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Abstract—Models for detecting payment outliers from 
healthcare claims often rely on sparse, high-dimensional feature 
vector encodings of diagnosis codes. These encodings tend to lose 
inherent relationships between the diagnosis codes, and lead to 
more complex and less efficient models. In this paper, we propose 
a novel approach that leverages word and graph embeddings to 
represent diagnosis codes, particularly when predicting healthcare 
claim payment amounts within an outlier detection model. Word 
embeddings are generated using BioSentVec, utilizing medical 
descriptions of diagnosis codes extracted from the Unified Medical 
Language System (UMLS) database. Graph embeddings are 
created using node2vec applied to a claims graph network that 
connects claims information with the diagnosis code hierarchy.  On 
a dataset of 36 million claims, the graph embeddings outperformed 
other feature representations, improving R2 by over 99% 
compared to sparse encodings. Embedding representations 
produce significantly smaller dense vectors that encapsulate more 
information than large, sparse multi-hot encoded diagnosis code 
vectors. These dense embedded vectors provide meaningful 
representations of diagnosis codes, significantly improving 
payment prediction and outlier detection capabilities. 

Keywords—Healthcare Fraud Waste and Abuse, FWA, Payment 
Outlier Detection, Word Embedding, Graph Embedding 

I. INTRODUCTION 

Healthcare providers and insurance companies rely on 
payment models to determine the reimbursement amount for 
services rendered. In the evolving landscape of healthcare, the 
accurate detection of outlier payments plays a pivotal role in 
ensuring the integrity and sustainability of healthcare 
reimbursement systems. While identification of outlier 
payments may not always imply fraudulent activities, it does 
serve as an essential mechanism for flagging cases that require 
further scrutiny and review. Prior research [1], [2] has 
demonstrated that outliers in payment or billing can serve as 
indicators of potential fraudulent activities within healthcare 
claims. 

Broadly, healthcare fraud occurs when unscrupulous 
individuals or entities attempt to exploit vulnerabilities and 
loopholes in payment systems through deception to achieve 
unlawful financial gain. To counteract these activities, advanced 
techniques, including artificial intelligence and machine 
learning, are being employed to analyze medical claims data and 
detect potential instances of fraud, waste, and abuse (FWA), as 
well as improper payments [3], [4]. These methods scrutinize 
the intricacies of the data, aiming to uncover previously 
unrecognized trends and patterns, effectively thwarting 
emerging fraudulent schemes. This countermeasure promotes a 
preventive posture and helps payors mitigate the adverse 
consequences that a new fraud scheme may inflict.  

Most FWA from purposeful or erroneous claims result in 
augmentation of billing through overutilization, upcoding, and 
unbundling [5]. One approach to identifying FWA could be to 
build a model for each of the individual drivers of FWA, such as 
overutilization, upcoding, and unbundling. This research chose 
to focus on identifying where treatment costs of diagnosis are 
above expected peer group averages allowing investigators to 
capture multiple drivers of FWA overpayments under a single 
model. 

A model that accurately predicts the typical range of 
treatment costs for specific diagnoses can assist FWA 
investigators in identifying treatment costs that deviate 
significantly from the norm, where there might be a risk of 
inflated billing. However, primary diagnoses alone cannot 
account for ranges in costs. There is natural variation in the cost 
of treating a diagnosis [6]. Different factors go into what 
procedures a healthcare provider may need to apply to treat a 
condition (for example, cast, splint, or surgery for a  broken leg). 
Older patients may require more complex and longer treatment. 
Patients with autoimmune disorders or heart conditions may add 
different complexities to the procedures used and the overall 
cost of treatment. Differences in the place of service or network 
of providers may add additional variation to the overall costs. 
We can see examples of natural variation among some example 
diagnoses in Table I. Natural variations in treatment costs, 
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combined with the overall complexity of healthcare billing 
systems, allow providers to conceal errors and abuses in plain 
sight. 

