OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

E
]
=
5
S
9
S

WaC

OWL 2 Web Ontology Language:
Structural Specification and Functional-Style
Syntax

W3C Working Draft 02 December 2008

This version:
http://www.w3.0rg/TR/2008/WD-owl2-syntax-20081202/
Latest version:
http://www.w3.org/TR/owl2-syntax/
Previous version:
http://www.w3.0rg/TR/2008/WD-owl2-syntax-20081008/
Editors:
Boris Motik, Oxford University
Peter F. Patel-Schneider, Bell Labs Research, Alcatel-Lucent
Bijan Parsia, University of Manchester
Contributors:
Conrad Bock, National Institute of Standards and Technology (NIST)
Achille Fokoue, IBM Corporation
Peter Haase, Forschungszentrum Informatik (FZI)
Rinke Hoekstra, University of Amsterdam
lan Horrocks, Oxford University
Alan Ruttenberg, Science Commons (Creative Commons)
Uli Sattler, University of Manchester
Mike Smith, Clark & Parsia

This document is also available in these non-normative formats: PDF version.

Copyright © 2008 w3c® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability,
trademark and document use rules apply.

Abstract

OWL 2 extends the W3C OWL Web Ontology Language with a small but useful set
of features that have been requested by users, for which effective reasoning
algorithms are now available, and that OWL tool developers are willing to support.
The new features include extra syntactic sugar, additional property and qualified
cardinality constructors, extended datatype support, simple metamodeling, and

Page 1 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

http://www.w3.org/
http://www.w3.org/
http://www.w3.org/TR/2008/WD-owl2-syntax-20081202/
http://www.w3.org/TR/owl2-syntax/
http://www.w3.org/TR/2008/WD-owl2-syntax-20081008/
http://web.comlab.ox.ac.uk/people/Boris.Motik/
http://ect.bell-labs.com/who/pfps/
http://www.cs.man.ac.uk/~bparsia/
/2007/OWL/wiki/User:ConradBock
/2007/OWL/wiki/User:Achille
/2007/OWL/wiki/User:PeterHaase
/2007/OWL/wiki/User:RinkeHoekstra
/2007/OWL/wiki/IanHorrocks
/2007/OWL/wiki/AlanRuttenberg
/2007/OWL/wiki/User:Uli
/2007/OWL/wiki/User:MikeSmith
http://www.w3.org/Consortium/Legal/ipr-notice#Copyright
http://www.w3.org/
http://www.csail.mit.edu/
http://www.ercim.org/
http://www.keio.ac.jp/
http://www.w3.org/Consortium/Legal/ipr-notice#Legal_Disclaimer
http://www.w3.org/Consortium/Legal/ipr-notice#W3C_Trademarks
http://www.w3.org/Consortium/Legal/copyright-documents

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

extended annotations.

This document defines OWL 2 ontologies in terms of their structure, and it also
defines a functional-style syntax in which ontologies can be written. Furthermore,
this document provides an informal description of each of the constructs provided
by the language.

Status of this Document

May Be Superseded

E
]
=
5
S
9
S

This section describes the status of this document at the time of its publication.
Other documents may supersede this document. A list of current W3C publications
and the latest revision of this technical report can be found in the W3C technical
reports index at http.//www.w3.0rg/TR/.

Set of Documents

This document is being published as one of a set of 11 documents:

Structural Specification and Functional-Style Syntax (this document)
Direct Semantics

RDF-Based Semantics

Conformance and Test Cases

Mapping to RDF Graphs

XML Serialization

Profiles

Quick Reference Guide

New Features and Rationale

Manchester Syntax

rdf:text: A Datatype for Internationalized Text

~oOLoNOORLODN

_

Last Call

The Working Group believes it has completed its design work for the technologies
specified this document, so this is a "Last Call" draft. The design is not expected to
change significantly, going forward, and now is the key time for external review,
before the implementation phase.

Summary of Changes

This document contains a few changes since the previous version of 08 October
2008.
» The structure of the annotation subsystem has been considerably
refactored and extended.
» Conjunction and disjunction of data ranges have been added.
» The usage of owl:topDataProperty has been restricted to allow the
datatype map to be extensible.

Page 2 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

http://www.w3.org/TR/
http://www.w3.org/TR/
http://www.w3.org/TR/2008/WD-owl2-syntax-20081202/
http://www.w3.org/TR/2008/WD-owl2-semantics-20081202/
http://www.w3.org/TR/2008/WD-owl2-rdf-based-semantics-20081202/
http://www.w3.org/TR/2008/WD-owl2-test-20081202/
http://www.w3.org/TR/2008/WD-owl2-mapping-to-rdf-20081202/
http://www.w3.org/TR/2008/WD-owl2-xml-serialization-20081202/
http://www.w3.org/TR/2008/WD-owl2-profiles-20081202/
http://www.w3.org/TR/2008/WD-owl2-quick-reference-20081202/
http://www.w3.org/TR/2008/WD-owl2-new-features-20081202/
http://www.w3.org/TR/2008/WD-owl2-manchester-syntax-20081202/
http://www.w3.org/TR/2008/WD-rdf-text-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

» The formal definition of the datatype map has been slightly changed to
make it compatible with the usual W3C definitions.

» The owl:rational and rdf:XMLLiteral datatypes were added to the datatype
map of OWL 2.

» The status of metamodeling has been clarified.

+ Certain parts of the document (mainly in Sections 2, 3, and 5) have been
rewritten for clarity.

Please Comment By 23 January 2009

E
]
=
5
S
9
S

The OWL Working Group seeks public feedback on these Working Drafts. Please
send your comments to public-owl-comments@w3.org (public archive). If possible,
please offer specific changes to the text that would address your concern. You may
also wish to check the Wiki Version of this document for internal-review comments
and changes being drafted which may address your concerns.

No Endorsement

Publication as a Working Draft does not imply endorsement by the W3C
Membership. This is a draft document and may be updated, replaced or obsoleted
by other documents at any time. It is inappropriate to cite this document as other
than work in progress.

Patents

This document was produced by a group operating under the 5 February 2004
W3C Patent Policy. W3C maintains a public list of any patent disclosures made in
connection with the deliverables of the group; that page also includes instructions
for disclosing a patent. An individual who has actual knowledge of a patent which
the individual believes contains Essential Claim(s) must disclose the information in
accordance with section 6 of the W3C Patent Policy.

[Show Short TOC]

Contents

* 1 Introduction
» 2 Preliminary Definitions

o 2.1 Structural Specification

o 2.2 BNF Notation

o 2.3 IRIs and Namespaces

o 2.4 Integers, Strings. Language Tags. and Node IDs
+ 3 Ontologies

o 3.1 Ontology IRI and Version IRI

o 3.2 Ontology Documents

Page 3 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

http://www.w3.org/2007/OWL/
mailto:public-owl-comments@w3.org
http://lists.w3.org/Archives/Public/public-owl-comments/
http://www.w3.org/2007/OWL/wiki/Syntax
http://www.w3.org/Consortium/Patent-Policy-20040205/
http://www.w3.org/Consortium/Patent-Policy-20040205/
http://www.w3.org/2004/01/pp-impl/41712/status
http://www.w3.org/Consortium/Patent-Policy-20040205/#def-essential
http://www.w3.org/Consortium/Patent-Policy-20040205/#sec-Disclosure
WD-owl2-syntax-20081202/javascript:show_short_toc()

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

o 3.3 Versioning of OWL 2 Ontologies
o 3.4 Imports
o 3.5 Ontology Annotations
o 3.6 Canonical Parsing
o 3.7 Functional-Style Syntax
* 4 Datatype Maps
4.1 Numbers

o 4.2 Strings
o 4.3 Boolean Values

o 4.4 Binary Data
o 4.5 IRIs
o 4.6 Time Instants
o 4.7 XML Literals
« 5 Entities and Literals
o 5.1 Classes
o 5.2 Datatypes
o 5.3 Object Properties
o 5.4 Data Properties
o 5.5 Annotation Properties
o 5.6 Individuals
= 5.6.1 Named Individuals
= 5.6.2 Anonymous Individuals
o 5.7 Literals
o 5.8 Entity Declarations and Typing
= 5.8.1 Typing Constraints
= 5.8.2 Declaration Consistency
o 5.9 Metamodeling
+ 6 Property Expressions
o 6.1 Object Property Expressions
= 6.1.1 Inverse Object Properties
o 6.2 Data Property Expressions
« 7 Data Ranges
o 7.1 Intersection of Data Ranges
o 7.2 Union of Data Ranges
o 7.3 Complement of Data Ranges
o 7.4 Enumeration of Literals
o 7.5 Datatype Restrictions
+ 8 Class Expressions
o 8.1 Propositional Connectives and Enumeration of Individuals
= 8.1.1 Intersection of Class Expressions
= 8.1.2 Union of Class Expressions
= 8.1.3 Complement of Class Expressions
= 8.1.4 Enumeration of Individuals
o 8.2 Object Property Restrictions
= 8.2.1 Existential Quantification
= 8.2.2 Universal Quantification
= 8.2.3 Individual Value Restriction
= 8.2.4 Self-Restriction
o 8.3 Object Property Cardinality Restrictions
= 8.3.1 Minimum Cardinality

o

E
]
=
5
S
9
S

Page 4 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

j<
]
=
5
S
9
S

Page 5 of 123

= 8.3.2 Maximum Cardinality
= 8.3.3 Exact Cardinality
o 8.4 Data Property Restrictions
= 8.4.1 Existential Quantification
= 8.4.2 Universal Quantification
= 8.4.3 Literal Value Restriction
o 8.5 Data Property Cardinality Restrictions
= 8.5.1 Minimum Cardinality
= 8.5.2 Maximum Cardinality
= 8.5.3 Exact Cardinality

* 9 Axioms
o 9.1 Class Expression Axioms
= 9.1.1 Subclass Axioms
= 9.1.2 Equivalent Classes
= 9.1.3 Disjoint Classes
= 9.1.4 Disjoint Union of Class Expressions
o 9.2 Object Property Axioms
= 9.2.1 Object Subproperties
= 9.2.2 Equivalent Object Properties
= 9.2.3 Disjoint Object Properties
= 9.2.4 Inverse Object Properties
= 9.2.5 Object Property Domain
= 9.2.6 Object Property Range
= 9.2.7 Functional Object Properties
= 9.2.8 Inverse-Functional Object Properties
= 9.2.9 Reflexive Object Properties
= 9.2.10 Irreflexive Object Properties
= 9.2.11 Symmetric Object Properties
= 9.2.12 Asymmetric Object Properties
= 9.2.13 Transitive Object Properties
o 9.3 Data Property Axioms
= 9.3.1 Data Subproperties
= 9.3.2 Equivalent Data Properties
= 9.3.3 Disjoint Data Properties
= 9.3.4 Data Property Domain
= 9.3.5 Data Property Range
= 9.3.6 Functional Data Properties
o 9.4 Keys
> 9.5 Assertions
= 9.5.1 Individual Equality
= 9.5.2 Individual Inequality
= 9.5.3 Class Assertions
= 9.5.4 Positive Object Property Assertions
= 9.5.5 Negative Object Property Assertions
= 9.5.6 Positive Data Property Assertions
= 9.5.7 Negative Data Property Assertions
* 10 Annotations
o 10.1 Annotations of Ontologies. Axioms. and other Annotations
o 10.2 Annotation Axioms
= 10.2.1 Annotation Assertion

http://www.w3.0org/TR/2008/WD-owl2-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

= 10.2.2 Annotation Subproperties
= 10.2.3 Annotation Property Domain
= 10.2.4 Annotation Property Range
* 11 Global Restrictions on Axioms
o 11.1 Property Hierarchy and Simple Object Property
Expressions
o 11.2 The Restrictions on the Axiom Closure
» 12 Appendix: Internet Media Type, File Extension, and Macintosh File
Type
+ 13 Complete Grammar (Normative)
* 14 Index
* 15 Acknowledgments
» 16 References

E
]
=
5
S
9
S

1 Introduction

This document defines the OWL 2 language. The core part of this specification —
called the structural specification — is independent of the concrete exchange
syntaxes for OWL 2 ontologies. It describes the conceptual structure of OWL 2
ontologies and thus provides a normative abstract model for all (normative and
nonnormative) syntaxes of OWL 2. This allows for a clear separation of the
essential features of the language from issues related to any particular syntax.
Furthermore, such a structural specification of OWL 2 provides the foundation for
the implementation of OWL 2 tools such as APIs and reasoners.

This document also defines the functional-style syntax, which closely follows the
structural specification and allows OWL 2 ontologies to be written in a compact
form. This syntax is used in the definitions of the semantics of OWL 2 ontologies,
the mappings from and into the RDF/XML exchange syntax, and the different
profiles of OWL 2. Concrete syntaxes, such as the functional-style syntax, often
provide features not found in the structural specification, such as a mechanism for
abbreviating long IRlIs.

An OWL 2 ontology is a formal conceptualization of a domain of interest. OWL 2
ontologies consist of the following three different syntactic categories:

» Entities, such as classes, properties, and individuals, are identified by IRIs
and can be thought of as primitive ferms or names. Entities represent
basic elements of the domain being modeled. For example, a class
a:Person can be used to model the set of all people. Similarly, the object
property a:parentOf can be used to model the parent-child relationship.
Finally, the individual a:Peter can be used to represent a particular person
called "pPeter".

» Expressions represent complex notions in the domain being modeled. For
example, a class expression describes a set of individuals in terms of the
restrictions on the individuals' features.

Page 6 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

E
]
=
5
S
9
S

» Axioms are statements that are asserted to be true in the domain being
modeled. For example, using a subclass axiom, one can state that the
class a:Student is a subclass of the class a:Person.

These three syntactic categories are used to express the logical part of OWL 2
ontologies — that is, they are interpreted under a precisely defined semantics that
allows useful inferences to be drawn. For example, if an individual a:Peter is an
instance of the class a:Student, and a:Student is a subclass of a:Person, then from
the OWL 2 semantics one can derive that a:Peter is also an instance of a:Person.

In addition, entities, axioms, and ontologies can be annotated in OWL 2. For
example, a class can be given a human-readable label that provides a more
descriptive name for the class. Annotations have no effect on the logical aspects of
an ontology — that is, for the purposes of the OWL 2 semantics, annotations are
treated as not being present. Instead, the use of annotations is left to the
applications that use OWL 2. For example, a graphical user interface might choose
to visualize a class using one of its labels.

Finally, OWL 2 provides basic support for ontology modularization. In particular, an
OWL 2 ontology O can import another OWL 2 ontology O’ and thus gain access to
all entities, expressions, and axioms in O".

Hide Structural Diagrams | Hide Functional-Style Syntax Grammar

Hide Examples

This document defines the structural specification of OWL 2, the functional syntax
for OWL 2, and the behavior of datatype maps. Only the parts of the document
related to these three purposes are normative. The examples in this document are
informative and any part of the document that is specifically identified as
informative is not normative. Finally, the informal descriptions of the semantics of
OWL 2 constructs in this document are informative; the semantics is precisely
specified in a separate document [OWL 2 Direct Semantics].

The italicized keywords must, must not, should, should not, and may specify certain
aspects of the normative behavior of OWL 2 tools, and are interpreted as specified
in RFC 2119 [REC 2119].

2 Preliminary Definitions

This section presents certain preliminary definitions that are used in the rest of this
document.

Page 7 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

2.1 Structural Specification

The structural specification of OWL 2 consists of all the figures in this document
and the notion of structural equivalence given below. It is used throughout this
document to precisely specify the structure of OWL 2 ontologies and the
observable behavior of OWL 2 tools. An OWL 2 tool may base its APls and/or
internal storage model on the structural specification; however, it may also choose
a completely different approach as long as its observable behavior conforms to the
one specified in this document.

E
]
=
5
S
9
S

The structural specification is defined using the Unified Modeling Language (UML)
UML], and the notation used is compatible with the Meta-Object Facility (MOF)
MOF]. This document uses only a very simple form of UML class diagrams that

are expected to be easily understandable by readers familiar with the basic

concepts of object-oriented systems. The names of abstract classes (i.e., classes
that are not intended to be instantiated) are written in italic.

Elements of the structural specification are connected by associations, many of
which are of the one-to-many type. Associations whose name is preceded by / are
derived — that is, their value is determined based on the value of other
associations and attributes. Whether the elements participating in associations are
ordered and whether repetitions are allowed is made clear by the following
standard UML conventions:

» By default, all associations are sets; that is, the elements in them are
unordered and repetitions are disallowed.

* The { ordered, nonunique } attribute is placed next to the association
ends that are ordered and in which repetitions are allowed. Such
associations have the semantics of lists.

Whether two elements of the structural specification are considered to be the same
is captured by the notion of structural equivalence, defined as follows. Elements o1
and o2 are structurally equivalent if and only if the following conditions hold:

» If o1 and o2 are atomic values, such as strings, integers, or IRIs, they are
structurally equivalent if they are identical according to the notion of
identity specified by the respective atomic type.

» If o1 and o2 are unordered associations without repetitions, they are
structurally equivalent if each element of o1 is structurally equivalent to
some element of o2 and vice versa.

» If o1 and o2 are ordered associations with repetitions, they are structurally
equivalent if they contain the same number of elements and each element
of o1 is structurally equivalent to the element of o2 with the same index.

* If o1 and o2 are complex elements consisting of other elements, they are
structurally equivalent if

o both o1 and o2 are of the same type,
o each element of o1 is structurally equivalent to the corresponding
element of 02, and

Page 8 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and
Functional-Style Syntax

E
]
=
5
S
9
S

o each association of o1 is structurally equivalent to the

corresponding association of o2.

W3C Working Draft 02

December 2008

Note that structural equivalence is not a semantic notion, as it is based only on

comparing structures.

Example:

' The class expression UnionOf (a:Person a:Animal) is structurally
» equivalent to the class expression UnionOf (a:Animal a:Person)
' because the order of the elements in an unordered association is not important.

The class expression UnionOf (a:Person ComplementOf (a:Person)
) is not structurally equivalent to owl:Thing even though the two expressions are

semantically equivalent.

Although set associations are widely used in the specification, sets written in one of
the linear syntaxes (e.g., XML or RDF/XML) are not necessarily expected to be
duplicate free. Duplicates should be eliminated from such constructs during

parsing.

Example:

An ontology written in functional-style syntax can contain a class expression of

expression should be "flattened" to give the expression UnionOf (a:Person

a:Animal).

2.2 BNF Notation

i the form UnionOf (a:Person a:Animal a:Animal). During parsing, this i

Grammars in this document are specified using the standard BNF notation,

summarized in Table 1.

Table 1. The BNF Notation

| Construct || Syntax || Example |

Inonterminal symbols|[ooldface ||CIassExpressmn |

|termina| symbols ||sing|e quoted |

|zero or more ||cur|y braces ||{ ClassExpression } |

|zero or one ||square brackets|| [ClassExpression] |

lalternative |vertical bar ||/Assertion | Declaration|
Page 9 of 123

http://www.w3.0org/TR/2008/WD-owl2-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

Terminal symbols used in the full-IRlI, irelative-ref, NCName, languageTag, nodelD,
nonNegativelnteger, and quotedString productions are defined by specifying their
structure in English; to stress this, the English description is italicized.

Whitespace is a maximal sequence of space (U+20), horizontal tab (U+9), line feed
(U+A), and carriage return (U+D) characters not occurring within a pair of "
characters (U+22). A comment is a maximal sequence of characters that starts with
the # (U+23) character and contains neither a line feed (U+A) nor a carriage return
(U+D) character.

E
]
=
5
S
9
S

Whitespace and comments cannot occur within terminal symbols of the grammar.
Whitespace and comments can occur between any two terminal symbols of the
grammar, and all whitespace must be ignored. Whitespace must be introduced
between a pair of terminal symbols if each terminal symbol in the pair consists
solely of alphanumeric characters or matches the full-IRI, irelative-ref, NCName,
nodelD, or quotedString production.

2.3 IRIs and Namespaces

Ontologies and their elements are identified using International Resource Identifiers
(IRIs) [REC3987]; thus, OWL 2 extends OWL 1, which uses Uniform Resource
Identifiers (URIs). In the structural specification, IRIs are represented by the IRI
class. All IRIs in this specification are written using the grammar described below.

An IRI can be written as a full IRI. The < (U+3C) and > (U+3E) characters
surrounding a full IRI are not part of the IRI, but are used solely for quotation
purposes, identifying an IRI as a full IRI.

Alternatively, an IRl it can be abbreviated as a CURIE [CURIE]. To this end,
commonly used IRIs — called namespaces — are associated with a prefix. An IRl /
belongs to a namespace NI/ if, in their string representation, Nl is a prefix of /; the
part of I not covered by Nl is called a reference of I w.r.t. NI. An IRI | belonging to a
namespace N/ associated with a prefix pref is then commonly abbreviated as a
CURIE pref:ref, where ref is the reference of / w.r.t. NI. CURIEs are not
represented in the structural specification of OWL 2: if a concrete syntax of OWL 2
uses CURIEs to abbreviate long IRIs, these abbreviations must be expanded into
full IRIs during parsing according to the rules of the respective syntax.

ifuII-IRI := '"IRI as defined in [RFC3987], enclosed in a pair
i of < (U+3C) and > (U+3E) characters'
' NCName := 'as defined in [XML Namespaces]'
iirelative-ref := 'as defined in [RFC3987]"
' namespace := full-IRI
! prefix := NCName i
ireference := irelative-ref

Page 10 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

‘E]
g curie := [[prefix] ':'] reference
2 IRI :— fullRI | curie
|
o
g Table 2 defines the standard namespaces and the respective prefixes used
H throughout this specification.
; Table 2. Standard Namespaces and Prefixes Used in OWL 2
INamespace prefix|| Namespace |
Irdf \|<htto://www.w3.0rg/1999/02/22-rdf-syntax-ns#>|
Irdfs \|<http://www.w3.0rg/2000/01/rdf-schemat#t> |
Ixsd \|<htto://www.w3.0rg/2001/XMLSchemat#> |
lowl \|<http://www.w3.0rg/2002/07/owi#> |

IRIs belonging to the rdf, rdfs, xsd, and owl namespaces constitute the reserved
vocabulary of OWL 2. As described in the following sections, the IRIs from the
reserved vocabulary that are listed in Table 3 have special treatment in OWL 2. All
IRIs from the reserved vocabulary not listed in Table 3 constitute the disallowed
vocabulary of OWL 2 and must not be used in OWL 2 to name entities, ontologies,
or ontology versions.

Table 3. Reserved Vocabulary of OWL 2 with Special Treatment

low!:backwardCompatible With||owl:bottomDataProperty |owl:bottomObjectPropertyllowl:date Time I
lowl:incompatible With lowl:Nothing lowl:priorVersion low:rational I
low!:realPlus low!: Thing lowl:topDataProperty |jowl:topObjectPropertyl]
lrdf text \Irdf-XMLLiteral \rdfs:comment \Irdfs:isDefinedBy Ik
lrdfs:Literal \Irdfs:seeAlso xsd-anyURI [xsd:base64Binary |}
Ixsd:byte \xsd:decimal xsd:double |Ixsd:float b
Ixsd:int \xsd:integer xsd:language |lxsd:length b
Ixsd:maxExclusive \xsd:maxinclusive xsd:maxLength [xsd:minExclusive |}
[xsd:minLength xsd:Name xsd:NCName [xsd:negativeinteger |}
Ixsd:nonNegativelnteger \xsd:nonPositivelnteger |ixsd:normalizedString ||xsd:pattern b
[xsd:short \Ixsd:string \xsd:token [xsd:unsignedByte |}
Ixsd:unsignedLong \xsd:unsignedShort I I i

2.4 Integers, Strings, Language Tags, and Node IDs

Several types of syntactic elements are commonly used in this document.
Nonnegative integers are defined as usual.

Page 11 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

nonNegativelnteger := 'a nonempty finite sequence of digits
between 0 and 9'

Characters and strings are defined in the same way as in [RDF:TEXT]. A character
is an atomic unit of communication. The structure of characters is not further
specified in OWL 2, other than to note that each character has a Universal
Character Set (UCS) code point [ISO/IEC 10646]. The set of available characters is
assumed to be infinite, and is thus independent from the currently actual version of
UCS. A string is a finite sequence of characters, and the length of a string is the
number of characters in it. In this document, strings are written as specified in
RDF:TEXT]: they are enclosed in double quotes (U+22), and a subset of the
escaping mechanism of the N-triples specification [RDE Test Cases] is used to
encode strings containing quotes.

E
]
=
5
S
9
S

quotedString := 'a finite sequence of characters in which "
(U+22) and \ (U+5C) occur only in pairs of the form \"
(U+22, U+5C) and \\ (U+22, U+22), enclosed in a pair of "
(U+22) characters'

Language tags are nonempty strings as defined in BCP 47 [BCP 47]. In this
document, language tags are not enclosed in double quotes; however, this does
not lead to parsing problems since, according to BCP 47, language tags contain
neither whitespace nor the parenthesis characters ((U+28) and) (U+29).

languageTag := 'a nonempty (not quoted) string defined as
specified in BCP 47 [BCP 47]"

nodelD := 'a node ID of the form :name as specified in the

N-Triples specification [RDF Test Cases]'

3 Ontologies

An OWL 2 ontology is an instance O of the Ontology class from the structural
specification of OWL 2 shown in Figure 1 that satisfies certain conditions given
below. The main component of an OWL 2 ontology is its set of axioms, the
structure of which is described in more detail in Section 9. Because the association

Page 12 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

between an ontology and its axioms is a set, an ontology cannot contain two
axioms that are structurally equivalent. Apart from the axioms, ontologies can also
contain ontology annotations (as described in more detail in Section 3.5), and they
can also import other ontologies (as described in Section 3.4).

. firmparts * annotationAnnotations

: Ontology + |Annotation

Idirectiylmports

ontologyAnnotations

E
]
=
5
S
9
S

axiomAnnotations

0.1 «|antalagyiRl

0. IR Adom

*

versionlRI axioms

directlyimportsDocuments

Figure 1. The Structure of OWL 2 Ontologies

The following list summarizes all the conditions that O is required to satisfy to be an
OWL 2 ontology.

» O must satisfy the restrictions on the presence of the ontology IRI and
version IRl from Section 3.1;

» O should satisfy the constraints on the uniqueness of the ontology IRI and
version IRl from Section 3.1;

» O should satisfy the restrictions on the import closure from Section 3.4;

+ each entity in O must have an IRI satisfying the restrictions on the usage
of the reserved vocabulary from Sections 5.1-5.6;

» each datatype in O must satisfy the restriction from Section 5.2;

+ each literal in O must satisfy the restriction from Section 5.7;

» O must satisfy the typing constraints from Section 5.8.1;

+ each DatatypeRestriction in O must satisfy the restriction from Section
7.5;

* each DataSomeValuesFrom and DataAllValuesFrom class expression in
O must satisfy the restrictions from Section 8.4.1 and Section 8.4.2;

» each DataPropertyRange axiom in O must satisfy the restriction from
Section 9.3.5;

» O must satisfy the global restriction from Section 11; and

» each O'directly imported into O must satisfy all of these restrictions as
well.

