3% to 12.5%. This implies increased 
integration between energy and agricultural markets 
in terms of volatility transmissions. As can be 
gleaned in Table 6, the volatility spillovers between 
the corn and crude, commodities increased markedly 
in the second period. In particular, the volatility 
spillovers from crude to corn increased by 
approximately 1400% ((0.03-0.002)/0.002), whereas 
the spillovers from corn to crude increased by 
approximately 880% ((0.049-0.005)/0.005). Further, 
the volatility spillovers from corn to ethanol 
increased by 2775% ((0.115 – 0.004)/0.004) from the 
first to second sub-sample period. 
 
To the casual reader this may seem like trivial 
changes. However, the average future contract price 
in corn, from 1997-2014, was approximately 
US$3.50 and one contract was comprised of 5,000 
bushels. Thus, the average notional value of one corn 
future contract (over the same period) was 
approximately worth US$17,500 (3.50 x 5000), and 
the standard deviation, which is an approximation of 
the historic volatility, of that notional value is 
roughly equal to US$8,315. These calculations are 
based on one contract, and the average, daily number 
of open interest positions (outstanding contracts held 
by market participants) was nearly 1.5 million over 
the period 1997-2014 (not provided). Assuming that 
all the open interest positions are settled, a one 
standard deviation difference (an approximate one 
unit difference in volatility) is approximately equal to 
US$12.5 billion, on average, in total notional value of 
the future contracts in corn. Based on these 
calculations, a one percent difference in volatility is 
approximately equal to a change of US$125 million 
in the total (notional) market value of corn future 
contracts. 
 

Despite these large implied increases, the cross-
commodity spillovers only account for a relatively 
small percentage in explaining the error variance of 
the other individual volatility series. In the 2006-to-
2014 subsample, corn volatility only explains 4.9% 
of the total error variance of crude volatility, and 
crude volatility only explains 3.0% of the total error 
variance in corn volatility. On the other hand, corn 
volatility explains 11.5% of the total error variance of 
ethanol in the second subsample (Table 6). 
 
Contrary to what was found in the earlier sub-sample, 
stocks-over-use played a less substantial role in 
explaining the speculative activities in corn in the 
second period. Put differently, the effect of corn 
inventory levels in predicting net speculator positions 
in corn decreased by approximately 55% ((0.005-
0.011)/0.011). This finding implies that economic 
fundamentals (such as, inventory levels) now play a 
less substantive role in speculative activities. This 
could be a reflection of the increasing financialization 
of these commodity markets (Cheng and Xiong, 
2013).  
 
Despite the lack of evidence of transmissions from 
inventory levels to speculation, the opposite is not 
true. That is, speculative activities seem to have 
affected inventory levels over time. For the period 
2006-to-2014, the results indicated substantial 
increases in spillovers from speculative corn 
activities to corn stocks-over-use; i.e., the influence 
of innovations to net speculative positions in corn 
futures on the error variance in forecasting the corn 
stocks-over-use increased by 3700% ((0.076 – 
0.002)/0.002) over the preceding sub-sample. 
Conversely, the transmission from net speculative 
positions in crude oil to crude inventory levels 
arguably decreased by nearly 30% ((0.016 – 
0.023)/0.023) in the second sub-sample. Further, the 
transmission from net speculative position in crude 
oil to ethanol inventory levels arguably decreased by 
roughly 83% ((0.002 – 0.012)/0.012) in the second 
sub-sample period. 
 
Our results suggest that the transmission from 
speculative positions to own price volatility changed 
substantially in the 2006-to-2014 sub-sample period. 
That is, crude speculation to crude oil (future) price 
volatility increased by 400% ((0.025 – 0.005)/0.005). 
Whereas, the transmission of corn speculation to corn 
(future) price volatility decreased by approximately 
27% ((0.015 – 0.011)/0.015).  
 
Differing from the first sub-sample, stocks-over-use 
in corn and volatility in ethanol prices received the 
most contributions from others (21 and 22%, 
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respectively), followed by crude oil price volatility 
(17%) and exchange rate volatility (17%). All of the 
increased transmissions (spillovers) among these 
commodities suggest perhaps a non-transitory 
integration of the markets.  
 