TABLE I. Cost Examples for Common Diagnoses 

Medical Condition Cost Range 
Vaginal Delivery $5,923 to $9,535 (TX)1 
Broken Leg $15,000 to $40,000 (nationally)2 
Sepsis $18,000 to $50,000 (nationally)3 

 

For a model to account for variation among common 
diagnoses it should condition on additional factors such as the 
location where the service was rendered, patient demographics, 
secondary diagnosis, and other preexisting health conditions. 
Creating a model that can accurately predict treatment cost 
ranges, considering the intricacies of primary and secondary 
diagnoses as well as any preexisting conditions, is challenging 
due to the presence of over 68,000 distinct diagnosis codes [7]. 
Typically, one to three diagnosis codes are associated with a 
claim. Attempting to train a model on sparse diagnosis data can 
produce an over specified model with potentially spurious 
predictions. Additionally, diagnosis codes have inherent 
interrelated structure among each other that is lost if each 
diagnosis is treated discretely. Additional disadvantages 
associated with sparse feature representations of diagnosis codes 
include heightened model complexity, a general decline in 
model performance due to the curse of dimensionality [8], and 
an expanded memory footprint. The need to address these 
challenges related to sparsity prompted the exploration of dense 
embedding representations of diagnosis codes, with the aim of 
effectively capturing relevant information and establishing 
meaningful relationships among commonly used diagnosis 
codes.  

Our key contributions in this paper are: 1) we propose two 
novel techniques of representation learning of  diagnosis codes 
in healthcare claims using word and graph embeddings 
techniques, and 2) to the extent of our knowledge, this study is 
the first one to show the effectiveness of these embeddings over 
sparse encodings of diagnosis codes in predicting healthcare 
claim payment amounts, which is a key step in our outlier 
payment detection model. 

The paper covers related research in section II, data sources 
in section III, methods in section IV, and presents and discusses 
results in sections V and VI, respectively. 

II. RELATED RESEARCH 

Bauder and Khoshgoftaar [1] proposed a multivariate outlier 
payment detection method by combining multivariate regression 
with probabilistic programming. Using Medicare Provider 
Utilization and Payment Data: Physician and Other Supplier 
Public Use File CY 2012-2014 [9], the authors implement the 
regression model with features such as zip code, year, number 
of services performed per provider, total sum of procedures 
performed across providers, number of distinct Medicare 
beneficiaries served per day, average amount allowed for the 

 
1 https://www.mdsave.com/procedures/vaginal-delivery/d785fdca/texas 
2 https://enhancehealth.com/how-much-does-a-broken-bone-cost-without-
insurance/ 

services, and the average amount Medicare paid for the services 
performed. They show the viability of their methods in detecting 
potential payment fraud activities. In a prior research [10] 
Bauder and Khoshgoftaar demonstrated that it was possible to 
flag potential fraud by using a regression model to establish a 
baseline for expected payments and when actual payments 
deviate beyond a certain threshold they can be seen as outliers. 
Khurjekar et al. [11] proposed unsupervised approaches to 
detecting fraud using a multivariate regression model with 
average payment as the dependent variable. Claims which 
exceeded a residual threshold of $500 were clustered to identify 
fraudulent cases based on average cluster distances.  

Thornton et al. [12] applied outlier detection methods on 
state Medicaid claim provider and patient data, specifically for 
dental claims, to identify fraudulent activities. In their study they 
define metrics such as visit length, patient retention, and 
frequency of visits from known fraud cases and experts, which 
are treated as features in their study. While they developed an 
initial set of 100 behavioral metrics, this list was refined to only 
fifteen that could be applied to the dental provider pool. Out of 
360 dental providers, 17 were identified as outliers on three or 
more metrics.  Hu et al. [13] presented a framework based on 
regression models and Grubb’s outlier detection test for 
utilization analysis including hot spotting and anomaly 
detection. Specifically for anomaly detection they built models 
that map patients’ demographics and clinical characteristics 
such as International Classification of Disease (ICD) codes and 
Hierarchical Condition Categories codes to utilization levels, 
which can then be used to study deviations between expected 
and actual utilization levels. In [14] researchers focused on 
prediction of claim amounts and large spending anomalies from 
Medicare claims data. Using general linear regression and 
multivariate outlier detection on the residuals they show 
feasibility of studying outlier Medicare claim payments. They 
found that diagnostic radiation services in larger population 
states typically contributed to extreme outlier in terms of cost of 
services.  

