
DNS Prefetching and Its Privacy Implications:
When Good Things Go Bad

Srinivas Krishnan and Fabian Monrose
Department of Computer Science

University of North Carolina at Chapel Hill,
{krishnan,fabian}@cs.unc.edu

Abstract
A recent trend in optimizing Internet browsing speed is to
optimistically pre-resolve (or prefetch) DNS resolutions.
While the practical benefits of doing so are still being de-
bated, this paper attempts to raise awareness that current
practices could lead to privacy threats that are ripe for
abuse. More specifically, although the adoption of sev-
eral browser optimizations have already raised security
concerns, we examine how prefetching amplifies disclo-
sure attacks to a degree where it is possible to infer the
likely search terms issued by clients using a given DNS
resolver. The success of these inference attacks relies on
the fact that prefetching inserts a significant amount of
context into a resolver’s cache, allowing an adversary to
glean far more detailed insights than when this feature is
turned off.

1 Introduction

Access to information at our finger tips is a luxury we
have come to expect. We all have become impatient, con-
tinually demanding faster answers to our questions—be
it for the best remedies to our current ailment, directions
to a weekend getaway, the best prices for that must have
item, recommendations for that restaurant we just drove
by, etc. All too often, we turn to our favorite search en-
gine, hopeful that it can immediately quench our thirst
for knowledge. In turn, software engineers and archi-
tects are continuously challenged with finding ways to
improve responsiveness on the Web, and help us quickly
wade through the deluge of responses. Of late, a growing
trend in optimizing the speed browsers is to pre-resolve
(or prefetch) the DNS resolution of domains in hyper-
links so that they are ready to be served in the off chance
that the user decides to click on them.

While the idea of pre-resolving domain names is by
no means new, it is somewhat surprising that it has only
recently caught on [1]. The concept appears to have

been first proposed (at least in the academic literature)
by Cohen and Kaplan [2] as a low-overhead alternative
to prefetching of documents. The key observation is that
since DNS resolutions are dominated by latency, one way
to decrease user-perceived delay is to preform specula-
tive pre-resolution. The improvement in performance
comes from the fact that resolving a DNS query often
involves communication with at least one remote name-
server, and in some cases, may require following referral
chains across several servers—a task that could take sev-
eral seconds to complete.

Loosely speaking, the strategies being applied by the
browsers we examined involve pre-resolving all hyper-
links on a page while its being loaded, and optimistically
pre-resolving names as a user types in the navigation or
search bar. For the most part, the goal is to strike a bal-
ance between the number of eliminated cache misses and
the overhead of generating additional queries. One com-
mon, and prudent, restriction appears to be the disabling
of prefetching of hyperlinks appearing in HTTPS pages;
apparently to prevent an eavesdropper from learning in-
formation in a context where confidentiality is expected.

While the practical benefits of DNS pre-resolution are
still being debated (e.g., with respect to its effect on
cache pollution, the excess load it places on resolvers [3],
and the negative impact it may have on performance of
applications that do not take advantage of prefetching),
this paper attempts to highlight a cautionary tale and
hopes to raise awareness that current practices in DNS
prefetching could lead to new privacy threats that are
ripe for abuse. Specifically, although the adoption of
DNS prefetching has already raised specific privacy con-
cerns related to the ability of an inquisitive content au-
thor or spammer to monitor the receipt of a well-crafted
email [1] or perform timing attacks (e.g., containing cus-
tomized links [6])1, we consider how prefetching ampli-
fies disclosure attacks to a degree where it is possible to
use cache snooping techniques to infer the likely search
terms issued by clients behind a particular name server.

1

The success of these inference attacks relies on the fact
that prefetching inserts a significant amount of context
into the resolver’s cache, allowing the adversary to glean
more detailed insights than when this feature is turned
off.

To underscore the privacy threats that DNS prefetch-
ing can lead to, we examine two distinct modes for en-
abling disclosure attacks. For simplicity, we first con-
sider the case where the adversary has the luxury of in-
specting records from a resolvers’ cache—e.g., as might
be the case for DNS traffic logs released for research
purposes. We then apply the techniques developed for
this offline attack to a more realistic remote cache snoop-
ing scenario—where the resolver’s cache is probed exter-
nally in real-time by a remote client. Our primary goal is
to raise concern on moving ahead too hastily along this
current path, and to stop and think about the potential
privacy implications of this design.

