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The SARS-CoV-2 pandemic reasserted the impor-
tance of epidemic preparedness and surveillance 

systems for infectious diseases (1). Informed respons-
es to public health challenges require that data be 
available to decision-makers in a timely manner for 
early interventions (1). However, traditional clinical 

based measures of disease incidence have limited use 
in providing early warnings. Relying on influenza-
like illness data is problematic because of difficulty 
distinguishing between infections ascribed to influen-
za A virus (IAV), influenza B virus, SARS-CoV-2, or 
respiratory syncytial virus (2). Virologic surveillance 
enables respiratory illness to be classified on the ba-
sis of etiologic agent. However, results are often slow, 
and interpretation must account for factors such as 
test-seeking behavior, accessibility of healthcare ser-
vices, severity of infection, diagnostic practices of 
healthcare providers, and hospital protocols. In addi-
tion, laboratory capacity may be exceeded, and test-
ing is expensive (3,4). 

Wastewater surveillance (WS) is shown to be a 
practical approach for disease surveillance at various 
spatial scales, offering effectiveness and economic 
advantage (5,6). WS for SARS-CoV-2 relies on quan-
tifying viral RNA shed in feces and has substantially 
increased in use since its implementation to track 
infections during the COVID-19 pandemic. Studies 
have found the concentration of SARS-CoV-2 RNA in 
municipal sewage covaries with the levels of disease 
circulating within the community served and can pre-
dict trends in clinical cases and hospitalizations (7,8). 
In addition, WS has the potential to be rapid; sample 
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Wastewater surveillance is an effective way to track the 
prevalence of infectious agents within a community and, 
potentially, the spread of pathogens between jurisdic-
tions. We conducted a retrospective wastewater surveil-
lance study of the 2022–23 influenza season in 2 com-
munities, Detroit, Michigan, USA, and Windsor-Essex, 
Ontario, Canada, that form North America’s largest cross-
border conurbation. We observed a positive relationship 
between influenza-related hospitalizations and the influ-
enza A virus (IAV) wastewater signal in Windsor-Essex (ρ 
= 0.785; p<0.001) and an association between influenza-
related hospitalizations in Michigan and the IAV wastewa-
ter signal for Detroit (ρ = 0.769; p<0.001). Time-lagged 
cross correlation and qualitative examination of wastewa-
ter signal in the monitored sewersheds showed the peak 
of the IAV season in Detroit was delayed behind Wind-
sor-Essex by 3 weeks. Wastewater surveillance for IAV 
reflects regional differences in infection dynamics which 
may be influenced by many factors, including the timing 
of vaccine administration between jurisdictions.
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processing, measurement, analysis, and dissemina-
tion of results took <6 hours in Windsor-Essex, On-
tario, Canada. Calls have been made to expand the 
scope of WS to include monitoring of IAV and other 
endemic respiratory pathogens that are underreport-
ed (9,10). Similar to SARS-CoV-2, IAV can be shed in 
feces (11), and recent studies have used WS to track 
IAV (12–14). However, more work needs to be done 
to validate WS compared with traditional surveil-
lance metrics. WS can be useful in measuring regional 
differences in infection dynamics and understanding 
how IAV and other pathogens spread across jurisdic-
tional boundaries.

The Detroit-Windsor metropolitan area, encom-
passing the cities of Detroit, Michigan USA, and 
Windsor-Essex, Ontario, Canada, is North America’s 
largest transborder conurbation and is the busiest 
cross-border region for trade between the United 
States and Canada, handling 42% of commercial traf-
fic between Ontario and Michigan and accounting for 
≈25% of total daily commercial traffic between the 
United States and Canada (15). The region is a major 
entry point for visitors, including >5,000 commuters 
from Windsor-Essex who cross the border daily for 
work (15,16). Detroit and Windsor-Essex represent 
government structures and public health jurisdic-
tions that adopted fundamentally different vaccina-
tion and mitigation strategies during the COVID-19 
pandemic. The cessation of COVID-19 pandemic 
mitigation strategies, such as masking and social dis-
tancing, affected the circulation of respiratory patho-
gens other than SARS-CoV-2, such as IAV. The end of 
those mitigation strategies resulted in a delayed start 
to the 2021–22 influenza season in Windsor-Essex, 
which coincided with the removal of mask mandates 
in Ontario in March 2022, and may have had a role 
in unusual patterns of influenza incidence during the 
2022–23 influenza season in Canada (17,18). Similarly, 
the 2021–22 influenza season in Michigan was mild, 
with an increase in influenza activity observed in No-
vember, followed by a decline in January 2022 and 
a subsequent rise in activity in March 2022. Trends 
in Michigan were similar to national trends; levels of 
influenza activity remained elevated through mid-
June 2022 (19,20). Those unusual patterns of influenza 
prompted this retrospective investigation comparing 
the incidence of influenza in Windsor-Essex with the 
incidence of influenza in Detroit. Our goal is to un-
derstand how jurisdictional differences in pandemic 
mitigation strategies and public health policy influ-
enced the timing of influenza seasons. 