Dense embeddings approaches have been previously used to 
train models for detecting healthcare FWA. Kumar et al. [15] 
combined claim information, such as diagnosis codes, procedure 
codes, and provider information, to create various provider 
embeddings. The provider embeddings are concatenated and 
passed to a meta embedding generator that produces a single 
meta embedding for a provider. The provider meta embedding 
is then passed to a classifier to determine if the provider is 
engaged in fraudulent activity. Sun et al. [16] evaluated medical 
knowledge graphs for detecting healthcare FWA. Specifically, 
the knowledge graph identifies three variations of inappropriate 
combinations of diagnosis and medication: a drug does not have 
the disease as an indication, the disease is a contraindication of 
the drug, and no suitable drugs for treating the disease appear in 
this claim. The authors constructed a medical knowledge graph 
by extracting entities and relationships from unstructured 
knowledge sources, including medical textbooks and medical 
examination records. Word embeddings were used to transform 

3 https://www.wolterskluwer.com/en/expert-insights/the-true-cost-of-sepsis-
how-performance-improvement-programs-are-missing-patients 

2154



 

 

the unstructured medical data into a format that can more 
effectively be used to build the medical knowledge graph. In 
[17] the authors propose Hcpcs2Vec for embedding procedure 
codes and show that for provider fraud classification these 
embeddings outperform one-hot encodings and other pre-trained 
embeddings. While various approaches to encoding diagnosis 
codes [18], [19] have been explored within the context of 
healthcare records, their adoption for detecting healthcare FWA 
from claims data remains limited. 

In contrast to prior studies which used procedure codes as 
key predictors of payment amounts and identification of outlier 
payments, we focus on diagnosis codes as key predictors of 
payment amount. The advantages of this approach have been 
discussed earlier. Most prior studies on payment outlier 
detection focus on traditional sparse feature encoding techniques 
such as one-hot or multi-hot encoding techniques to transform 
the claims data into feature vectors that can be used by machine 
learning models. Instead, we focus on using dense graph and 
word embeddings of diagnosis codes to predict paid amounts, 
which are in turn used to detect claims with outlier payments.  

III. DATASET 

A redacted and anonymized dataset of outpatient medical 
claims from state Medicare programs is used in this study. 
Outpatient claims are billed when patients visit healthcare 
providers for treatment but do not get admitted to a hospital. This 
dataset comprises of over 36 million distinct claims, over 2.8 
million patients and around 370,000 healthcare providers.  

Claims submitted to Medicare generally contain the 
following information: 

 Claim number: a distinct identifier for each claim. 

 Diagnosis codes: represent patient diagnosis and 
typically encoded using a standardized coding 
system for clinical terms, ICD-104. In this dataset 
each claim contains up to three ICD-10 codes – 
primary, secondary, and tertiary. ICD-10 codes 
consist of up to seven characters with the first three 
characters representing the general diagnosis, with 
remaining characters representing more specific 
categories. For example, the ICD-10 code 
S86.011D can be resolved as:  

o S86: injury of muscle, fascia, and tendon 
at lower leg. This is referred to as the 
general category code. 

o S86.011: strain of right Achilles tendon 

o D: represents a subsequent encounter 

There are over 68,000 distinct ICD-10 codes. 

 Procedure codes: capture procedures performed by 
healthcare provider and represented as Current 
Procedural Terminology (CPT) or Healthcare 
Common Procedure Coding System (HCPCS) 
codes5. These codes are made up of 5 characters. 

 
4 https://www.cms.gov/medicare/coordination-benefits-recovery-
overview/icd-code-lists 

For example, the CPT code 73615 represents 
“Review X-ray to determine if ankle is broken” and 
the HCPCS code E0112 represents “Prescribe 
underarm crutches”. There are over 10,000 
CPT/HCPCS codes. A claim contains at least one 
procedure but can consist of multiple procedures. 