The remainder of the paper is outlined as follows. In
Section 2 we review related work. Section 3 discusses
our goals and outlines the methodology we use. We in-
troduce both offline and online versions of disclosure at-
tacks that are made possible due to aggressive prefetch-
ing in Section 4, and discuss their implications as emer-
gent threats. We conclude in Section 5.

2 Related Work

The domain name system plays a critical role in the
operation of Internet applications, and so it is not sur-
prising that understanding its performance has been the
topic of much research over the past two decades (e.g.,
[16, 22, 23, 13]). These works all share the common
goal of understanding how to improve performance bot-
tlenecks. Jung et al. [11] provide extensive analysis of
DNS performance and the effectiveness of caching, and
also provide a way to model cache hit rates[10].

More recently, several proposals have been suggested
for improving the responsiveness of connection estab-
lishment by optimistically issuing DNS queries. These
ideas include (but are not limited to) prefetching of
domain names based on popularity, prefetching of re-
lated domain names using piggyback schemes, and pre-
caching of records based on a myriad of renewal policies
(see for example, [2, 20, 25]).

More germane to this work is that of DNS cache
snooping. Grangeia [8] provides an excellent review of
how to remotely inspect a cache for evidence of a specific
lookup (e.g., www.nytimes.com). Remote cache in-
spection of this type has been used for a number of mea-
surement studies that include, for example, inferring the
relative popularity of websites [24, 17] and tracking mal-
ware infections [18]. In contrast, in this work we explore
how DNS prefetching amplifies new privacy threats, al-

lowing one to gain far more insights than these prior tech-
niques envisioned.

3 Methodology

In order to explore the implications of various browser-
based DNS pre-resolution strategies in place today, we
designed a framework that allows us to fully automate
our data generation process. This framework provides
the basic functionality we need to inject keystrokes into
several browsers and to automatically collect the result-
ing DNS data. It is implemented for both Linux and Win-
dows clients, using the X11 interface and SendKeys
scripting method, respectively. For the remainder of this
paper, we concentrate on Windows clients only, since
Windows has the largest user base. To simulate user in-
teraction, our framework accepts a set of terms, actions,
and a desired typing rate, and injects keystrokes into a
given application. The actions dictate how the frame-
work interacts with the application, for example, whether
it enters keystrokes into the location bar or search engine.
Our choices for typing speeds are taken from empirical
studies [9].

The generation framework is accompanied by a data
collection engine which logs all DNS queries and re-
sponses created by a single action. Our evaluation was
conducted using two disjoint DNS servers, namely, (1)
the caching resolver for the computer science department
at our institution, and (2) a separate caching resolver that
we installed locally. That server forwarded all requests
(made by the generation framework) to a public DNS ser-
vice [7]. We enforce this separation in order to have a
control and to avoid polluting the department’s caching
server. Both servers ran BIND version 9. For the analysis
in this paper, we collected snapshots of the caches (using
rndc -cache-dump) at 5 minute intervals for several
days in late Februaury, 2010. These “cache dumps” con-
tain no client information, but provide several resource
records (A, CNAME, NS, etc.) and their remaining
times in the name servers’ caches [15].

At the time of this study, Internet Explorer only sup-
ports DNS prefetching as an extension, and so our exam-
ination herein only focuses on Firefox version 3.6 and
Chrome version 4.2 for the Windows platform — both
of which enable this feature by default.

Prefetching in the Wild
As discussed earlier, optimistic pre-resolution of domain
names is implemented as a means to reduce response la-
tency on a “potential” click of a link on a website. How
this is realized in the browsers differ, but for the two
we consider, they extract the href tags from each ren-
dered page, and perform lookups for the resulting do-

2

Figure 1: Average DNS request generated.

mains. Chrome takes this one step further by attempting
to guess the site a user might be attempting to visit as
she types in the location bar, simultaneously performing
pre-resolutions for the predicted destinations.