An instance O of the Ontology class may have consistent declarations as specified
in Section 5.8.2; however, this is not strictly necessary to make O an OWL 2
ontology.

Page 13 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

E
]
=
5
S
9
S

3.1 Ontology IRI and Version IRI

Each ontology may have an ontology IRI, which is used to identify an ontology. If
an ontology has an ontology IRI, the ontology may additionally have a version IR,
which is used to identify the version of the ontology. The version IRI may, but need
not be equal to the ontology IRI. An ontology without an ontology IRl must not
contain a version IRI.

The following list provides conventions for choosing ontology IRl and version IRl in
OWL 2 ontologies. This specification provides no mechanism for enforcing these
constraints across the entire Web; however, OWL 2 tools should use them to
detect problems in ontologies they process.

+ If an ontology has an ontology IRI but no version IRI, then a different
ontology with the same ontology IRI but no version IRI should not exist.

+ If an ontology has both an ontology IRl and a version IRI, then a different
ontology with the same ontology IRI and the same version IRI should not
exist.

+ All other combinations of the ontology IRI and version IRI are not required
to be unique. Thus, two different ontologies may have no ontology IRI and
no version IRI; similarly, an ontology containing only an ontology IRl may
coexist with another ontology with the same ontology IRI and some other
version IRI.

The ontology IRI and the version IRI together identify a particular version from an
ontology series — the set of all the versions of a particular ontology identified using
a common ontology IRI. In each ontology series, exactly one ontology version is
regarded as the current one. Structurally, a version of a particular ontology is an
instance of the Ontology class from the structural specification. Ontology series are
not represented explicitly in the structural specification of OWL 2—they exist only
as a side-effect of the naming conventions described in this and the following
sections.

3.2 Ontology Documents

An OWL 2 ontology is an abstract notion defined in terms of the structural
specification. Each ontology is associated with an ontology document, which
physically contains the ontology stored in a particular way. The name "ontology
document" reflects the expectation that a large number of ontologies will be stored
in physical text documents written in one of the syntaxes of OWL 2. OWL 2 tools,
however, are free to devise other types of ontology documents — that is, to
introduce other ways of physically storing ontologies.

Ontology documents are not represented in the structural specification of OWL 2,
and the specification of OWL 2 makes only the following two assumptions about
their nature:

Page 14 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

» Each ontology document can be accessed from an IRl by means of an
appropriate protocol.

» Each ontology document can be converted in some well-defined way into
an ontology (i.e., into an instance of the Ontology class from the structural
specification).

Example:

An OWL 2 tool might publish an ontology as a text document written in the i
i functional-style syntax (see Section 3.7) and accessible from the IRI
© <http://www.example.com/ontology>. An OWL 2 tool could also devise a scheme !
for storing OWL 2 ontologies in a relational database. In such a case, each i

E
]
=
5
S
9
S

subset of the database representing the information about one ontology
corresponds to one ontology document. To provide a mechanism for accessing
these ontology documents, the OWL 2 tool should identify different database
subsets with distinct IRIs.

The ontology document of an ontology O should be accessible from the IRIs
determined by the following rules:

+ If O does not contain an ontology IRI (and, consequently, it does not
contain a version IRI either), then the ontology document of O may be
accessible from any IRI.

+ If O contains an ontology IRI O/ but no version IRI, then the ontology
document of O should be accessible from the IRI OI.

+ If D contains an ontology IRI O/ and a version IRI VI, then the ontology
document of O should be accessible from the IRI VI; furthermore, if O is
the current version of the ontology series with the IRI Ol, then the ontology
document of O should also be accessible from the IRI O/.

Thus, the document containing the current version of an ontology series with some
IRI OI should be accessible from OI. To access a particular version of O/, one
needs to know that version's version IRI VI, then, the ontology document should be
accessible from VI.

Example:

An ontology document of an ontology that contains an ontology IRI
<http.//www.example.com/my> but no version IRI should be accessible from the
IRI <http.//www.example.com/my>. In contrast, an ontology document of an
ontology that contains an ontology IRI <http.//www.example.com/my> and a
version IRI <http://www.example.com/my/2.0> should be accessible from the IRI
<http.//www.example.com/my/2.0>. In both cases, the ontology document should
be accessible from the respective IRIs using the HTTP protocol.

OWL 2 tools will often need to implement functionality such as caching or off-line
processing, where ontology documents may be stored at addresses different from

Page 15 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

the ones dictated by their ontology IRIs and version IRIs. OWL 2 tools may
implement a redirection mechanism: when a tool is used to access an ontology
document at IRI /, the tool may redirect I to a different IRl D/ and access the
ontology document from there instead. The result of accessing the ontology
document from D/ must be the same as if the ontology were accessed from /.
Furthermore, once the ontology document is converted into an ontology, the
ontology should satisfy the three conditions from the beginning of this section in the
same way as if it the ontology document were accessed from /. No particular
redirection mechanism is specified — this is assumed to be implementation
dependent.

E
]
=
5
S
9
S

Example:

To enable off-line processing, an ontology document that — according to the
above rules — should be accessible from <http.//www.example.com/my> might
be stored in a file accessible from <file:///usr/local/ontologies/example.owl>. To
access this ontology document, an OWL 2 tool might redirect the IRI
<http.//www.example.com/my> and actually access the ontology document from
<file:///usr/local/ontologies/example.owl>. The ontology obtained after accessing
ontology document should satisfy the usual accessibility constraints: if the
ontology contains only the ontology IRI, then the ontology IRI should be equal to
<http.//www.example.com/my>, and if the ontology contains both the ontology
IRI and the version IRI, then one of them should be equal to
<http.//www.example.com/my>.

3.3 Versioning of OWL 2 Ontologies

The conventions from Section 3.2 provide a simple mechanism for versioning OWL
2 ontologies. An ontology series is identified using an ontology IRI, and each
version in the series is assigned a different version IRI. The ontology document of
the ontology representing the current version of the series should be accessible
from the ontology IRI and, if present, at its version IRI as well; the ontology
documents of the previous versions should be accessible solely from their
respective version IRIs. When a new version O in the ontology series is created,
the ontology document of O should replace the one acessible from the ontology IRI
(and it should also be accessible from its version IRI).

Example:

The ontology document containing the current version of an ontology series
» might be accessible from the IRI <http.//www.example.com/my>, as well as from :
: the version-specific IRI <http.//www.example.com/my/2.0>. When a new version :
i is created, the ontology document of the previous version should remain i
1 accessible from <http.//www.example.com/my/2.0>; the ontology document of
the new version, called, say, <http.//www.example.com/my/3.0>, should be ;

Page 16 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

made accessible from both <http://www.example.com/my> and
<http://www.example.com/my/3.0>.

3.4 Imports

An OWL 2 ontology can import other ontologies in order to gain access to their
entities, expressions, and axioms, thus providing the basic facility for ontology
modularization.

E
]
=
5
S
9
S

Example:

Assume that one wants to describe research projects about diseases. Managing
» information about the projects and the diseases in the same ontology might be
: cumbersome. Therefore, one might create a separate ontology O about diseases :
i and a separate ontology O' about projects. The ontology O’ would import O in i
. order to gain access to the classes representing diseases; this allows one to use
| the diseases from O when writing the axioms of O". ;

From a physical point of view, an ontology contains a set of IRIs, shown in Figure 1
as the directlylmportsDocuments association; these IRIs identify the ontology
documents of the directly imported ontologies as specified in Section 3.2. The
logical directly imports relation between ontologies, shown in Figure 1 as the
directlylmports association, is obtained by accessing the directly imported
ontologies and converting them into OWL 2 ontologies. The logical imports relation
between ontologies, shown in Figure 1 as the imports association, is the transitive
closure of directly imports. In Figure 1, associations directlylmports and imports
are shown as derived associations, since their values are derived from the value of
the directlylmportsDocuments association. Ontology documents usually store the
directlylmportsDocuments association. In contrast, the directlylmports and
imports associations are typically not stored in ontology documents, but are
determined during parsing as specified in Section 3.6.

Example:

The following functional-style syntax ontology document contains an ontology
that directly imports an ontology contained in the ontology document accessible
from IRI <http.//www.example.com/my/2.0>.

Ontology (<http://www.example.com/importing-ontology>
! Import (<http://www.example.com/my/2.0>)

Page 17 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

The IRIs identifying the ontology documents of the directly imported ontologies
can be redirected as described in Section 3.2. For example, in order to access
the ontology document from a local cache, the ontology document
<http.//www.example.com/my/2.0> might be redirected to <file:///usr/local/
ontologies/imported.v20.owl>. Note that this can be done without changing the
ontology document of the importing ontology.

E
]
=
5
S
9
S

The import closure of an ontology O is a set containing O and all the ontologies that
O imports. The import closure of O should not contain ontologies O1 and O2 such
that

* O1and O2 are different ontology versions from the same ontology series,
or

» O1 contains an ontology annotation owl:incompatible With with the value
equal to either the ontology IRI or the version IRI of O2.

The axiom closure of an ontology O is the smallest set that contains all the axioms
from each ontology O'in the import closure of O with all anonymous individuals
renamed apart — that is, the anonymous individuals from different ontologies in the
import closure of O are treated as being different; see Section 5.6.2 for further
details.

3.5 Ontology Annotations

An OWL 2 ontology contains a set of annotations. These can be used to associate
information with an ontology — for example the ontology creator's name. As
discussed in more detail in Section 10, each annotation consists of an annotation
property and an annotation value, and the latter can be a literal, an IRI, or an
anonymous individual. Ontology annotations do not affect the logical meaning of
the ontology.

iontologyAnnotations := { Annotation }

OWL 2 provides several built-in annotation properties for ontology annotations. The
usage of these annotation properties on entities other than ontologies is
discouraged.

» The owl:priorVersion annotation property specifies the IRI of a prior
version of the containing ontology.

» The owl:backwardCompatible With annotation property specifies the IRI of
a prior version of the containing ontology that is compatible with the
current version of the containing ontology.

Page 18 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

» The owl:incompatible With annotation property specifies the IRI of a prior
version of the containing ontology that is incompatible with the current
version of the containing ontology.

3.6 Canonical Parsing

Many OWL 2 tools need to support ontology parsing — the process of converting
an ontology document written in a particular syntax into an OWL 2 ontology. In
order to be able to instantiate the appropriate classes from the structural
specification, the ontology parser sometimes needs to know which IRIs are used in
the ontology as entities of which type. This typing information is extracted from
declarations — axioms that associate IRIs with entity types. Please refer to Section
5.8 for more information about declarations.

E
]
=
5
S
9
S

Example:

An ontology parser for the ontology documents written in functional-style syntax
might encounter the following axiom:

SubClassOf (a:Father SomeValuesFrom(a:parentOf
a:Child))

From this axiom alone, it is not clear whether a:parentOf is an object or a data
property, and whether a:Child is a class or a datatype. In order to disambiguate
the types of these IRIs, the parser needs to look at the declarations in the
ontology document being parsed, as well as those in the directly or indirectly
imported ontology documents.

In OWL 2 there is no requirement for a declaration of an entity to physically
precede the entity's usage in ontology documents; furthermore, declarations for
entities can be placed in imported ontology documents and imports are allowed to
be cyclic. In order to precisely define the result of ontology parsing, this
specification defines the notion of canonical parsing. An OWL 2 parser may
implement parsing in any way it chooses, as long as it produces a result that is
structurally equivalent to the result of canonical parsing.

An OWL 2 ontology corresponding to an ontology document Dgy accessible at a
given IRI G/ can be obtained using the following canonical parsing process. All
steps of this process must be successfully completed.

CP-1 Make AllDoc and Processed equal to the empty set, and make
ToProcess equal to the set containing only the IRI G/.

CP-2 While ToProcess is not empty, remove an arbitrary IRI / from it and, if /
is not contained in Processed, perform the following steps:

CP-21 Retrieve the ontology document D; from / as specified in Section
3.2.

Page 19 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

CP-2.2 Using the rules of the relevant syntax, analyze D and compute the
set Decl(D)) of declarations explicitly present in Dj and the set
Imp(D)) of IRIs of ontology documents directly imported in D;.

CP-2.3 Add Dj to AllDoc, add I to Processed, and add each IRI from
Imp(D)) to ToProcess.

CP-3 For each ontology document D in AllDoc, perform the following steps:

CP-3.1 Compute the set AllDecl(D) as the union of the set Decl(D), the
sets Decl(D') for each ontology document D' that is (directly or
indirectly) imported into D, and the set of all declarations listed in
Table 9. The set AllDecl(D) must satisfy the typing constraints
from Section 5.8.1.

E
]
=
5
S
9
S

CP-3.2 Create an instance Op of the Ontology class from the structural
specification.

CP-3.3 Using the rules of the relevant syntax, analyze D and populate Op
by instantiating appropriate classes from the structural
specification. Use the declarations in AllDecl(D) to disambiguate
IRI references if needed; it must be possible to disambiguate all
IRI references.

CP-4 For each pair of ontology documents DS and DT in AllDoc such that
the latter is directly imported into the former, add OpT to the
directlylmports association of Ops.

CP-5 For each ontology document D in AllDoc, set the imports association
of Op to the transitive closure of the directlylmports association of
Op.

CP-6 For each ontology document D in AllDoc, ensure that Op is an OWL 2
ontology — that is, Op must satisfy all the restrictions listed in Section
3.

It is important to understand that canonical parsing merely defines the result of the
parsing process, and that an implementation of OWL 2 may optimize this process
in numerous ways. In order to enable efficient parsing, OWL 2 implementations are
encouraged to write ontologies into documents by placing all IRI declarations
before the axioms that use these IRIs; however, this is not required for
conformance.

Example:

A parser for the functional-style syntax of OWL 2 can parse the ontology in a
single pass when the declarations for the IRIs are placed in the text of O
physically before the IRIs are used. Similarly, a parser can optimize the handling
of imported ontologies in cases when the import relation between the ontologies
is acyclic.

Page 20 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

&=
EDE 3.7 Functional-Style Syntax
":‘” A functional-style syntax ontology document is a sequence of Unicode characters
;E UNICODE] accessible from some IRI by means of the standard protocols such that
o its text matches the ontologyDocument production of the grammar defined in this
; specification document, and it can be converted into an ontology by means of the
U canonical parsing process described in Section 3.6 and other parts of this
~ specification document. A functional-style syntax ontology document should use
; the UTF-8 encoding [RFC3629).
ontologyDocument := { prefixDefinition } Ontology
prefixDefinition := 'Namespace' ' (' [prefix] '=' namespace ')'
Ontology :=

'Ontology' ' (' [ontologylRl [versionIRl]]
directlylmportsDocuments
ontologyAnnotations
axioms
l) 1
ontologylRIl := IRI
versionlRl := IRI
directlylmportsDocuments := { 'Import' '(' IRl ")' }
axioms := { Axiom }

Example:

The following is a functional-style syntax ontology document containing an
ontology with the ontology IRI <http.//www.example.com/ontology1>. This
ontology imports an ontology whose ontology document should be accessed
from <http://www.example.com/ontology2>, and it contains an ontology
annotation providing a label for the ontology and a single subclass axiom.

Ontology (<http://www.example.com/ontologyl>
Import (<http://www.example.com/ontology2>)
Annotation(rdfs:label "The example")

SubClassOf(a:Child a:Person)

Each part of the ontology document matching the prefixDefinition production
associates a prefix with a namespace. An ontology document must contain at most
one such definition per prefix and at most one such definition without a prefix, and it
must not contain a definition for a prefix listed in Table 2. Prefix definitions are used
during parsing to expand CURIEs in the ontology document — that is, parts of the

Page 21 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

ontology document matching the curie production — into full IRIs as follows. The
full IRI obtained by this expansion must be a valid IRI.

+ If the prefix of the CURIE is not present, then the ontology document
being parsed must contain a definition without a prefix. The resulting full
IRI is obtained by concatenating the namespace with the CURIE's
reference.

+ If the prefix of the CURIE is present, then either Table 2 or the prefix
definitions of the ontology document being parsed must contain a
definition associating the prefix with a namespace. The resulting full IR is
obtained by concatenating the namespace with the CURIE's reference.

E
]
=
5
S
9
S

A functional-style syntax ontology document D can be converted into an OWL 2
ontology by instantiating the canonical parsing process from Section 3.6 as follows:

* In step CP-2.2, Decl(D) is obtained from the Declaration production
described in Section 5.8, and Imp(D) is obtained from the
directlylmportsDocuments production described above.

* In step CP-3.3, AllDecl(D) is used to disambiguate the Class, Datatype,
ObjectProperty, DataProperty, AnnotationProperty, and
Namedindividual productions of the functional-style syntax grammar.

4 Datatype Maps

OWL 2 ontologies can contain literals and datatypes with built-in semantics, which
describe well-known objects such as strings or integers. Each kind of such objects
is called a datatype, and the set of all supported datatypes is called a datatype
map. A datatype map is not a syntactic construct, so it is not included in the
structural specification of OWL 2. Each datatype in a datatype map is identified by
an IRI, and it can be used in OWL 2 ontologies as described in Section 5.2. Each
datatype in the datatype map is described by the following components:

» The value space is a set determining the set of values of the datatype.
Elements of the value space are called data values.

» The lexical space is a set of strings that can be used to refer to data
values. Each member of the lexical space is called a lexical value, and it is
mapped to a particular data value.

« The facet space is a set of pairs of the form (F v), where Fis an IRI
called a constraining facet, and v is an arbitrary object called a value.
Each such pair is mapped to a subset of the value space of the datatype.

The OWL 2 datatype map consists of the datatypes described in the rest of this
section, most of which are based on XML Schema Datatypes, version 1.1 [XML
Schema Datatypes]. The definitions of these datatypes in OWL 2 are largely the
same as in XML Schema; however, there are minor differences, all of which are
clearly identified. These differences were introduced mainly to align the semantics
of OWL 2 datatypes with practical use cases.

Page 22 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

E
]
=
5
S
9
S

OWL 2 tools may support datatypes that are not listed in this section. The semantic
consequences of OWL 2 ontologies depend exclusively on the set of actually used
datatypes [OWL 2 Direct Semantics], so supporting datatypes not listed in this
section does not affect the consequences of OWL 2 ontologies that do not use
these extra datatypes.

4.1 Numbers

OWL 2 provides a rich set of datatypes, listed in Table 4, for representing various
kinds of numbers.

Value Spaces. The value spaces of all numeric datatypes are shown in Table 4.
The value space of owl:realPlus contains the value spaces of all other numeric
datatypes. The special values -0, +INF, -INF, and NaN are not identical to any
number. In particular, -0 is not a real number and it is not identical to real number
zero; to stress this distinction, the real number zero is often called a positive zero,
written +0.

Table 4. Numeric Datatypes and Their Value Spaces

| Datatype I Value Space |
the set of all real numbers extended with four special

owl:realPlus values -0 (negative zero), +INF (positive infinity), -INF
(negative infinity), and NaN (not-a-number)

lowl:real lthe set of all real numbers |

low!:rational lthe set of all rational numbers |

the four special values -0, +INF, -INF, and NaN, plus the
set of all real numbers of the form m x 2° where m is an

xsd-double integer whose absolute value is less than 2% and eis an
integer between -1075 and 970, inclusive
the four special values -0, +INF, -INF, and NaN, plus the
sd-float set of all real numbers of the form m x 2¢ where m is an

integer whose absolute value is less than 2%% and e is an
integer between -149 and 104, inclusive

the set of all real numbers of the form i x 10" where i is
an integer and n is a nonnegative integer

[xsd:integer lthe set of all integers

Ixsd:nonNegativelntegerthe set of all nonnegative integers
[xsd:nonPositivelnteger |fthe set of all negative integers plus (positive) zero
Ixsd:positivelnteger |the set of all positive integers
[xsd:negativelnteger |fthe set of all negative integers

Ixsd:decimal

sd-lon the set of all integers between -9223372036854775808
-ong land 9223372036854775807, inclusive

sdint the set of all integers between -2147483648 and
' 2147483647, inclusive

Page 23 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

<+ vsd-short Fhe se_t of all integers between -32768 and 32767,
¢ inclusive
A [xsd:byte [the set of all integers between -128 and 127, inclusive |
bgn sd-unsianedLon the set of all integers between 0 and
¥ unsig 9 |[18446744073709551615, inclusive
o) . the set of all integers between 0 and 4294967295,
; xsd:unsignedint . .
inclusive
H Ixsd:unsignedShort |fthe set of all integers between 0 and 65535, inclusive |
; Ixsd:unsignedByte the set of all integers between 0 and 255, inclusive |

Feature At Risk #1: owl:rational support

Note: This feature is "at risk" and may be removed from this specification based
on feedback. Please send feedback to public-owl-comments@wa3.org.

The owl:rational datatype might be removed from OWL 2 if implementation
experience reveals problems with supporting this datatype.

Lexical Spaces. Datatypes owl.realPlus and owl:real do not directly provide any
lexical values.

The owl:rational datatype supports lexical values defined by the following grammar
(whitespace within the grammar must be ignored and must not be included in the
lexical values of owl:dateTime, and single quotes are used to introduce terminal
symbols):

numerator '/' denominator

where numerator is an integer with the syntax as specified for the xsd:integer
datatype, and denominator is a positive, nonzero integer with the syntax as
specified for the xsd:integer datatype, not containing the plus sign. Each such
lexical value of owl:rational is mapped to the rational number obtained by dividing
numerator by denominator.

For each numeric datatype DT from XML schema, the lexical values of DT are
defined as specified in XML Schema Datatypes [XML Schema Datatypes].
Furthermore, each lexical value of DT is assigned a data value as specified in XML
Schema Datatypes [XML Schema Datatypes].

The lexical values of owl:rational, xsd:decimal, and the datatypes derived from
xsd:integer are mapped to arbitrarily large and arbitrarily precise numbers. An OWL
2 implementation may support all such lexical values; however, it must support at
least the following core lexical values, which can easily be mapped to the primitive
values commonly found in modern implementation platforms:

» All xsd:float and xsd:double lexical values are core lexical values.

Page 24 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

http://www.w3.org/2005/10/Process-20051014/tr#cfi
mailto:public-owl-comments@w3.org

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

» Alexical value of type owl:rational is a core lexical value if its numerator
and denominator are in the value space of xsd:long.

+ Alexical value of type xsd:decimal is a core lexical value if its data value
is a number with absolute value less than 10’ and the representation of
the number requires at most 16 digits in total.

» Alexical value for xsd:integer or a type derived from xsd:integer is a core
lexical value if its data value is in the value space of xsd:long.

Feature At Risk #2: xsd:decimal precision

E
]
=
5
S
9
S

The new XML Schema spec contains an acknowledged editorial error in the
definition of core lexical values for xsd:decimal. This document will be updated to
state that core decimal lexical values are those that can be expressed with
sixteen decimal digits, as is stated here. This document will be updated to use
the wording in the XML Schema spec if the change there is made in time.

Please send feedback to public-owl-comments@w3.org.

Equality and Ordering. The facet space of the numeric datatypes are based on
the following definitions of equality and ordering.

The equality = is the smallest symmetric relation on the value space of owl:realPlus
such that all of the following conditions hold:

 x=xif xis a real number, -0, -INF, or +INF; and
e -0=+0.

Note that NaN is not equal to itself; furthermore, even though -0 is equal to +0, it is
not identical to it.

Example:

To understand the distinction between identity and equality, consider the
following example ontology:

PropertyAssertion(a:Meg The value of
a:numberOfChildren a:numberOfChildren for
PropertyAssertion(a:Meg The value of
a:numberOfChildren a:numberOfChildren for
"-0"*"*xsd:float) a:Megqg is -0

An individual can have at
most one value for
a:numberOfChildren.

FunctionalProperty (

"+0" " xsd:float) a:Meg is +0.
a:numberOfChildren)

Page 25 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

mailto:public-owl-comments@w3.org

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

The last axiom states that no individual should have more than one distinct value
for a:numberOfChildren. Even though positive and negative zeros are equal,
they are distinct values; hence, the first two axioms violate the restriction of the
last axiom, which leads to inconsistency.

The ordering < is the smallest relation on the value space of ow/:realPlus such that
all of the following conditions hold:

E
]
=
5
S
9
S

+ x<yif xand y are real numbers and x is smaller than y;
e -INF < x < +INF for each real number x;

* -INF < -0 < +INF,;

» -0 < x for each positive real number x; and

* X < -0 for each negative real number x.

Note that +0 is a real number and is thus covered by the first two cases.

Example:

According to the above definition, the subset of the value space of owl:realPlus
i between -7 and 71 contains both +0 and -0. ;

Facet Space. The facet space of each numeric datatype DT is shown in Table 5.

Table 5. The Facet Space of each Numeric Datatype DT
| Pair I Facet Value |
(xsd:mininclusive v)
where v is from the value
space of owl:realPlus
(xsd:maxInclusive v)

where v is from the value
space of owl:realPlus

the set of all numbers x from the value space of
DT suchthatx=vorx>v

the set of all numbers x from the value space of
DT suchthatx=vorx<v

(xsd:minExclusive v)
where v is from the value
space of owl:realPlus

(xsd:maxExclusive v)

where v is from the value
space of owl:realPlus

the set of all numbers x from the value space of
DT such that x > v

the set of all numbers x from the value space of
DT such that x<v

Relationship with XML Schema. Numeric datatypes in OWL 2 differ from the
numeric datatypes of XML Schema [XML Schema Datatypes] in the following
aspects:

* OWL 2 provides the owl:real, owl:realPlus, and owl:rational datatypes.

Page 26 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

» The value spaces of all datatypes are subsets of the value space of
owl:realPlus; thus, unlike in XML Schema, the value spaces of xsd:float
and xsd:double in OWL 2 are not disjoint with the value space of
xsd:decimal.

* Only a subset of the XML Schema constraining facets are supported.

In other respects, the numeric datatypes of OWL 2 are aligned with the definitions
of XML Schema Datatypes [XML Schema Datatypes].

E
]
=
5
S
9
S

4.2 Strings

OWL 2 uses the rdf:text datatype for the representation of strings in a particular
language. The definitions of the value space, the lexical space, the facet space,
and the necessary mappings are given in [RDFE:TEXT].

In addition, OWL 2 supports the following XML Schema Datatypes [XML Schema
Datatypes]:

* Xxsd:string

» xsd:normalizedString
» xsd:token

* xsd:language

» xsd:Name

» xsd:NCName

* xsd:NMTOKEN

As recommended in [RDF:TEXT], the value spaces of these datatypes are subsets
of the value space of rdf:text, please refer to [RDF.TEXT] for a precise definition.

4.3 Boolean Values

The xsd:boolean datatype allows for the representation of Boolean values.

Value Space. The value space of xsd:boolean is the set containing exactly the two
values true and false. These values are not contained in the value space of any
other datatype.

Lexical Space. The xsd:boolean datatype supports the following lexical values:

* "true" and "1" are mapped to the data value frue, and
* "false" and "0" are mapped to the data value false.

Facet Space. The xsd:boolean datatype does not support any constraining facets.

Page 27 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

E
]
=
5
S
9
S

4.4 Binary Data

Datatypes xsd:hexBinary and xsd:base64Binary allow for the representation of
binary data. The two datatypes are the same apart from fact that they support a
different syntactic representation for lexical values.