Our findings, seem consistent with the narrative 
offered by Saghaian (2010). That is, he explained that 
the early literature tended to focus on the exchange 
rate and how changes to monetary policies 
transmitted instability to agricultural prices; whereas, 
in more recent years the literature has evolved to 
examine the impacts associated with speculation and 
the links between energy and agricultural markets. In 
the context of our findings, shocks to the exchange 
rate arguably played a much smaller role in 
predicting corn price volatility as the former 
explained approximately 3.5% of corn price 
variability in the 1997-to-2005 period; whereas, it 
only explained 1.4% in the subsequent 2006-to-2014 
period. Thus, the transmission (direct and indirect), 
between the agricultural and energy commodity 
prices, seems to offer more explanatory power over 
the second sub-sample period (that is, in the more 
recent past). This may, in part, explain the evolution 
of the empirical literature. 
 
5.3 Rolling-sample Spillover Index 
 
The spillover tables provide a useful summary of 
average behavior over the sub-samples, but are likely 
to miss the potentially important secular and cyclical 
movements in spillovers (Diebold and Yilmaz, 2009). 
As Abbott (2013) indicates “the turbulence in recent 
economic events has caused the mechanisms through 
which biofuels demands influence corn and other 
agricultural commodity prices to vary over time.” 
Hertel and Beckman (2011) further argue price 
volatility and volatility spillovers will depend on 
policy regimes.  
 
Figures 3 and 4 demonstrate the rolling-sample 
spillover volatility index plots through time for each 
sub-sample. The spillover index plot provides an 
interpretation of the total amount volatility spillovers 
within the system (of endogenous variables) through 
time for each sub-sample.  Both are calculated using 
75-week rolling window with ten-week-ahead and 
two-week-ahead forecasting horizons, respectively. 
Both of the rolling-sample indexes are based on an 
underlying VAR model with eight lags specified. 
Despite the difference in lag specification, the index 
plots in both figures provide a relatively similar set of 
results.  
  
The rolling-sample indexes for the first sub-sample, 

Figures 3(a) and 3(b), demonstrate the largest 
spillover volatility index spike in or around 1997. 
This spike is consistent with the U.S. grain price 
shocks in 1995 and 1996, which were caused by a 
significant Midwestern drought during that same 
period. The second rolling-sample indexes (for the 
2006-to-2014 sub-sample) in Table 6 suggest the 
largest spike in volatility spillovers in 2009 
corresponding to the tail of the US Great Recession 
(National Bureau of Economic Research, 2015). This 
spike in spillovers is arguably due to the meteoric 
decline in crude oil prices, trading for over $145 per 
barrel in July 2008 and falling close to $40 per barrel 
by January 2009 – prices are adjusted for inflation 
and quoted based on the historical price series from 
the New York Mercantile Exchange. 
 
Our estimated volatility spillover index plot as 
premised by Hertel and Beckman (2011) and Abbott 
(2013) shows lower volatility transmissions between 
crude and corn markets when the RFS mandate and 
blend wall are binding (Figure 4). Our index plot 
estimates seem consistent with high oil price spikes 
in the first half of 2008, which led to a non-binding 
RFS and higher spillovers. More specifically the 
spillover volatility index behaved exactly as 
described in Abbott (2013); it decreased when the 
RFS became binding as prices started falling after the 
middle of the year, and increased again as the RFS 
became temporarily binding at the start of 2009. By 
2010, concerns over the blend wall reduced 
spillovers, but exports relieved pressure on ethanol 
production towards the end of the summer allowing 
for higher volatility spillovers (Abbott, 2013). As the 
subsidies to ethanol neared expiration and exports 
slowed, spillovers again are reduced consistent with 
Abbott (2013) while the drought increased prices and 
volatility in 2012. By 2013 the Environmental 
Protection Agency (EPA) responsible for 
administering the RFS2 acknowledged that the blend 
wall was officially binding production, and spillovers 
again were reduced as prefaced by Abbott (2013). 
Capacity constraints, inventory conditions, and 
information assimilation in the markets accounted for 
finer changes and discrepancies in spillover 
estimates.  
 
6 CONCLUSIONS AND POLICY 
IMPLICATIONS 
 
Our study, by means of an estimated spillover table 
and spillover index, demonstrated increasing 
volatility spillover transmissions in a system of corn 
(future) prices, crude (futures) prices, ethanol 
(futures) prices, interest rates, exchange rates, 
inventories, and speculation. Additionally, our 
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findings suggest increasing cross-commodity 
volatility spillovers from crude oil to corn (future 
prices) and vice versa from the period 2006 to 20145 
(while at the same time accounting for other 
endogenous factors that affected the observed 
historical volatility spillovers). Our estimated 
spillover tables and rolling-sample spillover indexes 
prove robust to the predictions for spillover intensity 
changes based on policies and fundamentals 
according to Abbott (2013) and Hertel and Beckman 
(2011).  
  
