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Cholera outbreaks affect communities that lack 
access to safe water and adequate sanitation (1). 

Spatiotemporal clustering patterns of cholera indi-
cate a high risk of transmission to the neighboring 
households of new cases (2,3). Case-area targeted 
interventions (CATI), consisting of early, multisec-
toral response within a 100–500-meter radius around 
case-households, have been proposed to attenuate 
clustered transmission (4). CATIs, driven by water, 
sanitation, and hygiene interventions, played a major 
role in response strategies in Haiti and Yemen, and 
CATIs including oral cholera vaccination helped sup-
press outbreaks after vaccination campaigns in Cam-
eroon (5,6). In the Democratic Republic of the Congo 
(DRC), health officials evaluated water, sanitation, 
and hygiene targeting strategies within 500 meters 
around households with cholera cases (7). In Kalemie, 
DRC, and N’Djamena, Chad, researchers estimated a 

200-meter zone of increased risk of infection around 
cholera cases in the first 5 days (2). As CATIs become 
part of routine practice (4,5), more insight is needed 
in delineating the spatiotemporal risk zones required 
to achieve a substantive effect on transmission.

In Uvira, a city in eastern DRC affected by pro-
tracted conflict, population displacement, and flood-
ing, cholera is endemic, and stable transmission is 
punctuated by seasonal outbreaks (8). Citywide in-
terventions include an ongoing piped water supply 
program with household tap installation beginning 
in late 2019 (9) and mass vaccination in mid-2020 
(10). Using an enhanced surveillance system with 
rapid diagnostic testing (RDT), we investigated the 
location, timing, and prediction of clusters to iden-
tify outbreaks earlier and trigger early response. We 
estimated the extent of spatiotemporal zones of in-
creased risk around cases as a proxy for the ideal 
radius of CATIs.

The Study
We analyzed suspected cases of cholera during 
2016–2020 in patients at cholera treatment centers 
managed by the Uvira Health Zone. Beginning in 
April 2016, rectal swab samples were collected from 
suspected cases and RDT tested (Crystal VC O1/
O139; Arkray Inc., https://www.arkray.co.in) after 
a 6-hour enrichment in alkaline peptone water. We 
classified cases by avenue of residence (i.e., enu-
meration areas of mean size 1,177 [range 180–5,711] 
based on 2017 population sizes) (town of Uvira cen-
sus data, 2018, unpub. data). We used 2 methods to 
evaluate spatiotemporal clustering. The space–time 
scan statistic describes local clustering, where cas-
es exceed expected density within a given area, to 
identify spatiotemporal clusters and assign relative 
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We evaluated the spatiotemporal clustering of rapid di-
agnostic test−positive cholera cases in Uvira, eastern 
Democratic Republic of the Congo. We detected spa-
tiotemporal clusters that consistently overlapped with 
major rivers, and we outlined the extent of zones of in-
creased risk that are compatible with the radii currently 
used for targeted interventions.
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risk comparing observed versus expected cases in-
side and outside the cluster (11). To assess capacity 
for early detection of outbreaks, we simulated real-
time detection by scanning prospectively (using few 
cases) and compared the delay with retrospective 
scanning (using more cases). We calculated the pro-
portion of years that avenues were included in clus-
ters during 2016–2020. The tau statistic (τ) describes 
global clustering, or the overall tendency for cases to 
occur near other cases in time and space (12), by us-
ing a relative risk of an individual in the population 
within a given distance band (i.e., 100–150 meters) 
from an incident case,  compared with the risk for any 
individual in the population, becoming a potentially 
transmission-related case. This statistic suggests the 
geographic and temporal extents of increased infec-
tion risk. We defined the high-risk and elevated-risk 
zones as the radius where the moving average’s low-
er 95% CI (high risk) and point estimate (elevated 
risk) cross 1.0 for ≥30 consecutive meters. We based 
the main analyses on enriched RDT-positive cases. 
We conducted sensitivity analyses using suspected 
cases, and given the use of enumeration areas, using 
simulated household locations (Appendix, https://
wwwnc.cdc.gov/EID/article/30/8/23-1137-App1.

pdf). We carried out analyses in R software v.4.1.2 
(The R Foundation for Statistical Computing, 
https://www.r-project.org) by using the rsatscan 
v.1.0.5 (combined with SaTScan v.10.0.2) and IDSpa-
tialStats v.0.3.12 packages. 