Value Spaces. The value space of both xsd:hexBinary and xsd:base64Binary is
the set of finite sequences of octets — integers between 0 and 255, inclusive.

Lexical Spaces. The lexical values of the xsd:hexBinary and xsd:base64Binary
datatypes are strings of the form "abc", whose structure is specified in Sections
3.3.16 and 3.3.17 of XML Schema Datatypes [XML Schema Datatypes],
respectively. The lexical values are mapped to data values as specified in XML
Schema Datatypes [XML Schema Datatypes].

Facet Space. The facet space of the xsd:hexBinary and xsd:base64Binary
datatypes is shown in Table 6.

Table 6. The Facet Space of the xsd:hexBinary and xsd:base64Binary Datatypes
| Pair I Facet Value |

(xsd:minLength v)
where v is a nonnegative
integer

the set of finite sequences of octets of length at
least v

(xsd:maxLength v)
where v is a nonnegative
integer

(xsd:length v)

where v is a nonnegative
integer

the set of finite sequences of octets of length at
most v

the set of finite sequences of octets of length
exactly v

4.5IRls

The xsd:anyURI datatype allows for the representation of IRIs.

Value Space. The value space of xsd:anyURI is the set of IRIs as defined in XML
Schema Datatypes [XML Schema Datatypes]. Although each IRI has a string
representation, the value space of xsd:anyURI is disjoint with the value space of
xsd:string. The string representation of IRIs, however, can be described by a
regular expression, so the value space of xsd:anyURI is isomorphic to the value
space of xsd:string restricted with a suitable regular expression.

Lexical Space. The lexical values of the xsd:anyURI datatype and their mapping to
data values are defined in Section 3.3.18 of XML Schema Datatypes [XML Schema
Datatypes].

Page 28 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and
Functional-Style Syntax

E
]
=
5
S
9
S

Page 29 of 123

Note that the lexical values of xsd:anyURI include relative IRIs. If an OWL 2 syntax
employs rules for the resolution of relative IRIs (e.g., the OWL 2 XML Syntax [OWL
2 XML Syntax] uses xml:base for that purpose), such rules do not apply to
xsd:anyURI lexical values that represent relative IRIs; that is, the lexical values
representing relative IRIs must be parsed as they are.

Facet Space. The facet space of the xsd:anyURI datatype is shown in Table 7.

Table 7. The Facet Space of the xsd:anyURI Datatype

W3C Working Draft 02
December 2008

| Pair I Facet Value |

the set of IRIs / from the value space of
xsd:anyURI such that the length of the string
representation of / is at least v

the set of IRIs / from the value space of
xsd:anyURI such that the length of the string
representation of / is at most v

the set of IRIs / from the value space of
xsd:anyURI such that the length of the string
representation of / is exactly v

(xsd:minLength v)
where v is a nonnegative integer

(xsd:maxLength v)
\where v is a nonnegative integer

(xsd:length v)
where v is a nonnegative integer

(xsd:pattern v)

where v is a string regular
expression

with the syntax as in Section F of
XML Schema Datatypes [XML
Schema Datatypes]

the set of IRIs / from the value space of
xsd:anyURI whose string representation
matches the regular expression v

4.6 Time Instants

OWL 2 provides the owl:date Time datatype for the representation of time instants.
This datatype is equivalent to the xsd:dateTime datatype of XML Schema
Datatypes [XML Schema Datatypes] with a required timezone.

Feature At Risk #3: owl:dateTime name

The name owl:dateTime is currently a placeholder. XML Schema 1.1 Working
Group will introduce a datatype for date-time with required timezone. Once this is
done, owl:date Time will be changed to whatever name XML Schema chooses. If
the schedule of the XML Schema 1.1 Working Group slips the OWL 2 Working
Group will consider possible alternatives.

Please send feedback to public-owl-comments@w3.o0rg.

Value Space. The value space of owl.dateTime is the set of numbers, where each
number x represents the time instant occurring x seconds after the first time instant

http://www.w3.0org/TR/2008/WD-owl2-syntax-20081202/

mailto:public-owl-comments@w3.org

OWL 2 Web Ontology Language:Structural Specification and
Functional-Style Syntax

E
]
=
5
S
9
S

Page 30 of 123

of the 1st of January 1 AD in the proleptic Gregorian calendar [[SO 8601:2004]
(i.e., the calendar in which the Gregorian dates are retroactively applied to the
dates preceding the introduction of the Gregorian calendar). This set can be seen
as a "copy" of the set of real numbers — that is, it is disjoint with but isomorphic to
the value space of owl.real. For simplicity, the elements from this set can be
identified with real numbers.

Lexical Space. The owl:dateTime datatype supports lexical values defined by the
following grammar (whitespace within the grammar must be ignored and must not
be included in the lexical values of owl:dateTime, and single quotes are used to
introduce terminal symbols):

year '-' month '-' date 'T' hour ':' minute ':' second
timezone

The components of the this string are as follows:

* Characters - (U+2D), T (U+54), and : (U+3A) separate the various parts
of the string.

* vyear is an integer consisting of at least four decimal digits optionally
preceded by a minus sign; leading zero digits are prohibited except to
bring the digit count up to four.

* month, day, hour, and minute are integers consisting of exactly two
decimal digits.

* second is an integer consisting of exactly two decimal digits, or two
decimal digits, a decimal point, and one or more trailing digits.

* timezone specifies a count of minutes that has to be added to or
subtracted from UTC in order to get local time. The grammar for
timezone is given by the following three alternatives, each of which is
mapped to an integer as specified next:

o atime point of the form '+' tzHours ':' tzMinutes
between +00:00 (inclusive) and +14:00 (exclusive) is mapped
to the value + tzHours x 60 + tzMinutes;

o atime point of the form '-' tzHours ':' tzMinutes
between -00:00 (inclusive) and -14:00 (exclusive) is mapped
to the value - tzHours x 60 + tzMinutes;

o 'z' is mapped to the value 0.

* month is between 1 and 12 (inclusive).

* day is no more than 31 if month is one of 1, 3, 5, 7, 8, 10, or 12; no more
than 30 if month is one of 4, 6, 9, or 11; no more than 29 if month is 2
and year is divisible by 400, or by 4 but not by 100; and no more than 28
if month is 2 and year is not divisible 4, or is divisible by 100 but not by
400.

* hour, minute, and second represent a time point between 00:00:00
(inclusive) and 24:00: 00 (exclusive).

W3C Working Draft 02
December 2008

http://www.w3.0org/TR/2008/WD-owl2-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

"E Each such lexical value is assigned a data value as specified by the following
0 function, where div represents integer division and mod is the remainder of integer
0o division. This mapping does not take into account leap seconds: leap seconds will
= be introduced in UTC as deemed necessary in future; since the precise date when
'E this will be done is not known, the OWL 2 specification ignores leaps seconds.
o
; dataValue(year, month, day, hour, minutes,
Q seconds, timezone) =
Ly # convert all previous
Z 31536000 x (year-1) +
years to seconds
X - - -
1 086:1(()3?ear(- 1(312?\: i)) S'V 400 - (year-1) div # adjust for leap years
86400 x Summ < month daysIinMonth(year, # add the duration of
m) + each month

86400 x (day-1) + #add the duration of the
previous days
3600 x hour + 60 x (minutes - timezone) +

add the current time
seconds

daysInMonth(y,

m) =
8 ifm=2and[(y mod4#0)or(ymod 100 =0 andy
mod 400 # 0)]
29 ifm=2and[(ymod400=0)or(ymod4=0andy
mod 100 # 0)]
30 ifme{4,6,9, 11}
31 ifme{1,3,57,8,10,12}

Lexical values of owl:dateTime can represent an arbitrary date. An OWL 2
implementation may support all such lexical values; however, it must support at
least all lexical values in which the absolute value of the year component is less
than 10000 (i.e., whose representation requires at most four digits), and in which
the second component is a number with at most three decimal digits.

Facet Space. The facet space of the owl:date Time datatype is shown in Table 8.

Table 8. The Facet Space of the owl/:date Time Datatype
| Pair I Facet Value |
(xsd:mininclusive v)
where v is from the value
space of owl:dateTime
(xsd:maxInclusive v)

where v is from the value
space of owl:dateTime

the set of all time instants x from the value space of
owl:dateTime such that x=vorx>v

the set of all time instants x from the value space of
owl:dateTime such that x =vorx<v

Page 31 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

E
]
=
5
S
9
S

(xsd:minExclusive v)
where v is from the value
space of owl:dateTime

(xsd:maxExclusive v)
where v is from the value
space of owl:dateTime

the set of all time instants x from the value space of
owl:.dateTime such that x > v

the set of all time instants x from the value space of
owl:dateTime such that x < v

4.7 XML Literals

OWL 2 uses the rdf:XMLLiteral datatype for the representation of XML content in
OWL 2 ontologies. The definitions of the value space, the lexical space, and the
mapping from the lexical to the value space are given in Section 5.1 of the RDF
specification [RDF]. The rdf:XMLLiteral datatype supports no constraining facets.

Feature At Risk #4: rdf:XMLLiteral support

Note: This feature is "at risk" and may be removed from this specification based
on feedback. Please send feedback to public-owl-comments@w3.org.

The rdf:XMLLiteral datatype might be removed from OWL 2 if implementation
experience reveals problems with supporting this datatype.

5 Entities and Literals

Entities are the fundamental building blocks of OWL 2 ontologies, and they define
the vocabulary — the named terms — of an ontology. In logic, the set of entities is
usually said to constitute the signature of an ontology. Apart from entities, OWL 2

ontologies typically also contain literals, such as strings or integers.

The structure of entities and literals in OWL 2 is shown in Figure 2. Classes,
datatypes, object properties, data properties, annotation properties, and named
individuals are entities, and they are all uniquely identified by an IRI. Classes can
be used to model sets of individuals; datatypes are sets of literals such as strings
or integers; object and data properties can be used to represent relationships in the
modeled domain; annotation properties can be used to associate nonlogical
information with ontologies, axioms, and entities; and named individuals can be
used to represent actual objects from the domain being modeled. Apart from
named individuals, OWL 2 also provides for anonymous individuals — that is,
individuals that are analogous to blank nodes in RDF [RDF Syntax] and that are
accessible only from within the ontology they are used in. Finally, OWL 2 provides
for literals, which consist of a lexical value and a datatype specifying how to
interpret this value.

Page 32 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

http://www.w3.org/2005/10/Process-20051014/tr#cfi
mailto:public-owl-comments@w3.org

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

E ClassExpression IRI 1 Entity DataRange Individual
D arity - Unlirnitedhatural
entitylR|
Bo
S ’T‘ 1 1 1
; Class ObjectProperty | |DataProperty| |A ionProperty Datatype N {individual a FR——
U nodelD : String
T
E r 7777777 B datatype
|
|The arity of a datatype must be one. ll| Literal

lexicalvalue ; String

Figure 2. The Hierarchy of Entities in OWL 2

5.1 Classes

Classes can be understood as sets of individuals.

IRIs used to identify classes must not be in the reserved vocabulary, apart from
owl:Thing and owl/:Nothing, which are available in OWL 2 as built-in classes with a
predefined semantics.

» The class with IRl owl: Thing represents the set of all individuals. (In the
DL literature this is often called the top concept.)

» The class with IRl owl:Nothing represents the empty set. (In the DL
literature this is often called the bottom concept.)

Example:

Classes a:Child and a:Person can be used to model the set of all children and
persons, respectively, in the application domain, and they can be used in an
axiom such as the following one:

SubClassOf (a:Child a:Person) Each child is a person.

5.2 Datatypes

Datatypes are entities that refer to sets of values described by a datatype map (see
Section 4). Thus, datatypes are analogous to classes, the main difference being
that the former contain values such as strings and numbers, rather than individuals.
Datatypes are a kind of data ranges, which allows them to be used in restrictions.

Page 33 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

All datatypes have arity one. The built-in datatype rdfs:Literal denotes any set that
contains the union of the value spaces of all datatypes in the datatype map. Each
datatype other than rdfs:Literal must belong to the datatype map.

E
]
=
5
S
9
S

Example:

The datatype xsd:integer denotes the set of all integers. It can be used in axioms
such as the following one:

PropertyRange (a:hasAge The range of the a:hasAge
xsd:integer) property is xsd:integer.

5.3 Object Properties

Object properties connect pairs of individuals.

IRIs used to identify object properties must not be in the reserved vocabulary, apart
from owl:topObjectProperty and owl:bottomObjectProperty, which are available in
OWL 2 as built-in object properties with a predefined semantics.

» The object property with IRl owl:topObjectProperty connects all possible
pairs of individuals. (In the DL literature this is often called the top role.)

» The object property with IRI owl:bottomObjectProperty does not connect
any pair of individuals. (In the DL literature this is often called the bottom
role.)

Example:

The object property a:parentOf can be used to represent the parenthood
relationship between individuals. It can be used in axioms such as the following

| one:

PropertyAssertion(a:parentOf

a:Peter a:Chris) Peter is a parent of Chris.

Page 34 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

5.4 Data Properties

Data properties connect individuals with literals. In some knowledge representation
systems, functional data properties are called attributes.

E
]
=
5
S
9
S

IRIs used to identify data properties must not be in the reserved vocabulary, apart
from owl:topDataProperty and owl:bottomDataProperty, which are are available in
OWL 2 as built-in data properties with a predefined semantics.

» The data property with IRI owl:topDataProperty connects all possible
individuals with all literals. (In the DL literature this is often called the top
role.)

» The data property with IRI owl:bottomDataProperty does not connect any
individual with a literal. (In the DL literature this is often called the bottom
role.)

Example:

The data property a:hasName can be used to associate a name with each
person. It can be used in axioms such as the following one:

PropertyAssertion(a:hasName Peter's name is "Peter
a:Peter "Peter Griffin") Griffin".

5.5 Annotation Properties

Annotation properties can be used to provide an annotation for an ontology, axiom,
or an IRI. The structure of annotations is further described in Section 10.

IRIs used to identify annotation properties must not be in the reserved vocabulary,
apart from the following IRIs from the reserved vocabulary, which are are available
in OWL 2 as built-in annotation properties.

* The rdfs:label annotation property can be used to provide an IRI with a
human-readable label.

» The rdfs:comment annotation property can be used to provide an IRI with
a human-readable comment.

Page 35 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

» The rdfs:seeAlso annotation property can be used to provide an IRI with
another IRI such that the latter provides additional information about the
former.

» The rdfs:isDefinedBy annotation property can be used to provide an IRI
with another IRI such that the latter provides information about the
definition of the former; the way in which this information is provided is not
described by this specification.

» An annotation with the owl:deprecated annotation property and the value
equal to "true"~"xsd:boolean can be used to specify that an IRl is
deprecated.

» The owl:priorVersion annotation property is described in more detail in
Section 3.5.

» The owl:backwardCompatible With annotation property is described in
more detail in Section 3.5.

» The owl:incompatibleWith annotation property is described in more detail
in Section 3.5.

E
]
=
5
S
9
S

Example:

The comment provided by the following annotation assertion axiom might, for
example, be used by an OWL 2 tool to display additional information about the
IRI a:Peter.

AnnotationAssertion (
rdfs:comment a:Peter "The father This axiom provides a

of the Griffin family from comment for the IRI a:Peter.
Quahog.")

5.6 Individuals

Individuals represent actual objects from the domain being modeled. There are two
types of individuals in OWL 2. Named individuals are given an explicit name that
can be used in any ontology in the import closure to refer to the same individual.
Anonymous individuals are local to the ontology they are contained in.

ilndividual := NamedIndividual | Anonymousindividual

5.6.1 Named Individuals

Named individuals are identified using an IRI. Since they are given an IRI, named
individuals are entities. IRIs used to identify named individuals must not be in the
reserved vocabulary.

Page 36 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

Example:

The individual a:Peter can be used to represent a particular person. It can be
used in axioms such as the following one:

E
]
=
5
S
9
S

ClassAssertion(a:Person a:Peter .
Peter is a person.

5.6.2 Anonymous Individuals

If an individual is not expected to be used outside an ontology, one can model it as
an anonymous individual, which is identified by a local node ID. Anonymous
individuals are analogous to blank nodes in RDF [RDF Syntax].

Example:

Anonymous individuals can be used, for example, to represent objects whose
identity is of no relevance, such as the address of a person.

PropertyAssertion(a:livesAt Peter lives at some
a:Peter :1) (unknown) address.
PropertyAssertion(a:city :1 This unknown address is in
a:Quahog) the city of Quahog and...
PropertyAssertion(a:state :1 ..inthe state of Rhode
a:RI) Island.

Special treatment is required in case anonymous individuals with the same node ID
occur in two different ontologies. In particular, these two individuals are structurally
equivalent (because they have the same node ID); however, they are treated as
different individuals in the semantics of OWL 2 (because anonymous individuals
are local to an ontology they are used in). The latter is achieved by renaming
anonymous individuals apart when constructing the axiom closure of an ontology
O: if anonymous individuals with the same node ID occur in two different ontologies
in the import closure of O, then one of these individuals must be replaced in the
axiom closure of O with a fresh anonymous individual (i.e., with an anonymous
individual having a globally unique node ID).

Page 37 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

Example:

Assume that ontologies O7 and O2 both use _:a5, and that O7 imports Oo.
Although they both use the same local node ID, the individual _:a5 in O1 may be
different from the individual _:a5 in Oo.

At the level of the structural specification, individual _:a5 in O1 is structurally
i equivalent to individual _:a5 in O2. This might be important, for example, for
! tools that use structural equivalence to define the semantics of axiom retraction.

E
]
=
5
S
9
S

In order to ensure that these individuals are treated differently by the semantics
they are renamed apart when computing the axiom closure of O1 — either _.:a5
in O1 is replaced with a fresh anonymous individual, or this is done for _:a5in
O2.

5.7 Literals

Literals represent values such as particular strings or integers. They are analogous
to literals in RDF [RDF Syntax] and can also be understood as individuals denoting
known data values. Each literal consists of a lexical value, which is a string, and a
datatype. The lexical value must conform to restrictions as specified by the
datatype in the datatype map. The datatype map also determines how the literal is
mapped to the actual data value. The datatypes and literals supported in OWL 2
are described in more detail in Section 4.

Literals are generally written in the functional-style syntax as "abc"~"~datatype.
The functional-style also supports the abbreviations for common types of text
literals [RDE:TEXT], and OWL 2 implementations should use these abbreviated
forms whenever possible. These abbreviations are purely syntactic shortcuts and
are thus not reflected in the structural specification of OWL 2.

+ Literals of the form "abc"*~xsd:string should be abbreviated to
"abc".

 Literals of the form "abc@languageTag" " rdf: text should be
abbreviated to "abc"@languageTag.

Literal := typedLiteral | abbreviatedXSDStringLiteral |
abbreviatedRDFTextLiteral

typedLiteral := lexicalValue '~"~' Datatype

lexicalValue := quotedString

abbreviatedXSDStringLiteral := quotedString
abbreviatedRDFTextLiteral := quotedString '@' languageTag

Page 38 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

Example:

I "Family Guy" is an abbreviation for "Family Guy"~“xsd:string—a
 literal with the lexical value "Family Guy" and the datatype xsd:string.

E
]
=
5
S
9
S

Example:

"Padre de familia"@Qes is an abbreviation for the literal "Padre de
' familiaRes" " rdf:text — a literal denoting a pair consisting of the string
"Padre de familia" and the language tag es denoting the Spanish :
i language.

Two literals are structurally equivalent if and only if both the lexical value and the
datatype are structurally equivalent; that is, literals denoting the same data value
are structurally different if either their lexical value or the datatype is different.

Example:

Even through literals "1"~*xsd:integerand "+1"~*xsd:integer are
interpreted as the integer 1, these two literals are not structurally equivalent
because their lexical values are not the same. Similarly, "1"**xsd:integer
and "1"*"xsd:positiveInteger are not structurally equivalent because
their datatypes are not the same.

5.8 Entity Declarations and Typing

Each IRI used in an OWL 2 ontology O can, and sometimes even must, be
declared in O; roughly speaking, this means that the axiom closure of O must
contain an appropriate declaration for /. A declaration for / in O serves two
purposes:

» A declaration says that / exists — that is, it says that / is part of the
vocabulary of O.

» A declaration associates with / an entity type — that is, it says whether / is
used in O as a class, datatype, object property, data property, annotation
property, an individual, or a combination thereof.

Page 39 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

An ontology might contain a declaration for the IRI a:Person and state that this
IRl is a class. Such a declaration states that a:Person exists in the ontology and
it states that the IRl is used as a class. An ontology editor might use declarations
to implement functions such as "Add New Class".

In OWL 2, declarations are a type of axiom; thus, to declare an entity in an
ontology, one can simply include the appropriate axiom in the ontology. These
axioms are nonlogical in the sense that they do not affect the direct semantics of an
OWL 2 ontology [OWL 2 Direct Semantics]. The structure of entity declarations is
shown in Figure 3.

E
]
=
5
S
9
S

Adom

Declaration 1 | Endity

entity

Figure 3. Entity Declarations in OWL 2

Declaration := 'Declaration' '(' axiomAnnotations Entity ') '
Entity :=
"Class' '(' Class ")' |
'Datatype' ' (' Datatype ')' |
'ObjectProperty' ' (' ObjectProperty ')' |
'DataProperty' ' (' DataProperty ')' |
'AnnotationProperty' ' (' AnnotationProperty ')' |
'NamedIndividual' ' (' Namedindividual ')'

Example:

The following axioms state that the IRI a:Person is used as a class and that the
IRI a:Peter is used as an individual.

Declaration(Class(a:Person))
Declaration(NamedIndividual (a:Peter))

Page 40 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and
Functional-Style Syntax

E
]
=
5
S
9
S

Page 41 of 123

W3C Working Draft 02
December 2008

Declarations for the built-in entities of OWL 2, listed in Table 9, are implicitly

present in every OWL 2 ontology.

Table 9. Declarations of Built-In Entities

[Declaration(Class(owl:Thing)) |
|Declaration(Class(owl:Nothing)) |
|Declaration(ObjectProperty(owl:topObjectProperty)) |
|Declaration(ObjectProperty(owl:bottomObjectProperty)) |
|Declaration(DataProperty(owl:topDataProperty)) |
|Declaration(DataProperty(owl:bottomDataProperty)) |
|Declaration(Datatype(rdfs:Literal)) |
Declaration (for each IRI I of a datatype in the
Datatype(I)) datatype map (see Section 4)

Declaration (for each IRI I of a built-in
IAnnotationProperty (Iflannotation property listed in Section

)) 5.5

5.8.1 Typing Constraints

Let Ax be a set of axioms. An IRI I is declared to be of type T in Ax if a declaration
axiom of type T for / is contained in Ax or in the set of built-in declarations listed in
Table 9. The set Ax satisfies the typing constraints of OWL 2 if all of the following

conditions are satisfied:

» Property typing constraints:

o If an object property with an IRl / occurs in some axiom in Ax,

then I is declared in Ax as an object property.

o If a data property with an IRI / occurs in some axiom in Ax, then /

is declared in Ax as a data property.

o If an annotation property with an IRI / occurs in some axiom in
Ax, then | is declared in Ax as an annotation property.

o No IRI /'is declared in Ax as being of more than one type of
property; that is, no / is declared in Ax to be both object and data,
object and annotation, or data and annotation property.

» Class/datatype typing constraints:

o [f a class with an IRI / occurs in some axiom in Ax, then [/ is

declared in Ax as a class.

o If a datatype with an IRI / occurs in some axiom in Ax, then [is

declared in Ax as a datatype.

> No IRI /'is declared in ax to be both a class and a datatype.
* No declaration for an IRI / violates the constraints on the usage of

reserved vocabulary listed in the previous sections.

The axiom closure Ax of each OWL 2 ontology O must satisfy the typing

constraints of OWL 2.

http://www.w3.0org/TR/2008/WD-owl2-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

The typing constraints thus ensure that the sets of IRIs used as object, data, and
annotation properties in O are disjoint and that, similarly, the sets of IRIs used as
classes and datatypes in O are disjoint as well. These constraints are used for
disambiguating the types of IRIs when reading ontologies from external transfer
syntaxes. All other declarations are optional.

Example:

E
]
=
5
S
9
S

An IRI / can be used as an individual in O even if I is not declared as an
i individual in O. ;

Declarations are often omitted in the examples in this document in cases where the
types of entities are clear.

5.8.2 Declaration Consistency

Although declarations are optional for the most part, they can be used to catch
obvious errors in ontologies.

Example:

The following ontology erroneously refers to the individual a:Petre instead of the
individual a:Peter.

E Ontology (<http://www.my.example.com/example>
E ClassAssertion(a:Person a:Petre) i

)

There is no way of telling whether a:Petre was used by mistake. If, in contrast, all
individuals in an ontology were by convention required to be declared, this error
could be caught by a simple tool.

An ontology O is said to have consistent declarations if each IRI | occurring in the
axiom closure of O in position of an entity with a type T is declared in O as having
type T. OWL 2 ontologies are not required to have consistent declarations: an
ontology may be used even if its declarations are not consistent.

Example:

The ontology from the previous example fails this check: a:Petre is used as an
individual but the ontology does not declare a:Petre to be an individual, and
similarly for a:Person. In contrast, the following ontology satisfies this condition.

Page 42 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

i Ontology (<http://www.my.example.com/example>

i Declaration(Class(a:Person)) i
E Declaration(NamedIndividual (a:Peter)) i
i ClassAssertion(a:Person a:Peter) i

E
]
=
5
S
9
S

5.9 Metamodeling

According to the typing constraints from Section 5.8.1, an IRI / can be used in an
OWL 2 ontology to refer to more than one type of entity. Such usage of / is often
called metamodeling, because it can be used to state facts about classes and
properties themselves. In such cases, the entities that share the same IRI / should
be understood as different "views" of the same underlying notion identified by the
IRI /.

Example:

Consider the following ontology.

ClassAssertion(a:Dog a:Brian) Brianis a dog.
1 A i g [:D
§2 assAssertion(a:Species a:Dog Dog is a species.
In the first axiom, the IRl a:Dog is used as a class, while in the second axiom, it
is used as an individual; thus, the class a:Species acts as a metaclass for the
class a:Dog. The individual a:Dog and the class a:Dog should be understood as
two "views" of one and the same IRl — a:Dog. Under the OWL 2 Direct
Semantics [OWL 2 Direct Semantics], these two views are interpreted
independently: the class view of a:Species is interpreted as a unary predicate,
while the individual view of a:Species is interpreted as a constant.

Both metamodeling and annotations provide means to associate additional
information with classes and properties. The following rule-of-the-thumb can be
used to determine when to use which construct:

+ Metamodeling should be used when the information attached to entities
should be considered a part of the domain being modeled.

» Annotations should be used when the information attached to entities
should not be considered a part of the domain being modeled and when it
should not contribute to the logical consequences of an ontology.

Page 43 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

Consider the following ontology.

ClassAssertion(a:Dog a:Brian) Brianis a dog.
ClassAssertion(a:PetAnimals .
Dogs are pet animals.
a:Dog)

The IRl a:Dog has been
added to the ontology by

Seth MacFarlane.