However, even though the volatility spillovers 
between corn and crude oil prices have increased 
more than eightfold, it is important to note that these 
cross-commodity (price) volatility spillovers still 
only constitute a relatively small portion of a 
commodity’s total price volatility. Put differently, our 
results suggest that the influence of a commodity’s 
own past volatility increased slightly for corn price 
volatility (from 89.6 to 91.7); whereas, own past 
volatility decreased somewhat substantially for crude 
oil price volatility (93.3 to 82.8) and ethanol price 
volatility (92.9 to 77.9). Furthermore, while the 
spillover results arguably imply that biofuel policies 
have led to increasing spillovers from corn markets to 
crude oil and ethanol price volatility, it also indicates 
that other influences have led to an increasing 
volatility of crude oil prices.  
 
Consistent with the literature, we found little direct 
evidence that speculation in corn futures played a 
significant role in directly explaining corn (future) 
price volatility. However, we found that speculation 
in crude oil futures explain approximately three 
percent of the price volatility in crude (future) prices, 
and the spillovers from crude speculation to crude oil 
price volatility increased by considerably between the 
two separate sub-sample periods. While speculation 
in corn positions does not seem to directly play a 
large role in predicting corn price volatility, we found 
indirect channels from speculation in corn positions 
explaining approximately seven percent of the 
variation in ethanol volatility and corn stocks-over-
use. Notably increased transmissions after 2006 are 
not necessarily direct. 
 
In summation, results of our empirical model imply 
relatively small volatility spillovers between corn, 
crude oil, and ethanol (in the range of three-to-twelve 
percent) even after tremendous increases (eightfold) 
in spillovers after 2006. Further, by utilizing a 
relatively large set of endogenous determinants of 
commodity price volatility, we also discovered that 
spillovers are not always direct but may in fact be 
indirect. These findings might explain the 

contradictory estimates of volatility spillovers in 
prior studies.  
 
The modeling framework, presented in this study, can 
be applied to a whole range of agricultural 
commodities to facilitate the study of both crisis and 
non-crisis episodes, including trends and sudden 
bursts in spillover activity. With the blend wall 
applying pressure on the ethanol market, the ethanol 
industry slowing since 2014,crude oil prices 
predicted to remain relatively low (compared to the 
average price over the past couple of decades) for the 
near term, and policy choices still to come future 
research can evaluate if volatility levels and 
interconnections might change yet again.  
 
All the same crude oil and grain commodity markets 
are expected to continue to be more tightly integrated 
than in the pre-ethanol era (independent of future 
energy policies or renewable fuel standards). 
Characteristically, ethanol is blended in gasoline not 
only to comply with policies like the renewable fuel 
standard, but also to improve octane and to add to 
gasoline volume under favorable prices.  Ethanol has 
become ingrained in the U.S. retail gasoline market 
over the past decades. For example, refineries now 
produce more unfinished gasoline specifically 
formulated for blending with ethanol to increase 
octane, and the majority of finished gasoline 
production has shifted from petroleum refiners to 
gasoline blenders. Moving finished product decisions 
for gasoline to blenders rather than refiners will 
arguably further increase the integration between 
crude oil and grain markets. Of course choices about 
the future direction of the RFS and fuel support will 
still play a critical role in shaping the biofuels 
industry and the integration of energy and 
agricultural markets.  For example, enlarging ethanol 
use beyond the blend wall with higher blends (than 
the existing E10 standard) will likely result in 
increased spillovers between agricultural and energy 
markets. Conversely, an increase in future cellulosic 
ethanol production will like reduce integration 
between the markets. The impact of increases in 
drop-in fuels will depend on the biomass source, but 
will in any case remove infrastructure barriers in 
blending, and move the market biofuel market from 
mainly an oxygenate to a competitive gasoline 
volume market.  
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FIGURE 
 

Figure 1. Break points within the realized volatility series of corn, ethanol, crude oil, 
and net speculator positions for corn and crude oil, 1997-2014 

 
  a. Corn      b. Ethanol 
 

 
  c. Crude Oil   d. Corn, net speculator positions (percentage) 
 

 
    e. Crude, net speculator positions (percentage) 
 

Notes: The estimated break points are represented by the broken vertical lines in the figure. The 
horizontal whisker plots at the bottom of the figure indicate the confidence intervals for the estimates.  
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Figure 2. Policy influences versus total U.S. ethanol production through time 
 

 
Notes: After 2014 production is estimated based on the RFS2 volume requirements. The source for 
Ethanol production data is the Renewable Fuels Association (2016). Policies are sourced from 
Duffield, Xiarchos, Halbrook (2008), and the National Agricultural Law Center.  