The fact that these pre-resolutions are occurring will
later play a key role in the disclosure attacks we discuss,
but for now, we turn our attention to a closer examina-
tion of what happens behind the scenes. Recall that each
pre-resolution will cause a set of records to be cached at
the stub resolvers and their designated upstream full re-
solvers [21]. Obviously, it would be ideal if prefetching
causes the resolvers to cache objects that would benefit
other clients as well.

To quickly gauge this “communal benefit”, we
consider what happens when we 1) search for n = 40
distinct keywords, one at a time 2) search for the
“hottest” 10 topics (derived from Google Trends) every
hour for a 24 hour period and 3) type URLs into the
location bar. These three experiments were conducted
using the data generation framework, and the target
DNS server was the department name server. For each
keyword searched, we leave the returned page open for
2 minutes (to simulate a user reading the page), and ana-
lyze the request/responses within that interval. Searches
on hot topics with Google’s search engine generate a dy-
namic page with real-time scrolling feeds, wherein some
pre-resolution is also performed. (This particular search
engine optimization has other security-related implica-
tions as evidenced by very recent postings; see http:
//www.sophos.com/blogs/chetw/g/2010/
02/27/tsunami-blackhat-seo-attack/.)

As a preliminary examination of whether other users
could have benefited from the pre-resolutions that oc-
curred because of our searches, we check if a pre-

Figure 2: Examples of pre-resolutions as the user types.

resolved domain was among a daily feed of Alexa’s top-
100 websites. If so, we consider it as being useful, other-
wise the pre-resolution is tagged as client-specific. Then,
for each client-specific resolution, we searched a 24 hour
period from the departments cache to see if that A or
CNAME record ever showed up again. If it appeared at
least once, we take a conservative approach and also
count that pre-resolution as being useful (to some arbi-
trary client).

The results are shown in Figure 1. The histograms are
an average of 3 runs for each scenario, with each run hap-
pening one day apart. Care was taken to use mutually ex-
clusive searches between the browsers in order to avoid
inducing false TTL refreshes. Note that a static Google
search page usually returns around 10 results, for which
the URLs are automatically pre-resolved. However, each
result might cause a set of CNAME and A records to be
fetched, especially if they are associated with a content
distribution network. Consequently, we see on average
of 15 pre-resolutions for Chrome and 12 for Firefox.
Moreover, searches for topics that are “hot” cause the
browsers to constantly prefetch as new links appear on
the page — resulting in a large number of requests dur-
ing the short 2 minute intervals we kept the search results
page opened for.

The pre-resolutions that occur during typed-in navi-
gation are also fairly interesting. Recall that one of the
browser’s goals is to guess the site the user is trying to
visit, providing suggestions along the way to get the user
to her destination more quickly. To induce this behavior,
we first warmed the browser’s history cache by visiting a
random set of sites. The server used during this scenario
was our control server. Later, we simulated a user typing
the URL (sometimes without the www prefix) into the lo-

3

Algorithm 1 Clustering cache entries
Require: DNS Log File
Ensure: Cluster domains in the log into groups based

on when they were inserted into the cache
1: anchors = [] . List of potential anchors
2: domain clusters = { } . Table of clusters
3: Alexa = { } . Alexa’s daily top-100
4: for all DNS Records in Log do
5: if Record.domain not in Alexa then
6: authoritative ttl = GetSOA(domain)
7: time in cache = authoritative ttl - domain.ttl
8: anchors.Append(<domain, time in cache>)
9: end if

10: end for
11: while anchor in anchors do
12: . Time elapsed since anchor was added to cache
13: age = anchor.time in cache
14: for all a in anchors do
15: if a.time in cache == age ± window then
16: domain clusters[window].Append(a)
17: delete a from anchors[]
18: end if
19: end for
20: end while

cation bar. As the browser attempts to guess the user’s
intention, DNS queries are created; most times after only
a few characters are typed.

Figure 2 provides a brief illustration of this behav-
ior. Notice that most of the resulting prefetches result in
NX responses, or even valid domains for sites where the
user had no intention of visiting (e.g., www.ndtv.cn).
The result in Figure 1 is the average number of pre-
resolutions across 20 typed-in entries. In this case, over
95% of these resolutions resulted in NX responses.