AnnotationAssertion (a:addedBy
a:Dog "Seth MacFarlane")

E
]
=
5
S
9
S

The facts that Brian is a dog and that dogs are pet animals are statements about
the domain being modeled. Therefore, these facts are represented in the above
ontology via metamodeling. In contrast, the information about who added the IRI
a:Dog to the ontology does not describe the actual domain being modeled, but
might be interesting from a management point of view. Therefore, this
information is represented using an annotation.

6 Property Expressions

Properties can be used in OWL 2 to form property expressions.
6.1 Object Property Expressions

Object properties can by used in OWL 2 to form object property expressions. They
are represented in the structural specification of OWL 2 by
ObjectPropertyExpression, and their structure is shown in Figure 4.

Entity OljectPropertyExpression

1

OhjectProperty | 1 InmverseOhjectProperty

ohjectProperty

Figure 4. Object Property Expressions in OWL 2

As one can see from the figure, OWL 2 supports only two kinds of object property
expressions. Object properties are the simplest form of object property

Page 44 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

expressions, and inverse object properties allow for bidirectional navigation in class
expressions and axioms.

iObjectPropertyExpression := ObjectProperty | InverseObjectProperty

6.1.1 Inverse Object Properties

E
]
=
5
S
9
S

An inverse object property expression InverseOf (P) connects an individual 1;
with T, if and only if the object property P connects 1, with I.

ilnverseObjectProperty := 'InverseOf' '(' ObjectProperty ')'

Example:

Consider the ontology consisting of the following assertion.

PropertyAssertion(a:fatherOf
a:Peter a:Stewie)

This ontology entails that a:Stewie is connected via InverseOf (a:fatherOf

Peter is the father of Stewie.
) to a:Peter.

6.2 Data Property Expressions

For symmetry with object property expressions, the structural specification of OWL
2 also introduces the notion of data property expressions, as shown in Figure 5.
The only allowed data property expression is a data property; thus,
DataPropertyExpression in the structural specification of OWL 2 can be seen as a
place-holder for possible future extensions.

Page 45 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

E
]
=
5
S
9
S

Entity DataPropertyExpression

DataProperty

Figure 5. Data Property Expressions in OWL 2

DataPropertyExpression := DataProperty

7 Data Ranges

Datatypes, such as strings or integers, can be used to express data ranges — sets
of tuples of literals. Each data range is associated with a positive arity, which
determines the size of the tuples in the data range. All datatypes have arity one.
This specification currently does not define data ranges of arity more than one;
however, by allowing for n-ary data ranges, the syntax of OWL 2 provides a "hook"
allowing implementations to introduce extensions such as comparisons and
arithmetic.

Data ranges can be used in restrictions on data properties, as discussed in
Sections 8.4 and 8.5. The structure of data ranges in OWL 2 is shown in Figure 6.
The simplest data ranges are datatypes. The DatalntersectionOf, DataUnionOf,
and DataComplementOf data ranges provide for the standard set-theoretic
operations on data ranges; in logical languages these are usually called
conjunction, disjunction, and negation, respectively. The DataOneOf data range
consists of exactly the specified set of literals. Finally, the DatatypeRestriction data
range restricts the value space of a datatype by a constraining facet.

Page 46 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

E z- DataRange 3 =
D dataﬂangei arity - Unlimitedhatural -
dataRanges
Bo
[dataRange Z%
; DataComplementOf] |DatalinionOf | |nataOneof Datatype | , DatatypeRestriction DatalntersectionOf
U datatype
~
; 1 | datatype
1.x literals
1.7, restrictions
Literal — RI
lexicalvalue : String |1 FacetRestriction !
restrictionvalue constrainingFacet

Figure 6. Data Ranges in OWL 2

iDataRange =
i Datatype | i
i DatalntersectionOf | ;
DataUnionOf |

DataComplementOf |
DataOneOf |
DatatypeRestriction

7.1 Intersection of Data Ranges

An intersection data range IntersectionOf (DR; ... DRy) contains all data
values that are contained in the value space of every data range DR; for 1 <i<n.
All data ranges DR; must be of the same arity.

DatalntersectionOf := 'IntersectionOf' ' (' DataRange DataRange {
DataRange } ')'

Example:

' The data range IntersectionOf (xsd:nonNegativeInteger
i xsd:nonPositivelnteger) contains exactly the integer 0. :

Page 47 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

7.2 Union of Data Ranges

A union datarange UnionOf (DR1 ... DRy) contains all data values that are
contained in the value space of at least one data range DR; for 1 <i < n. All data
ranges DR; must be of the same arity.

DataUnionOf := 'UnionOf' ' (' DataRange DataRange { DataRange }
l)]

E
]
=
5
S
9
S

Example:

The data range UnionOf (xsd:string xsd:integer) contains all strings |
: and all integers. ;

7.3 Complement of Data Ranges

A complement data range ComplementOf (DR) contains all literals that are not
contained in the data range DR.

DataComplementOf := 'ComplementOf' ' (' DataRange ')'

Example:

The complement data range ComplementOf (xsd:positivelnteger)
consists of literals that are not positive integers. In particular, this data range i
contains the integer zero and all negative integers; however, it also contains all
strings (since strings are not positive integers). ;

7.4 Enumeration of Literals

An enumeration of literals OneOf (1t; ... 1ltp) contains exactly the explicitly
specified literals 1t; with 1 <i<n.

iDataOneOf := 'OneOf' '(' Literal { Literal } ')'

Page 48 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

The enumeration of literals OneOf ("Peter" "1"*"“xsd:integer)
contains exactly two literals: the string "Peter" and the integer one.

7.5 Datatype Restrictions

A datatype restriction DatatypeRestriction(DT F; 1lt1 ... Fp ltp)
consists of a unary datatype DT and n pairs (F; 1t;). Letv; be the data values
of the corresponding literals 1t ;. Each pair (F; vi) mustbe contained in the
facet space of DT in the datatype map (see Section 4). The resulting unary data
range is obtained by restricting the value space of DT according to the semantics of
all (¥+ vi) (multiple pairs are interpreted conjunctively).

E
]
=
5
S
9
S

i DatatypeRestriction := 'DatatypeRestriction' '(' Datatype
iconstrainingFacet restrictionValue { constrainingFacet restrictionValue } !
: v) v E
i constrainingFacet := IRI :
' restrictionValue := Literal ;
Example:

The data range DatatypeRestriction(xsd:integer
xsd:minInclusive "5"""xsd:integer xsd:maxExclusive
"10"~~xsd:integer) contains exactly the integers 5, 6, 7, 8, and 9.

8 Class Expressions

In OWL 2, classes and property expressions are used to construct class
expressions, sometimes also called descriptions, and, in the description logic
literature, complex concepts. Class expressions represent sets of individuals by
formally specifying conditions [OWL 2 Direct Semantics] on the individuals'
properties; individuals satsifying these conditions are said to be instances of the
respective class expressions. In the structural specification of OWL 2, class
expressions are represented by ClassExpression.

Example:

A class expression can be used to represent the set of "people that have at least
i one child". If an ontology additionally contains statements that "Peter is a ;

Page 49 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

person" and that "Peter has child Chris", then Peter can be classified as an
instance of the mentioned class expression.

OWL 2 provides a rich set of primitives that can be used to construct class
expressions. In particular, it provides the well known Boolean connectives and, or,
and not; a restricted form of universal and existential quantification; number
restrictions; enumeration of individuals; and a special self-restriction.

E
]
=
5
S
9
S

As shown in Figure 2, classes are the simplest form of class expressions. The
other, complex, class expressions, are described in the following sections.

ClassExpression :=

Class |

ObjectintersectionOf | ObjectUnionOf | ObjectComplementOf |
ObjectOneOf |

ObjectSomeValuesFrom | ObjectAllValuesFrom | ObjectHasValue |
ObjectHasSelf |

ObjectMinCardinality | ObjectMaxCardinality | ObjectExactCardinality

|
DataSomeValuesFrom | DataAllValuesFrom | DataHasValue |
DataMinCardinality | DataMaxCardinality | DataExactCardinality

8.1 Propositional Connectives and Enumeration of Individuals

OWL 2 provides for enumeration of individuals and all standard Boolean
connectives, as shown in Figure 7. The ObjectintersectionOf, ObjectUnionOf, and
ObjectComplementOf class expressions provide for the standard set-theoretic
operations on class expressions; in logical languages these are usually called
conjunction, disjunction, and negation, respectively. The ObjectOneOf class
expression contains exactly the specified individuals.

Page 50 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

o
a 1|, classExpression
bo
£ 7.+ |ClassExpression| -
;'D classExpressions classExpressions
2
ObjectUnionOf ObjectComplementOf ObjectOneOf ObjectintersectionOf

1%, individuals

Individual

Figure 7. Propositional Connectives and Enumeration of Individuals in OWL 2
8.1.1 Intersection of Class Expressions

An intersection class expression IntersectionOf (CE1 ... CE,) contains
all individuals that are instances of all class expressions CE; for 1 <i<n.

ObjectintersectionOf := 'IntersectionOf' ' (' ClassExpression
ClassExpression { ClassExpression } ')'

Example:
Consider the ontology consisting of the following axioms.

ClassAssertion(a:Dog a:Brian) Brianis a dog.
ClassAssertion(a:CanTalk .
i . Brian can talk. i
! a:Brian) :
i The class expression IntersectionOf (a:Dog a:CanTalk) describes all :
' dogs that can talk and, consequently, a:Brian is classified as an instance of this 5
| expression. ;

Page 51 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

8.1.2 Union of Class Expressions

A union class expression UnionOf (CE; ... CE,) contains all individuals that
are instances of at least one class expression CE; for 1 <i<n.

ObjectUnionOf := 'UnionOf' ' (' ClassExpression ClassExpression {
ClassExpression } ')

E
]
=
5
S
9
S

Example:
Consider the ontology consisting of the following axioms.

ClassAssertion(a:Man a:Peter) Peterisa man.

The class expression UnionOf (a:Man a:Woman) describes all individuals
that are instances of either a:Man or a:Woman; consequently, both a:Peter and
a:Lois are classified as instances of this expression.

ClassAssertion(a:Woman a:Lois) Loisis a woman.

8.1.3 Complement of Class Expressions

A complement class expression ComplementOf (CE) contains all individuals
that are not instances of the class expression CE.

iObjectCompIementOf := 'ComplementOf' ' (' ClassExpression ')'

Example:
Consider the ontology consisting of the following axioms.

DisjointClasses(a:Man a:Woman) el @200 [0 9810 & (D)
! and a woman.
ClassAssertion(a:Woman a:Lois) Loisis a woman.

' The class expression ComplementOf (a:Man) describes all things that are
! not instances of a:-Man. Since a:Lois is known to be a woman and nothing can
be both a man and a woman, then a:Lois is necessarily not a a:Man; therefore,
i a:Lois is classified as an instance of this complement class expression.

Page 52 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

Example:

OWL 2 has open-world semantics, so negation in OWL 2 is the same as in
classical (first-order) logic. To understand open-world semantics, consider the
ontology consisting of the following assertion.

ClassAssertion(a:Dog a:Brian) Brianis a dog.

One might expect a:Brian to be classified as an instance of ComplementOf (
a:Bird):the ontology does not explicitly state that a:Brian is an instance of
a:Bird, so this statement seems to be false. In OWL 2, however, this is not the
case: it is true that the ontology does not state that a:Brian is an instance of
a:Bird; however, the ontology does not state the opposite either. In other words,
this ontology simply does not contain enough information to answer the question
whether a:Brian is an instance of a:Bird or not: it is perfectly possible that the
information to that effect is actually true but it has not been included in the
ontology.

E
]
=
5
S
9
S

The ontology from the previous example (in which a:Lois has been classified as
a:Man), however, contains sufficient information to draw the expected
conclusion. In particular, we know for sure that a:Lois is an instance of a:Woman
and that a:Man and a:Woman do not share instances. Therefore, any additional
information that does not lead to inconsistency cannot lead to a conclusion that
a:Lois is an instance of a:Man; furthermore, if one were to explicitly state that
a:Lois is an instance of a:Man, the ontology would be inconsistent and, by
definition, it then entails all possible conclusions.

8.1.4 Enumeration of Individuals

An enumeration of individuals One0Of (a; ... ap) contains exactly the
individuals a; with 1 <i<n.

| ObjectOneOf := 'OneOf' ' (' Individual { Individual }') "

Example:
Consider the ontology consisting of the following axioms.

EquivalentClasses (

a:GriffinFamilyMember The Giriffin family consists
OneOf (a:Peter a:Lois exactly of Peter, Lois,

a:Stewie a:Meg a:Chris a:Brian) Stewie, Meg, and Brian.

)

Page 53 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

Quagmire, Peter, Lois,
Stewie, Meg, Chris, and
Brian are all different from
each other.

DifferentIndividuals (a:Quagmire
a:Peter a:Lois a:Stewie a:Meg
a:Chris a:Brian)

individuals. Since we also know that a:Quagmire is different from these six
individuals, this individual is classified as an instance of the class expression
ComplementOf (a:GriffinFamilyMember). The lastaxiom is necessary
to derive this conclusion; without it, the open-world semantics of OWL 2 would
allow for situations where a:Quagmire is the same as a:Peter, a:Lois, a:Stewie,
a:Meg, a:Chris, or a:Brian.

E
]
=
5
S
9
S

The class a:GriffinFamilyMember now contains exactly the six explicitly listed i

Example:

To understand how the open-world semantics affects enumerations of
individuals, consider the ontology consisting of the following axioms.

ClassAssertion (Peter is a member of the
a:GriffinFamilyMember a:Peter) Griffin Family.
ClassAssertion (Lois is a member of the
a:GriffinFamilyMember a:Lois) Griffin Family.
ClassAssertion (Stewie is a member of the
a:GriffinFamilyMember a:Stewie) Griffin Family.
ClassAssertion (Meg is a member of the
a:GriffinFamilyMember a:Meg) Griffin Family.
a:GriffinFamilyMember a:Chris) Griffin Family.
ClassAssertion (Brian is a member of the

a:GriffinFamilyMember a:Brian) Griffin Family.

The class a:GriffinFamilyMember now also contains the mentioned six
individuals, just as in the previous example. The main difference to the previous
example, however, is that the extension of a:GriffinFamilyMember is not closed:
the semantics of OWL 2 assumes that information about a potential instance of
a:GriffinFamilyMember may be missing. Therefore, a:Quagmire is now not
classified as an instance of the class expression ComplementOf (
a:GriffinFamilyMember), and this does not change even if we add the

ClassAssertion (Chris is a member of the
axiom stating that all of these six individuals are different from each other.

8.2 Object Property Restrictions

Class expressions in OWL 2 can be formed by placing restrictions on object
property expressions, as shown in Figure 8. The ObjectSomeValuesFrom class

Page 54 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

E
]
=
5
S
9
S

expression allows for existential quantification over an object property expression,
and it contains those individuals that are connected through an object property
expression to at least one instance of a given class expression. The
ObjectAllValuesFrom class expression allows for universal quantification over an
object property expression, and it contains those individuals that are connected
through an object property expression only to instances of a given class
expression. The ObjectHasValue class expression contains those individuals that
are connected by an object property expression to a particular individual. Finally,
the ObjectHasSelf class expression contains those individuals that are connected
by an object property expression to themselves.

1 |ClassExpression| 1

clagsExprassion tlassExpression

1

ObjectAllvaluesFrom ObjectHasSelf OhjectHasValue OhjectSomevaluesFrom

1 individual

ndividual

1 ohjectPropertyExpression

1 |objectPropertyExpression| 1

objectPropertyExpression ohjectPropertyExprassion

1 | ohjectPropertyExpression

Figure 8. Restricting Object Property Expressions in OWL 2
8.2.1 Existential Quantification

An existential class expression SomevValuesFrom(OPE CE) consists of an
object property expression OPE and a class expression CE, and it contains all those
individuals that are connected by OPE to an individual that is an instance of CE.
Provided that OPE is simple according to the definition in Section 11, such a class
expression can be seen as a syntactic shortcut for the class expression
MinCardinality(1 OPE CE).

ObjectSomeValuesFrom := 'SomeValuesFrom' ' ('
ObjectPropertyExpression ClassExpression ')'

Page 55 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

Example:
Consider the ontology consisting of the following axioms.

PropertyAssertion(a:fatherOf

a:Peter a:Stewie) Peter is the father of Stewie.

The existential expression SomeValuesFrom(a:fatherOf a:Man)
contains those individuals that are connected by the a:fatherOf property to
individuals that are instances of a:-Man and, consequently, a:Peter is classified
as an instance of this class expression.

E
]
=
5
S
9
S

ClassAssertion(a:Man a:Stewie) Stewie is a man.

8.2.2 Universal Quantification

A universal class expression Al11ValuesFrom(OPE CE) consists of an object
property expression OPE and a class expression CE, and it contains all those
individuals that are connected by OPE only to individuals that are instances of CE.
Provided that OPE is simple according to the definition in Section 11, such a class
expression can be seen as a syntactic shortcut for the class expression
MaxCardinality(0 OPE ComplementOf(CE)).

ObjectAllValuesFrom := 'AllValuesFrom' ' ('
ObjectPropertyExpression ClassExpression ')'

Example:
Consider the ontology consisting of the following axioms.

PropertyAssertion(a:hasPet L
2 y) (Brian is a pet of Peter.

a:Peter a:Brian)

ClassAssertion(a:Dog a:Brian) Brianis a dog.

E ClassAssertion(MaxCardinality (
! 1 a:hasPet) a:Peter)

The universal expression A11ValuesFrom(a:hasPet a:Dog) contains
those individuals that are connected through the a:hasPet property only with
individuals that are instances of a:Dog; in other words, it contains individuals that
have only dogs as pets. The ontology axioms clearly state that a:Pefer is
connected by a:hasPet only to instances of a:Dog: it is impossible to connect

Peter has at most one pet. i
a:Peter by a:hasPet to an individual different from a:Brian without making the

Page 56 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

ontology inconsistent. Therefore, a:Peter is classified as an instance of
AllValuesFrom(a:hasPet a:Dog).

The last axiom — that is, the axiom stating that a:Peter has at most one pet — is |
i critical for the inference from the previous paragraph due to the open-world
: semantics of OWL 2. Without this axiom, the ontology might not have listed all
' the individuals to which a:Peter is connected by a:hasPet. In such a case a:Peter '
would not be classified as an instance of A11vValuesFrom(a:hasPet a:Dog |

E
]
=
5
S
9
S

8.2.3 Individual Value Restriction

A has-value class expression HasValue (OPE a) consists of an object property
expression OPE and an individual a, and it contains all those individuals that are
connected by OPE to a. Each such class expression can be seen as a syntactic
shortcut for the class expression SomevValuesFrom(OPE OneOf(a)).

ObjectHasValue := 'HasValue' ' (' ObjectPropertyExpression Individual
l) 1

Example:
Consider the ontology consisting of the following axiom.

PropertyAssertion(a:fatherOf

a:Peter a:Stewie) Peter is the father of Stewie.

The has-value class expression HasValue (a:fatherOf a:Stewie)
contains those individuals that are connected through the a:fatherOf property
with the individual a:Stewie so, consequently, a:Peter is classified as an instance
of this class expression.

8.2.4 Self-Restriction

A self-restriction HasSelf (OPE) consists of an object property expression OPE,
and it contains all those individuals that are connected by OPE to themselves.

ObjectHasSelf := 'HasSelf' ' (' ObjectPropertyExpression ')'

Page 57 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

Example:
Consider the ontology consisting of the following axiom.

i PropertyAssertion(a:likes . . i
! i . (Peter likes himself. i
! a:Peter a:Peter) i

The self-restriction HasSelf (a:1ikes) contains those individuals that like
themselves so, consequently, a:Peter is classified as an instance of this class
expression.

E
]
=
5
S
9
S

8.3 Object Property Cardinality Restrictions

Class expressions in OWL 2 can be formed by placing restrictions on the
cardinality of object property expressions, as shown in Figure 9. All cardinality
restrictions can be qualified or unqualified: in the former case, the cardinality
restriction only applies to individuals that are connected by the object property
expression and are instances of the qualifying class expression; in the latter case
the restriction applies to all individuals that are connected by the object property
expression (this is equivalent to the qualified case with the qualifying class
expression equal to ow!/:Thing). The class expressions ObjectMinCardinality,
ObjectMaxCardinality, and ObjectExactCardinality contain those individuals that
are connected by an object property expression to at least, at most, and exactly a
given number of instances of a specified class expression, respectively.

0.1 |ClassExpression] 0.1

classExpression classExpression

A 0.1

classExpression

OhjectMaxCardinality OhjectMinCardinality OhjectExactCardinality
cardinality : Unlimitediatural cardinality - UnlimitedMatural cardinality . Unlimitedhatural

1 ohjectPropertyExpression

1 |OtjectPropertyExpression| 1

objectPropertyExpression objectPropertyExpression

Figure 9. Restricting the Cardinality of Object Property Expressions in OWL 2

Page 58 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

8.3.1 Minimum Cardinality

A minimum cardinality expression MinCardinality(n OPE CE) consists of a
nonnegative integer n, an object property expression OPE, and a class expression
CE, and it contains all those individuals that are connected by OPE to at least n
different individuals that are instances of CE. If CE is missing, it is taken to be
owl:Thing.

E
]
=
5
S
9
S

ObjectMinCardinality := 'MinCardinality' ' (' nonNegativelnteger
ObjectPropertyExpression [ClassExpression] ')'

Example:
Consider the ontology consisting of the following axioms.

PropertyAssertion(a:fatherOf

a:Peter a:Stewie) Peter is the father of Stewie.

ClassAssertion(a:Man a:Stewie) Stewieis a man.

PropertyAssertion(a:fatherOf . .
P . . (Peter is the father of Chris.

a:Peter a:Chris)

ClassAssertion(a:Man a:Chris) Chrisis a man.

DifferentIndividuals(a:Chris Chris and Stewie are

a:Stewie) different from each other.

The minimum cardinality expression MinCardinality(2 a:fatherOf
a:Man) contains those individuals that are connected by a:fatherOf to at least
two different instances of a:Man. Since a:Stewie and a:Chris are both instances
of a:Man and are different from each other, a:Peter is classified as an instance of
MinCardinality(2 a:fatherOf a:Man).

Due to the open-world semantics, the last axiom — stating that a:Chris and
a:Stewie are different from each other — is necessary for this inference: without
this axiom, it is possible that a:Chris and a:Stewie are actually the same
individual.

8.3.2 Maximum Cardinality

A maximum cardinality expression MaxCardinality(n OPE CE) consists of a
nonnegative integer n, an object property expression OPE, and a class expression
CE, and it contains all those individuals that are connected by OPE to at most n
different individuals that are instances of CE. If CE is missing, it is taken to be
owl:Thing.

Page 59 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

ObjectMaxCardinality := 'MaxCardinality' ' (' nonNegativelnteger
ObjectPropertyExpression [ClassExpression] ')'

Example:

Consider the ontology consisting of the following axioms.

E
]
=
5
S
9
S

PropertyAsseFtlon (a:hasPet Brian is a pet of Peter.
a:Peter a:Brian)

ClassAssertion(MaxCardinality (
1 a:hasPet) a:Peter) Peter has at most one pet.
The maximum cardinality expression MaxCardinality (2 a:hasPet)
contains those individuals that are connected by a:hasPet to at most two
individuals. Since a:Peter is known to be connected by a:hasPet to at most one
individual, it is certainly also connected by a:hasPet to at most two individuals
so, consequently, a:Peter is classified as an instance of MaxCardinality(2

a:hasPet).

The example ontology explicitly names only a:Brian as being connected by
a:hasPet from a:Peter, so one might expect a:Peter to be classified as an
instance of MaxCardinality(2 a:hasPet) even without the second
axiom. This, however, is not the case due to the open-world semantics. Without
the last axiom, it is possible that a:Peter is connected by a:hasPet to other
individuals. The second axiom closes the set of individuals that a:Peter is
connected to by a:hasPet.

Example:
Consider the ontology consisting of the following axioms.

PropertyAssertion(a:hasDaughter .
2 o (o Meg is a daughter of Peter.

a:Peter a:Meqg)

PropertyAssertion (a:hasDaughter Megan is a daughter of

a:Peter a:Megan) Peter.
1 a:hasDaughter) a:Peter) daughter.

One might expect this ontology to be inconsistent: on the one hand, it says that
a:Meg and a:Megan are connected to a:Peter by a:hasDaughter, but, on the
other hand, it says that a:Peter is connected by a:hasDaughter to at most one
individual. This ontology, however, is not inconsistent because the semantics of
OWL 2 does not make the unique name assumption — that is, it does not

ClassAssertion(MaxCardinality(Peter has at most one
assume distinct individuals to be necessarily different. For example, the ontology

Page 60 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

does not explicitly say that a:Meg and a:Megan are different individuals;
i therefore, since a:Peter can be connected by a:hasDaughter to at most one

that all individuals are different from each other. This can be done by adding the
following axiom, which makes the example ontology inconsistent.

E
]
=
5
S
9
S

DifferentIndividuals(a:Peter Peter, Meg, and Megan are

One can axiomatize the unique name assumption in OWL 2 by explicitly stating
a:Meg a:Megan) all different from each other.

8.3.3 Exact Cardinality

An exact cardinality expression ExactCardinality(n OPE CE) consists of a
nonnegative integer n, an object property expression OPE, and a class expression
CE, and it contains all those individuals that are connected by OPE to exactly n
different individuals that are instances of CE. If CE is missing, it is taken to be
owl:Thing. Such an expression is actually equivalent to the expression

IntersectionOf (MinCardinality(n OPE CE) MaxCardinality(
n OPE CE)).

ObjectExactCardinality := 'ExactCardinality' ' (' nonNegativelnteger
ObjectPropertyExpression [ClassExpression] ')'

Example:
Consider the ontology consisting of the following axioms.

PropertyAsse;tlon(arhaspPet Brian is a pet of Peter.
a:Peter a:Brian)
ClassAssertion(a:Dog a:Brian) Brianis a dog.
ClassAssertion (
AllValuesFrom(a:hasPet
UnionOf (
OneOf (a:Brian)

ConplenentOr|(asbey) Each pet of Peter is either

Brian or it is not a dog.

Page 61 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

The exact cardinality expression ExactCardinality(1 a:hasPet a:Dog
') contains those individuals that are connected by a:hasPet to exactly one
! instance of a:Dog. The example ontology says that a:Peter is connected to i
a:Brian by a:hasPet and that a:Brian is an instance of a:Dog; therefore, a:Peter
i is aninstance of MinCardinality(1 a:hasPet a:Dog).Furthermore, i
! the last axiom says that any individual different from a:Brian that is connected to
a:Peter by a:hasPet is not an instance if a:Dog; therefore, a:Peter is an instance |
1 of MaxCardinality(1 a:hasPet a:Dog).Consequently, a:Peteris i
classified as an instance of ExactCardinality(1 a:hasPet a:Dog).