Among 5,447 suspected cases, 3,456 (63.4%) were 
tested and 1,493 (43.2%) were RDT positive. We de-
tected 26 significant spatiotemporal clusters (Table). 
Mean cluster radius was 652 (range 308–1582) meters, 
mean size was 20 (range 4–48) cases, and mean dura-
tion was 24.8 (range 1–58) days. Clustering occurred 
in similar locations annually (Figure 1). The first day 
of a retrospectively detected cluster usually anticipat-
ed a seasonal outbreak within 1 week, except for 2016 
and 2017, when few cases were RDT tested (Figure 2, 
panel A). The median delay to the early outbreak sig-
nal was 1 day (interquartile range 0–3, maximum 23 
days), and median size at signal detection was 3 cases 
(interquartile range 2–7, maximum 21 cases). Large 
clusters persisted across 2016–2020 and overlapped 
with major rivers in north-central and southern  
Uvira (Figure 2, panel B). We observed no changes in 
cluster locations in 2019, after household tap imple-
mentation began (Figures 1, panels D, E). Sensitiv-
ity analysis of suspected cases found more clusters  

 
Table. Statistically significant spatiotemporal clusters of RDT-positive cholera cases detected through annual scanning at the avenue 
level, Uvira, Democratic Republic of the Congo, 2016−2020* 

Year No. 
Cases observed: 

expected 
Population 

at risk RR† 
Cluster radius, 

meters 
Cluster start 

date  
Cluster 

duration, d 
Signal 

delay, d‡ 
Size at signal, 

no. cases 
2016 1 20:1 30,553 20.9§ 1,140 Aug 5 18 8 11 

2 28:3 34,232 10.5§ 497 Jun 25 48 0 2 
3 17:1 30,758 13.8§ 717 Jul 22 23 5 12 
4 15:1 31,240 11.9§ 758 Jun 29 23 1 4 
5 4:0 6,579 344.4§ 376 Apr 9 1 0 3 
6 14:2 30,082 8.8§ 668 Jul 21 30 0 3 
7 9:1 27,452 12.6¶ 368 Jul 26 14 3 4 

2017 1 48:4 51,012 13.0§ 811 Aug 7 40 2 2 
2 32:2 43,992 16.4§ 657 Aug 20 23 1 13 
3 32:4 49,794 7.7§ 880 Aug 23 44 0 2 
4 13:1 51,016 16.4§ 378 Dec 24 7 0 2 
5 12:2 50,635 7.6¶ 368 Aug 23 15 12 2 

2018 1 20:1 28,884 26.6§ 1,116 Oct 26 13 6 9 
2 11:1 31,204 22.7§ 475 Feb 13 7 0 3 
3 8:0 25,148 40.6§ 662 Aug 28 3 0 4 
4 7:0 17,345 18.6¶ 308 Nov 10 10 1 3 

2019 1 23:1 33,751 18.6§ 743 Sep 10 18 1 7 
2 21:3 33,162 9.0§ 755 Sep 7 35 0 12 
3 12:1 16,210 12.3§ 309 Apr 27 29 1 2 
4 11:1 16,495 13.2§ 527 Sep 7 24 0 2 
5 6:0 15,001 27.8¶ 368 Jun 30 6 0 2 

2020 1 42:6 60,378 7.8§ 1,048 Jul 29 58 2 3 
2 27:3 42,423 8.7§ 599 Jul 15 46 23 21 
3 17:1 56,029 19.1§ 1,582 Feb 20 9 0 2 
4 30:5 63,207 6.5§ 343 May 30 46 2 6 
5 32:6 63,593 5.8§ 501 Jun 1 55 4 6 

*RDT, rapid diagnostic test; RR, relative risk.  
†p values indicate the statistical significance of clusters derived from Monte Carlo simulations. 
‡Signal delay indicates the number of days between retrospective detection date with all available data and the earliest prospective detection date.  
§p<0.001.  
¶p<0.05. 