 Provider ID: a distinct identifier for each provider 
typically following the National Provider Identifier 
(NPI) registry. 

 Patient demographics: patient age and gender. 

 Business practice state: primary state where the 
provider’s practice is enrolled. 

 Paid amount: total amount paid to a healthcare 
provider for all the procedures provided to a patient 
for a single claim.  

During data preprocessing we remove claims that violate 
data integrity checks such as claims with payment amount of 
zero United States dollars (USD), voided claims (claims not 
processed for payment due to user, patient, or payor errors), and 
claims where providers cannot be identified.  

IV. METHODS  

A. Featurization of Data for Machine Learning Models 
To build machine learning models for payment outlier 

detection we perform various transformations on the raw claims 
data. Encodings for variables with low dimensionality such as 
age and gender, as well as those with high dimensionality such 
as diagnoses codes are discussed below:  

 Age: Age is bucketed into three categories: under 
18, 18 to 54, and 55 and older. These categories are 
selected to align with the differences in procedures 
and medical costs that occur at different stages of 
life (Table II). The three age categories are one-hot 
encoded. 

 Gender: Gender consists of a one-hot encoded 
vector with 2 categories: male and female (Table 
II). 

 Business practice state: The physician’s business 
practice state is one of a finite set of US states and 
is one-hot encoded. 

 Payment amount: In this dataset the mean payment 
amount was 229.34 USD, and the standard 
deviation was 1913.80 USD. To reduce the 
skewness of the data the payment amounts are log 
transformed.  

 Diagnosis codes: All claims are required to contain 
a primary diagnosis (ICD-10) code. Claims may 
also contain optional secondary and tertiary ICD-
10 codes. Three variations of diagnosis code 
features are tested: sparse, word embedded, and 
graph embedded. The embedding approaches are 
elaborated in further details in the following 

5 https://www.cms.gov/medicare/fraud-and-
abuse/physicianselfreferral/list_of_codes 
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sections. To reduce the length of the sparse 
encodings, the general category codes for the 
primary, secondary, and tertiary diagnosis are 
multi-hot encoded for each claim. Results from 
features with sparse, multi-hot encoded diagnosis 
codes are compared with word and graph 
embedded diagnosis codes. Our dataset consisted 
of 40,353 individual full ICD-10 codes and 1882 
general category codes. 
 

TABLE II. Summary of Gender and Age Category Distributions 

 Female Male  
Less than 18 10.64% 11.72% 22.36% 
18 to 54 31.02% 15.20% 46.22% 
55 and older 19.29% 12.13% 31.42% 

 60.95% 39.05% 100% 

 

B. Word Embedding of Diagnosis Codes 
Word2vec is a natural language processing technique that 

uses a neural network trained on a large text corpus to learn 
associations between different words [20], [21]. It does this by 
representing words as multi-dimensional vectors that can then 
be processed using vector mathematics. BioSentVec [22] is an 
extension of word2vec that is trained on biomedical content 
from PubMed articles and clinical notes from Medical 
Information Mart for Intensive Care-III (MIMIC-III) Clinical 
Database6. It can generate embeddings for biomedical words 
and phrases and has been shown to achieve state-of-the-art 
results in sentence pair similarity tasks. Compared to more 
recent Transformer-based models, such as BioBERT [23] or 
ClinicalBERT [24], BioSentVec has demonstrated an average 
inference time that is 50 times faster (a critical consideration 
given the scale of our dataset) while also exhibiting superior 
performance in benchmarking experiments [25]. 

The National Institutes of Health maintains a Unified 
Medical Language System (UMLS) database7 that contains text 
descriptions for all ICD-10 codes. Descriptions are available for 
both the general category and full ICD-10 codes.  

To embed the ICD-10 codes, the UMLS description of each 
code is pre-processed to remove common stop words, and then 
it is embedded using BioSentVec. The result is a vector with 
200 dimensions that represents an ICD-10 code description. 
This is done for both the general category code description and 
the full ICD-10 code description. 