E
]
=
5
S
9
S

8.4 Data Property Restrictions

Class expressions in OWL 2 can be formed by placing restrictions on data property
expressions, as shown in Figure 10. These are similar to the restrictions on object
property expressions, the main difference being that the expressions for existential
and universal quantification allow for n-ary data ranges. All data ranges explicitly
supported by this specification are unary; however, the provision of n-ary data
ranges in existential and universal quantification allows OWL 2 tools to support
extensions such as value comparisons and, consequently, class expressions such
as "individuals whose width is greater than their height". Thus, the
DataSomeValuesFrom class expression allows for a restricted existential
quantification over a list of data property expressions, and it contains those
individuals that are connected through the data property expressions to at least one
literal in the given data range. The DataAllValuesFrom class expression allows for
a restricted universal quantification over a list of data property expressions, and it
contains those individuals that are connected through the data property
expressions only to literals in the given data range. Finally, the DataHasValue class
expression contains those individuals that are connected by a data property
expression to a particular literal.

Page 62 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

E ClassExpression

B0

= A
;o
U DataSomeWaluesFrom DataAlMaluesFrom DataHasValue
E

14, literal
Literal

dataPropertipressions lexicalvalue | String

1 dataRanoe 1.* { ordered, nonunigue }
1 DataRanqge DataPropertyExpression| 1
atity - UnlimitedMatural _
dataRange dataProperyExpression

1.7 1" dataProperyExpressions
{ ordered, nonunigue }

Figure 10. Restricting Data Property Expressions in OWL 2

8.4.1 Existential Quantification

An existential class expression SomevValuesFrom(DPE; ... DPE, DR)
consists of n data property expressions DPE;, 1 <i < n, and a data range DR whose
arity must be n. Such a class expression contains all those individuals that are
connected by DPE; to literals 1ti, 1<i<n, such thatthetuple (1t1, ..., 1ty
) is in DR. A class expression of the form SomeValuesFrom(DPE DR) can be
seen as a syntactic shortcut for the class expression MinCardinality(1 DPE
DR).

DataSomeValuesFrom := 'SomeValuesFrom' ' ('
DataPropertyExpression { DataPropertyExpression } DataRange ')'

Example:
Consider the ontology consisting of the following axiom.

PropertyAssertion(a:hasAge

2:Meg "17"~Axsd:integer) Meg is seventeen years old.

The existential class expression SomeValuesFrom(a:hasAge
DatatypeRestriction(xsd:integer xsd:maxExclusive
"20"~"xsd:integer)) contains all individuals that are connected by

Page 63 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

a:hasAge to an integer strictly less than 20 so, consequently, a:Meg is classified
as an instance of this expression.

8.4.2 Universal Quantification

A universal class expression Al1vValuesFrom(DPE; ... DPE, DR) consists
of n data property expressions DPE;, 1 <i<n, and a data range DR whose arity
must be n. Such a class expression contains all those individuals that are
connected by DPE; only to literals 1t;, 1 <i<n, such that each tuple (1t.,

., lt,)isin DR. A class expression of the form A11vValuesFrom(DPE DR
) can be seen as a syntactic shortcut for the class expression MaxCardinality (
0 DPE ComplementOf(DR)).

E
]
=
5
S
9
S

DataAllValuesFrom := 'AllValuesFrom' ' (' DataPropertyExpression {
DataPropertyExpression } DataRange ')'

Example:
Consider the ontology consisting of the following axioms.

PropertyAssertion(a:zipCode The ZIP code of :a1is the
i _:al "02903"""xsd:integer) integer 02903.

i . . Each object can have at
FunctionalProperty(a:hasZIP) most one ZIP code.

In United Kingdom and Canada, ZIP codes are strings (i.e., they can contain

i characters and not just numbers). Hence, one might use the universal

| expression AllValuesFrom(a:hasZIP xsd:integer) to identify those
individuals that have only integer ZIP codes (and therefore have non-UK and

i non-Canadian addresses). The anonymous individual _:a1 is by the first axiom

i connected by a:zipCode to an integer, and the second axiom ensures that _:a1

' is not connected by a:zipCode to other literals; therefore, :a1 is classified as an
instance of Al1vValuesFrom(a:hasZIP xsd:integer).

The last axiom — stating that a:hasZIP is functional — is critical for the inference
from the previous paragraph due to the open-world semantics of OWL 2. Without
this axiom, the ontology is not guaranteed to list all literals that _:a1 is connected
to by a:hasZIP; hence, without this axiom _:a1 would not be classified as an
instance of Al1ValuesFrom(a:hasZIP xsd:integer).

Page 64 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

&=

¢ 8.4.3 Literal Value Restriction

0o

?:n A has-value class expression HasValue (DPE 1t) consists of a data property

LE expression DPE and a literal 1t, and it contains all those individuals that are

(o] connected by DPE to 1t. Each such class expression can be seen as a syntactic

; shortcut for the class expression SomevValuesFrom(DPE OneOf (1t)).

|

[t ! i

; DataHasValue := 'HasValue' ' (' DataPropertyExpression Literal ') '
Example:

Consider the ontology consisting of the following axiom.

PropertyAssertion(a:hasAge Meg i t Id
i a:Meg "17"~xsd:integer) eg is seventeen years old.
The has-value expression hasvValue (a:hasAge "17""~"xsd:integer)
: contains all individuals that are connected by a:hasAge to the integer 17 so,

» consequently, a:-Meg is classified as an instance of this expression.

8.5 Data Property Cardinality Restrictions

Class expressions in OWL 2 can be formed by placing restrictions on the
cardinality of data property expressions, as shown in Figure 11. These are similar
to the restrictions on the cardinality of object property expressions. All cardinality
restrictions can be qualified or unqualified: in the former case, the cardinality
restriction only applies to literals that are connected by the data property
expression and are in the qualifying data range; in the latter case it applies to all
literals that are connected by the data property expression (this is equivalent to the
qualified case with the qualifying data range equal to rdfs:Literal). The class
expressions DataMinCardinality, DataMaxCardinality, and DataExactCardinality
contain those individuals that are connected by a data property expression to at
least, at most, and exactly a given number of literals in the specified data range,
respectively.

Page 65 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

=
g ClassExpression
=3
g
U DataMinCardinality DataMaxCardinality DataExactCardinality
‘E cardinality : UnlimitedNatural cardinality - UnlimitedNatural cardinality : UnlimitedMatural
0.1,], dataRange 1.|, dataFropenyExpression
DataRange 0. DataPropertyExpression| 4
arity . Unlimitedhatural
dataRanne dataPropertyExpression
0.1 ‘|‘dataRange 1| dataPropertyExpression

cardinality restrictions must be one.

The arity of 3 data range usedin all Ill

Figure 11. Restricting the Cardinality of Data Property Expressions in OWL 2
8.5.1 Minimum Cardinality

A minimum cardinality expression MinCardinality(n DPE DR) consists of a
nonnegative integer n, a data property expression DPE, and a unary data range DR,
and it contains all those individuals that are connected by DPE to at least n different
literals in DR. If DR is not present, it is taken to be rdfs:Literal.

DataMinCardinality := 'MinCardinality' ' (' nonNegativelnteger
DataPropertyExpression [DataRange] ')'

Example:

Consider the ontology consisting of the following axioms.

PropertyAssertion(a:hasName Meg's name is "Meg
a:Meg "Meg Griffin") Griffin".

Page 66 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

PropertyAssertion(a:hasName Meg's name is "Megan
a:Meg "Megan Griffin") Griffin".

i The minimum cardinality expression MinCardinality(2 a:hasName) i
! contains those individuals that are connected by a:hasName to at least two
different literals. The xsd:string datatypes interprets different string literals as ;
i being distinct, so "Meg Griffin" and "Megan Griffin" are different; thus,
. the individual a:Meg is classified as an instance of the class expression i
MinCardinality(2 a:hasName).

E
]
=
5
S
9
S

8.5.2 Maximum Cardinality

A maximum cardinality expression MaxCardinality(n DPE DR) consists of a
nonnegative integer n, a data property expression DPE, and a unary data range DR,
and it contains all those individuals that are connected by DPE to at most n different
literals in DR. If DR is not present, it is taken to be rdfs:Literal.

DataMaxCardinality := 'MaxCardinality' '(' nonNegativelnteger
DataPropertyExpression [DataRange] ')'

Example:

Consider the ontology consisting of the following axiom.

FunctionalProperty (a:hasName) S28) Clefioel 2T S &t
most one name.

The maximum cardinality expression MaxCardinality(2 a:hasName)

contains those individuals that are connected by a:hasName to at most two

different literals. Since the ontology axiom restricts a:hasName to be functional,

all individuals in the ontology are instances of this class expression.

8.5.3 Exact Cardinality

An exact cardinality expression ExactCardinality(n DPE DR) consists of a
nonnegative integer n, a data property expression DPE, and a unary data range DR,
and it contains all those individuals that are connected by DPE to exactly n different
literals in DR. If DR is not present, it is taken to be rdfs:Literal.

Page 67 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

& ! :
g . DataExactCardinality := 'ExactCardinality' ' (' nonNegativelnteger !
o0 . DataPropertyExpression [DataRange] ')' |
= i i
g Example:
9 Consider the ontology consisting of the following axioms.
"
; PropertyAssertion (a:hasName Brian's name is "Brian

a:Brian "Brian Griffin") Griffin".

FunctionalProperty (a:hasName) SR80 @lefloel 2T e

most one name. !
The exact cardinality expression ExactCardinality(1 a:hasName)
contains those individuals that are connected by a:hasName to exactly one i
literal. Since the ontology axiom restricts a:hasName to be functional and a:Brian :
is connected by a:hasName to "Brian Griffin",itis classified as an i
instance of this class expression.

The main component of an OWL 2 ontology is a set of axioms — statements that
say what is true in the domain being modeled. OWL 2 provides an extensive set of
axioms, all of which extend the Axiom class in the structural specification. As
shown in Figure 12, axioms in OWL 2 can be declarations, axioms about classes,
axioms about object or data properties, keys, assertions (sometimes also called
facts), and axioms about annotations.

Adom
Declaration ObjectProperiy Adom HasKey Annotationfodom
ClassAdmmn DataProperty Aodon Assertion

Figure 12. The Axioms of OWL 2

Page 68 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

Axiom := Declaration | ClassAxiom | ObjectPropertyAxiom |
DataPropertyAxiom | HasKey | Assertion | AnnotationAxiom

axiomAnnotations := { Annotation }

As shown in Figure 1, OWL 2 axioms can contain axiom annotations, the structure
of which is defined in Section 10. Axiom annotations have no effect on the
semantics of axioms — that is, they do not affect the meaning of OWL 2 ontologies
[OWL 2 Direct Semantics]. In contrast, axiom annotations do affect structural
equivalence: axioms will not be structurally equivalent if their axiom annotations are
not structurally equivalent.

E
]
=
5
S
9
S

Example:
The following axiom contains a comment that explains the purpose of the axiom.

SubClassOf (Annotation(rdfs:comment "Male people are
people.") a:Man a:Person)

Since annotations affect structural equivalence between axioms, the previous
axiom is not structurally equivalent with the following axiom, even though these
two axioms are equivalent according to the OWL 2 Direct Semantics [OWL 2
Direct Semantics].

SubClassOf (a:Man a:Person)

9.1 Class Expression Axioms

OWL 2 provides axioms that allow relationships to be established between class
expressions, as shown in Figure 13. The SubClassOf axiom allows one to state
that each instance of one class expression is also an instance of another class
expression, and thus to construct a hierarchy of classes. The EquivalentClasses
axiom allows one to state that several class expressions are equivalent to each
other. The DisjointClasses axiom allows one to state that several class
expressions are pairwise disjoint — that is, that they have no instances in common.
Finally, the DisjointUnion class expression allows one to define a class as a
disjoint union of several class expressions and thus to express covering
constraints.

Page 69 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

Adom

Classodom

E
]
=
5
S
9
S

SubClassOf EquivalentClasses DisjointClasses DisjointUnion

2% |, classExpressions

1 2.7
ClassExpression -
subClassExpression ;IassExpressmns
1 --*
superClassExpression f‘:\ disjointClassExpressions
Class 1
class

Figure 13. The Class Axioms of OWL 2

ClassAxiom := SubClassOf | EquivalentClasses | DisjointClasses |
DisjointUnion

9.1.1 Subclass Axioms

A subclass axiom subClassOf (CE; CE;) states that the class expression CE;
is a subclass of the class expression CE,. Roughly speaking, this states that CE; is
more specific than CE,. Subclass axioms are a fundamental type of axioms in OWL
2 and can be used to construct a class hierarchy. Other kinds of class expression
axiom can be seen as syntactic shortcuts for one or more subclass axioms.

Page 70 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

SubClassOf := 'SubClassOf' ' (' axiomAnnotations
subClassExpression superClassExpression ') '
subClassExpression := ClassExpression
superClassExpression := ClassExpression

Example:

E
]
=
5
S
9
S

Consider the ontology consisting of the following axioms.

SubClassOf (a:Baby a:Child) Each baby is a child.
SubClassOf (a:Child a:Person) Each childis a person.
()SlassAssertion (a:Baby a:Stewie Stewie is a baby.
Since a:Stewie is an instance of a:Baby, by the first subclass axiom a:Stewie is

i classified as an instance of a:Child as well. Similarly, by the second subclass

i axiom a:Stewie is classified as an instance of a:Person. This style of reasoning

' can be applied to any instance of a:Baby and not just a:Stewie; therefore, one

© can conclude that a:Baby is a subclass of a:Person. In other words, this ontology
i entails the axiom SubClassOf (a:Baby a:Person).

Example:
Consider the ontology consisting of the following axioms.
SubClassOf (a:PersonWithChild

SomeValuesFrom(a:hasChild
UnionOf (a:Boy a:Girl))

A person that has a child has
either at least one boy or a

) girl.
SubClassOf (a:Boy a:Child) Each boy is a child.
SubClassOf (a:Girl a:Child) Each girl is a child.

a:hasChild a:Child) a:Parent) then this object is a parent.

The first axiom states that each instance of a:PersonWithChild is connected to
an individual that is an instance of either a:Boy or a:Girl. (Because of the open-
world semantics of OWL 2, this does not mean that there must be only one such
individual or that all such individuals must be instances of either a:Boy or of
a:Girl.) Furthermore, each instance of a:Boy or a:Girl is an instance of a:Child.
Finally, the last axiom says that all individuals that are connected by a:hasChild
to an instance of a:Child are instances of a:Parent. Since this reasoning holds for

: SubClassOf (SomeValuesFrom (If some object has a child, i
each instance of a:PersonWithChild, each such instance is also an instance of

Page 71 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

a:Parent. In other words, this ontology entails the axiom SubClassOf (
a:PersonWithChild a:Parent).

9.1.2 Equivalent Classes

An equivalent classes axiom EquivalentClasses(CE; ... CE,) states that
all of the class expressions CEi, 1 <i < n, are semantically equivalent to each
other. This axiom allows one to use each CE; as a synonym for each CEy — that is,
in any expression in the ontology containing such an axiom, CE; can be replaced
with CE4 without affecting the meaning of the ontology. An axiom
EquivalentClasses (CE; CEy) is equivalent to the following two axioms:

E
]
=
5
S
9
S

SubClassOf (CE; CE»)
SubClassOf (CE» CEq1)

Axioms of the form EquivalentClasses(C CE), where Cis aclass and CE is
a class expression, are often called definitions, because they define the class C in
terms of the class expression CE.

EquivalentClasses := 'EquivalentClasses' ' (' axiomAnnotations
ClassExpression ClassExpression { ClassExpression } ')

Example:
Consider the ontology consisting of the following axioms.

EquivalentClasses(a:Boy
IntersectionOf (a:Child a:Man) A boyis a male child.
) :
ClassAssertion(a:Child a:Chris . . i
) (Chris is a child. !
ClassAssertion(a:Man a:Chris) Chrisis a man.

ClassAssertion(a:Boy a:Stewie) Stewie is a boy.

The first axiom defines the class a:Boy as an intersection of the classes a:Child
and a:Man; thus, the instances of a:Boy are exactly those instances that are both
an instance of a:Child and an instance of a:Man. Such a definition consists of
two directions. The first direction implies that each instance of a:Child and a:Man
is an instance of a:Boy; since a:Chris satisfies these two conditions, it is
classified as an instance of a:Boy. The second direction implies that each a:Boy

Page 72 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

is an instance of a:Child and of a:Man; thus, a:Stewie is classified as an instance
of a:Man and of a:Boy.

Example:

Consider the ontology consisting of the following axioms.

E
]
=
5
S
9
S

EquivalentClasses (
a:MongrelOwner SomeValuesFrom (
a:hasPet a:Mongrel))

A mongrel owner has a pet
that is a mongrel.

EquivalentClasses (a:DogOwner
SomeValuesFrom(a:hasPet a:Dog)
)

A dog owner has a pet that
SubClassOf (a:Mongrel a:Dog) Each mongrel is a dog.

is a dog.

ClassAssertion(a:MongrelOwner .
Peter is a mongrel owner.
a:Peter)
By the first axiom, each instance x of a:MongrelOwner must be connected via
a:hasPet to an instance of a:Mongrel; by the third axiom, this individual is an
instance of a:Dog; thus, by the second axiom, x is an instance of a:DogOwner.
In other words, this ontology entails the axiom SubClassOf (
a:MongrelOwner a:DogOwner). By the fourth axiom, a:Peter is then
classified as an instance of a:DogOwner.

9.1.3 Disjoint Classes

A disjoint classes axiom DisjointClasses(CE1 ... CE,) states that all of
the class expressions CE;, 1 £i £ n, are pairwise disjoint; that is, no individual can
be at the same time an instance of both CE; and CE; for i # j. An axiom
DisjointClasses(CE1 CE2) is equivalent to the following axiom:

SubClassOf (CE; ComplementOf(CEpz))

DisjointClasses := 'DisjointClasses' '(' axiomAnnotations
ClassExpression ClassExpression { ClassExpression } ')'

Example:

Consider the ontology consisting of the following axioms.

Page 73 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

Nothing can be both a boy
and a girl.
ClassAssertion(a:Boy a:Stewie) Stewie is a boy.

DisjointClasses(a:Boy a:Girl)

The axioms in this ontology imply that a:Stewie can be classified as an instance
of ComplementOf (a:Girl). If the ontology were extended with the
assertion ClassAssertion(a:Girl a:Stewie), the ontology would
become inconsistent.

E
]
=
5
S
9
S

9.1.4 Disjoint Union of Class Expressions

A disjoint union axiom DisjointUnion(C CE; ... CEp,) statesthata class
C is a disjoint union of the class expressions CEi, 1 <i < n, all of which are pairwise
disjoint. Such axioms are sometimes referred to as covering axioms, as they state
that the extensions of all CE; exactly cover the extension of C. Thus, each instance
of C is an instance of exactly one CE;, and each instance of CE; is an instance of C.
Each such axiom can be seen as a syntactic shortcut for the following two axioms:

EquivalentClasses(C UnionOf(CE; ... CEp))
DisjointClasses(CE1 ... CEp)

DisjointUnion := 'DisjointUnion' ' (' axiomAnnotations Class
disjointClassExpressions ') '

disjointClassExpressions := ClassExpression ClassExpression ({
ClassExpression }

Example:
Consider the ontology consisting of the following axioms.

Each child is either a boy or
a girl, each boy is a child,
each girl is a child, and
nothing can be both a boy
and a girl.

i DisjointUnion(a:Child a:Boy
i a:Girl)

ClassAssertion(a:Child a:Stewie
)

ClassAssertion(ComplementOf (
a:Girl) a:Stewie)

Stewie is a child.

Stewie is not a girl.

Page 74 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

By the first two axioms, a:Stewie is either an instance of a:Boy or a:Girl. The last !
. assertion eliminates the second possibility, so a:Stewie is classified as an ;
» instance of a:Boy. |

9.2 Object Property Axioms

E
]
=
5
S
9
S

OWL 2 provides axioms that can be used to characterize and establish
relationships between object property expressions. For clarity, the structure of
these axioms is shown in two separate figures, Figure 14 and Figure 15. The
SubObjectPropertyOf axiom allows one to state that the extension of one object
property expression is included in the extension of another object property
expression. The EquivalentObjectProperties axiom allows one to state that the
extensions of several object property expressions are the same. The
DisjointObjectProperties axiom allows one to state that the extensions of several
object property expressions are pairwise disjoint — that is, that they do not share
pairs of connected individuals. The InverseObjectProperties axiom can be used to
state that two object property expressions are the inverse of each other. The
ObjectPropertyDomain and ObjectPropertyRange axioms can be used to restrict
the first and the second individual, respectively, connected by an object property
expression to be instances of the specified class expression.

Adom
QbjectPropertyAodom
EquivalentObjectProperties SubObjectPropertyOf ObjectPropertyDomain OhjectPrope: nge
1 d{dumain
DisjointObjectProperties ClassExpression] | InverseObjectProperties
range
subOhjectPropertyExpressions
1,|, superObjectPropertyExpression 1.7 | ¢ arderad, nonunigue } 1+, hjectPropertyExprassion
7= OhjectPropertyExpression 1
objectPropertyExpressions objectPropetyExpression

2 .*"|"objectPropentyExpressions 1°[" objectPropertyExpression 1°[‘objectProperyExpression2

Figure 14. Object Property Axioms in OWL 2, Part |
The FunctionalObjectProperty axiom allows one to state that an object property

expression is functional — that is, that each individual can have at most one
outgoing connection of the specified object property expression. The

Page 75 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

InverseFunctionalObjectProperty axiom allows one to state that an object property
expression is inverse-functional — that is, that each individual can have at most
one incoming connection of the specified object property expression. Finally, the
ReflexiveObjectProperty, IrreflexiveObjectProperty, SymmetricObjectProperty,
AsymmetricObjectProperty, and TransitiveObjectProperty axioms allow one to
state that an object property expression is reflexive, irreflexive, symmetric,
asymmetric, or transitive, respectively.

Adom

£

ObjectPropertyfodom

i
| [

FunctionalObjectProperty InverseFunctionalObjectProperty SyinmetricObjectProperty A icObjectProperty

E
]
=
5
S
9
S

ReflexiveObjectProperty IrreflexiveObjectProperty TransitiveObjectProperty
1, | phisctPropertyExpression 1|, objectPropenyExpression 1, |, objectPropentyExpression
1 OfjectPropertyExpression 1
ohjectPropertyExpression abjectFropertyExpression
1 abjectPropetyExpression 1| ohjectPropertyExpression

Figure 15. Axioms Defining Characteristics of Object Properties in OWL 2, Part Il

ObjectPropertyAxiom :=
SubObjectPropertyOf | EquivalentObjectProperties |
DisjointObjectProperties | InverseObjectProperties |
ObjectPropertyDomain | ObjectPropertyRange |
FunctionalObjectProperty | InverseFunctionalObjectProperty |
ReflexiveObjectProperty | IrreflexiveObjectProperty |
SymmetricObjectProperty | AsymmetricObjectProperty |
TransitiveObjectProperty

9.2.1 Object Subproperties

Object subproperty axioms are analogous to subclass axioms, and they come in
two forms.

Page 76 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

The basic form is SubPropertyOf (OPE{ OPEj,). This axiom states that the
object property expression OPE; is a subproperty of the object property expression
OPE, — that is, if an individual x is connected by OPE; to an individual vy, then x is
also connected by OPE> to y.

The more complex form is SubPropertyOf (PropertyChain (OPE;

OPE,) OPE). This axiom states that, if an individual x is connected by a
sequence of object property expressions OPE1, ..., OPE, with an individual y, then x
is also connected with y by the object property expression OPE. Such axioms are
also known as complex role inclusions [SROIQ].

E
]
=
5
S
9
S

SubObjectPropertyOf := 'SubPropertyOf' ' (' axiomAnnotations
subObjectPropertyExpressions superObjectPropertyExpression ') '
subObjectPropertyExpressions := ObjectPropertyExpression |
propertyExpressionChain

propertyExpressionChain := 'PropertyChain' ' ('
ObjectPropertyExpression ObjectPropertyExpression {
ObjectPropertyExpression } ')'

superObjectPropertyExpression := ObjectPropertyExpression

Example:
Consider the ontology consisting of the following axioms.

SubPropertyOf (a:hasDog a:hasPet Having a dog is a kind of
) having a pet.

i Pr_OpertyAs_’ser.tlon (a:zhasbog Brian is a dog of Peter.

! a:Peter a:Brian)

Since a:hasDog is a subproperty of a:hasPet, each tuple of individuals

i connected by the former property expression is also connected by the latter

' property expression. Therefore, this ontology entails that a:Peter is connected to
a:Brian by a:hasPet; that is, the ontology entails the assertion

i PropertyAssertion(a:hasPet a:Peter a:Brian).

Example:
Consider the ontology consisting of the following axioms.
SubPropertyOf (PropertyChain (

a:hasMother a:hasSister)
a:hasAunt)

The sister of someone's
mother is that person's aunt.

Page 77 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

PropertyAssertion(a:hasMothe L. .
e ’y ‘ .l (d Lois is the mother of Stewie.

a:Stewie a:Lois)

PropertyAssertion(a:hasSister . . .
PRy (Carol is a sister of Lois.
a:Lois a:Carol)

The axioms in this ontology imply that a:Stewie is connected by a:hasAunt with

a:Carol; that is, the ontology entails the assertion PropertyAssertion (

a:hasAunt a:Stewie a:Carol).

E
]
=
5
S
9
S

9.2.2 Equivalent Object Properties

An equivalent object properties axiom EquivalentProperties (OPE;

OPE,) states that all of the object property expressions OPE;, 1 <i<n, are
semantically equivalent to each other. This axiom allows one to use each OPE; as
a synonym for each OPE4 — that is, in any expression in the ontology containing
such an axiom, OPE; can be replaced with OPE; without affecting the meaning of
the ontology. The axiom EquivalentProperties (OPE; OPE,) is equivalent
to the following two axioms:

SubPropertyOf (OPE; OPE,)
SubPropertyOf (OPE, OPE;)

EquivalentObjectProperties := 'EquivalentProperties' '('
i axiomAnnotations ObjectPropertyExpression ObjectPropertyExpression { i
' ObjectPropertyExpression } ')' i

Example:

Consider the ontology consisting of the following axioms.

EquivalentProperties (Having a brother is the same
a:hasBrother a:hasMaleSibling) as having a male sibling.
PrOper.tyAssertl.on { @snasEmelane Stewie is a brother of Chris.
a:Chris a:Stewie)
PropertyAssertion (
a:hasMaleSibling a:Stewie

a:Chris)

Chris is a male sibling of
Stewie.

Since a:hasBrother and a:hasMaleSibling are equivalent properties, this ontology
entails that a:Chris is connected by a:hasMaleSibling with a:Stewie — that is, the
ontology entails the assertion PropertyAssertion(a:hasMaleSibling

Page 78 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

' a:Chris a:Stewie) — and that a:Stewie is connected by a:hasBrother with
+ a:Chris — that is, the ontology entails the assertion PropertyAssertion (i
i a:hasBrother a:Stewie a:Chris).

9.2.3 Disjoint Object Properties

E
]
=
5
S
9
S

A disjoint object properties axiom DisjointProperties(OPE; ... OPEp)
states that all of the object property expressions OPE;, 1 <i < n, are pairwise
disjoint; that is, no individual x can be connected to an individual y by both OPE ;
and OPE; fori #j.