The initial investigation into influenza hospital-
ization data for Windsor-Essex and Michigan through 

a visual inspection of the data showed a delay in the 
onset and peak of the 2022–23 influenza season in 
Michigan compared with Windsor-Essex. Because 
influenza incidence data (including hospitalizations) 
specific to Detroit are not publicly available and influ-
enza is an underreported disease, the trend observed 
through examination of clinical data may not be suffi-
cient to claim a delayed onset in the influenza season. 
Because WS is based on the aggregated waste of an 
entire community, it is anonymous and reflects popu-
lation level trends that could produce a more sensi-
tive and non-biased measure of influenza incidence to 
confirm trends in clinical data. Analysis of WS data, 
coupled with traditional measures of disease inci-
dence, will enable a more complete understanding of 
how differences in public health approaches in a di-
vided, yet contiguous, metropolitan area influenced 
the trajectory of the influenza season after COVID-19 
mitigation policy removal.

Methods

Sample Collection
During September 1, 2022–March 31, 2023, we collect-
ed composite (24-h) wastewater samples 3–5 days/
week from 2 different wastewater treatment plants 
that serve a resident population of ≈270,000 persons, 
≈50% of the regional population, located in Windsor-
Essex. In parallel, we collected composite samples 1 
day/week from the 3 interceptors terminating at the 
Water Resource Recovery Facility (WRRF) operated 
by the Great Lakes Water Authority (GLWA), located 
in Detroit (21) (Appendix, https://wwwnc.cdc.gov/
EID/article/30/8/24-0225-App1.pdf). The WRRF 
serves the entire city of Detroit and treats the waste of 
≈3 million people, 88% of the residents in the greater 
Detroit metropolitan area and approximately one 
third the population of Michigan (22).

Sample Processing 
We concentrated composite samples of raw wastewa-
ter by using filtration, then extracted RNA from the 
filters (Appendix). We used quantitative reverse tran-
scription PCR (qRT-PCR) to measure the concentra-
tion of IAV in wastewater samples (Appendix). The 
assay targeted RNA coding for the matrix protein 1 
(M1) of IAV by using primers and probes developed 
by the Centers for Disease Control and Prevention 
(23). We used a synthetic influenza H3N2 RNA (Twist 
Bioscience, https://www.twistbioscience.com) as a 
standard for comparison. We conducted qRT-PCR 
to measure the levels of pepper mild mottle virus  
(PMMoV) within the wastewater (Appendix); PMMoV  
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can indicate the presence of human fecal matter and 
is used to account for variability in wastewater flow 
or other physicochemical parameters influencing 
viral RNA concentration (24). We sequenced select 
IAV amplicons produced through qRT-PCR of RNA 
extracted from wastewater to validate the identity of 
the target (Appendix).

Clinical Data
We obtained influenza hospitalization data for 
Windsor-Essex through collaboration with the 
Windsor-Essex County health unit. Using Intel-
liHealth (https://intellihealth.moh.gov.on.ca) on 
April 17, 2024, we extracted data from the discharge 
abstract database and included hospitalization data 
from September 2022–March 2023. Influenza hospi-
talizations included hospital admissions where the 
main diagnoses had a code of J09, J100, J101, J108, 
J110, J111, or J118 from the International Classifica-
tion of Diseases, 10th Revision. Windsor-Essex hos-
pitalization data captured all local hospitalizations 
and included hospitalizations among all residents of 
Windsor-Essex County, regardless of where the hos-
pitalization occurred. We aggregated influenza hos-
pitalizations by epidemiologic week of initial admis-
sion and used hospitalizations per 100,000 persons 
in subsequent analysis. 