Since we use up to three ICD-10 codes (primary, secondary 
and tertiary) in this study, the final word embeddings used as 
model features are generated using two approaches: averaging 
and concatenation. For averaging, the three ICD-10 codes are 
averaged to create a single, dense vector with 200 dimensions. 
For concatenation, the embedding for the primary ICD-10 code 
is concatenated with the average for the secondary and tertiary 
ICD-10 codes, creating a single, dense vector with 400 
dimensions. Averaging and concatenation is done with both the 
embedded general category codes and full ICD-10 codes, 

 
6 https://github.com/ncbi-nlp/BioSentVec 

resulting in four variations of word embedded ICD-10 codes 
that are tested.  

C. Graph Embedding of Diagnosis Codes 
Graphs serve as a means of representing network structure 

information, where nodes represent individual entities 
interconnected by edges signifying relationships. Healthcare 
claims data stands out as an excellent candidate for effective 
graph modeling. In this context, we present a novel approach 
that combines claim-level details with the ICD-10 hierarchy to 
create diagnosis embeddings. 

In the realm of downstream machine learning applications, 
node embeddings play a crucial role [26]. In this study, our 
focus lies solely on the nodes associated with ICD-10 diagnosis 
codes. To create node embeddings from graphs, three key steps 
are required: (1) generating a graph structure from the claims 
data, (2) learning dense vector representation for individual 
nodes, and (3) extracting the diagnosis code node embeddings 
for downstream application. For the purposes of this study, we 
opted for a simple graph topology (the rule set determining how 
nodes and edges are arranged in a network)  consisting of 
diagnosis (ICD-10) codes, procedure (CPT) codes, and claim 
numbers as nodes [27]. Three distinct types of edges connect 
these nodes to create the graph structure:  

(1) Edges are formed between claim numbers and any 
CPT codes reported in reference to the claim. 

(2) Edges are formed between claim numbers and any 
ICD-10 codes reported in reference to the claim. 

(3) ICD-10 codes have a hierarchical tree structure 
[28]. For example, diabetes mellitus (child) 
belongs to the “endocrine, nutritional and 
metabolic diseases” (parent) category. Edges are 
created between parent and child ICD-10 codes. 

This approach results in a highly connected graph, with 
claims numbers serving as hubs linking ICD-10 and CPT codes 
with similar attributes. To maintain consistent graph properties, 
we utilized more than 200,000 distinct claims, extracted from 
the larger dataset of 36 million claims. We also experimented 
with constructing graphs using larger and smaller claim 
samples from the dataset. The results demonstrated that 
embeddings derived from graphs with larger claim samples 
remained consistent with those using 200,000 claims, while 
smaller claim samples exhibited slight variations. The 
constructed graph is then processed using node2vec [29] to 
generate embeddings for all general category and full ICD-10 
codes. This produced embedded vectors with 32 dimensions for 
representing the ICD-10 codes. 

As indicated for BioSentVec embeddings, we use up to three 
diagnosis codes for this study. The final embeddings used for 
model features are generated using two approaches: averaging 
and concatenation. For averaging, the three diagnosis codes are 
averaged to create a single, dense vector with 32 dimensions. 
For concatenation, the embedding for the primary diagnosis 
code is concatenated with the average for the secondary and 
tertiary diagnosis codes, creating a single, dense vector with 64 

7 https://www.nlm.nih.gov/research/umls/index.html
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dimensions. Averaging and concatenation is done with both the 
embedded general category codes and full diagnosis codes, 
resulting in four variations of graph embedded diagnosis codes 
that are tested. 

D. Outlier Payment Detection Model 
The outlier payment detection model comprises of two parts: 

a supervised paid amount predictor model, followed by an 
unsupervised probabilistic outlier detector model.  

The supervised model learns to predict the paid amount for 
a given claim. We experimented with random forest (RF) and 
gradient boosted tree (GBT) regression models.  These models 
have been shown to outperform other regression models of 
varying complexities ranging from linear regression to neural 
networks across a wide range of applications [30]–[32], 
including healthcare fraud detection [33], [34].   