 

http://www.cdc.gov/eid
https://wwwnc.cdc.gov/EID/article/30/8/23-1137-App1.pdf
https://wwwnc.cdc.gov/EID/article/30/8/23-1137-App1.pdf
https://wwwnc.cdc.gov/EID/article/30/8/23-1137-App1.pdf
https://www.r-project.org


 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 30, No. 8, August 2024 1679

 Cholera, Democratic Republic of the Congo, 2016−2020

(n = 32) in similar locations with similar mean radii 
(668 [range 331–1,557] meters), larger mean size (42 
[range 6–130] cases), and longer duration (27.8 [range 
1–59] days) (Appendix Table 2, Figure 5).

In 2016–2020, within 5 days after cases began, 
the high-risk zone extended to 1,105 meters, and 
risk remained elevated up to 1,665 meters (maxi-
mum moving average τ = 1.8, 95% CI 1.4–2.3) (Fig-
ure 3, panel A). During days 1–4, which is more 
realistic for response, risk zones remained similar 
(Figure 3, panel D). In 2020, the high-risk zone ex-
tended to 585 meters and risk remained elevated up 
to 1,915 meters (τ = 1.8, 95% CI 1.0–2.9) (Figure 3, 
panel B). During days 1–4, the risk zones were 425 
meters (high risk) and 1,915 meters (τ = 1.7, 95% 
CI 1.1–2.6) (Figure 3, panel E). Results were similar 
when we used simulated household locations (dur-
ing days 0–4) with a moving average τ≥2.0 at 75–275 
meters (τ = 2.4, 95% CI 1.7–3.3) and high-risk zone 
radius (1,415 meters) (Appendix Table 1, Figure 4).  

Annual results showed lower high-risk (425 meters, 
except 2017, when it was 875 meters) and elevated 
(1,125–1,485 meters) zone ranges and no discernable 
changes after 2019, when household tap implemen                               
tation began (Appendix Figure 6). Using suspected 
cases from 2020, the trends remained similar (Figure 
3, panels E, F).

Conclusions
We detected spatiotemporal clustering of cholera out-
breaks during 2016–2020 in Uvira, DRC, that could in-
form early mitigation of seasonal outbreaks. The clus-
tering methods produced aligned results compatible 
with a high-risk radius of ≤500 meters, as previously 
used for CATI in DRC (7,13) and similar to clustering 
in Matlab, Bangladesh, and coastal Sabah, Malaysia  
(500 meters, ≈5 days after cases began) (3,14). For 
RDT-positive cases within 5 days after cases began, 
we estimated a 1,105-meter high-risk radius, show-
ing that a ≤1,000-meter risk window is optimal. Scan  

Figure 1. Spatial distribution of spatiotemporal clusters of rapid diagnostic test–positive cholera cases at the avenue level, Uvira, 
Democratic Republic of the Congo, 2016−2020. A) 2016; B) 2017; C) 2018; D) 2019; E) 2020; F) 2016–2020. Clusters have a relative 
risk >1 (p<0.05). The sizes of the light blue circles depict the spatial radius and the numbers of cases are shown inside the circles.
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statistics detected a similar mean cluster radius of 650 
meters. The simulated real-time scanning usually sig-
naled an outbreak with a 1-day median delay, which 
would enable early control.