We collected influenza-related hospitalization 
data for Michigan from the Centers for Disease Con-
trol and Prevention’s influenza hospitalization sur-
veillance network (FluSurv-NET), which records 
laboratory-confirmed influenza-associated hospi-
talizations during the influenza season as cases per 
100,000 persons. We defined influenza-related hospi-
talization rates as the number of hospitalized persons 
who tested positive for influenza, of any subtype, 
through laboratory testing within the 14 days before 
or during hospitalization (25). Hospitalization data 
were available beginning in October 2022. Although 
hospitalization data were only available for Clinton, 
Eaton, Genesee, Ingham, and Washtenaw counties, 
those data are considered a statewide assessment of 
influenza for Michigan. Because the WRRF serves 
approximately one third of the state population, in-
fluenza-related hospitalization trends are likely to be 
reflected in IAV RNA concentrations at the WRRF.

Data Analysis and Visualization
We used R version 4.3.2 (The R Foundation for Sta-
tistical Computing, https://www.r-project.org) for 
data analysis, including the calculations of Kendall 
rank correlation coefficient (τ), Spearman rank cor-
relation coefficient (ρ), nonparametric measures of 

correlation, and nonparametric time lagged cross 
correlation (TLCC) by using the ccf_boot function in 
the R package funtimes (Functions for Time Series 
Analysis, https://cran.r-project.org/web/packages/
funtimes). We used Veusz version 3.6.2 (https://
veusz.github.io) for data visualization. By using a 
population-weighted mean, we combined IAV and 
PMMoV RNA concentration measurements from 
Windsor-Essex wastewater treatment facilities. We 
then used downsampling through blockwise averag-
ing to condense the data into a single measurement 
for each epidemiologic week; this process produced 
equally spaced data and enabled comparison with 
hospitalization data available in weekly reports (26). 
Blockwise averaging was not possible for IAV and  
PMMoV RNA concentration measurements of sam-
ples collected from the GLWA-WRRF because sam-
ples were collected weekly. No samples were collected 
from GLWA-WRRF interceptors during epidemio-
logic week 40 (October 2–8, 2022) and 48 (November 
27–December 3, 2022). We filled in the data from epi-
demiologic weeks 40 and 48 by using linear interpola-
tion before analysis. We used a population-weighted 
mean to combine the IAV and PMMoV signal for the 
3 interceptors that discharge to the GLWA-WRRF, 
which produced 31 measurements of IAV RNA and 
31 measurements of PMMoV RNA concentration for 
Detroit. All gene concentrations are reported as gene 
copies (gc) per liter. We produced normalized values 
for the IAV signal by taking the ratio of IAV M1 gene 
concentration to the concentration of PMMoV.

We used TLCC with Spearman rank correlations 
to determine if IAV wastewater signals were leading 
or lagging indicators of influenza-associated hospi-
talizations in Windsor-Essex and Michigan. TLCC 
relies on correlations between data series shifted 
relative to each other in time and can identify peak 
synchrony. We determined peak synchrony by the 
shift that produced the highest Spearman rank cor-
relation coefficient between the 2 timeseries. We also 
used TLCC to compare the IAV wastewater signal in 
Windsor-Essex to the IAV wastewater signal in De-
troit. We verified the nonnormal data by examining 
the quantile-quantile plots. We used nonparametric 
means of correlation, including Kendall rank cor-
relation coefficient and Spearman rank correlation 
coefficient, to quantify the association between the 
IAV signal in the wastewater and influenza hospi-
talizations in both Windsor and Detroit. Correla-
tions between influenza-related hospitalizations and 
wastewater signal in Detroit were based on 26 weeks 
of data because hospitalization data were not avail-
able until October 2022.
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Results

IAV M1 Gene Concentrations in Windsor-Essex
Trends in IAV M1 gene concentrations at the moni-
tored plants visually matched trends in influenza-
associated hospitalizations in Windsor-Essex for 
September 2022–March 2023 (Figure). The TLCC 
for Windsor-Essex showed that wastewater signal 
lagged new hospital admissions on an epidemiologic 
week basis (Table 1) and therefore did not provide 
lead-time. We observed a strong positive relationship 
between influenza-associated hospitalizations and 
the population-weighted mean IAV M1 gene concen-
tration (τ = 0.650, p<0.001; ρ = 0.785, p<0.001) (Table 
2). Signal normalization with PMMoV RNA concen-
trations did not improve the association between 
wastewater signal and influenza-associated hospi-
talizations (τ = 0.754, p<0.001; ρ = 0.630, p<0.001) or 
change peak synchrony (Tables 1, 2).