For the unsupervised probabilistic outlier detection model,  
we convert the predicted payment amounts from the previous 
step into residuals by subtracting the predicted amount from the 
actual paid amount for a claim. For each primary diagnosis code, 
a distribution of residuals is generated, and z-scores are 
computed for individual claims. A probability (p) of each claim 
being an outlier is computed using a truncated normal 
distribution using the following formula: 

 

where  is the cumulative density function (cdf) of 
the normal distribution. The cdf gives the probability that a 
random variable with a given mean μ and standard deviation  
will take a value less than or equal to x. zcutoff  is a threshold z-
score, beyond which a data point is considered potentially 
anomalous. Iresidual is an identity function which is used to 
consider only one tail of the distribution. It is represented as: 

  

In essence, this methodology applies a series of 
transformations and calculations to residuals from a regression 
model to identify and quantify data points that are potentially 
anomalous. This approach aids in prioritizing which claims 
might need further investigation due to their unusual nature. 

For the supervised model, the dataset of 36 million claims is 
split into training and testing datasets in a 7:3 ratio, resulting in 
a training dataset with over 25 million distinct claims, and a 
testing dataset with almost 11 million distinct claims. Reliable 
detection of outlier payments depends on how accurately a 
model predicts paid amount from the input features. To evaluate 
the two models tested, we use Mean Absolute Error (MAE), 
Mean Squared Error (MSE), Root Mean Squared Error (RMSE), 
and Coefficient of Determination (R2). These metrics are 
commonly used to identify how well a regression model fits a 
dataset. For MAE, MSE and RMSE, smaller values for these 
metrics indicate better fit. R2 measures how well predictions 
approximate the actual data. R2 ranges from zero to one with 
larger values indicating a better fit. Although we look at each of 
these metrics, R2 generally is most informative for evaluating 
regression model performance [35].  

For the unsupervised model that identifies payment outliers 
for a given claim, we do not have labeled data to validate model 
outputs. To evaluate model performance, FWA subject matter 
specialists (SMS) labeled a set of 58 distinct claims with the 
likelihood of being an outlier payment: 'not likely' (NO), 'low 
likelihood' (LL), 'medium likelihood' (ML), or 'high likelihood' 
(HL). We experiment with various class compositions of these 
likelihood labels to evaluate model performance (Table III). 

TABLE III. Likelihood Label Combinations 

Negative Class Positive Class 
NO LL + ML + HL 
NO + LL ML + HL 
NO + LL + ML HL 

 

For example, in NO vs (LL + ML + HL), cases labeled as 
unlikely to be outliers are categorized as the negative class, 
while cases likely to be outlier are categorized as the positive 
class. Other combinations explored are: Negative Class: (NO + 
LL) vs Positive Class: (ML + HL), and Negative Class: (NO + 
LL + ML) vs Positive Class: ML. These label combinations help 
us determine the likelihood levels at which our model outputs 
align best with SMS labels. As each label combination leads to 
the binarization of classes, we evaluate the model using the Area 
Under the Receiver Operating Characteristic (AU-ROC) curve, 
a commonly used metric for binary classification. AU-ROC 
scores range from 0 to 1 with higher values indicating better 
predictions. 

V. RESULTS 

A. Paid Amount Prediction 
For paid amount prediction with RF and GBT regression 

models, results were generated with the following variations of 
the diagnosis code representations:  

 Sparse encoded general category diagnosis codes 
 Word embedded general category diagnosis codes 
 Word embedded full diagnosis codes 
 Graph embedded general category diagnosis codes 
 Graph embedded full diagnosis codes 

In every case, the GBT regression model outperformed the 
RF regression model. Since this study is focused on 
identification of optimal feature representation of diagnosis 
codes for payment outlier detection, we only present the results 
of the GBT regression model for various diagnosis code 
representations.  

For word embedding, the embedded general category 
diagnosis codes outperformed embedded full diagnosis codes. 
For graph embedding, the embedded full diagnosis codes 
outperformed embedded general category diagnosis codes. The 
results presented in this section compare performance for sparse 
encoded diagnosis vectors, word embedded general category 
diagnosis codes, and graph embedded full diagnosis codes. 