We used enriched RDT-positive cases to in-
crease specificity, but among study limitations is that 
we relied on medically attended cases at a cholera  
treatment center, biasing toward severely dehydrat-
ed case-patients and against milder cases. The spatial 
resolution misses case-pair distances <420 meters, 
where 5% of distances fell, although simulation of 

household locations showed similar trends with even 
higher (τ) across smaller radii. Circular scan statistics 
have reduced sensitivity to outline the shape of ellip-
tical clusters (potentially along Uvira’s coastline), but 
detection appeared unaffected (11).

Conspicuously, the clusters endured annually and 
overlapped with Uvira’s 3 major rivers. According  
to surveys in 2016, 2017, and 2021, households in 
those clusters commonly use rivers as a primary water 
source (K. Gallandat et al., unpub. data) because piped 
water has remained inconsistent (15). Combined with 

Figure 2. Epidemic curve and 
cluster persistence in study 
of spatiotemporal modeling 
of cholera, Uvira, Democratic 
Republic of the Congo, 
2016−2020. A) Epidemic curve 
shows weekly numbers of RDT-
positive cholera cases based 
on week of onset and start 
dates of 26 clusters (red vertical 
lines). B) Cluster persistence 
within avenues for RDT-positive 
cases showing the number of 
years affected by clustering 
within avenues and proximity to 
rivers (blue lines, top to bottom: 
Kalimabenge River, Mulongwe 
River, Kanvinvira River). Blue 
triangles indicate cholera 
treatment center (top) and  
unit (bottom). RDT, rapid 
diagnostic test.

http://www.cdc.gov/eid
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the high population density and inadequate sanita-
tion, close-contact, fecal–oral transmission is ampli-
fied, producing recurrent clustering. Preventive mea-
sures, including piped water and vaccination, could 
be reinforced in cluster locations. CATI could address 
containment for new cases in less affected areas to 
prevent larger outbreaks. Because lakeside cities like 
Uvira may regularly seed regional outbreaks, targeted 
disease control strategies may bring substantial public 
health benefits.
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Appendix 

Methods for Local and Global Clustering Statistics 

Local Clustering to Identify Recurrent Locations and Timing of Seasonal Outbreaks 

We used the space-time scan statistic to retrospectively detect the presence and location 

of spatiotemporal clusters. We conducted the analysis for the entire period (2016–2020) and 

according to each year. A relative risk (RR) compares the observed versus expected number of 

cases inside and outside of a cluster. Poisson distribution of the cases per avenue (or street) was 

assumed. To find the most likely cluster, candidate clusters were ordered according to a log-

likelihood ratio (LLR), where the cluster with the largest LLR is the least likely to be caused by 

chance and, therefore, is the most likely cluster. The significance of each cluster was evaluated 

by using Monte Carlo simulation to compare the original dataset with 999 random replicates 

produced under the null hypothesis. 

We examined the entire dataset (i.e., a retrospective scan). We restricted the temporal and 

spatial windows to capture brief periods (7–60 days) and a radius that included <10% of the 

population at risk. To capture clustering that persisted across years, we also used a longer 

temporal window (7–365 days) for 2016–2020. 

To explore whether the space-time scan statistic produced signals that preceded 

outbreaks, we conducted prospective scans of each of the clusters that were detected 

retrospectively. This was done to detect the earliest warning sign that indicated when that cluster 

would have first been detected. We simulated repeated prospective scans on the retrospective 

cluster start day and each successive day (up to 4 weeks later). We calculated the median and 

http://doi.org/10.3201/eid3008.231137
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interquartile range for the delay between when the prospective scan would have first detected the 

cluster and the date produced by the retrospective scan, which used more case data. We also 

calculated the median and interquartile range for the cluster size at first detection. We visualized 

the timing of the first day of each retrospective cluster on an epidemic curve. To explore when 

cholera transmission predominated, we calculated the proportion of years that the avenue was 

included in any cluster during 2016–2020, ranging from 0 (not included in any cluster) to 5 

(included in a cluster every year) (1). 