IAV M1 Gene Concentrations in Detroit
IAV M1 gene concentrations for metro Detroit closely 
matched the number of new influenza-related hospi-
talizations in Michigan from October 2022–March 2023 
(Figure). We observed a strong positive relationship 
between influenza-related hospitalizations and the 
population-weighted mean IAV M1 gene concentra-
tion for Detroit (τ = 0.616, p<0.001; ρ = 0.769, p<0.001) 
(Table 3). The nonparametric TLCC results showed 
the IAV wastewater signal from Detroit neither lagged 
nor led influenza-related hospitalizations in the state 
of Michigan, suggesting the IAV wastewater signal 

is concordant with influenza-related hospitalizations 
(Table 1; Figure). Normalization of IAV M1 gene con-
centrations with PMMoV RNA concentrations did not 
change the degree of association between the waste-
water signal and influenza-related hospitalizations 
for Michigan (τ = 0.559, p<0.001; ρ = 0.708, p<0.001) or 
change peak synchrony (Tables 1, 3).

Cross-Border Comparison of WS for IAV
The onset and peak of the 2022–23 IAV wastewater 
signal in Windsor-Essex was observed before the on-
set and peak of the IAV wastewater signal in Detroit 
(Figure). TLCC using Spearman rank correlations 
between the population-weighted weekly average of 
M1 gene concentrations in Detroit and Windsor-Essex 
showed the 2022–23 IAV wastewater signal in Detroit 
lagged the corresponding IAV wastewater signal in 
Windsor by ≈3 weeks (Table 1). Further comparison 
by using PMMoV-normalized, population-weighted, 
weekly averages of the wastewater signal corrobo-
rated the lag of ≈3 weeks between Windsor-Essex and 
Detroit (Table 1).

Discussion
Our study builds on a growing body of evidence 

that WS for IAV is highly concordant with the results 
of other disease incidence measures (13,28). During 
the 31-week period of retrospective analysis, influen-
za-related hospitalizations within Windsor-Essex and 
Michigan covaried with the concentration of IAV RNA 
measured in wastewater. However, the IAV signal 
was not a leading indicator of influenza incidence in 

Figure. Influenza-associated 
hospitalization rates and 
aggregate population-weighted 
wastewater concentrations 
for influenza A virus, by 
epidemiologic week, in Windsor-
Essex, Ontario, Canada, 
and Detroit, Michigan, USA, 
September 2022–March 
2023. The population-
weighted PMMoV normalized 
IAV concentration (lines) is 
superimposed over the rate of 
influenza-related hospitalizations 
(bars). DTW, Detroit wastewater; 
IAV, influenza A virus; PMMoV, 
pepper mild mottle virus; 
WEC, Windsor-Essex County 
wastewater.

http://www.cdc.gov/eid
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either community when analyzed on an epidemiologic 
week basis; wastewater signal either lagged or was 
synchronous with hospitalization data. Observation of 
synchronous or delayed wastewater signal is not with-
out precedent. Recent surveillance efforts have noted 
lagging wastewater signals (29). Other studies have 
cited the predictive ability of WS in the context of influ-
enza monitoring (13,14,30). In our study, application 
of blockwise averaging to produce average concentra-
tions of IAV RNA by epidemiologic week could have 
masked lead time within the data. 

Viral load in influenza patients may peak 1–2 
days after symptom onset on the basis of nose and 
throat swab testing results, and shedding may last 
6–7 days (31). A meta-analysis of challenge studies 
examining respiratory tract shedding found shed-
ding lasts an average of 4.8 days, and peak shed-
ding rates occur 2 days after exposure (32). A clini-
cal study reported that 41% of IAV-positive patients 
produced detectable levels of IAV RNA in their feces 
(11). Another study of hospitalized patients found 
that 47% of people infected with IAV shed IAV RNA 
in their feces (33). Because only some people shed 
IAV RNA in feces, incubation periods are short, and 
viral loads rapidly peak, WS loses its ability to pre-
dict influenza-associated hospitalizations when the 
temporal granularity of incidence data is limited. 
However, producing meaningful data through clini-
cal testing takes longer than results from WS. Case 
data obtained through laboratory-based virology 

are released weeks after testing occurs and are often 
subject to revision because results may reflect data 
compiled from multiple laboratories. WS can provide 
more timely measures of incidence because sample 
processing, RNA quantification, data analysis, and 
reporting are often completed the same day as sample 
collection in Windsor-Essex. WS can be considered de 
facto lead-time because data may be disseminated to 
public health officials well in advance of case data.