1) Sparse Encoded Versus Word Embedded Features 
Results comparing sparse encoded and word embedded 

diagnosis codes as features in the model are presented in Table 
IV. The general category codes for diagnoses are used for both 
sparse encoded and word embedded features. Results for word 
embedded general category diagnosis codes are presented 
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because they outperform full word embedded diagnosis codes 
on all evaluation metrics. Across all the metrics in Table IV, 
namely, MAE, MSE, RMSE, and R2 we find that the model with 
concatenated word embeddings outperforms the other 
featurization techniques. 

TABLE IV. Summary of Results on Test Data with GBT Model for Sparse 
General Category Codes and Word Embedded General Category Codes 

Metric Sparse 
Diagnosis 

Codes 

Average Word 
Embedded 

Diagnosis Codes 

Concatenated 
Word 

Embedded 
Diagnosis Codes 

MAE 0.850 0.853 0.810 
MSE 1.396 1.409 1.274 

RMSE 1.182 1.187 1.129 
R2 0.127 0.168 0.229 

 
2) Sparse Encoded Versus Graph Embedded Features 
Results comparing sparse encoded, and graph embedded 

diagnosis codes are presented in Table V. Results for full graph 
embedded diagnosis codes are presented because they 
outperform general category graph embedded diagnosis codes 
on each of the evaluation metrics. As with the word embeddings 
we find that the concatenated graph embeddings outperform the 
other featurization approaches.  

Overall, we find that the GBT regression model trained with 
graph embedded diagnosis codes outperforms the same model 
trained with word embedded codes. 

TABLE V. Summary of Results on Test Data with GBT Model for Sparse 
General Category Codes and Graph Embedded Full Diagnosis Codes 

Metric Sparse 
Diagnosis 

Codes 

Average Graph 
Embedded 

Diagnosis Codes 

Concatenated 
Graph 

Embedded 
Diagnosis Codes 

MAE 0.850 0.850 0.808 
MSE 1.396 1.388 1.238 

RMSE 1.182 1.178 1.113 
R2 0.127 0.177 0.253 

B. Probabilistic Outlier Detection 
As discussed in Section IV (D), prediction of paid amount 

for a given claim is key in determining outlier payments. Since 
we have already shown that for paid amount prediction the GBT 
regression model with diagnosis codes represented as graph 
embeddings outperform other approaches, in this section we 
only present evaluation of the unsupervised probabilistic outlier 
payment detector that uses this model. 

AU-ROC scores of model predictions against FWA SMS 
labeled data with various combinations of likelihood are shown 
in Table VI. 

 
TABLE VI. AU-ROC Scores of Unsupervised Outlier Detection Method 

on FWA SMS Labeled Data Across Various Class Compositions. 

Negative Class Positive Class AU-ROC 
NO LL + ML + HL 0.715 
NO + LL ML + HL 0.760 
NO + LL + ML HL 0.880 

 
We find that the model performs well across each of the 

class compositions with AU-ROC scores ranging between 
0.715 and 0.88. Our model is most effective in identifying 
outliers that are considered highly likely by FWA SMS. 

VI. DISCUSSION 

We conducted a feature importance analysis on the paid 
amount prediction model to gauge the influence of each feature 
on its performance. Models based on Classification and 
Regression Trees (CART), like the GBT model utilized in this 
study, can estimate feature importance [36]. The primary 
diagnosis code has by far the greatest impact on the model 
performance at 48 percent, which is twice as important as the 
secondary diagnosis code, and of much greater importance than 
the other features (business practice state: 13.5%,  tertiary 
diagnosis code: 13.3%, age and gender combined: 0.4%). This 
result is expected since the primary diagnosis is directly related 
to the claim payment amount.  

Tables IV and V compare performance for sparse and 
embedded ICD-10 codes. The MAE, MSE, RMSE, and R2 

metrics provide insight into how well the model performs with 
embedded ICD-10 versus the baseline sparse ICD-10. As 
discussed in Section IV (D), the ability of the model to reliably 
detect paid amount outliers for a specific primary diagnosis code 
depends on how accurately it predicts paid amount from input 
feature data, and R2 is the most appropriate metric for evaluating 
model performance. 