While the issue of whether these prefetching mech-
anisms do more harm than good is debatable (e.g., the
real-time searches could cause an increase in cache evic-
tions due to the increased rate of “client-specific” DNS
records), one thing is for sure — the additional queries
provide context which can be used to facilitate emergent
privacy threats.

4 Disclosure Attacks

In what follows, we consider how prefetching can be
abused by an adversary in order to reconstruct searches
by clients served by a particular DNS server. Before div-
ing into the specifics of these attacks, lets first recall how
we typically find information on the Web today. Gen-
erally speaking, we input a set of keywords (e.g., “stem
cell controversy”) into our favorite search engine, and
then explore the ranked set of returned links (clicking

Algorithm 2 Keyword Extraction
Require: Domain Name, Prefix Size
Ensure: Tokenized List of Words

1: words = [] . List of extracted words
2: word trie = Trie()
3: current word = domain
4: char consumed = 0
5: m = Prefix Size
6: while char consumed < length(domain) do
7: for all keyword in suggest(current word[:m]) do
8: word trie.add(keyword)
9: end for

10: if match = word trie.find-prefix(domain) then
11: words.append(match)
12: current word = domain - match
13: char consumed += length(match) - m
14: else
15: m = m+1
16: char consumed += m
17: end if
18: end while

on, say, the top three results). As we refine our search
term, the more advanced engines provide suggestions on
terms that could yield better results (e.g., “stem cell re-
search debate”). These suggestions are created using
item-based or user-neighborhood based recommender al-
gorithms [5, 12]. The key here is that for these sug-
gested terms, the set of links pre-resolved for the result-
ing search results will be relatively stable.

4.1 Offline Attack
The first inference attack assumes access to logs (BIND
cache dumps in this case) and attempts to reconstruct the
searched terms. The challenges here are in first group-
ing “related” domain names in this log, tokenizing the
domains in order to extract keywords, and using a n-
recommender algorithm to build queries based on the ex-
tracted keywords. In what follows, we discuss each of
these challenges in turn.

Clustering of Entries Recall that pre-resolving do-
main names on a search result pages results in a set of si-
multaneous DNS queries. The responses to these queries
are cached along with their TTL values. Since these
queries are issued in close succession of each other, they
would age at the same rate in the cache. Hence, it is
possible to group related domains by comparing the cur-
rent TTL in cache with the authoritative TTL, thereby
computing the age of each record. The assertion is that
records with the same age are likely to have been fetched
because of pre-resolutions.

4

Actual Query First guess Second guess Third guess
“Gambling Addiction” gambling addiction gambling age addict

“Alcohol Withdrawal Syndrome” alcohol withdrawal symptoms alcoholics anonymous alcohol poisoning

“Gun Control” gunbroker guns for sale 〈none〉
“Racism In America” racism america racism today racism facts

“Biological Weapons” biological warfare weapons 〈none〉
“Homelessness In America” homelessness america homelessness statistics homelessness facts

“Immigration Reform” immigration naturalization immigration illegal immigration news

“Human Cloning” cloning humans cloning cloning animals

“Internet Privacy” internet privacy internet crime internet explorer

“Domestic Violence” domestic violence domestications domestic abuse

Table 1: Top three guesses for 10 different queries.

Our clustering approach (given in Algorithm 1) is
straightforward. The basic idea is to create a list of “an-
chors” during an initialization phase and then group do-
mains with similar age. We also fetch the authoritative
TTL’s for each domain in the list.

At first, we assume all domains are anchors2. Next, a
domain (usually the first record) from the anchor list is
chosen and its age is computed (i.e., authoritative TTL
- current TTL). We then sequentially scan the subse-
quent elements in the list for domains with the same age
(±window), where the window is a tunable parameter.
Finally, elements with the same age are considered as a
cluster. Each iteration over this list removes anchors as
they become members of a cluster. Table 2 shows the de-
rived grouping for the query “steroids in baseball”; no-
ticed that all the domain have the same approximate age
(600 seconds).

Domain Name Auth. TTL Current TTL Age
teenink.com 3600 3001 599
rcshield.com 3600 3000 600
steroid.com 10800 10198 602
steroidsinbaseball.net 14400 13802 598
baseballssteroidera.com 14400 13800 600

Table 2: Example cluster showing pre-resolved domains
when searching for “steroids in baseball”.