The utility of WS is not restricted to predictive 
ability. WS is an independent and sensitive measure 
of disease prevalence (34), enabling it to be used as 
an additional metric for trend comparison across ju-
risdictional boundaries, and it may be helpful when 
testing conventions and public health policies differ. 
Unlike WS, influenza cases and hospitalizations like-
ly represent only the most severe cases of influenza in 
which people sought medical testing and treatment, 
and they do not necessarily represent population-
wide trends. WS has the potential to aid in accurately 
tracking infection dynamics when testing capacity is 
limited or few patients seek medical care. 

In the case of Windsor-Essex and Detroit, the 
cross-border movement of persons and goods is vital 
to the region because of strong economy integration 
(35). Many people, such as healthcare and automotive 
workers, commute across the border daily to work in 
Michigan while living in Ontario (16). Almost 18,000 
people crossed into Windsor-Essex from Detroit  
daily over the course of our study, which suggests 

 
Table 1. Temporal shift at which peak synchrony was found between concentrations of influenza A in wastewater and influenza-
associated hospitalizations for Windsor-Essex, Ontario, Canada (September 2022–March 2023), and Detroit, Michigan, USA (October 
2022–March 2023)* 
Associations† Peak synchrony, wk Spearman ρ 
WEC M1:PMMoV and influenza-associated hospitalizations 1 0.797 
WEC M1 and influenza-associated hospitalization 1 0.841 
DTW M1:PMMoV and influenza-associated hospitalizations 0 0.708 
DTW M1 and influenza-associated hospitalizations 0 0.769 
WEC M1:PMMoV and DTW M1:PMMoV −3 0.642 
WEC M1 and DTW M1 −3 0.695 
*Peak synchrony was also found between Windsor-Essex and Detroit influenza A wastewater signals during September 2022–March 2023. Wastewater 
signals were shifted, and clinical metrics remained stationary. Positive values indicate a lagging wastewater signal and negative values indicate a leading 
wastewater signal. DTW, Detroit wastewater; M1, matrix 1 gene: PMMoV, pepper mottle mild virus; WEC, Windor-Essex County wastewater. 
†DTW M1, aggregate concentration of influenza A M1 gene (genome copies/mL) in DTW; DTW M1:PMMoV, concentration of influenza A M1 gene in 
DTW normalized to PMMoV (unitless); WEC M1, aggregate concentration of influenza A M1 gene in WEC (gc/L); WEC M1:PMMoV, concentration of 
influenza A M1 gene in WEC normalized to PMMoV concentration (unitless).  

 

 
Table 2. Unshifted correlations between influenza-associated hospitalizations and the aggregate population-weighted wastewater 
concentrations for influenza A virus in Windsor-Essex, Ontario, Canada, September 2022–March 2023* 

Associations† 
Statistical test results 

2-tailed 95% CI‡ 2-tailed p value Kendall τ Spearman ρ 
WEC M1 and influenza-associated hospitalization 0.650  0.482–0.772 <0.001 
WEC M1:PMMoV and influenza-associated hospitalizations 0.630  0.456–0.758 <0.001 
WEC M1 and influenza-associated hospitalization  0.785 0.589–0. 893 <0.001 
WEC M1:PMMoV and influenza-associated hospitalizations 0.754 0.538–0.877 <0.001 
*M1, matrix 1 gene: PMMoV, pepper mottle mild virus; WEC, Windor-Essex County wastewater. 
†WEC M1, aggregate concentration of influenza A M1 gene in WEC (gc/L); WEC M1:PMMoV, concentration of influenza A M1 gene in WEC normalized 
to PMMoV concentration (unitless). 
‡Estimation is based on Fisher r-to-z transformation; estimation of SE is based on the formula proposed by Fieller, Hartley, and Pearson (27). 
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the communities could have concurrent influenza 
seasons (Appendix Figure 1). Contrary to this expec-
tation, we observed the peak and onset of the 2022–23 
IAV wastewater signal in Detroit was delayed by ≈3 
weeks when compared with Windsor-Essex. An ex-
planation for this discrepancy could be the lingering 
effect of travel restrictions implemented during the 
COVID-19 pandemic, which limited travel between 
these interconnected cities (Appendix Figure 1). 
There was no restriction on trade or the commutes 
of essential workers, and testing requirements for 
cross-border travel ended in April 2022. The remain-
ing COVID-19 related travel restrictions were lifted at 
the start of October 2022, before the onset of the influ-
enza season. Despite the removal of restrictions, the 
number of people crossing into Windsor-Essex each 
day during the second half of 2022 was ≈25% less than 
the number of people crossing prior to the COVID-19 
pandemic (17,867 vs. 24,260) (Appendix Figure 2). 
The residual effect of border restrictions, evidenced 
by the suppressed cross-border traffic in the leadup 
to the 2022–23 respiratory season, shows that border 
restrictions could have played a role in the observed 
discrepancies between Windsor-Essex and Detroit.