Methods for Space-Time Scan Statistic  

For a given cylinder consisting of a radius centered on an avenue centroid and height of 

the temporal window of interest, c is the observed number of cases inside the cylinder, E[c] is 

the expected number of cases for any given cylinder, and C is the total number of cases in Uvira 

(2). RR is calculated as: 

𝑅𝑅𝑅𝑅 =  

𝑐𝑐
𝐸𝐸[𝑐𝑐]

(𝐶𝐶 −  𝑐𝑐)
(𝐶𝐶 −  𝐸𝐸[𝑐𝑐])

 

During the scan, a circular scanning window with varying radii and duration moves over 

the geographic area so that each avenue centroid is at the center of several candidate clusters 

with different radii and heights. At each cylinder location, the number of cases inside the 

cylinder is compared with the expected number under a null hypothesis of no clustering (i.e., 

cases are randomly distributed). To find the most likely cluster, candidate clusters are ordered by 

the LLR and evaluated by using Monte Carlo simulation as previously described. 

Global Clustering to Inform Risk Boundaries 

We estimated the tau (𝜏𝜏) statistic for the entire period (2016—2020) and annually to 

quantify the spatial extent of the risk zone around an index case (3). Because the dataset only 

contained the date of the visit to the cholera treatment center/cholera treatment unit as opposed to 

the date of symptom onset, this statistic represented the risk of developing medically attended 

disease, which we assumed indicated severe dehydration and diarrhea compared with mild 

dehydration and diarrhea. This approach defines clustering according to how likely any pair of 

cases are potentially transmission-related within a given distance between the cases. 

Accordingly, we first classified each pair of cases as potentially transmission-related if their 
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dates of case presentation were within 0–4 days of each other (≈1 serial interval) (4). 𝜏𝜏 is the RR 

that a person in the population within a given distance (d1, d2) band (e.g., 100 m, 150 m) from an 

incident case becomes a potentially transmission-related case compared with the risk for any 

person in the population becoming a potentially transmission-related case. A 𝜏𝜏 value >1 indicates 

evidence of clustering within the given distance band. 

As we lacked individual household locations for cases, 𝜏𝜏 reflects the spatial scale of the 

avenues. We estimated 𝜏𝜏 with a moving window of 50 m computed every 10 m at distances 

starting at 420 m (because 5% of inter-avenue centroids fell below this value) to 2,500 m (the 

approximate width of Uvira). We calculated 95% CIs by using the 2.5th and 97.5th quantiles 

from 1,000 bootstrap replicates. We evaluated τ over a 5-day window, which included the date of 

case presentation, and a 4-day window, which excluded the date of case presentation, to provide 

a more realistic response on day 5 (5). To smooth the artifactual fluctuations resulting from the 

resolution of data and the smaller sample size of annual datasets, we calculated a moving average 

over the previous 10 m. We defined the high-risk zone around incident cases as the radius up to 

which the moving average’s lower 95% CIs crossed 1.0 for >30 consecutive meters. We defined 

the elevated-risk zone around incident cases as the radius up to which the moving average point 

estimate crossed 1.0 for >30 consecutive meters. To explore the potential bias from using 

centroids compared with household locations, we conducted a simulation study where we 

randomly assigned household locations within each case-patient’s avenue and then estimated 𝜏𝜏 

by using a lower distance range (75–2,500 m). 

Methods for 𝝉𝝉 Statistic  

�̂�𝜏(𝑑𝑑1, 𝑑𝑑2) as an RR is approximated by dividing the odds that cases within the band are 

transmission-related 𝜃𝜃�(𝑑𝑑1,𝑑𝑑2) by the same odds among cases in the general population (3,5,6), 

regardless of distance 𝜃𝜃�(0,∞). 