DisjointObjectProperties := 'DisjointProperties' ' ('
i axiomAnnotations ObjectPropertyExpression ObjectPropertyExpression { i
' ObjectPropertyExpression } ')'

Example:
Consider the ontology consisting of the following axioms.

DisjointProperties (a:hasFather Fatherhood is disjoint with
a:hasMother) motherhood.
PropertyAssertion(a:hasFather . .
Petty (Peter is the father of Stewie.
a:Stewie a:Peter)
PropertyAssertion(a:hasMother . .
. .y , (Lois is the mother of Stewie.
a:Stewie a:Lois)
In this ontology, the disjointness axiom is satisfied. If, however, one were to add
an assertion PropertyAssertion(a:hasMother a:Stewie a:Peter),
the disjointness axiom would be invalidated and the ontology would become
inconsistent.

9.2.4 Inverse Object Properties

An inverse object properties axiom InverseProperties (OPE; OPE,) states
that the object property expression OPE; is an inverse of the object property
expression OPE,. Thus, if an individual x is connected by OPE to an individual v,
then y is also connected by OPE; to x, and vice versa. Each such axiom can be
seen as a syntactic shortcut for the following axiom:

EquivalentProperties(OPE; InverseOf(OPEp))

Page 79 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

Consider the ontology consisting of the following axioms.

= : 5
g ilnverseObjectProperties := 'InverseProperties' '('
o0 iaxiomAnnotations ObjectPropertyExpression ObjectPropertyExpression i
= P :
-é T
; Example:

9,

g

Having a father is the
opposite of being a father of
someone.

InverseProperties (a:hasFather
a:fatherOf)

Pmpert.yAssertlon (‘arhasFather Peter is the father of Stewie.

a:Stewie a:Peter)

P A i :fath £
roperty Ssert.lon | @sEaBacEs Peter is the father of Chris.

a:Peter a:Chris)

This ontology entails that a:Peter is connected by a:fatherOf with a:Stewie —

that is, the ontology entails the assertion PropertyAssertion(a:fatherOf

a:Peter a:Stewie) — and it also entails that a:Chris is connected by

a:hasFather with a:Peter — that is, the ontology entails the assertion

PropertyAssertion(a:hasFather a:Chris a:Peter).

9.2.5 Object Property Domain

An object property domain axiom PropertyDomain (OPE CE) states that the
domain of the object property expression OPE is the class expression CE — that is,
if an individual x is connected by OPE with some other individual, then x is an
instance of CE. Each such axiom can be seen as a syntactic shortcut for the
following axiom:

SubClassOf (SomeValuesFrom(OPE owl:Thing) CE)

ObjectPropertyDomain := 'PropertyDomain' ' (' axiomAnnotations
ObjectPropertyExpression ClassExpression ')'

Example:

Consider the ontology consisting of the following axioms.

Page 80 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

PropertyDomain (a:hasDog
2:Person) Only people can own dogs.
PropertyAssertion(a:hasDo .
2 o . { & Brian is a dog of Peter.
a:Peter a:Brian)
By the first axiom, each individual that has an outgoing a:hasDog connection
must be an instance of a:Person. Therefore, a:Peter can be classified as an
instance of a:Person; that is, this ontology entails the assertion
ClassAssertion(a:Person a:Peter).

E
]
=
5
S
9
S

Domain axioms in OWL 2 have a standard first-order semantics that is
somewhat different from the semantics of such axioms in databases and object-
oriented systems, where such axioms are interpreted as checks. The domain
axiom from the example ontology would in such systems be interpreted as a
constraint saying that a:hasDog can point only from individuals that are known to
be instances of a:Person; furthermore, since the example ontology does not
explicitly state that a:Peter is an instance of a:Person, one might expect the
domain constraint to be invalidated. This, however, is not the case in OWL 2: as
shown in the previous paragraph, the missing type is inferred from the domain
constraint.

9.2.6 Object Property Range

An object property range axiom PropertyRange (OPE CE) states that the
range of the object property expression OPE is the class expression CE — that is, if
some individual is connected by OPE with an individual %, then x is an instance of
CE. Each such axiom can be seen as a syntactic shortcut for the following axiom:

SubClassOf (owl:Thing AllValuesFrom(OPE CE))

ObjectPropertyRange := 'PropertyRange' ' (' axiomAnnotations
ObjectPropertyExpression ClassExpression ')'

Example:

Consider the ontology consisting of the following axioms.

PropertyRange (a:hasDog a:Do .
RO ge J g) property is the class a:Dog.

PropertyAssertion (a:hasDog

a:Peter a:Brian)

The range of the a:hasDog
Brian is a dog of Peter.

Page 81 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

E
]
=
5
S
9
S

By the first axiom, each individual that has an incoming a:hasDog connection
must be an instance of a:Dog. Therefore, a:Brian can be classified as an
instance of a:Dog; that is, this ontology entails the assertion ClassAssertion (
a:Brian a:Dog).

Range axioms in OWL 2 have a standard first-order semantics that is somewhat
different from the semantics of such axioms in databases and object-oriented
systems, where such axioms are interpreted as checks. The range axiom from
the example ontology would in such systems be interpreted as a constraint
saying that a:hasDog can point only to individuals that are known to be instances
of a:Dog; furthermore, since the example ontology does not explicitly state that
a:Brian is an instance of a:Dog, one might expect the range constraint to be
invalidated. This, however, is not the case in OWL 2: as shown in the previous
paragraph, the missing type is inferred from the range constraint.

9.2.7 Functional Object Properties

An object property functionality axiom FunctionalProperty (OPE) states that
the object property expression OPE is functional — that is, for each individual x,
there can be at most one distinct individual y such that x is connected by OPE to y.
Each such axiom can be seen as a syntactic shortcut for the following axiom:

SubClassOf (owl:Thing MaxCardinality(1 OPE))

FunctionalObjectProperty := 'FunctionalProperty' '('
axiomAnnotations ObjectPropertyExpression ') '

Example:
Consider the ontology consisting of the following axioms.

FunctionalProperty(a:hasFather Each object can have at
i) most one father. i
PropertyAssertion(a:hasFather . .
: PeEiEy { Peter is the father of Stewie. :
; a:Stewie a:Peter) ;
PropertyAssertion(a:hasFather Peter Griffin is the father of
a:Stewie a:Peter Griffin) Stewie.

By the first axiom, a:hasFather can point from a:Stewie to at most one distinct
individual, so a:Peter and a:Peter_Griffin must be equal; that is, this ontology
entails the assertion SameIndividual (a:Peter a:Peter Griffin).

Page 82 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

One might expect the previous ontology to be inconsistent, since the
a:hasFather property points to two different values for a:Stewie. OWL 2,
however, does not make the unique name assumption, so a:Peter and
a:Peter_Griffin are not necessarily distinct individuals. If the ontology were
extended with the axiom DifferentIndividuals (a:Peter
a:Peter Griffin),then it would indeed become inconsistent.

E
]
=
5
S
9
S

9.2.8 Inverse-Functional Object Properties

An object property inverse functionality axiom InverseFunctionalProperty (
OPE) states that the object property expression OPE is inverse-functional — that
is, for each individual x, there can be at most one individual y such that y is
connected by OPE with x. Each such axiom can be seen as a syntactic shortcut for
the following axiom:

SubClassOf (owl:Thing MaxCardinality(1 InverseOf(OPE))

InverseFunctionalObjectProperty := 'InverseFunctionalProperty'
' (' axiomAnnotations ObjectPropertyExpression ')'

Example:
Consider the ontology consisting of the following axioms.

InverseFunctionalProperty (Each object can have at
a:fatherOf) most one father.
PropertyAssertion(a:fatherOf
a:Peter a:Stewie)
PropertyAssertion(a:fatherOf Peter Griffin is the father of
a:Peter Griffin a:Stewie) Stewie.

Peter is the father of Stewie.

By the first axiom, at most one distinct individual can point by a:fatherOf to
a:Stewie, so a:Peter and a:Peter_Griffin must be equal; that is, this ontology
entails the assertion SameIndividual (a:Peter a:Peter Griffin).

One might expect the previous ontology to be inconsistent, since there are two
individuals that a:Stewie is connected to by a:fatherOf. OWL 2, however, does
not make the unique name assumption, so a:Peter and a:Peter_Griffin are not
necessarily distinct individuals. If the ontology were extended with the axiom

Page 83 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

DifferentIndividuals(a:Peter a:Peter Griffin), then itwould
indeed become inconsistent.

9.2.9 Reflexive Object Properties

An object property reflexivity axiom ReflexiveProperty (OPE) states that the
object property expression OPE is reflexive — that is, each individual is connected
by OPE to itself.

E
]
=
5
S
9
S

ReflexiveObjectProperty := 'ReflexiveProperty' ' ('
axiomAnnotations ObjectPropertyExpression ')'

Example:

Consider the ontology consisting of the following axioms.

Everybody knows
themselves.

i ReflexiveProperty(a:knows) i
i ClassAssertion(a:Person a:Peter i

) Peter is a person.

By the first axiom, a:Peter must be connected by a:knows to itself; that is, this
ontology entails the assertion PropertyAssertion(a:knows a:Peter
a:Peter).

9.2.10 Irreflexive Object Properties

An object property irreflexivity axiom IrreflexiveProperty (OPE) states that
the object property expression OPE is irreflexive — that is, no individual is
connected by OPE to itself.

IrreflexiveObjectProperty := 'IrreflexiveProperty' ' ('
axiomAnnotations ObjectPropertyExpression ') '

Example:

Consider the ontology consisting of the following axioms.

Page 84 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

IrreflexiveProperty(a:marriedTo Nobody can be married to
) themselves.

If this ontology were extended with the assertion PropertyAssertion (
a:marriedTo a:Peter a:Peter), the irreflexivity axiom would be
contradicted and the ontology would become inconsistent.

E
]
=
5
S
9
S

9.2.11 Symmetric Object Properties

An object property symmetry axiom SymmetricProperty(OPE) states that the
object property expression OPE is symmetric — that is, if an individual x is
connected by OPE to an individual y, then vy is also connected by OPE to x. Each
such axiom can be seen as a syntactic shortcut for the following axiom:

SubPropertyOf (OPE InverseOf(OPE))

SymmetricObjectProperty := 'SymmetricProperty' ' ('
axiomAnnotations ObjectPropertyExpression ') '

Example:

Consider the ontology consisting of the following axioms.

If x is a friend of y, they y is a

SymmetricProperty(a:friend) friend of x

a:Peter a:Brian) Brian is a friend of Peter.

Since a:friend is symmetric, a:Peter must be connected by a:friend to a:Brian;
that is, this ontology entails the assertion PropertyAssertion(a:friend

i PropertyAssertion(a:friend
! a:Brian a:Peter).

9.2.12 Asymmetric Object Properties

An object property asymmetry axiom AsymmetricProperty (OPE) states that
the object property expression OPE is asymmetric — that is, if an individual x is
connected by OPE to an individual y, then y cannot be connected by OPE to x.

Page 85 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

AsymmetricObjectProperty := 'AsymmetricProperty' ' ('
axiomAnnotations ObjectPropertyExpression ') '

Example:

Consider the ontology consisting of the following axioms.

E
]
=
5
S
9
S

If x is a parent of y, they y is

AsymmetricPropert a:parentOf
e 2 v 2) not a parent of x.

a:Peter a:Stewie) Peter is a parent of Stewie.

If this ontology were extended with the assertion PropertyAssertion (
a:parentOf a:Stewie a:Peter),the asymmetry axiom would be

i PropertyAssertion(a:parentOf
! invalidated and the ontology would become inconsistent.

9.2.13 Transitive Object Properties

An object property transitivity axiom TransitiveProperty (OPE) states that
the object property expression OPE is transitive — that is, if an individual x is
connected by OPE to an individual y that is connected by OPE to an individual z,
then x is also connected by OPE to z. Each such axiom can be seen as a syntactic
shortcut for the following axiom:

SubPropertyOf (PropertyChain(OPE OPE) OPE)

TransitiveObjectProperty := 'TransitiveProperty' ' ('
axiomAnnotations ObjectPropertyExpression ') '

Example:
Consider the ontology consisting of the following axioms.

If x is an ancestor of y and y
is an ancestor of z, then x is
an ancestor of z.

TransitiveProperty(a:ancestorOf

L)

PropertyAssertion(a:ancestorOf

. Carter is an ancestor of Lois.
a:Carter a:Lois)

PropertyAssertion(a:ancestorOf

siiohe eatee) Lois is an ancestor of Meg.

Page 86 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

Since a:ancestorOf is transitive, a:Carter must be connected by a:ancestorOf to
i a:Meg; that is, this ontology entails the assertion PropertyAssertion (i
arancestorOf a:Carter a:Meg).

9.3 Data Property Axioms

E
]
=
5
S
9
S

OWL 2 also provides for data property axioms. Their structure is similar to object
property axioms, as shown in Figure 16. The SubDataPropertyOf axiom allows one
to state that the extension of one data property expression is included in the
extension of another data property expression. The EquivalentDataProperties
allows one to state that several data property expressions have the same
extension. The DisjointDataProperties axiom allows one to state that the
extensions of several data property expressions are disjoint with each other — that
is, they do not share individual-literal pairs. The DataPropertyDomain axiom can
be used to restrict individuals connected by a property expression to be instances
of the specified class; similarly, the DataPropertyRange axiom can be used to
restrict the literals pointed to by a property expression to be in the specified unary
data range. Finally, the FunctionalDataProperty axiom allows one to state that a
data property expression is functional — that is, that each individual can have at
most one outgoing connection of the specified data property expression.

Aodorm

Z% - The data range must [
Danfropryiian

7

| [[
‘SuhDataPropertyOf EquivalentDataProperties DataPropertyDomain DataPropertyRange
1 l/dnmam 1 \Lrangg
Disjoil Properties FunctionalDataProperty ClassExpression DataRange

arity : UnlimitedMatural

7 = | dataPropemyExpressions .* | dataFropetyExpressions 1| dataPropertyExpression 1|, dataPropettyExpression

1 DataProperiyExpression

subDataPropenyExprassion

superDataProperyExpression dataPropertyExpression

Figure 16. Data Property Axioms of OWL 2

Page 87 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

DataPropertyAxiom :=

SubDataPropertyOf | EquivalentDataProperties |
DisjointDataProperties |

DataPropertyDomain | DataPropertyRange | FunctionalDataProperty

9.3.1 Data Subproperties

E
]
=
5
S
9
S

A data subproperty axiom SubPropertyOf (DPE; DPE,) states that the data
property expression DPE; is a subproperty of the data property expression DPE, —
that is, if an individual x is connected by OPE; to a literal y, then x is connected by
OPE; to y as well.

ESubDataPropertyOf := 'SubPropertyOf' ' (' axiomAnnotations
' subDataPropertyExpression superDataPropertyExpression ') ' |
isubDataPropertyExpression := DataPropertyExpression :
i superDataPropertyExpression := DataPropertyExpression |
Example:

Consider the ontology consisting of the following axioms.

SubPropertyOf (a:hasLastName Having a last name is a kind
a:hasName) of having a name.
PropertyAssertion (a:hasLastName Peter's last name is

Since a:hasLastName is a subproperty of a:hasName, each individual connected
by the former property to a literal is also connected by the latter property to the
same literal. Therefore, this ontology entails that a:Peter is connected to
"Peter" through a:hasName; that is, the ontology entails the assertion

a:Peter "Griffin") "Griffin".
iPropertyAssertion(a:hasName a:Peter "Peter").

9.3.2 Equivalent Data Properties

An equivalent data properties axiom EquivalentProperties (DPE;

DPE,) states that all the data property expressions DPE;, 1 <i<n, are
semantically equivalent to each other. This axiom allows one to use each DPE; as
a synonym for each DPE4 — that is, in any expression in the ontology containing
such an axiom, DPE; can be replaced with DPE5 without affecting the meaning of

Page 88 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

the ontology. The axiom EquivalentProperties(DPE; DPE,) can be seen
as a syntactic shortcut for the following axiom:

SubPropertyOf (DPE; DPEp)
SubPropertyOf (DPE, DPE;)

iEquivaIentDataProperties := 'EquivalentProperties' ' ('
i axiomAnnotations DataPropertyExpression DataPropertyExpression { i

E
]
=
5
S
9
S

DataPropertyExpression } ')'

Example:
Consider the ontology consisting of the following axioms.

EquivalentProperties (a:hasName a:hasName and a:sellama

a:seLlama) (in Spanish) are synonyms.
PropertyAssertion(a:hasName Meg's name is "Meg
a:Meg "Meg Griffin") Griffin".
PropertyAssertion(a:seLlama Meg's name is "Megan
a:Meg "Megan Griffin") Griffin".

Since a:-hasName and a:selLlama are equivalent properties, this ontology entails
that a:Meg is connected by a:selLlama with "Meg Griffin" — thatis, the
ontology entails the assertion PropertyAssertion(a:seLlama a:Meg
"Meg Griffin") — and that a:-Meg is also connected by a:hasName with
"Megan Griffin" — thatis, the ontology entails the assertion
PropertyAssertion(a:hasName a:Meg "Megan Griffin").

9.3.3 Disjoint Data Properties

A disjoint data properties axiom DisjointProperties(DPE1 ... DPEp)
states that all of the data property expressions DPE;, 1 £i < n, are pairwise disjoint;
that is, no individual x can be connected to a literal y by both DPE; and DPE; for i #

DisjointDataProperties := 'DisjointProperties' '('
i axiomAnnotations DataPropertyExpression DataPropertyExpression { i
' DataPropertyExpression } ')’ i

Page 89 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

Peter's address is
"Quahog, Rhode
Island".

PropertyAssertion(a:hasAddress
a:Peter "Quahog, Rhode Island")

‘E :
'a) Consider the ontology consisting of the following axioms.

Bo C o q !

c DisjointProperties (a:hasName Someone's name must be

-+ a:hasAddress) different from his address.

o PropertyAssertion (a:hasName Peter's name is "Peter

; a:Peter "Peter Griffin") Griffin".

9,

2

In this ontology, the disjointness axiom is satisfied. If, however, one were to add
an assertion PropertyAssertion(a:hasAddress a:Peter "Peter
Griffin"), the disjointness axiom would be invalidated and the ontology
would become inconsistent.

9.3.4 Data Property Domain

A data property domain axiom PropertyDomain (DPE CE) states that the
domain of the data property expression DPE is the class expression CE — that is, if
an individual x is connected by DPE with some literal, then x is an instance of CE.
Each such axiom can be seen as a syntactic shortcut for the following axiom:

SubClassOf (SomeValuesFrom(DPE rdfs:Literal) CE)

DataPropertyDomain := 'PropertyDomain' ' (' axiomAnnotations
DataPropertyExpression ClassExpression ') '

Example:

Consider the ontology consisting of the following axioms.

PropertyDomain (a:hasName Only people can have
a:Person) names.
PropertyAssertion (a:hasName Peter's name is "Peter
a:Peter "Peter Griffin") Griffin".

By the first axiom, each individual that has an outgoing a:hasName connection
must be an instance of a:Person. Therefore, a:Peter can be classified as an
instance of a:Person; that is, this ontology entails the assertion
ClassAssertion(a:Person a:Peter).

Page 90 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

Domain axioms in OWL 2 have a standard first-order semantics that is
somewhat different from the semantics of such axioms in databases and object-
oriented systems, where such axioms are interpreted as checks. Thus, the
domain axiom from the example ontology would in such systems be interpreted
as a constraint saying that a:zhasName can point only from individuals that are
known to be instances of a:Person; furthermore, since the example ontology
does not explicitly state that a:Peter is an instance of a:Person, one might expect
the domain constraint to be invalidated. This, however, is not the case in OWL 2:
as shown in the previous paragraph, the missing type is inferred from the domain
constraint.

E
]
=
5
S
9
S

9.3.5 Data Property Range

A data property range axiom PropertyRange (DPE DR) states that the range
of the data property expression DPE is the data range DR — that is, if some
individual is connected by DPE with a literal x, then x is in DR. The arity of DR must
be one. Each such axiom can be seen as a syntactic shortcut for the following
axiom:

SubClassOf (owl:Thing AllValuesFrom(DPE DR))

DataPropertyRange := 'PropertyRange' ' (' axiomAnnotations
DataPropertyExpression DataRange ')'

Example:

Consider the ontology consisting of the following axioms.

PropertyRange (a:hasName The range of the a:-hasName
xsd:string) property is xsd.:string.
PropertyAssertion (a:hasName Peter's name is "Peter
a:Peter "Peter Griffin") Griffin".

By the first axiom, each literal that has an incoming a:hasName link must be in
xsd:string. In the example ontology, this axiom is satisfied. If, however, the
ontology were extended with an assertion PropertyAssertion (a:hasName
a:Peter "42"""xsd:integer), the range axiom would imply that the literal
"42"~~xsd:integer is in xsd:string, which is a contradiction; therefore, the
ontology would become inconsistent.

Page 91 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

9.3.6 Functional Data Properties

A data property functionality axiom FunctionalProperty (DPE) states that
the data property expression DPE is functional — that is, for each individual x, there
can be at most one distinct literal y such that x is connected by DPE with y. Each
such axiom can be seen as a syntactic shortcut for the following axiom:

SubClassOf (owl:Thing MaxCardinality(1 DPE))

E
]
=
5
S
9
S

FunctionalDataProperty := 'FunctionalProperty' ' ('
axiomAnnotations DataPropertyExpression ')'

Example:
Consider the ontology consisting of the following axioms.

Each object can have at
most one age.

FunctionalProperty(a:hasAge)

PrOpertyAssertior.l (a:hasage Meg is seventeen years old
a:Meg "17"""xsd:integer) ’
By the first axiom, a:hasAge can point from a:Meg to at most one distinct literal.
In this example ontology, this axiom is satisfied. If, however, the ontology were
extended with the assertion PropertyAssertion(a:hasAge a:Meg
"15"~*xsd:integer), the semantics of functionality axioms would imply that
"15" " xsd:integeris equalto "17"~"xsd:integer, which is a
contradiction; therefore, the ontology would become inconsistent.

A key axiom HasKey (CE PE; ... PE,) states that each (hamed) instance of
the class expression CE is uniquely identified by the (data or object) property
expressions PE; — that is, no two distinct (named) instances of CE can coincide on
the values of all property expressions PE;. A key axiom of the form HasKey (
owl:Thing OPE) is similar to the axiom InverseFunctionalProperty (
OPE) ; the main difference is that the first axiom is applicable only to individuals
that are explicitly named in an ontology, while the second axiom is also applicable
to individuals whose existence is implied by existential quantification. The structure
of such axiom is shown in Figure 17.

Page 92 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

*

ohjectPropertyExprassions * dataProperyExpressions 4 |, classExpression

¢ Podom

bo The associations objectProperyExpressions and
= ,‘% dataProperyExpressions cannot both be empty.
x |

;o HasKey f ———————————————— !

E

QljectPropertyExpression DataPropertyExpression ClassExpression

Figure 17. Key Axioms in OWL 2

iHasKey := 'HasKey' ' (' axiomAnnotations ClassExpression
i ObjectPropertyExpression | DataPropertyExpression { i
' ObjectPropertyExpression | DataPropertyExpression } ')' |

Example:

Consider the ontology consisting of the following axioms.

Each person is uniquely

HasKey (a:Person a:hasSSN) identified by their social
security number.

PropertyAssertion(a:hasSSN Peter's social security

a:Peter "123-45-6789") numberis "123-45-6789".

ClassAssertion(a:Person a:Peter .

) Peter is a person.

PropertyAssertion(a:hasSSN Peter Griffin's social security

ClassAssertion(a:Person I

a:Peter Griffin) Peter Griffin is a person.
The first axiom makes a:hasSSN the key for individuals in the class a:Person;
thus, if an instance of a:Person has a value for a:hasSSN, then this value must
be unique. Since the values of a:hasSSN are the same for a:Peter and
a:Peter_Griffin, these two individuals must be equal — that is, this ontology
entails the assertion SameIndividual (a:Peter a:Peter Griffin).

One might expect the previous ontology to be inconsistent, since the a:hasSSN
has the same value for two individuals a:Peter and a:Peter_Griffin. However,

a:Peter Griffin "123-45-6789") numberis "123-45-6789".
i OWL 2 does not make the unique name assumption, so a:Peter and

Page 93 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

a:Peter_Griffin are not necessarily distinct individuals. If the ontology were
i extended with the axiom DifferentIndividuals (a:Peter
i a:bPeter Griffin), then it would indeed become inconsistent.

The semantics of key axioms is specific in that these axioms apply only to
individuals explicitly introduced in the ontology by name, and not to unnamed
individuals (i.e., the individuals whose existence is implied by existential
quantification). This makes key axioms equivalent to a variant of DL-safe rules [DL-
Safe]. Thus, key axioms will typically not affect class-based inferences such as the
computation of the subsumption hierarchy, but they will play a role in answering
queries about individuals. This choice has been made in order to keep the
language decidable.

E
]
=
5
S
9
S

Example:

Consider the ontology consisting of the following axioms.

Each person is uniquely

HasKey(a:Person a:hasSSN) identified by their social
security number.

PropertyAssertion(a:hasSSN Peter's social security

a:Peter "123-45-6789") number "123-45-6789".

ClassAssertion(a:Person a:Peter
)
ClassAssertion (
SomeValuesFrom (
a:marriedTo

Peter is a person.

IntersectionOf (a:Man Lois is married to some man
)) numberis "123-45-6789".
)
a:Lois
)
SubClassOf (a:Man a:Person) Each man is a person.

The fourth axiom implies existence of some individual x that is an instance of
a:Man and whose value for the a:hasSSN data property is "123-45-6789"; by
the fifth axiom, x is an instance of a:Person as well. Furthermore, the second
and the third axiom say that a:Peter is an instance of a:Person and that the value
of a:hasSSN for a:Peteris "123-45-6789". Finally, the first axiom says that
a:hasSSN is a key property for instances of a:Person. Thus, one might expect x
to be equal to a:Peter, and for the ontology to entail the assertion

i HasValue (a:hasSSN "123-45-6789" whose social security ;
i ClassAssertion(a:Man a:Peter).

Page 94 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

! The inferences in the previous paragraph, however, cannot be drawn because of '
the DL-safe semantics of key axioms: x is an individual that has not been
+ explicitly named in the ontology; therefore, the semantics of key axioms does not :
. apply to x. Therefore, this OWL 2 ontology does not entail the assertion i
ClassAssertion(a:Man a:Peter).

9.5 Assertions

E
]
=
5
S
9
S

OWL 2 supports a rich set of axioms for stating assertions — axioms about
individuals that are often also called facts. For clarity, different types of assertions
are shown in three separate figures, Figure 18, 19, and 20. The Samelndividual
assertion allows one to state that several individuals are all equal to each other,
while the Differentindividuals assertion allows for the opposite — that is, to state
that several individuals are all different from each other. The ClassAssertion axiom
allows one to state that an individual is an instance of a particular class.

Adom

Assarlion

Samelndividual Differentindividuals ClassAssertion CiassExpression
1,

classExprassion

2.7, individuals

2.7 |individuail 1

individuals individual

Figure 18. Class and Individual (In)Equality Assertions in OWL 2

The ObjectPropertyAssertion axiom allows one to state that an individual is
connected by an object property expression to an individual, while
NegativeObjectPropertyAssertion allows for the opposite — that is, to state that an
individual is not connected by an object property expression to an individual.