Keyword Extraction Once the entries have been clus-
tered, tokenization begins (see Algorithm 2). Our ap-
proach leverages an n-suggest algorithm to obtain possi-
ble words for a given prefix (the first m-characters). The
possible matches are fed into a Trie, allowing us to per-
form longest prefix matches on the domain name. The
algorithm then iterates over the next set of characters and
the process repeats until all the characters are consumed
and tokenized.

The output of Algorithm 2 is a list of words ordered
from left to right for each domain name, j (i.e., we have

wj1, wj2, . . . , wjk). Table 3 depicts an example tok-
enized list for each domain for the cluster based on the
aforementioned query. We then take all the first-order
keywords (i.e., wj1) and rank them by frequency. In the
previous example, “steroids” has the highest rank, fol-
lowed by “baseball”, etc. Next, we again take advantage
of an n-recommender systems, and construct a search
using all first order words with frequency > δ. At this
point, we have a list of suggestions. Each suggestion is
compared with our list of ordered words, and we output
(as our guess) the suggestion with the maximum num-
ber of matches. The final ranking is computed using the
weighted frequency of all the words in the inferred query.

Domain Name Keyword List
teenink.com teen, ink
rcshield.com shield
steroid.com steroid
steroidsinbaseball.net steroids, baseball, in
baseballssteroidera.com baseballs. steroids, era

Table 3: Example extracted keywords for pre-resolved
domains for “steroids in baseball”.

4.1.1 Preliminary Results

We evaluated the outlined approach using the cache
dumps from the departmental server. The data genera-
tion framework was used to inject 50 search queries at
random intervals over a day. We used both browsers in
this test. The task at hand was to predict what where
the likely queries by inspecting the cache dumps. The
results for a handful of these inferences are shown in Ta-
ble 1. The table shows the actual query injected and the
top three inferred searches for each query. Notice how
strikingly similar they are.

As a preliminary assessment of the accuracy of the
outlined approach, we computed true and false positive
rates based on obtaining snapshots of the server’s cache

5

Granularity (mins) FP % TP %
5 3% 85%

10 4.5% 82.5%
15 6% 78.5%
30 9% 74%
60 14.5% 72.5%

Table 4: Conservative estimate of the accuracy of recon-
struction assuming cache dumps of varying granularity.

at different granularity. The set of words in the original
query is defined as Qw and the set of words in the re-
sult is Rw. A true positive and false positive for Rw is
computed as:

TP =


|Rw∩Qw|

|Qw| if Rw (Qw

1.0 if Rw = Qw

0.0 if Qw (Rw

FP =


|Rw\Qw|
|Qw| if Qw (Rw

1.0 if Rw 6= Qw

0.0 if Rw (Qw

Clearly, this reflects a conservative computation for
the true positives, as we only count proper subsets and
complete matches as hits. Likewise, any guess that con-
tains even a single word that is not present in the original
query is counted as a false positive. Arguably, the re-
sults would be significantly improved if we considered
the semantic advantage of combining words in the top-3
guesses based on feedback from a human observer. The
results for all 50 search queries over a four hour window
are shown in Table 4. As expected, smaller granularity
in the snapshots yields better accuracy. The high true
positive rate of over 70% even for relatively large gran-
ularity (of 60 mins) is due to the presence of CNAMEs
whose TTL values are often in hours. The increase in
false positive rate is caused by incorrectly clustering of
domains with the same age, but which were caused by
different prefetching events. The false positive rate is
also influenced by the nature of a search term, highly
popular searches that are general in nature (e.g. Hot Top-
ics) cause an increase in the false positive rate, whereas
specific searches (e.g. Steroids in Baseball) yield a lower
false positive rate.

4.2 Remote Cache Inspection

The attack discussed previously assumes access to cache
traces or DNS logs, which arguably, may not be a very
practical assumption. That said, the observation that the
related domain names prefetched for a given search term
will have a similar age in the cache, can be used to con-
struct an online probing attack. In this case, the adversary

Keyword(s)

Target
DNS Server

Search Engine's
N-Recommend

Search EngineData
Generation

DataCollection

Calculate
Decay Curve

Calculate
Scan Rate

casinogambling.about.com

ncpgambling.org

gamblersanonymous.org

...