The 𝜏𝜏 equation is: �̂�𝜏(𝑑𝑑1, 𝑑𝑑2) =  𝜃𝜃
�(𝑑𝑑1,𝑑𝑑2)
𝜃𝜃�(0,∞)

 

The odds for numerator 𝜃𝜃�(𝑑𝑑1,𝑑𝑑2) are calculated as: 𝜃𝜃�(𝑑𝑑1,𝑑𝑑2) =  ∑ 𝑖𝑖 ∑ 𝑗𝑗∗𝐼𝐼1(𝑖𝑖,𝑗𝑗)
∑ 𝑖𝑖 ∑ 𝑗𝑗∗𝐼𝐼2(𝑖𝑖,𝑗𝑗)

 

The numerator tallies the number of case pairs (i, j) within the given distance band that 

are transmission-related (within 0–4 days), using indicator variable 𝐼𝐼1(𝑖𝑖, 𝑗𝑗) = 1 for notation. The 
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denominator tallies the number of case pairs (i, j) within the given distance band that are not 

transmission-related (occurring after 4 days), using indicator variable 𝐼𝐼2(𝑖𝑖, 𝑗𝑗) = 1 for notation. 

The equivalent odds 𝜃𝜃�(0,∞) is estimated for the entire population. 

Simulations to Compare Centroid-Geotagged Cases and Cases with Simulated Individual 
Household Locations 

The case data used in this study are geocoded by X, Y coordinates, indicating 216 

avenues (or streets) within the centroid belonging to a residence (Appendix Figure 1). In this 

simulation, we assessed whether using centroids versus simulated individual household locations 

affected trends in the τ statistic and to what extent. 

Simulation Methods 

We used the dataset of 1,493 rapid diagnostic tests (RDTs) that showed positive cholera 

cases from 2016–2020, displaying those results in space and time (Appendix Figure 2). The X, Y 

coordinates in this dataset were perturbed randomly by adding a random normal distribution that 

had an arbitrarily defined SD of 100. The points were plotted as maps to visually compare the 

spatial spread of cases between datasets 1 and 2 (Appendix Figure 3). The main 𝜏𝜏 analysis was 

run for each dataset. This produced the RR and 95% CI (𝜏𝜏 statistic) of the next RDT-positive 

case being within a specific distance to another case compared with the risk of the case occurring 

anywhere else during days 0–4. A moving average was applied in distance spans of 10 m, 25 m, 

and 50 m to smooth fluctuations. To assess the similarity between the datasets, the moving 

average trend lines were evaluated visually by graphing and by comparing Pearson correlations. 

Findings and Interpretation 

The 2 datasets showed similar 𝜏𝜏 trends (Appendix Figure 4). Both the lower CIs of the 

moving average 𝜏𝜏 and the moving average 𝜏𝜏 point estimates (where 𝜏𝜏 consecutively crossed 1.0 

for ≥30 consecutive meters) differed between the centroid and household datasets (Appendix 

Table 1). The Pearson correlation coefficients for the moving average 𝜏𝜏 point estimates were 

significant and nearly identical. 

Overall, the centroid dataset showed a similar descending trend in risk over distance, 

central tendencies, and correlation coefficients compared with the simulated household dataset. 

The centroid dataset however showed 8.3% lower 𝜏𝜏 threshold estimate for the moving average 𝜏𝜏 
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point estimate and 21.9% lower 95% CI moving average than the household simulation dataset. 

The simulated households compared to the centroid dataset had a higher maximum  moving 

average 𝜏𝜏 estimate (equivalent to 2.0<RR<2.5) from 75–275 m (a distance segment that was 

unmeasured in the centroid dataset). 

Software 

Analyses were performed in R software version 4.1.2 (The R Project for Statistical 

Computing, https://www.r-project.org) using the rsatscan version 1.0.5 

(https://github.com/Kenkleinman/rsatscan) and the IDSpatialStats version 0.3.12 

(https://github.com/HopkinsIDD/IDSpatialStats) (6) R packages. rsatscan is used in tandem with 

SaTScan software version 10.0.2 (https://www.satscan.org) to calculate the space-time scan 

statistics. 