The results presented in Table IV compare performance for 
sparse ICD-10 codes with word embedded ICD-10 codes. For 
both the sparse and word embedded results, general category 
ICD-10 codes are used. Averaging the word embedded ICD-10 
codes improved R2 performance over the sparse ICD-10 codes 
by over 32 percent for the test data. Concatenating the word 
embedded ICD-10 codes improved R2 performance over the 
sparse ICD-10 codes by over 80 percent for the test data. 

The results presented in Table V compare performance for 
sparse ICD-10 codes with graph embedded ICD-10 codes. For 
both the sparse results, general category ICD-10 codes are used. 
For the graph embedding results, full ICD-10 codes are used. 
Averaging the graph embedded ICD-10 codes improved R2 
performance over the sparse ICD-10 codes by over 39 percent 
for the test data. Concatenating the graph embedded ICD-10 
codes improved R2 performance over the sparse ICD-10 codes 
by over 99 percent for the test data. 

In addition to significantly improving model performance, 
embedding offers other benefits. With embeddings, the full 
ICD-10 code can be used. Since the data used in this study 
contains over 40 thousand ICD-10 codes, using the full 
diagnosis code for sparse features is not possible because the 
total feature vector would have a length of over 40 thousand of 
mostly zeros for just the diagnosis codes. Even the general 
category code produces a large, sparse ICD-10 vector with a 
length of over 1,800. Word embedding creates a dense vector 
with a total length of 200 for averaged embeddings or 400 for 
concatenated embeddings. Similarly, graph embedding the full 
diagnosis codes creates a dense vector with total length of 32 or 
64 for averaged and concatenated, respectively. Also, the much 
smaller dense embedded vectors contain significantly more 
information than the large, sparse vectors. The combination of 
these benefits explains why embedded ICD-10 significantly 
outperform sparse, multi-hot encoded ICD-10. 
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When utilizing our payment outlier model to detect 
suspicious payment amounts from claims, we uncovered an 
instance in which a patient diagnosed with Autistic Disorder 
(ICD-10 code F84.0) was billed by a healthcare practitioner 
specializing in Applied Behavior Analysis (ABA) at rates 
ranging from $150 to $210 per 15-minute unit. This was a 
noticeable deviation from the peer group average of $30 per 15-
minute unit found in our dataset. Additionally, our model 
flagged several claims from a Home Health Agency (HHA) 
which upon further investigation exhibited potential overcoding 
of billed units and discrepancies in the level of provider billing. 
These led to inflated reimbursements above peer group averages 
for various diagnosis codes, including Type II Diabetes 
Mellitus, without complications (ICD-10 code E11.9), Autistic 
Disorder (ICD-10 code F84.0), and Cerebral Palsy, unspecified 
(ICD-10 code G80.9). 

VII. CONCLUSION 

A GBT regression model, when combined with a 
probabilistic outlier detector and using embedded diagnosis 
codes as input features, performs effectively in detecting 
healthcare payment outliers. In all scenarios, dense word and 
graph embeddings significantly outperformed baseline results 
with sparse, multi-hot encoded diagnosis codes. Although it 
results in larger vectors, concatenating the embedded diagnosis 
codes yielded better results than averaging, likely due to the 
richer information in concatenated vectors. Notably, for paid 
amount prediction, graph embedding showed an improvement 
of over 99% in R2 compared to sparse encodings. Due to the 
time-consuming and labor-intensive nature of manually labeling 
validation data by FWA SMS, the number of data points 
available for model testing was limited. Nonetheless, we intend 
to expand this dataset in the future as more cases are flagged by 
the model and prioritized for SMS review. Possible areas of 
future research include evaluating other ensemble approach for 
the regression model and incorporating more claims features, 
such as embedded procedure codes. While we present 
preliminary results of an unsupervised probabilistic method for 
outlier payment detection, we would like to explore other 
unsupervised approaches in future.  
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