Page 95 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

Adom

Assertion

E
]
=
5
S
9
S

ObjectPropertyAssertion MegativeObjectPropertyAssertion

1 .|, targetindividual 1.1, targetindividual

Individual 1

4L

sourcelndividual

sourcelndividual

1 ObjectPropertyExXpression 1

nhjectPropertyExpression nhjectPropetyExpressian

Figure 19. Object Property Assertions in OWL 2

The DataPropertyAssertion axiom allows one to state that an individual is
connected by a data property expression to literal, while
NegativeDataPropertyAssertion allows for the opposite — that is, to state that an
individual is not connected by a data property expression to a literal.

Page 96 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

Agdom

Asserfion

E
]
=
5
S
9
S

DataPropertyAssertion

HegativeDataPropertyAssertion

1.,|, dataPropertyExpression

DataPropertyExpression

1

dataPropertyExpression

1., targetalue

1,|, sourcelndividual

Literal
lexicalalue : String

individual | 1

sourcelndividual

17" targetvalue

Figure 20. Data Property Assertions in OWL 2

Assertion :=
Sameindividual | Differentindividuals | ClassAssertion |
ObjectPropertyAssertion | NegativeObjectPropertyAssertion |
DataPropertyAssertion | NegativeDataPropertyAssertion

sourcelndividual := Individual
targetindividual := Individual
targetValue := Literal

Page 97 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

9.5.1 Individual Equality

An individual equality axiom SameIndividual (a; ... ap) states that all of
the individuals aj, 1 <i < n, are equal to each other. This axiom allows one to use
each a; as a synonym for each a; — that is, in any expression in the ontology
containing such an axiom, a; can be replaced with a; without affecting the
meaning of the ontology.

E
]
=
5
S
9
S

Samelndividual := 'SameIndividual' ' (' axiomAnnotations Individual
Individual { Individual } ')

Example:
Consider the ontology consisting of the following axioms.

Meg and Megan are the

SameIndividual (a:Meg a:Megan .
{ J J) same objects.

PropertyAssertion(a:hasBrother
a:Meg a:Stewie)

Since a:Meg and a:Megan are equal, one individual can always be replaced with
the other one. Therefore, this ontology entails that a:Megan is connected by
a:hasBrother with a:Stewie — that is, the ontology entails the assertion

Meg has a brother Stewie.
PropertyAssertion(a:hasBrother a:Megan a:Stewie).

9.5.2 Individual Inequality

An individual inequality axiom DifferentIndividuals(a; ... ap) states
that all of the individuals a;, 1 <i < n, are different from each other; that is, no
individuals a; and a5 with i # j can be derived to be equal. This axiom can be used
to axiomatize the unique name assumption — the assumption that all different
individual names denote different individuals.

Differentindividuals := 'DifferentIndividuals' ' (' axiomAnnotations
Individual Individual { Individual } ')’

Example:

Consider the ontology consisting of the following axioms.

Page 98 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

PropertyAssertion(a:fatherOf .

P Y (Peter is the father of Meg.

a:Peter a:Meqg)

PropertyAssertion(a:fatherOf . .
2 - ! { Peter is the father of Chris.

a:Peter a:Chris)

PropertyAssertion(a:fatherOf

a:Peter a:Stewie) Peter is the father of Stewie.

Peter, Meg, Chris, and
Stewie are all different from
each other.

i DifferentIndividuals(a:Peter
; a:Meg a:Chris a:Stewie)

j<
]
=
5
S
9
S

The last axiom in this example ontology axiomatizes the unique name
assumption (but only for the three names in the axiom). If the ontology were
extended with an axiom FunctionalProperty(a:fatherOf), this axiom
would imply that a:Meg, a:Chris, and a:Stewie are all equal, which would
invalidate the unique name assumption and would make the ontology
inconsistent.

9.5.3 Class Assertions

A class assertion ClassAssertion(CE a) states that the individual a is an
instance of the class expression CE.

ClassAssertion := 'ClassAssertion' ' (' axiomAnnotations
ClassExpression Individual ')’

Example:
Consider the ontology consisting of the following axioms.

ClassAssertion(a:Dog a:Brian) Brianis a dog.
SubClassOf (a:Dog a:Mammal) Each dog is a mammal.

The first axiom states that a:Brian is an instance of the class a:Dog. By the
second axiom, each instance of a:Dog is an instance of a:Mammal. Therefore,
this ontology entails that a:Brian is an instance of a:Mammal — that is, the
ontology entails the assertion ClassAssertion(a:Mammal a:Brian).

Page 99 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

&=

e 9.5.4 Positive Object Property Assertions

)]

?:n A positive object property assertion PropertyAssertion(OPE ai ap) states
LE that the individual a; is connected by the object property expression OPE to the

;c individual as.

O

E ObjectPropertyAssertion := 'PropertyAssertion' '('

iaxiomAnnotations ObjectPropertyExpression sourcelndividual i
! targetindividual ')’ i

Example:
Consider the ontology consisting of the following axioms.

PropertyAssertion(a:hasDog
a:Peter a:Brian)

SubClassOf (SomeValuesFrom (. .
a:hasDog owl:Thing) a:DogOwner Things having a dog are dog

i owners.

Brian is a dog of Peter.

)

The first axiom states that a:Peter is connected by a:hasDog to a:Brian. By the
second axioms, each individual connected by a:hasDog to an individual is an
instance of a:DogOwner. Therefore, this ontology entails that a:Peter is an
instance of a:DogOwner — that is, the ontology entails the assertion
ClassAssertion(a:DogOwner a:Peter).

9.5.5 Negative Object Property Assertions

A negative object property assertion NegativePropertyAssertion(OPE aj
ay) states that the individual a1 is not connected by the object property
expression OPE to the individual a5.

NegativeObjectPropertyAssertion := 'NegativePropertyAssertion'
i ' (' axiomAnnotations objectPropertyExpression sourcelndividual i
' targetindividual ') ' i

Example:

Consider the ontology consisting of the following axiom.

Page 100 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

NegativePropertyAssertion (.
slneSen @5Eoter @aNeg | Meg is not a son of Peter.
If this ontology were extended with an assertion PropertyAssertion (
a:hasSon a:Peter a:Meg), the negative object property assertion would
be invalidated and the ontology would become inconsistent.

j<
]
=
5
S
9
S

9.5.6 Positive Data Property Assertions

A positive data property assertion PropertyAssertion(DPE a 1t) states
that the individual a is connected by the data property expression DPE to the literal
1t.

DataPropertyAssertion := 'PropertyAssertion' ' (' axiomAnnotations
DataPropertyExpression sourcelndividual targetValue ')'

Example:
Consider the ontology consisting of the following axioms.

PropertyAssertion(a:hasAge
a:Meg "17"""xsd:integer)
SubClassOf (
SomeValuesFrom(a:hasAge
DatatypeRestriction (
xsd:integer
xsd:minInclusive
"13"*"xsd:integer
xsd:maxInclusive
"19"*"xsd:integer

)

Meg is seventeen years old.

Things older than 13 and
younger than 19 (both 5
inclusive) are teenagers. i

)

a:Teenager

)

The first axiom states that a:Meg is connected by a:hasAge to the literal
"17"~~xsd:integer. By the second axioms, each individual connected by
a:hasAge to an integer between 13 and 19 is an instance of a:Teenager.
Therefore, this ontology entails that a:Meg is an instance of a:Teenager — that
is, the ontology entails the assertion ClassAssertion(a:Teenager a:Meg

Page 101 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

9.5.7 Negative Data Property Assertions

A negative data property assertion NegativePropertyAssertion(DPE a 1t
) states that the individual a is not connected by the data property expression DPE
to the literal 1t.

iNegativeDataPropertyAssertion := 'NegativePropertyAssertion' ' ('
i axiomAnnotations DataPropertyExpression sourcelndividual targetValue :

E
]
=
5
S
9
S

')'

Example:
Consider the ontology consisting of the following axiom.

NegativePropertyAssertion (
a:hasAge a:Meg "5"""xsd:integer Meg is not five years old.
)

If this ontology were extended with an assertion PropertyAssertion (
a:hasAge a:Meg "5"""xsd:integer), the negative data property
assertion would be invalidated and the ontology would become inconsistent.

10 Annotations

OWL 2 applications often need ways to associate information with ontologies,
entities, and axioms in a way that does not affect the logical meaning of the
ontology. Such information often plays a central role in OWL 2 applications.
Although such information does not affect the formal meaning of an ontology (i.e., it
does not affect the set of logical consequences that one can derive from an
ontology), it is expected to be accessible in the structural specification of OWL 2.
To this end, OWL 2 provides for annotations on ontologies, axioms, and entities.

Example:

One might want to associate human-readable labels with IRIs and use them
when visualizing an ontology. To this end, one might use the rdfs:label
annotation property to associate such labels with ontology IRIs.

Various OWL 2 syntaxes, such as the functional-style syntax, provide a mechanism
for embedding comments into ontology documents. The structure of such
comments is, however, dependent on the syntax, so these are simply discarded

Page 102 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

during parsing. In contrast, annotations are "first-class citizens" in the structural
specification of OWL 2, and their structure is independent of the underlying syntax.

Example:

i Since it is based on XML, the OWL 2 XML Syntax [OWL 2 XML Syntax] allows
' the embedding of the standard XML comments into ontology documents. Such |
comments are not represented in the structural specification of OWL 2 and,
» consequently, they should be ignored during document parsing. ;

E
]
=
5
S
9
S

10.1 Annotations of Ontologies, Axioms, and other Annotations

Ontologies, axioms, and annotations themselves can be annotated using
annotations shown in Figure 21. As shown in the figure, such annotations consist of
an annotation property and an annotation value, where the latter can be
anonymous individuals, IRIs, and literals.

AnnotationProperty Annotation | -

1
annotationAnnotations
annotationFroperty

1 annotationvalue
AnnotationValue

Anomymousindividual IR1 Literal

nodelD : String lexicalvalue @ String

Figure 21. Annotations of Ontologies and Axioms in OWL 2

Annotation := 'Annotation' ' (' annotationAnnotations
AnnotationProperty AnnotationValue ')'

Page 103 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

annotationAnnotations := { Annotation }
AnnotationValue := Anonymousindividual | IRl | Literal

10.2 Annotation Axioms

OWL 2 provides means to state several types of axioms about annotation
properties, as shown in Figure 22. These axioms have no effect on the Direct
Semantics of OWL 2 [OWL 2 Direct Semantics], and they are treated as axioms
only in order to simplify the structural specification of OWL 2.

E
]
=
5
S
9
S

Aodom
AnnotationAxiom
|SubAnnatationPropertyOf | AnnotationPropertyRange AnnotationAssertion
1 annotationSubject 1 tationyal
AnnotationPropertyDomain ! annolationmvalue
AnnotationSubject Annotationyalue
Y w [Anomymousindnidual| Literal
rang1e nodelD : String lexdcalvalue : String
domain
14)/subAnnotationProperty 1yyannotationProperty 14)/annotationProperty
4 AnnotationProperty 1
superAnnotationProperty annatationProperty

Figure 22. Annotations of IRIs and Anonymous Individuals in OWL 2

AnnotationAxiom := AnnotationAssertion | SubAnnotationPropertyOf |
AnnotationPropertyDomain | AnnotationPropertyRange

10.2.1 Annotation Assertion

An annotation assertion AnnotationAssertion(AP as at) states thatthe
annotation subject as — an IRl or an anonymous individual — is annotated with
the annotation property AP and the annotation value av. Such axioms have no
effect on the Direct Semantics of OWL 2 [OWL 2 Direct Semantics].

Page 104 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

iAnnotationAssertion := 'AnnotationAssertion' ' (' axiomAnnotations
i AnnotationProperty AnnotationSubject AnnotationValue ')' :
i AnnotationSubject := IRl | Anonymousindividual 5

Example:

The following axiom assigns a human-readable comment to the IRI a:Person.

E
]
=
5
S
9
S

i AnnotationAssertion(rdfs:label a:Person "Represents i
i the set of all people.") i

Since the annotation is assigned to an IR, it applies to all entities with the given
IRI. Thus, if an ontology contains both a class and an individual a:Person, the
above comment applies to both entities.

10.2.2 Annotation Subproperties

An annotation subproperty axiom SubPropertyOf (AP; AP,) states that the
annotation property AP; is a subproperty of the annotation property AP,. Such
axioms have no effect on the Direct Semantics of OWL 2 [OWL 2 Direct

Semantics].

SubAnnotationPropertyOf := 'SubPropertyOf' ' (' axiomAnnotations
subAnnotationProperty superAnnotationProperty ') '
subAnnotationProperty := AnnotationProperty

superAnnotationProperty := AnnotationProperty

10.2.3 Annotation Property Domain

An annotation property domain axiom PropertyDomain (AP U) states that the
domain of the annotation property AP is the IRl U. Such axioms have no effect on
the Direct Semantics of OWL 2 [OWL 2 Direct Semantics].

AnnotationPropertyDomain := 'PropertyDomain' ' (' axiomAnnotations
AnnotationProperty IRl ')’

Page 105 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

10.2.4 Annotation Property Range

An annotation property range axiom PropertyRange (AP U) states that the
range of the annotation property AP is the IRl U. Such axioms have no effect on the
Direct Semantics of OWL 2 [OWL 2 Direct Semantics].

AnnotationPropertyRange := 'PropertyRange' ' (' axiomAnnotations
AnnotationProperty IRl ')’

E
]
=
5
S
9
S

11 Global Restrictions on Axioms

The axiom closure Ax (with anonymous individuals renamed apart as explained in
Section 5.6.2) of each OWL 2 ontology O must satisfy the global restrictions
defined in this section. As explained in the literature [SROIQ], this restriction is
necessary in order to obtain a decidable language. The formal definition of these
conditions is rather technical, so it is split into two parts. Section 11.1 first
introduces the notions of a property hierarchy and of simple object property
expressions. These notions are then used in Section 11.2 to define the actual
conditions on Ax.

11.1 Property Hierarchy and Simple Object Property Expressions

For an object property expression OPE, the inverse property expression INV (OPE)
is defined as follows:

+ If OPE is an object property OP, then INV (OPE) = InverseOf (OP).
» if OPE is of the form InverseOf (OP) for OP an object property, then
INV (OPE) = OP.

The set AIIOPE(Ax) of all object property expressions w.r.t. Ax is the smallest set
containing 0P and INV (OP) for each object property OP occurring in Ax.

An object property expression OPE is composite in the set of axioms Ax if

* OPE is equal to owl:topObjectProperty or owl:bottomObjectProperty, or
» Ax contains an axiom of the form

° SubPropertyOf (PropertyChain(OPE; ... OPEp)
OPE) withn>1, or
o SubPropertyOf (PropertyChain(OPE; ... OPEp)

INV (OPE)) withn>1, or
°o TransitiveProperty(OPE), oOr
o TransitiveProperty(INV(OPE)).

Page 106 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

The relation — is the smallest relation on AIIOPE(Ax) for which the following
conditions hold (2 — B means that — holds for 2 and B):

» if Ax contains an axiom SubPropertyOf (OPE; OPE,), then OPE; —
OPE» holds; and

+ if Ax contains an axiom EquivalentProperties (OPE1 OPE,), then
OPE] — OPE» and OPE; — OPE; hold; and

+ if Ax contains an axiom InverseProperties(OPE; OPE,), then
OPE1 — INV (OPE») and INV (OPE») — OPE; hold; and

» if Ax contains an axiom SymmetricProperty (OPE), then OPE —
INV (OPE) holds; and

* if OPE{ — OPE> holds, then INV (OPE;) — INV (OPE2) holds as well.

E
]
=
5
S
9
S

The property hierarchy relation - is the reflexive-transitive closure of —.

An object property expression OPE i*s simple in Ax if, for each object property
expression OPE' such that OPE' — OPE holds, OPE' is not composite.

Example:

Roughly speaking, a simple object property expression has no direct or indirect
subproperties that are either transitive or are defined by means of property
chains, where the notion of indirect subproperties is captured by the property
hierarchy. Consider the following axioms:

SubPropertyOf (PropertyChain (
a:hasFather a:hasBrother)
a:hasUncle)

The brother of someone's
father is that person's uncle.

SubPropertyOf (a:hasUncle Having an uncle is a kind of
a:hasRelative) having a relative.
SubPropertyOf (

Having a biological father is

:hasBiol icalFath . g
gcnasbrosogicatiatier a kind of having a father.

a:hasFather)

The object property a:hasUncle occurs in an object subproperty axiom involving
a property chain, so it is not simple. Consequently, the object property
a:hasRelative is not simple either, because a:hasUncle is a nonsimple
subproperty of a:hasRelative. In contrast, the object property
a:hasBiologicalFather is simple, and so is a:hasFather.

11.2 The Restrictions on the Axiom Closure

The axioms Ax satisfy the global restrictions of OWL 2 if the following six conditions
hold:

Page 107 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

» Each class expression in Ax of a type from the following list contains an
object property expression that is simple in Ax:

o MinObjectCardinality, MaxObjectCardinality,
ExactObjectCardinality, and ObjectHasSelf .

» Each axiom in Ax of a type from the following list contains an object
property expression that is simple in Ax:

o FunctionalObjectProperty, InverseFunctionalObjectProperty,
IrreflexiveObjectProperty, AsymmetricObjectProperty, and
DisjointObjectProperties.

» The owl:topDataProperty property occurs in Ax only in the
superDataPropertyExpression part of SubDataPropertyOf axioms.

» A strict partial order (i.e., an irreflexive and transitive relation) < on
AIIOPE(Ax) exists that fulfills the following conditions:

o OP1 < OP3 if and only if INV (OP1) < OP> for all object properties
OP1 and 0P, occurring in AIIOPE(Ax).

o If OPE; < OPE, holds, then OPE, — 0PE; does not hold:

o Each axiom in Ax of the form SubPropertyOf (
PropertyChain(OPE; ... OPE,) OPE) with n 22 fulfills
the following conditions:

= OPE is equal to owl:topObjectProperty, or

= n=2and OPE; = OPE, = OPE, or

= OPE; <OPEforeach1<i<n,or

= OPE; = OPE and OPE; < OPE foreach2<i<n, or
= OPEp = OPE and OPE; < OPE foreach 1 <i<n-1.

» No axiom in Ax of the following form contains anonymous individuals:

o Samelndividual, Differentindividuals,
NegativeObjectPropertyAssertion, and
NegativeDataPropertyAssertion.

» A forest F over the anonymous individuals in Ax exists such that the
following conditions are satisfied, for OPE an object property expression,
_:xand :yanonymous individuals, and a a named individual:

o for each assertion in Ax of the form PropertyAssertion (
OPE :x :y),either :xisachildof :yor :yisa childof
_:xinF;

o for each pair of anonymous individuals _:x and :y such that
_:yisachildof :xinF, the axiom closure Ax contains at most
one assertion of the form PropertyAssertion(OPE :x
_:y) Or PropertyAssertion(OPE :y :x);and

o for each anonymous individual _:x that is a root in F, the axiom
closure Ax contains at most one assertion of the form
PropertyAssertion(OPE :x a) Or
PropertyAssertion(OPE a :x).

E
]
=
5
S
9
S

Example:

The first two restrictions merely prohibit the usage of nonsimple properties in
i number restrictions and in certain axioms about object properties. The third ;

Page 108 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

restriction limits the usage of owl:topDataProperty. Without it,
owl:topDataProperty could be used to write axioms about datatypes, which
would invalidate Theorem DS1 from the OWL 2 Direct Semantics [OWL 2 Direct

Semantics].

Example:

E
]
=
5
S
9
S

The main goal of the fourth restriction is to prevent cyclic definitions involving
object subproperty axioms with property chains. Consider the following ontology:

SubPropertyOf (PropertyChain (
a:hasFather a:hasBrother)
a:hasUncle)

The brother of someone's
father is that person's uncle.

SubPropertyOf (PropertyChain (
a:hasChild a:hasUncle)
a:hasBrother)

The uncle of someone's child
is that person's brother.

The first axiom defines a:hasUncle in terms of a:hasBrother, while the second
axiom defines a:hasBrother in terms of a:hasUncle. These two axioms are thus
cyclic: the first one depends on the second one and vice versa. Such cyclic
definitions are known to lead to undecidability of the basic reasoning problems.
Thus, these two axioms mentioned above cannot occur together in an axiom
closure of an OWL 2; however, each axiom alone may be allowed (depending on
the other axioms in the closure).

Example:

A particular kind of cyclic definitions is known not to lead to decidability
problems. Consider the following ontology:

SubPropertyOf (PropertyChain (

i a:hasChild a:hasSibling) Thesm“ngOfsomeones

a:hasChild) child is that person's child.

The above definition is cyclic, since the object property a:hasChild occurs in both
the subproperty chain and as a superproperty. Axioms of this form, however, do
not violate the global restrictions of OWL 2.

Example:

The fifth and the sixth restriction ensure that each OWL 2 ontology with
anonymous individuals can be transformed to an equivalent ontology without
anonymous individuals. Roughly speaking, this is possible if property assertions

Page 109 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02

Functional-Style Syntax

ontology:

PropertyAssertion (

a:Francis :x)

PropertyAssertion (

_:x a:Meg)

PropertyAssertion (
:x a:Chris)

E
]
=
5
S
9
S

PropertyAssertion (
_:X a:Stewie)

)
)

a:Francis

)

connect anonymous individuals in a tree-like way. Consider the following

a

a

a

a

The connections between individuals a:Francis, a:Meg, a:Chris, and a:Stewie
can be understood as a tree that contains _: x as its internal node. Because of
that, the anonymous individuals can be "rolled-up"; that is, these four assertions
can be replaced by the following equivalent assertion:

ClassAssertion (
SomeValuesFrom(a:hasChild
IntersectionOf (
HasValue (a:hasChild a:Meqg)
HasValue (a:rhasChild a:Chris)
HasValue (a:rhasChild a:Stewie)

If the anonymous individuals were allowed to be connected by properties in
arbitrary ways (and, in particular, in cycles), such a transformation would clearly
be impossible. This transformation, however, is necessary in order to reduce the
basic inference problems in OWL 2 to the appropriate description logic reasoning
problems with known computational properties [SROIQ].

December 2008

:hasChild Francis has some (unknown)
child.
thasChild This unknown child has
Meg...
:hasChild .
. ...Chris...
rhasChild

...and Stewie as children.

12 Appendix: Internet Media Type, File Extension, and

Macintosh File Type

Contact

lvan Herman / Sandro Hawke

See also

How to Register a Media Type for a W3C Specification Internet Media Type
registration, consistency of use TAG Finding 3 June 2002 (Revised 4

September 2002)

Page 110 of 123

http://www.w3.0org/TR/2008/WD-owl2-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

The Internet Media Type / MIME Type for the OWL functional-style Syntax is
text/owl-functional.

It is recommended that OWL functional-style Syntax files have the extension .ofn
(all lowercase) on all platforms.

It is recommended that OWL functional-style Syntax files stored on Macintosh HFS
file systems be given a file type of TEXT.

E
]
=
5
S
9
S

The information that follows will be submitted to the IESG for review, approval, and
registration with IANA.

Type name
text

Subtype name
owl-functional

Required parameters
None

Optional parameters
charset This parameter may be required when transfering non-ASCI| data
across some protocols. If present, the value of charset should be UTF-8.

Encoding considerations
The syntax of the OWL functional-style Syntax is expressed over code points
in Unicode [UNICODE]. The encoding should be UTF-8 [REC3629], but other
encodings are allowed.

Security considerations
The OWL functional-style Syntax uses IRIs as term identifiers. Applications
interpreting data expressed in the OWL functional-style Syntax should
address the security issues of Internationalized Resource Identifiers (IRIs)
[REC3987] Section 8, as well as Uniform Resource Identifiers (URI): Generic
Syntax [REC3986] Section 7. Multiple IRIs may have the same appearance.
Characters in different scripts may look similar (a Cyrillic "o" may appear
similar to a Latin "0"). A character followed by combining characters may have
the same visual representation as another character (LATIN SMALL LETTER
E followed by COMBINING ACUTE ACCENT has the same visual
representation as LATIN SMALL LETTER E WITH ACUTE). Any person or
application that is writing or interpreting data in the OWL functional-style
Syntax must take care to use the IRI that matches the intended semantics,
and avoid IRIs that may look similar. Further information about matching of
similar characters can be found in Unicode Security Considerations [UNISEC]
and Internationalized Resource ldentifiers (IRIs) [REC3987] Section 8.

Interoperability considerations
There are no known interoperability issues.

Published specification
This specification.

Applications which use this media type
No widely deployed applications are known to currently use this media type. It
is expected that OWL tools will use this media type in the future.

Additional information

Page 111 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

None.

Magic number(s)
OWL functional-style Syntax documents may have the strings 'Namespace:' or
'Ontology:' (case dependent) near the beginning of the document.

File extension(s)

Base IRI
There are no constructs in the OWL functional-style Syntax to change the
Base IRI.
Macintosh file type code(s)
"TEXT"
Person & email address to contact for further information
Ivan Herman <ivan@w3.org> / Sandro Hawke <sandro@w3.org>
Intended usage
COMMON
Restrictions on usage
None
Author/Change controller
The OWL functional-style Syntax is the product of the W3C OWL Working
Group; W3C reserves change control over this specification.

E
]
=
5
S
9
S

13 Complete Grammar (Normative)

This section contains the complete grammar of the functional-style syntax defined
in this specification document. The grammar has been split into two parts. The
following productions define the basic concepts such as IRIs and ontologies.

full-IRl := 'IRT as defined in [RFC3987], enclosed in a pair
of < (U+3C) and > (U+3E) characters'

NCName := 'as defined in [XML Namespaces]'

irelative-ref := 'as defined in [RFC3987]"

nonNegativelnteger := 'a nonempty finite sequence of digits
between 0 and 9'

quotedString := 'a finite sequence of characters in which "

' (U+22) and \ (U+5C) occur only in pairs of the form \"
(U+22, U+5C) and \\ (U+22, U+22), enclosed in a pair of "
i (U+22) characters'

languageTag := 'a nonempty (not quoted) string defined as
specified in BCP 47 [BCP 47]'
nodelD := 'a node ID of the form :name as specified in the

N-Triples specification [RDF Test Cases]'

namespace := full-IRI

prefix := NCName

reference := irelative-ref

curie := [[prefix] ':'] reference

Page 112 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

'Ontology' ' (' [ontologylRl [versionIRI]]
directlylmportsDocuments
ontologyAnnotations
axioms

l) 1

ontologylRIl := IRI

b =

g IRI := full-IRl | curie

Bo

£

(2] ontologyDocument := { prefixDefinition } Ontology

; prefixDefinition := 'Namespace' ' (' [prefix] '=' namespace ')'
9] Ontology :=

g

versionIRl := IRI

directlylmportsDocuments := { 'Import' '(' IRI ')"' }
ontologyAnnotations := { Annotation }

axioms := { Axiom }

Declaration := 'Declaration' '(' axiomAnnotations Entity ')'
Entity :=

'Class"' ' (' Class Yo

'Datatype' ' (' Datatype ')' |

'ObjectProperty' ' (' ObjectProperty ')' |
'DataProperty' ' (' DataProperty ')' |
'AnnotationProperty' ' (' AnnotationProperty ')' |

'NamedIndividual' ' (' Namedindividual ')'
AnnotationSubject := IRl | Anonymousindividual
AnnotationValue := Anonymousindividual | IRl | Literal
axiomAnnotations := { Annotation }
Annotation := 'Annotation' ' (' annotationAnnotations
AnnotationProperty AnnotationValue ')'
annotationAnnotations := { Annotation }
AnnotationAxiom := AnnotationAssertion | SubAnnotationPropertyOf |

AnnotationPropertyDomain | AnnotationPropertyRange

AnnotationAssertion := 'AnnotationAssertion' ' (' axiomAnnotations
AnnotationProperty AnnotationSubject AnnotationValue ') '

SubAnnotationPropertyOf := 'SubPropertyOf' ' (' axiomAnnotations

Page 113 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

subAnnotationProperty superAnnotationProperty ') '
subAnnotationProperty := AnnotationProperty
superAnnotationProperty := AnnotationProperty

AnnotationProperty IRl ')’

AnnotationPropertyRange := 'PropertyRange' ' (' axiomAnnotations
AnnotationProperty IRl ')’

E
]
=
5
S
9
S

' AnnotationPropertyDomain := 'PropertyDomain' ' (' axiomAnnotations !