Another potential cause of the timing differ-
ence in the influenza seasons between Detroit and 
Windsor-Essex could be pandemic mitigation strat-
egies, such as mask mandates and social distancing 
guidance. Ontario was slower to implement a mask 
mandate but kept the mandate in place much longer 
than Michigan did. Michigan lifted all masking re-
quirements on June 22, 2021, whereas Ontario ended 
its mask mandate 272 days later, on March 21, 2022 
(36,37). Michigan ending the mask mandate early 
could have enabled the circulation of influenza in De-
troit before the 2022–23 respiratory season, increasing 
levels of natural immunity in Michigan. However, 
clinical data and wastewater surveillance in Windsor-
Essex show that influenza was circulating in Wind-
sor-Essex in spring 2022 (Appendix Figure 3). 

Differences in influenza immunization campaigns 
might also explain the differences in influenza season 
onset between Detroit and Windsor-Essex. Influenza 

vaccines could have played a role in determining the 
effective reproduction number for IAV in the 2022–
23 season. Preliminary research showed the vaccine 
effectiveness (VE) in Canada against IAV subtype 
H3N2 was 54% for people <65 years of age (17). H3N2 
was the dominant IAV subtype, representing ≈95% of 
cases (17), in contrast with the limited sequencing re-
sults of a selection of amplicons (Appendix Figure 4). 
Similar estimates of VE for this cohort were produced 
for Wisconsin (60%) (38) and across the United States 
(51%) (39). Michigan and Ontario use similar vac-
cines, with a focus on administering quadrivalent-in-
activated influenza vaccines to the population (40,41). 
Although inoculation with some vaccine types, such 
as live attenuated vaccines, is associated with viral 
shedding, it is unlikely to contribute to wastewater 
signals (42). Because VE and vaccine type were simi-
lar between Michigan and Ontario, the differentiating 
factor could be inoculation timing. Influenza vaccine 
distribution in Michigan typically begins earlier than 
Ontario, with inoculations happening as early as July. 
By November 2022, a total of 2,632,430 Michigan resi-
dents were vaccinated (≈25% of the population) (43). 
Inoculation efforts in Ontario began later, and vac-
cines were not made available to all residents until 
November (44). Mass influenza inoculation efforts in 
Ontario began after IAV RNA concentration started 
increasing in the wastewater, signaling the start of 
the influenza season. Vaccination campaigns were 
already well under way in Michigan when the IAV 
RNA concentration began to increase in wastewater. 
We speculate that people from Ontario were less like-
ly to have vaccine-induced immunity than those from 
Michigan early in the season, potentially contributing 
to the earlier peak in Windsor-Essex wastewater IAV 
signal. However, it is unclear if the timing of vaccine 
campaigns contributed to the observed difference be-
tween the Michigan and Ontario influenza seasons. 
Additional factors, including socio-economic status 
(45), access to healthcare, racial demographics (46), 
population age structure (47), and virus–virus in-
teractions (48) could have contributed to the differ-
ences. Population-level administration schedules for  

 
Table 3. Unshifted correlations between influenza-associated hospitalizations in Michigan, USA, and the aggregate population-
weighted wastewater concentrations for influenza A virus in Detroit, MI, USA from October 2022–March 23* 

Associations† 
Statistical test results 

2-tailed 95% CI‡ 
2-tailed 
p value Kendall τ Spearman ρ 

DTW M1 and influenza-associated hospitalizations 0.616  0.415 0.759 <0.001 
DTW M1:PMMoV and influenza-associated hospitalizations 0.559  0.341 0720 <0.001 
DTW M1 and influenza-associated hospitalizations  0.769 0.535 0.893 <0.001 
DTW M1:PMMoV and influenza-associated hospitalizations 0.708 0. 433 0.863 <0.001 
*DTW, Detroit wastewater; M1, matrix 1 gene: PMMoV, pepper mottle mild virus.  
†DTW M1, aggregate concentration of influenza A M1 gene (genome copies/mL) in DTW; DTW M1:PMMoV, concentration of influenza A M1 gene in 
DTW normalized to PMMoV (unitless). 
‡Estimation is based on Fisher r-to-z transformation; estimation of SE is based on the formula proposed by Fieller, Hartley, and Pearson (27). 
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seasonal influenza vaccines merit further investiga-
tion; those schedules help determine when herd im-
munity is reached and if herd immunity is reached 
before the spread of illness within a community. 