References 

1. Cleary E, Boudou M, Garvey P, Aiseadha CO, McKeown P, O’Dwyer J, et al. Spatiotemporal 

dynamics of sporadic Shiga toxin-producing Escherichia coli enteritis, Ireland, 2013–2017. 

Emerg Infect Dis. 2021;27:2421–33. PubMed https://doi.org/10.3201/eid2709.204021 

2. Kulldorff M, Heffernan R, Hartman J, Assunção R, Mostashari F. A space-time permutation scan 

statistic for disease outbreak detection. PLoS Med. 2005;2:e59. PubMed 

https://doi.org/10.1371/journal.pmed.0020059 

3. Lessler J, Salje H, Grabowski MK, Cummings DAT. Measuring spatial dependence for infectious 

disease epidemiology. PLoS One. 2016;11:e0155249. PubMed 

https://doi.org/10.1371/journal.pone.0155249 

4. Azman AS, Rudolph KE, Cummings DAT, Lessler J. The incubation period of cholera: a systematic 

review. J Infect. 2013;66:432–8. PubMed https://doi.org/10.1016/j.jinf.2012.11.013 

5. Azman AS, Luquero FJ, Salje H, Mbaïbardoum NN, Adalbert N, Ali M, et al. Micro-hotspots of risk in 

urban cholera epidemics. J Infect Dis. 2018;218:1164–8. PubMed 

https://doi.org/10.1093/infdis/jiy283 

6. Giles JR, Salje H, Lessler J. The IDSpatialStats R Package: quantifying spatial dependence of 

infectious disease spread. R J. 2019;11:308–27. https://doi.org/10.32614/RJ-2019-043 

https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34424163&dopt=Abstract
https://doi.org/10.3201/eid2709.204021
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15719066&dopt=Abstract
https://doi.org/10.1371/journal.pmed.0020059
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27196422&dopt=Abstract
https://doi.org/10.1371/journal.pone.0155249
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23201968&dopt=Abstract
https://doi.org/10.1016/j.jinf.2012.11.013
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29757428&dopt=Abstract
https://doi.org/10.1093/infdis/jiy283
https://doi.org/10.32614/RJ-2019-043


 

Page 6 of 11 

Appendix Table 1. Differences in points where τ crosses RR = 1.0 for ≥30 consecutive meters consecutively* 

Dataset Min τ Max τ Mean τ 
Moving average 
τ<1.0 (>30m) 

Moving 
average τ LCI 
<1.0 (>30m) 

Pearson correlation coefficient 
(95% CI) 

Centroid 0.52 3.01 1.01 1,665 m 1,105 m −0.87 (−0.89 to −0.85) 
Simulated household† 0.55 2.40 1.05 1,815 m 1,415 m −0.88 (−0.90 to −0.86) 
*LCI, lower confidence interval; Max, maximum; Min, minimum; τ, tau statistic. 
†Household locations were simulated and compared with the centroid dataset. 

 
 
 
Appendix Table 2. Sensitivity analysis: statistically-significant spatiotemporal clusters of suspected cholera cases detected through 
annual scanning at the avenue level, Uvira, Democratic Republic of the Congo, 2016—2020  

Year 
Cluster 

No. 

Cases 
observed: 
expected 

Population  
at-risk RR 

Cluster radius 
(meters) 

Cluster start 
date (mm/dd) 

Cluster 
duration (d) 

2016 1 57:5 177,122 10.8* 378 04/07 15 
2 51:4 187,076 12.1* 647 03/24 11 
3 45:6 183,225 7.2* 1,557 08/06 17 
4 27:3 120,498 8.4* 368 04/09 13 
5 40:9 147,424 4.6* 709 07/22 30 
6 18:2 29,390 7.8* 436 02/18 40 