 
 
 
 
 

  



17 
 

Figure 3. 75 Week Rolling Windows: Ten-Week-Ahead and Two-Week-Ahead Forecast 
Horizons. Results based on a VAR(8) model for the sub-sample period: 1997-2005 

 
Notes: These plots demonstrate a moving volatility Spillover Index (based on a VAR model with one lag specified), 
defined as the sum of all variance decomposition “contribution to others” from Tables 5 and 6, estimated using a 75-
week rolling window
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Figure 4. 75 Week Rolling Windows: Ten-Week-Ahead and Two-Week-Ahead Forecast 
Horizons. Results based on a VAR(8) model for the sub-sample period: 2006-2015. 

 
Notes: These plots demonstrate a moving volatility Spillover Index (based on a VAR model with eight lags 
specified), defined as the sum of all variance decomposition “contribution to others” from Tables 5 and 6, estimated 
using a 75-week rolling window. 
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TABLES 

Table 1. Explanatory Variables within Vector Autoregressive Model  
 

Definitions (data units) Computation Data Frequencyb Source 

    
Corn      

Price volatility (future, USD/bu) Natural log transform of 
realized volatility Daily 

Chicago Board of Trade, 
U.S. Department of 
Agriculture 

Net speculator positiona 
(Non-commercial long – 
non-commercial short) / 

Open interest  
Weekly U.S. Commodity Futures 

Trading Commission 

Stocks-over-use (million bu) 
Expected 

stocks/(Domestic use + 
Exports) 

Monthly U.S. Department of 
Agriculture 

Crude     

Price volatility (WTI futures, 
USD/bbl) 

Natural log transform of 
realized volatility Daily U.S. Energy Information 

Administration 

Net speculator positiona  
(Non-commercial long – 
non-commercial short) / 

Open interest 
Weekly U.S. Commodity Futures 

Trading Commission 

Crude Stocks (million bbls) Week-ending stocks levels Weekly U.S. Energy Information 
Administration 

Ethanol     

Price volatility c (spot, futures 
USD/gal) 

Natural log transform of 
realized volatility Daily 

 Chicago Board of Trade, 
U.S. Department of 
Agriculture  

Ethanol stocks (million bbls)  Week-ending stocks levels Weekly, Monthly U.S. Energy Information 
Administration 

Macroeconomic Factors     
Interest rate volatility  
(U.S. 3-month Treasury yield 
(constant maturity))  

Natural log transform  Daily St. Louis Federal Reserve 
Bank  

Exchange rate volatility (Trade- 
weighted USD Index)  Natural log transform  Daily St. Louis Federal Reserve 

Bank 

a. Based on contracts of 5000 bushels for corn and 1000 bbls for crude oil. Corn contracts measured in 1000 bushels 
till January 1997 where converted to 5,000 equivalent contracts for consistency. b. The study is performed on 
weekly values. If not available on a weekly frequency, variables were converted to weekly measures. Volatility 
variables are the natural logs of each respective intraweek realized volatility, estimated from observed daily values. 
Monthly stocks and use data were interpolated to weekly values using a cubic spline method. Ethanol stocks and use 
data were available on a weekly basis since June 2010. c. Ethanol futures prices are available only from 2005 to 
2015, so spot prices were used for the 1997-to-2005 period. 
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Table 2. A comparison of historical measures of volatility 
 