The first limitation of our study is that WRRF 
does not serve the Michigan counties where  
FluSurv-NET–participating hospitals are located. 
However, both the hospitalization data garnered 
from FluSurv-Net and wastewater data can be con-
sidered a proxy for statewide incidence. All influen-
za-associated hospitalizations were included in this 
dataset, for both Michigan and Windsor-Essex, even 
though the WS focused only on IAV. Our analysis 
could have been affected by focus on IAV, despite its 
dominance in the 2022–23 influenza season (17). Not 
all hospitalizations recorded in the Windsor-Essex 
data were laboratory confirmed cases of influenza. 
The temporal resolution of sample collection at the 
WRRF was limited, and weekly sampling might have 
failed to capture variability in the wastewater signal. 
Finally, the wastewater treatment plants monitored 
in both Windsor-Essex and Detroit, although serving 
representative populations, do not encompass all the 
residents and could have failed to capture variability 
in IAV wastewater signal.

In conclusion, our study demonstrates how 
wastewater surveillance can shed light on regional 
differences that may have otherwise gone unnoticed, 
or remain unvalidated, because of the inherent limi-
tations of traditional metrics to capture population-
wide trends. Future studies investigating influenza 
vaccine administration schedules should incorporate 
WS as an independent metric of disease incidence. 
WS can potentially provide more timely measures of 
incidence, rather than waiting for the release of labo-
ratory testing. The utility of WS as a predictive met-
ric, and as a metric for trend comparison across ju-
risdictional boundaries with different approaches to 
vaccination and collecting disease incidence metrics, 
demonstrates its usefulness when testing conventions 
and public health policies differ.
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etymologia revisited
Malaria
[mə-lar′e-ə]

Malaria, “bad air” in Italian, was blamed for the 
deaths of >1,000 workers digging the Erie Canal 
in 1819. Work on the canal continued in winter, 
when the swamp was frozen over (and, although 
the vector was not known at the time, mosquitoes 
were dormant). Malaria, caused by parasites of the 
genus Plasmodium and usually transmitted by the 
bite of infected Anopheles mosquitoes, is endemic in 
many warm regions. Charles Louis Alphonse Lav-
eran discovered the protozoan cause of malaria in 
1880. The Office of Malaria Control in War Areas, 
which was established in 1942 to control malaria 
and other vectorborne diseases in the southern 
United States, evolved into what is today the  
Centers for Disease Control and Prevention.

Source: 
Dorland’s illustrated medical dictionary. 30th ed. Philadel-
phia: Saunders; 2003; cdc.gov; and wikipedia.org
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Appendix 

Appendix Methods 

Sample Collection 

Untreated wastewater samples were collected five times per week from two different 

wastewater treatment plants located in Windsor-Essex between September 1st, 2022, and March 

31, 2023. Sample collection spanned a 31-week period. The Lou Romano Water Reclamation 

Plant (LRWRP) serves ≈180,000 individuals and is the largest treatment facility in Windsor-

Essex. The Little River Pollution Control Plant (LRPCP) serves 90,000 persons and together 

with LRWRP these plants service the majority of Windsor-Essex’s urban center. Concurrently, 

samples were collected from the Water Resource Recovery Facility (WRRF) operated by the 

Great Lakes Water Authority (GLWA) located in Detroit, MI at a frequency of one sample per 

week. The WRRF facility serves the majority of the greater metropolitan Detroit area and treats 

the waste of ≈3 million individuals, which equates to roughly a third of the population of the 

state of Michigan. The plant treats the combined stormwater, industrial, residential, and 

commercial waste that arrive through three major interceptors. These are the Detroit River 

Interceptor, the North Interceptor-East Arm and the Oakwood-Northwest-Wayne County 

Interceptor which serve a large region of southeast Michigan including the City of Detroit. All 

samples collected in both Windsor-Essex and Detroit were 1L 24-hour composite samples 

composed of aliquots of wastewater removed from the influent stream regular intervals. 