Class := IRI
Datatype := IRI

ObjectProperty := IRI

DataProperty := IRI

AnnotationProperty := IRI

Individual := NamedIndividual | Anonymouslindividual
Namedindividual := IRI

Anonymouslindividual := nodelD

Literal := typedLiteral | abbreviatedXSDStringLiteral |
abbreviatedRDFTextLiteral

typedLiteral := lexicalValue '~~' Datatype
lexicalValue := quotedString

abbreviatedXSDStringLiteral := quotedString
abbreviatedRDFTextLiteral := quotedString 'Q@' languageTag

ObjectPropertyExpression := ObjectProperty | InverseObjectProperty
InverseObjectProperty := 'InverseOf' ' (' ObjectProperty ')'

DataPropertyExpression := DataProperty

Page 114 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

DataRange :=
Datatype |
DatalntersectionOf |
DataUnionOf |
DataComplementOf |
DataOneOf |
DatatypeRestriction

E
]
=
5
S
9
S

DatalntersectionOf := 'IntersectionOf' ' (' DataRange DataRange {
DataRange } ')'

DataUnionOf := 'UnionOf' ' (' DataRange DataRange { DataRange }
l)]

DataComplementOf := 'ComplementOf' ' (' DataRange ')'

DataOneOf := 'OneOf' ' (' Literal { Literal } ")’

DatatypeRestriction := 'DatatypeRestriction' '(' Datatype
constrainingFacet restrictionValue { constrainingFacet restrictionValue }
l) |l

constrainingFacet := IRI
restrictionValue := Literal
ClassExpression :=

Class |

ObjectintersectionOf | ObjectUnionOf | ObjectComplementOf |
ObjectOneOf |

ObjectSomeValuesFrom | ObjectAllValuesFrom | ObjectHasValue |
ObjectHasSelf |

ObjectMinCardinality | ObjectMaxCardinality | ObjectExactCardinality
|

DataSomeValuesFrom | DataAllValuesFrom | DataHasValue |

DataMinCardinality | DataMaxCardinality | DataExactCardinality

ObjectintersectionOf := 'IntersectionOf' ' (' ClassExpression
ClassExpression { ClassExpression } ')'

ObjectUnionOf := 'UnionOf' ' (' ClassExpression ClassExpression {
ClassExpression } ')'

ObjectComplementOf := 'ComplementOf' ' (' ClassExpression ')'

Page 115 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

b =

5

o0 ObjectOneOf := 'OneOf' ' (' Individual { Individual }')"'

o

-E ObjectSomeValuesFrom := 'SomeValuesFrom' ' ('

;o ObjectPropertyExpression ClassExpression ')'

9] ObjectAllValuesFrom := 'AllvValuesFrom' ' ('

‘E ObjectPropertyExpression ClassExpression ')'
ObjectHasValue := 'HasValue' ' (' ObjectPropertyExpression Individual
l) |l
ObjectHasSelf := 'HasSelf' ' (' ObjectPropertyExpression ')'
ObjectMinCardinality := 'MinCardinality' ' (' nonNegativelnteger

ObjectPropertyExpression [ClassExpression] ')'

ObjectMaxCardinality := 'MaxCardinality' ' (' nonNegativelnteger
ObjectPropertyExpression [ClassExpression] ')'

ObjectExactCardinality := 'ExactCardinality' ' (' nonNegativelnteger
ObjectPropertyExpression [ClassExpression] ')'

DataSomeValuesFrom := 'SomeValuesFrom' '('
DataPropertyExpression { DataPropertyExpression } DataRange ')'

DataAllValuesFrom := 'AllValuesFrom' ' (' DataPropertyExpression {
DataPropertyExpression } DataRange ')'

DataHasValue := 'HasValue' ' (' DataPropertyExpression Literal ')

DataMinCardinality := 'MinCardinality' ' (' nonNegativelnteger
DataPropertyExpression [DataRange] ')'

DataMaxCardinality := 'MaxCardinality' ' (' nonNegativelnteger
DataPropertyExpression [DataRange] ')'

DataExactCardinality := 'ExactCardinality' ' (' nonNegativelnteger
DataPropertyExpression [DataRange] ')'

Axiom := Declaration | ClassAxiom | ObjectPropertyAxiom |
DataPropertyAxiom | HasKey | Assertion | AnnotationAxiom

Page 116 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

“E :
?.u ClassAxiom := SubClassOf | EquivalentClasses | DisjointClasses |
= DisjointUnion
(o] SubClassOf := 'SubClassOf' ' (' axiomAnnotations
; subClassExpression superClassExpression ') '
9] subClassExpression := ClassExpression
‘E superClassExpression := ClassExpression
EquivalentClasses := 'EquivalentClasses' ' (' axiomAnnotations

ClassExpression ClassExpression { ClassExpression } ')'

DisjointClasses := 'DisjointClasses' ' (' axiomAnnotations
ClassExpression ClassExpression { ClassExpression } ')'

DisjointUnion := 'DisjointUnion' ' (' axiomAnnotations Class
disjointClassExpressions ') '
disjointClassExpressions := ClassExpression ClassExpression {

ClassExpression }

ObjectPropertyAxiom :=
SubObjectPropertyOf | EquivalentObjectProperties |
DisjointObjectProperties | InverseObjectProperties |
ObjectPropertyDomain | ObjectPropertyRange |
FunctionalObjectProperty | InverseFunctionalObjectProperty |
ReflexiveObjectProperty | IrreflexiveObjectProperty |
SymmetricObjectProperty | AsymmetricObjectProperty |
TransitiveObjectProperty

SubObjectPropertyOf := 'SubPropertyOf' ' (' axiomAnnotations
subObjectPropertyExpressions superObjectPropertyExpression ')’
subObjectPropertyExpressions := ObjectPropertyExpression |
propertyExpressionChain

propertyExpressionChain := 'PropertyChain' ' ('
ObjectPropertyExpression ObjectPropertyExpression {
ObjectPropertyExpression } ')'

superObjectPropertyExpression := ObjectPropertyExpression

EquivalentObjectProperties := 'EquivalentProperties' ' ('
axiomAnnotations ObjectPropertyExpression ObjectPropertyExpression {
ObjectPropertyExpression } ')'

DisjointObjectProperties := 'DisjointProperties' '('
axiomAnnotations ObjectPropertyExpression ObjectPropertyExpression {

Page 117 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

ObjectPropertyExpression } ')'

ObjectPropertyDomain := 'PropertyDomain' ' (' axiomAnnotations
ObjectPropertyExpression ClassExpression ')'

ObjectPropertyRange := 'PropertyRange' ' (' axiomAnnotations
ObjectPropertyExpression ClassExpression ')'

E
]
=
5
S
9
S

InverseObjectProperties := 'InverseProperties' ' ('
axiomAnnotations ObjectPropertyExpression ObjectPropertyExpression
1) 1

FunctionalObjectProperty := 'FunctionalProperty' ' ('
axiomAnnotations ObjectPropertyExpression ') '

InverseFunctionalObjectProperty := 'InverseFunctionalProperty'
' (' axiomAnnotations ObjectPropertyExpression ') '

ReflexiveObjectProperty := 'ReflexiveProperty' ' ('
axiomAnnotations ObjectPropertyExpression ')'

IrreflexiveObjectProperty := 'IrreflexiveProperty' ' ('
axiomAnnotations ObjectPropertyExpression ')'

SymmetricObjectProperty := 'SymmetricProperty' ' ('
axiomAnnotations ObjectPropertyExpression ') '

AsymmetricObjectProperty := 'AsymmetricProperty' ' ('
axiomAnnotations ObjectPropertyExpression ') '

TransitiveObjectProperty := 'TransitiveProperty' ' ('
axiomAnnotations ObjectPropertyExpression ')'

DataPropertyAxiom :=

SubDataPropertyOf | EquivalentDataProperties |
DisjointDataProperties |

DataPropertyDomain | DataPropertyRange | FunctionalDataProperty

SubDataPropertyOf := 'SubPropertyOf' ' (' axiomAnnotations
subDataPropertyExpression superDataPropertyExpression ') '
subDataPropertyExpression := DataPropertyExpression
superDataPropertyExpression := DataPropertyExpression

EquivalentDataProperties := 'EquivalentProperties' ' ('

Page 118 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

axiomAnnotations DataPropertyExpression DataPropertyExpression {
DataPropertyExpression } ')'

DisjointDataProperties := 'DisjointProperties' ' ('
axiomAnnotations DataPropertyExpression DataPropertyExpression {
DataPropertyExpression } ')'

DataPropertyDomain := 'PropertyDomain' ' (' axiomAnnotations
DataPropertyExpression ClassExpression ') '

E
]
=
5
S
9
S

DataPropertyRange := 'PropertyRange' ' (' axiomAnnotations
DataPropertyExpression DataRange ')'

FunctionalDataProperty := 'FunctionalProperty' ' ('
axiomAnnotations DataPropertyExpression ')'

HasKey := 'HasKey' ' (' axiomAnnotations ClassExpression
ObjectPropertyExpression | DataPropertyExpression {
ObjectPropertyExpression | DataPropertyExpression } ')'

Assertion :=
Samelndividual | Differentindividuals | ClassAssertion |
ObjectPropertyAssertion | NegativeObjectPropertyAssertion |
DataPropertyAssertion | NegativeDataPropertyAssertion

sourcelndividual := Individual

targetindividual := Individual

targetValue := Literal

Samelndividual := 'SameIndividual' ' (' axiomAnnotations Individual

Individual { Individual } ')

Differentindividuals := 'DifferentIndividuals' ' (' axiomAnnotations
Individual Individual { Individual } ')’

ClassAssertion := 'ClassAssertion' ' (' axiomAnnotations
ClassExpression Individual ')

ObjectPropertyAssertion := 'PropertyAssertion' '('
axiomAnnotations ObjectPropertyExpression sourcelndividual
targetindividual ')’

Page 119 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

NegativeObjectPropertyAssertion := 'NegativePropertyAssertion'
' (' axiomAnnotations objectPropertyExpression sourcelndividual
targetindividual ') '

DataPropertyAssertion := 'PropertyAssertion' ' (' axiomAnnotations
DataPropertyExpression sourcelndividual targetValue ') '

NegativeDataPropertyAssertion := 'NegativePropertyAssertion' '('
axiomAnnotations DataPropertyExpression sourcelndividual targetValue
') 1

E
]
=
5
S
9
S

14 Index

Editor's Note: The index will be created for the final version of the document.

15 Acknowledgments

The starting point for the development of OWL 2 was the OWL1.1 member
submission, itself a result of user and developer feedback, and in particular of
information gathered during the OWL Experiences and Directions (OWLED)
Workshop series. The working group also considered postponed issues from the
WebOnt Working Group.

This document is the product of the OWL Working Group (see below) whose
members deserve recognition for their time and commitment. The editors extend
special thanks to Bijan Parsia (University of Manchester), Mike Smith (Clark &
Parsia) and Vojtech Svatek (K-Space) for their thorough reviews.

The regular attendees at meetings of the OWL Working Group at the time of
publication of this document were: Jie Bao (RPI), Diego Calvanese (Free University
of Bozen-Bolzano), Bernardo Cuenca Grau (Oxford University), Martin Dzbor
(Open University), Achille Fokoue (IBM Corporation), Christine Golbreich
(Université de Versailles St-Quentin), Sandro Hawke (W3C/MIT), lvan Herman
(W3C/ERCIM), Rinke Hoekstra (University of Amsterdam), lan Horrocks (Oxford
University), Elisa Kendall (Sandpiper Software), Markus Krotzsch (FZI), Carsten
Lutz (Universitat Bremen), Boris Motik (Oxford University), Jeff Pan (University of
Aberdeen), Bijan Parsia (University of Manchester), Peter F. Patel-Schneider (Bell
Labs Research, Alcatel-Lucent), Alan Ruttenberg (Science Commons), Uli Sattler
(University of Manchester), Michael Schneider (FZI), Mike Smith (Clark & Parsia),
Evan Wallace (NIST), and Zhe Wu (Oracle Corporation). We would also like to
thank past members of the working group: Jeremy Carroll, Jim Hendler and Vipul
Kashyap.

Page 120 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

http://www.w3.org/Submission/2006/10/
http://www.w3.org/Submission/2006/10/
http://www.webont.org/owled/
http://www.webont.org/owled/
http://www.w3.org/2001/sw/WebOnt/webont-issues.html
http://www.w3.org/2004/OWL/

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

E
]
=
5
S
9
S

16 References

[OWL 2 Direct Semantics]
OWL 2 Web Ontology Language:Direct Semantics Boris Motik, Peter F. Patel-
Schneider, Bernardo Cuenca Grau, eds. W3C Working Draft, 02 December
2008, http://www.w3.0rg/TR/2008/WD-owl2-semantics-20081202/. Latest
version available at http://www.w3.org/TR/owl2-semantics/.

[OWL 2 XML Syntax]
OWL 2 Web Ontology Language:XML Serialization Boris Motik, Peter Patel-
Schneider, eds. W3C Working Draft, 02 December 2008, http://www.w3.org/
TR/2008/WD-owl2-xml-serialization-20081202/. Latest version available at
http://www.w3.org/TR/owl2-xml-serialization/.

[SROIQ]
The Even More Irresistible SROIQ. lan Horrocks, Oliver Kutz and Uli Sattler.
In Proc. of the 10th Int. Conf. on Principles of Knowledge Representation and
Reasoning (KR 2006). AAAI Press, 2006.

[XML]
Extensible Markup Language (XML) 1.1. Tim Bray, Jean Paoli, C. M.
Sperberg-McQueen, Eve Maler, Frangois Yergeau and John Cowan, eds.
W3C Recommendation 16 August 2006, edited in place 29 September 2006.

[XML Namespaces]
Namespaces in XML 1.0 (Second Edition). Tim Bray, Dave Hollander, Andrew
Layman and Richard Tobin, eds. W3C Recommendation 16 August 2006.

[XML Schema Datatypes]
W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes. D.
Peterson, S. Gao, A. Malhotra, C. M. Sperberg-McQueen, H. S. Thompson,
eds. W3C Working Draft 20 June 2008.

[RDF Syntax]
RDF/XML Syntax Specification (Revised). Dave Beckett, Editor, W3C
Recommendation, 10 February 2004, http://www.w3.org/TR/rdf-syntax-
grammar/.

[BCP 47]
BCP 47 - Tags for Identifying Languages. A. Phillips, M. Davis, eds., IETF,
September 20086, http://www.rfc-editor.org/rfc/bcp/bcp47.ixt.

[RFC 2119]
RFC 2119: Key words for use in RFCs to Indicate Requirement Levels.
Network Working Group, S. Bradner. Internet Best Current Practice, March
1997.

[RFC3629]
UTF-8, a transformation format of ISO 10646, F. Yergeau, November 2003,
http://www.ietf.org/rfc/rfc3629.txt

[RFC3986]
RFC 3986 Uniform Resource Identifier (URI): Generic Syntax, T. Berners-Lee,
R. Fielding and L. Masinter, January 2005, http://www.ietf.org/rfc/rfc3986.txt

[RFC3987]
RFC 3987 - Internationalized Resource Identifiers (IRIs). M. Duerst and M.
Suignard. IETF, January 2005, http://www.ietf.org/rfc/rfc3987.txt.

Page 121 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

http://www.w3.org/TR/2008/WD-owl2-semantics-20081202/
http://www.w3.org/TR/2008/WD-owl2-semantics-20081202/
http://www.w3.org/TR/owl2-semantics/
http://www.w3.org/TR/2008/WD-owl2-xml-serialization-20081202/
http://www.w3.org/TR/2008/WD-owl2-xml-serialization-20081202/
http://www.w3.org/TR/2008/WD-owl2-xml-serialization-20081202/
http://www.w3.org/TR/owl2-xml-serialization/
http://www.cs.man.ac.uk/~sattler/publications/sroiq-TR.pdf
http://www.w3.org/TR/xml11/
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/xmlschema11-2/
http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TR/rdf-syntax-grammar/
http://www.rfc-editor.org/rfc/bcp/bcp47.txt
http://www.rfc-editor.org/rfc/bcp/bcp47.txt
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc3629.txt
http://www.ietf.org/rfc/rfc3629.txt
http://tools.ietf.org/html/rfc3986
http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc3987.txt
http://www.ietf.org/rfc/rfc3987.txt

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

[OWL Semantics and Abstract Syntax]
OWL Web Ontology Language: Semantics and Abstract Syntax Peter F.
Patel-Schneider, Patrick Hayes and lan Horrocks, eds. W3C
Recommendation, 10 February 2004, http://www.w3.0rg/TR/2004/REC-owl-
semantics-20040210/. Latest version available at http://www.w3.org/TR/owl-
semantics/.

[CURIE]
CURIE Syntax 1.0: A syntax for expressing Compact URIs. M. Birbeck and S.
McCarron, Editors, W3C Working Draft, 26 November 2007,
http://www.w3.0rg/TR/2007/WD-curie-20071126/.

[RDF Test Cases]
RDF Test Cases. Jan Grant and Dave Beckett, Editors, W3C
Recommendation 10 February 2004, http://www.w3.org/TR/rdf-testcases/.

[ISO/IEC 10646]
ISO/IEC 10646-1:2000. Information technology — Universal Multiple-Octet
Coded Character Set (UCS) — Part 1: Architecture and Basic Multilingual
Plane and ISO/IEC 10646-2:2001. Information technology — Universal
Muiltiple-Octet Coded Character Set (UCS) — Part 2: Supplementary Planes,
as, from time to time, amended, replaced by a new edition or expanded by the
addition of new parts. [Geneva]: International Organization for
Standardization. 1SO (International Organization for Standardization).

[DL-Safe]
Query Answering for OWL-DL with Rules. Boris Motik, Ulrike Sattler and Rudi
Studer. Journal of Web Semantics: Science, Services and Agents on the
World Wide Web, 3(1):41-60, 2005.

[IEEE 754]
IEEE Standard for Binary Floating-Point Arithmetic. Standards Committee of
the IEEE Computer Society

[ISO 8601:2004]
ISO 8601:2004. Representations of dates and times. ISO (International
Organization for Standardization).

[RDF]
Resource Description Framework (RDF): Concepts and Abstract Syntax.
Graham Klyne and Jeremy J. Carroll, eds., W3C Recommendation 10
February 2004

[RDF:TEXT]
OWL 2 Web Ontology Language:rdf:text: A Datatype for Internationalized Text
Jie Bao, Axel Polleres, Boris Motik. W3C Working Draft, 02 December 2008,
http://www.w3.0rg/TR/2008/WD-rdf-text-20081202/. Latest version available at
http://www.w3.org/TR/rdf-text/.

[UNICODE]
The Unicode Standard Version 3.0, Addison Wesley, Reading MA, 2000,
ISBN: 0-201-61633-5, http://www.unicode.org/unicode/standard/standard.html

[UNISEC]
Unicode Security Considerations, Mark Davis and Michel Suignard, July 2008,
http://www.unicode.org/reports/tr36/

[MOF]
Meta Object Facility (MOF) Core Specification, version 2.0. Object
Management Group, OMG Available Specification January 2006.

E
]
=
5
S
9
S

Page 122 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

http://www.w3.org/TR/owl-semantics/
http://www.w3.org/TR/2004/REC-owl-semantics-20040210/
http://www.w3.org/TR/2004/REC-owl-semantics-20040210/
http://www.w3.org/TR/owl-semantics/
http://www.w3.org/TR/owl-semantics/
http://www.w3.org/TR/2007/WD-curie-20071126/
http://www.w3.org/TR/2007/WD-curie-20071126/
http://www.w3.org/TR/rdf-testcases/
http://www.w3.org/TR/rdf-testcases/
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B758F-4GDSF2D-1&_user=126524&_coverDate=07%2F31%2F2005&_alid=755096660&_rdoc=1&_fmt=high&_orig=search&_cdi=12925&_sort=d&_docanchor=&view=c&_ct=1&_acct=C000010360&_version=1&_urlVersion=0&_userid=126524&md5=3044e0a4ab4fa6c18c571c4431632751
http://standards.ieee.org/reading/ieee/std_public/description/busarch/754-1985_desc.html
http://www.w3.org/TR/rdf-concepts/
http://www.w3.org/TR/2008/WD-rdf-text-20081202/
http://www.w3.org/TR/2008/WD-rdf-text-20081202/
http://www.w3.org/TR/rdf-text/
http://www.unicode.org/unicode/standard/standard.html
http://www.unicode.org/unicode/standard/standard.html
http://www.unicode.org/reports/tr36/
http://www.unicode.org/reports/tr36/
http://www.omg.org/docs/formal/06-01-01.pdf

OWL 2 Web Ontology Language:Structural Specification and W3C Working Draft 02
Functional-Style Syntax December 2008

[UML]
OMG Unified Modeling Language (OMG UML), Infrastructure, V2.1.2. Object
Management Group, OMG Available Specification November 2007.

E
]
=
5
S
9
S

Page 123 of 123 http://www.w3.0org/TR/2008/WD-ow12-syntax-20081202/

http://www.omg.org/docs/formal/07-11-04.pdf

	OWL 2 Web Ontology Language:Structural Specification and Functional-Style Syntax
	W3C Working Draft 02 December 2008
	Abstract
	Status of this Document
	May Be Superseded
	Set of Documents
	Last Call
	Summary of Changes
	Please Comment By 23 January 2009
	No Endorsement
	Patents

	Contents
	1 Introduction
	2 Preliminary Definitions
	2.1 Structural Specification
	2.2 BNF Notation
	2.3 IRIs and Namespaces
	2.4 Integers, Strings, Language Tags, and Node IDs

	3 Ontologies
	3.1 Ontology IRI and Version IRI
	3.2 Ontology Documents
	3.3 Versioning of OWL 2 Ontologies
	3.4 Imports
	3.5 Ontology Annotations
	3.6 Canonical Parsing
	3.7 Functional-Style Syntax

	4 Datatype Maps
	4.1 Numbers
	4.2 Strings
	4.3 Boolean Values
	4.4 Binary Data
	4.5 IRIs
	4.6 Time Instants
	4.7 XML Literals

	5 Entities and Literals
	5.1 Classes
	5.2 Datatypes
	5.3 Object Properties
	5.4 Data Properties
	5.5 Annotation Properties
	5.6 Individuals
	5.6.1 Named Individuals
	5.6.2 Anonymous Individuals

	5.7 Literals
	5.8 Entity Declarations and Typing
	5.8.1 Typing Constraints
	5.8.2 Declaration Consistency

	5.9 Metamodeling

	6 Property Expressions
	6.1 Object Property Expressions
	6.1.1 Inverse Object Properties

	6.2 Data Property Expressions

	7 Data Ranges
	7.1 Intersection of Data Ranges
	7.2 Union of Data Ranges
	7.3 Complement of Data Ranges
	7.4 Enumeration of Literals
	7.5 Datatype Restrictions

	8 Class Expressions
	8.1 Propositional Connectives and Enumeration of Individuals
	8.1.1 Intersection of Class Expressions
	8.1.2 Union of Class Expressions
	8.1.3 Complement of Class Expressions
	8.1.4 Enumeration of Individuals

	8.2 Object Property Restrictions
	8.2.1 Existential Quantification
	8.2.2 Universal Quantification
	8.2.3 Individual Value Restriction
	8.2.4 Self-Restriction

	8.3 Object Property Cardinality Restrictions
	8.3.1 Minimum Cardinality
	8.3.2 Maximum Cardinality
	8.3.3 Exact Cardinality

	8.4 Data Property Restrictions
	8.4.1 Existential Quantification
	8.4.2 Universal Quantification
	8.4.3 Literal Value Restriction

	8.5 Data Property Cardinality Restrictions
	8.5.1 Minimum Cardinality
	8.5.2 Maximum Cardinality
	8.5.3 Exact Cardinality

	9 Axioms
	9.1 Class Expression Axioms
	9.1.1 Subclass Axioms
	9.1.2 Equivalent Classes
	9.1.3 Disjoint Classes
	9.1.4 Disjoint Union of Class Expressions

	9.2 Object Property Axioms
	9.2.1 Object Subproperties
	9.2.2 Equivalent Object Properties
	9.2.3 Disjoint Object Properties
	9.2.4 Inverse Object Properties
	9.2.5 Object Property Domain
	9.2.6 Object Property Range
	9.2.7 Functional Object Properties
	9.2.8 Inverse-Functional Object Properties
	9.2.9 Reflexive Object Properties
	9.2.10 Irreflexive Object Properties
	9.2.11 Symmetric Object Properties
	9.2.12 Asymmetric Object Properties
	9.2.13 Transitive Object Properties

	9.3 Data Property Axioms
	9.3.1 Data Subproperties
	9.3.2 Equivalent Data Properties
	9.3.3 Disjoint Data Properties
	9.3.4 Data Property Domain
	9.3.5 Data Property Range
	9.3.6 Functional Data Properties

	9.4 Keys
	9.5 Assertions
	9.5.1 Individual Equality
	9.5.2 Individual Inequality
	9.5.3 Class Assertions
	9.5.4 Positive Object Property Assertions
	9.5.5 Negative Object Property Assertions
	9.5.6 Positive Data Property Assertions
	9.5.7 Negative Data Property Assertions

	10 Annotations
	10.1 Annotations of Ontologies, Axioms, and other Annotations
	10.2 Annotation Axioms
	10.2.1 Annotation Assertion
	10.2.2 Annotation Subproperties
	10.2.3 Annotation Property Domain
	10.2.4 Annotation Property Range

	11 Global Restrictions on Axioms
	11.1 Property Hierarchy and Simple Object Property Expressions
	11.2 The Restrictions on the Axiom Closure

	12 Appendix: Internet Media Type, File Extension, and Macintosh File Type
	13 Complete Grammar (Normative)
	14 Index
	15 Acknowledgments
	16 References