 Variable Obs Mean Median  Std. Err.  Skewness  Kurtosis 

        
Logarithmic transformation   corn 926 3.08 3.07 0.02 -0.10 0.18 
of realized volatility crude 926 3.35 3.36 0.02 -0.01 0.43 

 ethanol 926 2.60 2.81 0.03 -0.86 0.76 

 ex. rate 926 1.74 1.76 0.02 -0.45 1.00 

 int. rate 926 3.82 3.44 0.05 0.32 -0.99 

        
Realized volatility corn 926 24.95 21.51 14.09 2.31 14.62 

 crude 926 32.58 28.71 18.46 2.07 6.70 

 ethanol 926 28.95 23.35 21.53 4.33 29.50 

 ex. rate 926 6.40 5.83 3.17 1.65 6.34 

 int. rate 926 139.11 25.50 258.63 3.85 26.85 

        
Adjusted, mean absolute  corn 926 25.28 22.51 13.68 1.52 6.96 
deviation crude 926 30.71 26.60 21.22 2.73 18.92 

 ethanol 926 28.33 23.61 19.43 3.42 22.10 

 ex. rate 926 6.45 5.84 3.17 1.14 5.32 

 int. rate 926 131.73 25.41 251.57 3.96 27.55 
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Table 3. Descriptive statistics and unit root tests for the model time series variables 
 

Variable 
Variable 
Description Mean Median 

Std. 
Err. Skewness Kurtosis Obs. P-Pa Probb 

Corn 
futures 

Log (realized 
volatility) of intra-
week  3.08 3.07 0.02 -0.10 0.18 926 -683.46 0.00 

Crude 
futures 

Log (realized 
volatility) of intra-
week 3.35 3.36 0.02 -0.01 0.43 926 -611.04 0.00 

Ethanol 
spot/futures 

Log (realized 
volatility) of intra-
week 2.60 2.81 0.03 -0.86 0.76 926 -404.04 0.00 

Exchange 
rate 

Log (realized 
volatility) of intra-
week  1.74 1.76 0.02 -0.45 1.00 926 -707.74 0.00 

Interest 
rate 

Log (realized 
volatility) of intra-
week 3-mos. 
Treasury 3.82 3.44 0.05 0.31 -0.99 926 -150.77 0.00 

Corn 
stocks 

Log of weekly 
stocks-over-use  2.47 2.56 0.01 -0.47 -0.74 926 -43.59 0.00 

Crude 
stocks 

Log of weekly 
stocks 6.89 6.92 0.00 -0.27 -1.34 926 -784.71 0.00 

Ethanol 
stocks 

Log of weekly 
stocks 2.18 2.16 0.02 -0.13 -1.40 926 -464.22 0.00 

Corn 
speculation 

Log of net 
speculator positions 
on corn futures 3.33 3.46 0.02 -1.41 3.23 926 -75.32 0.00 

Crude 
speculation 

Log of net 
speculator positions 
on crude oil futures 3.07 3.11 0.01 -1.95 8.14 926 -70.47 0.00 

          
Notes: a. Phillips and Perron (1988) unit root test. Rejection of null indicates that the time series was 
generated by a stationary process. b. MacKinnon (1996) one-sided reported p-values. The reported Phillips 
and Perron test static (and p-value) for the stocks (corn, crude, and ethanol) are based on first-differenced 
series. 
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             Table 4. Mean-Comparison Tests for Sub-Samples 
 

Period of Observation Obs Mean Std. Err. 
    
Full Sample (1997-2015)    

Corn volatility 926 3.08 0.02 
Ethanol volatility 926 2.60 0.02 
Crude oil volatility 926 3.35 0.02 

    
First Sub-Sample (1997-
2005) 

   

Corn volatility 433 2.91 0.03 
Ethanol volatility 433 1.91 0.05 
Crude oil volatility 433 3.46 0.02 

    
Second Sub-Sample (2006-
2015) 

   

Corn volatility 493 3.23 0.02 
Ethanol volatility 493 3.20 0.02 
Crude oil volatility 493 3.26 0.03 

    
Multivariate Anova Tests df F-stat p-value 
    
Wilks’ lambda (3, 922) 251.78 0.0000 
Pillai’s trace (3, 922) 251.78 0.0000 
Lawley-Hotelling trace (3, 922) 251.78 0.0000 
Roy’s largest root (3, 922) 251.78 0.0000 
    
Notes: The realized volatility for ethanol futures is only available 
starting in 2005; therefore, we used the realized volatility of 
ethanol spot prices for 1997-2005. The mean realized volatility of 
ethanol spot prices for the 2006-2014 were also higher than the 
mean realized volatility of ethanol spot prices for the 1997-2005. 
The multivariate Anova tests are based on the Stata 14.1 routine 
entitled “manova.” The null hypothesis is that there is no statistical 
difference between the mean values in the separate sub-samples. 
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Table 5. Spillover Table for Sub-Sample, 1997-2005 
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Table 6. Spillover Table for Sub-Sample, 2006-2014 
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