2017 1 130:13 148,014 10.8* 908 08/07 43 
2 91:16 150,104 5.9* 897 08/19 52 
3 39:6 88,959 6.6* 704 08/29 32 
4 23:2 134,147 10.6* 378 12/24 7 
5 26:5 143,948 5.2* 1,001 08/23 16 
6 9:1 42,275 17.3* 331 02/14 5 

2018 1 50:3 130,673 15.3* 963 10/26 12 
2 24:2 134,311 15.1* 397 01/01 5 
3 61:15 132,515 4.2* 906 07/29 56 
4 44:10 128,631 4.5* 708 08/21 38 
5 18:3 70,142 5.9† 653 10/30 21 
6 9:1 52,203 14.4† 477 02/17 5 

2019 1 50:4 93,453 14.3* 831 09/10 18 
2 30:2 21,965 13.9* 0 09/01 48 
3 47:7 105,035 7.1* 524 04/27 31 
4 48:10 115,699 5.0* 836 09/07 41 
5 36:8 120,197 4.7* 995 06/08 31 
6 14:2 40,341 7.4†  626 06/23 22 
7 6:0 45,292 32.2† 350 09/20 1 

2020 1 105:17 159,204 6.7* 860 07/29 59 
2 59:11 141,671 5.8* 488 05/31 41 
3 38:5 106,256 8.6* 1,121 02/20 23 
4 57:13 155,765 4.6* 395 05/30 46 
5 49:13 120,618 3.9* 490 07/27 59 
6 39:10 159,261 4.0* 959 05/30 34 
7 15:2 44,366 10.1* 468 09/10 18 

*p-value <0.001  
† p-value <0.05  
The p-value indicates the statistical significance of clusters derived from Monte Carlo simulations. 
RR, relative risk. 
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Appendix Figure 1. Information relevant to an analysis of spatiotemporal modeling of cholera, Uvira, 

Democratic Republic of the Congo, 2016–2020. Map of the centroid locations and borders of Uvira’s 216 

avenues. 
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Appendix Figure 2. Information relevant to an analysis of spatiotemporal modeling of cholera, Uvira, 

Democratic Republic of the Congo, 2016–2020. Uvira 2016–2020 dataset of rapid diagnostic positive 

cases with avenue centroids of cases (index case in red). 

 

 

Appendix Figure 3. Information relevant to an analysis of spatiotemporal modeling of cholera, Uvira, 

Democratic Republic of the Congo, 2016–2020. Case centroid locations (black) and simulated household 
locations (blue). 
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Appendix Figure 4. Information relevant to an analysis of spatiotemporal modeling of cholera, Uvira, 

Democratic Republic of the Congo, 2016–2020. Moving average of point estimates and 95% confidence 

intervals for tau τ statistic for RDT-positive cholera cases (75–2500 m) of the centroids (black, starting at 

420 m) and the household locations (blue, starting at 75 m). The dashed line is where the lower 

confidence interval for the moving average crosses 1.0 for ≥30 consecutive meters consecutively. 



Page 10 of 11 

Appendix Figure 5. Information relevant to an analysis of spatiotemporal modeling of cholera, Uvira, 

Democratic Republic of the Congo, 2016–2020. Sensitivity analyses of prospectively detected 

spatiotemporal clusters of suspected cholera cases, 2016–2020. days. All scans had a maximum spatial 

window of 10% of the geographic area. The size of the orange circle depicts the radius with the number of 

suspected cases (in white). A–E depict scans with a temporal window of 7–60 days and F depicts a scan 

with a temporal window of 7–365. A) 2016; B) 2017; C) 2018; D) 2019; E) 2020; F) 2016–2020.
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Appendix Figure 6. Information relevant to an analysis of spatiotemporal modeling of cholera, Uvira, 

Democratic Republic of the Congo, 2016–2020. Annual and aggregated moving average estimates of τ 

(relative risk) and 95% CIs (solid line and shading) for days 0–4. 2016–2020 in black, 2016 in purple, 

2017 in orange, 2018 in green, 2019 in blue, 2020 in red. 