Probe Cache

Control
DNS Server

Figure 3: Control flow for online attack

is interested in knowing if some set of searches were per-
formed by clients of a target name server.

Figure 3 outlines one way the adversary could carry
out such an inference. Given as set of keywords of in-
terest, the first step is to create a profile, P , for the
keywords. A profile simply contains the set of domain
names that would be prefetched using this search term,
along with the corresponding authoritative TTLs for each
pre-resolved name. These TTL values are used to create
a decay curve (as shown in Figure 4), which models the
percentage of items in P that would be present in cache
after some predefined amount of time has elapsed beyond
a client’s search for that term. Using this information, the
attacker picks the desired accuracy threshold she is will-
ing to tolerate, and notes the corresponding age value, t.
Let D be the set of domains in P that have an age less
than t. Additionally, set the probing rate, r, < t.

Next, the adversary selects a domain name, di ∈ D
(e.g., the one with the mean age value), and uses cache
snooping techniques [8] to inspect the target for di. If
she receives a cache hit, then she immediately tests for
the presence of the other elements in D \ di; otherwise,
she continues to inspect the cache at the probe rate of r.

When a cache hit occurs, the attacker can compute the
amount of time this entry has been residing in the cache
as before. She does so for all the domains in D that were
cache hits. All the hits with the same age (± few sec-
onds) are counted as a match on the profile. Intuitively
these are domains that were added to the cache at the
same time, most likely because of the browser’s DNS
prefetching event. Finally, she computes her success rate
by calculating the percentage of matches received. A
high percentage of matches allows her to conclude that
the target search query was performed by a client of the
target name server.

6

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250

D
es

ire
d

A
cc

ur
ac

y

Time in Cache (Minutes)

Gay Rights
Gambling Addiction
Racism in America

Genetic Engineering

Figure 4: Sample decay curves for four search terms

4.2.1 Preliminary Results

To evaluate the effectiveness of this attack, 10 profiles
of interest, P1, . . . ,P10 were built using the data gener-
ation and collection framework with the control resolver.
A decay curve was built for each one of the profiles, and
the respective probing rates, ri, were set at the value cor-
responding to a desired accuracy threshold of .75. For
the four examples shown in Figure 4 notice that it is pos-
sible to periodically probe the cache every 30 mins and
still achieve a good hit rate.

We then used our data generation framework to per-
form a set of searches at random times during a 4 hour
window. No search was performed more than once. The
Chrome browser was used in this test, and the resolver
was set to the departmental name server. During that
period, we snooped the cache of the departmental name
server at the inferred rates. Figure 5 shows the result of
the attack. Accuracy in this plot is defined as the percent-
age of the search term’s profile we received cache hits on.
The results show an average of over 90% accuracy with
a scan rate of 10 minutes, and 85% accuracy at a conser-
vative scan rate of 30 minutes. For some searches, the
accuracy is reasonably high even with scan rates as low
as every hour primarily because CNAME records tend to
remain in cache for a long time.

We also considered the success of our approach (for
the same search queries as before) when prefetching is
turned off. In order for the attack to succeed in this case,
the client must first click on a link from the search re-
sults; otherwise the resolution would not appear in the
target’s cache. In lieu of any empirical results that shed
light on the probability of clicking on a link, we approx-
imated the click probability as follows: we assumed that

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90

A
ch

ie
ve

d
A

cc
ur

ac
y

Scan Rate (Minutes)

Gay Rights
Gambling Addiction
Racism in America

Genetic Engineering

Figure 5: Accuracy of the online cache snooping attack
for four search terms of interest.

the probability that a user clicks on any of the top three
links is high (.2, .15, .15, respectively). The remaining
probability is uniformly distributed amongst the other
links.

The success rate of a cache-snooping attack is cal-
culated based on the click probability and the require-
ment that tokens from the clicked domains contain con-
textual information about the search itself. For exam-
ple, en.wikipedia.org would contain no specific
information about a search for “single malt scotch”, but
www.scotchwhisky.net would. The median value
for the success rate when prefetching is disabled is 5%
for a scan rate of 5 minutes, compared to 88% when
prefetching is turned on.

Obviously, the inferences made only shed light on the
searches being performed by the population of clients (as
a whole) that use the resolver the adversary is probing.
Therefore, if the server is used by a very diverse popula-
tions of clients, then one can not tie these searches to a
particular organizational unit (e.g., client of UNC’s CS
department). Hence, a reasonable approach for savvy
clients that are concerned about the attacks outlined
herein might be to use a public DNS service to achieve
some level of anonymity.

5 Summary

Obviously, the inference attacks we outlined depend on
accurately computing the age of records in the cache.
However, it is possible that a target server may not obey
the authoritative TTL when caching an entry. BIND-9,
for example, lets server administrators set a maximum

7

cache TTL value. In such cases, we could incorrectly
compute the age of items in the cache, leading to poor
predictions. To limit this issue, one could use the san-
itization techniques explored elsewhere [18, 4] to first
check if the target name server abides to authoritative
TTL values. Performing this check does require that the
target resolver be an open resolver, but that does not ap-
pear to be a significant issue in practice; for example, a
2009 DNS survey [14] estimates that there are as many
as 13 million open resolvers on the Internet.

Another practical limitation of our current approach
is that the search profiles should be stable for the entire
time period of the probe activity. Likewise, our use of a
n-recommendation algorithm for tokenization in the of-
fline attack does come with caveats. For instance, if the
domain names contain no identifiable words or none of
the tokenized words adequately match the search term,
false negatives will occur. Nonetheless, we believe the
issues raised in this paper serve to shed light on practices
we may want to rethink going forward. In particular, our
ability to reconstruct search queries when prefetching is
turned on underscores the thin line we walk between in-
creased Internet browsing speed and privacy.

Our main objective in this work is to highlight the fact
that if left unchecked, rapid enhancements in when and
how DNS prefetching is performed could lead to new se-
curity and privacy threats. Thankfully, as of this writing,
both Firefox and Chrome provide users with mechanisms
to turn off DNS prefetching—the specifics of which are
provided in Appendix A. We hope that in future browser
updates DNS prefetching is turned off by default, or at
the very least, the developers make it easier to disable
this feature.

6 Acknowledgement

We thank the anonymous reviewers for their insightful
comments. This work was supported in part by the Na-
tional Science Foundation under award number 0831245.
Any opinions, findings and conclusions or recommenda-
tions expressed in this material are those of the author(s)
and do not necessarily reflect those of the NSF.

A Disabling Prefetching

For Chrome users, DNS prefetching can be dis-
abled by unmarking the check box “use DNS
prefetching to improve page load performance”
via the Tools → Options → Under the Hood
sub-menu. For Firefox, disabling this feature
is less obvious. Users can do so by setting the
network.dns.disablePrefetch prefer-
ence to true using the about:config method. For

some versions of Firefox, it appears that the
network.dns.disablePrefetchFromHTTPS
preference should also be set it to true in order to fully
disable DNS prefetching. Similarly, for other Mozilla
Necko-based apps (like Thunderbird), these preferences
can be set by editing the user.js file in the user’s
profile folder.

References

[1] CHROME TEAM. The Chromium Projects.
See:http://www.chromium.org/
developers/design-documents/
dns-prefetching.

[2] COHEN, E., AND KAPLAN, H. Proactive Caching
of DNS Records: Addressing a Performance Bot-
tleneck. In Proceedings of the IEEE Symposium on
Applications and the Internet (2001), pp. 85–94.

[3] DAGON, D. DNS Security: Lessons Learned and
the Road Ahead. Invited Talk, USENIX Security
Symposium, Aug 2009.

[4] DAGON, D., LEE, C., LEE, W., AND PROVOS, N.
Corrupted DNS Resolution Paths: The Rise of a
Malicious Resolution Authority. In Proceedings of
the 15th Network and Distributed Systems Security
Symposium (2008).

[5] DESHPANDE, M., AND KARYPIS, G. Item-based
Top-N Recommendation Algorithms. ACM Trans-
actions on Information Systems 22, 1 (2004), 143–
177.

[6] FELTEN, E. W., AND SCHNEIDER, M. A. Timing
Attacks on Web Privacy. In ACM Conference on
Computer and Communications Security (2000),
pp. 25–32.

[7] GOOGLE ENGINEERS. Introduction to Google
Public DNS. See http://code.google.
com/speed/public-dns/docs/intro.
html, Dec. 2009.

[8] GRANGEIA, L. DNS Cache Snooping or Snooping
the Cache for Fun and Profit, Feb. 2004.

[9] JAY, C., GLENCROSS, M., AND HUBBOLD, R.
Modeling the Effects of Delayed Haptic and Vi-
sual Feedback in a Collaborative Virtual Environ-
ment. ACM Transactions on Computer-Human In-
teraction 14, 2 (2007), 8.

[10] JUNG, J., BERGER, A. W., AND BALAKRISH-
NAN, H. Modeling TTL-based Internet Caches. In
IEEE Infocom 2003 (April 2003).

8

[11] JUNG, J., SIT, E., BALAKRISHNAN, H., AND
MORRIS, R. DNS Performance and the Effective-
ness of Caching. IEEE/ACM Transactions on Net-
working 10, 5 (2002), 589–603.

[12] KARYPIS, G. Evaluation of Item-Based Top-N
Recommendation Algorithms. In Proceedings of
the 10th International Conference on Information
and Knowledge Management (2001), pp. 247–254.

[13] LISTON, R., SRINIVASAN, S., AND ZEGURA, E.
Diversity in DNS Performance Measures. In Pro-
ceedings of the 2nd ACM SIGCOMM Workshop on
Internet measurment (2002), pp. 19–31.

[14] MEASUREMENT FACTORY. DNS Survey. See
http://dns.measurement-factory.
com/surveys/200910.html, Oct. 2009.

[15] MOCKAPETRIS, P. V. Domain Names - Concepts
and Facilities, 1987.

[16] PAXSON, V., AND FLOYD, S. Wide Area Traf-
fic: The Failure of Poisson Modeling. IEEE/ACM
Transactions on Networking 3, 3 (1995), 226–244.

[17] RAJAB, M. A., MONROSE, F., TERZIS, A., AND
PROVOS, N. Peeking Through the Cloud: DNS-
Based Estimation and Its Applications. In Ap-
plied Cryptography and Network Security Confer-
ence (2008), pp. 21–38.

[18] RAJAB, M. A., ZARFOSS, J., MONROSE, F., AND
TERZIS, A. A Multifaceted Approach to Under-
standing the Botnet Phenomenon. In Proceed-
ings of ACM SIGCOMM/USENIX Internet Mea-
surement Conference (IMC) (Oct., 2006), pp. 41–
52.

[19] SECURITY FOCUS. CVE-2010-0464: Multiple
Vendors Email Clients DNS Prefetch Infor-
mation Disclosure Vulnerability. See http:
//www.securityfocus.com/bid/38046,
Feb. 2, 2010.

[20] SHANG, H., AND WILLS, C. E. Piggybacking
Related Domain Names to Improve DNS Perfor-
mance. Computing Networking 50, 11 (2006),
1733–1748.

[21] VIXIE, P. DNS Complexity. In ACM Queue (May
2007).

[22] WESSELS, D. Is Your Caching Resolver Pollut-
ing the Internet? In Proceedings of the ACM
SIGCOMM workshop on Network troubleshooting
(2004), pp. 271–276.

[23] WESSELS, D., AND FOMENKOV, M. Wow, That’s
a Lot of Packets. In Passive and Active Measure-
ment Workshop (April 2003).

[24] WILLS, C. E., MIKHAILOV, M., AND SHANG, H.
Inferring Relative Popularity of Internet Applica-
tions by Actively Querying DNS Caches. In Pro-
ceedings of the 3rd ACM SIGCOMM conference on
Internet measurement (2003), pp. 78–90.

[25] ZHANG, Z., ZHANG, L., EN XIE, D., XU, H.,
AND HU, H. A Novel DNS Accelerator Design and
Implementation. In APNOMS (2009), pp. 458–461.

Notes
1Indeed, several prefetching-related CERT advisories were recently

released about such vulnerabilities [19].
2The list is pruned first by omitting the Alexa top-100 domains (e.g.

wikipedia , twitter, etc.) as they could be shared by many clusters.

9