Following collection, samples were transported on ice to the laboratory for immediate 

concentration and analysis. 

https://doi.org/10.3201/eid3008.240225
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Sample Processing 

Composite samples of raw wastewater were concentrated by filtering 50–120 mL through 

0.22 μm Sterivex PES cartridge filters (MilliporeSigma, Burlington, MA, USA) using a 60 mL 

syringe fitted into a caulking gun. Immediately following filtration, the filters were sealed and 

flash-frozen through immersion in liquid nitrogen. Subsequently, filters were subjected to 

downstream processes including RNA extraction and RT-qPCR. 

Following filtration and flash freezing, filters were thawed, and the filter membrane was 

cut from the Sterivex cartridge using a sterile scalpel and forceps. Total nucleic acid was 

extracted from the filter membranes using either the AllPrep PowerViral DNA/RNA kit (Qiagen, 

Germantown, MD, USA) modified by addition of 5% 2-mercaptoethanol (v/v) or the RNeasy 

PowerMicrobiome Kit (Qiagen, Germantown, MD, USA), again modified by addition of 5% 2-

mercaptoethanol (v/v). Samples were not treated with DNase upon extraction and RNA was 

eluted in 50μL of RNase free water. 

RT-qPCR 

An RT-qPCR assay was used to measure the concentration of influenza A virus (IAV) in 

wastewater samples. The assay targeted RNA that codes for the matrix protein 1 (M1-gene) of 

IAV using primers and probes developed by the U.S. CDC (1). Primers and probes were supplied 

by Integrated DNA Technologies (Coralville, IA, USA) and primer and probe sequences can be 

found in Supplementary Table 1. 

Appendix Table 1. Primer/probe sequences for RT-qPCR of IAV M1 gene 
IAV Assay Sequence 
Forward Primer 5′-CAAGACCAATCYTGTCACCTCTGAC-3′ 
Reverse Primer 5′-GCATTYTGGACAAAVCGTCTACG-3′ 
Probe 5′-/FAM/TGCAGTCCT/ZEN/CGCTCACTGGGCACG/3IABkFQ/-3′ 

 
Reactions contained 4μL of RNA template mixed with 10μL of Luna Universal Probe 

One-Step Reaction Mix (2X), 1μL Luna WarmStart® RT Enzyme Mix (20X) (Luna® One-Step 

RT-qPCR Kit, Massachusetts, USA), forward primer (final concentration of 500nM), reverse 

primer (final concentration of 500nM), and probe (final concentration of 250nM) in a final 

reaction volume of 20μL. RT was performed at 55°C for 10 min, followed by polymerase 

activation at 95°C for 1 min, and 45 cycles of denaturation, annealing/extension at 95°C for 10 

sec, then 55°C for 45 sec, respectively. No template controls yielded no amplification, and the 

limit of detection for the assay was determined at 4 gene copies of IAV per reaction containing 
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4μL of template RNA, corresponding to a greater than 95% probability of detection. LOD was 

determined through analysis of 20 replicate 8-point standard curves. Twist Synthetic Influenza 

H3N2 RNA control (Twist Bioscience, San Francisco, CA) was used to create an 8-point 

standard curve to quantify gene targets. RT-qPCR assays were also performed to evaluate the 

levels of Pepper Mild Mottled Virus (PMMoV) within the wastewater. PMMoV is a widely 

accepted indicator of the presence of human fecal matter (2–4). For quantification of PMMoV, 

reactions contained 2.5μL of RNA template mixed with 10μL of Luna Universal Probe One-Step 

Reaction Mix (2X), 1μL Luna WarmStart® RT Enzyme Mix (20X) (Luna® One-Step RT-qPCR 

Kit, Massachusetts, USA), 3.5μL of water and the remaining 3µL consisted of forward primer, 

reverse primer, and probe each with a final concentration of 200nM. Primers and probes for the 

amplification of PMMoV were previously described (5). Reverse transcription was performed 

for 10 minutes at 55°C, this was followed by an enzyme activation step at 95°C for 1 minute and 

40 cycles of denaturation and annealing/extension at 95°C for 10 seconds and 55°C for 30 

seconds respectively. No template controls were included with each plate of RT-qPCR run and 

whole process controls were included with each extraction. The 7-point standard curve for the 

quantification of PMMoV was generated through serial dilution of a custom gBlock (Integrated 

DNA Technologies, Coralville, IA, USA) and was run with each plate of samples. No 

amplification was observed either process controls (extraction blanks) or in no template controls. 

Reaction inhibition was assessed using VetMAX XENO Internal Positive Control RNA (Applied 

Biosystems Corp., Waltham, MA, USA). VetMax template was spiked into water (which was 

used as a reference), undiluted DNA/RNA extracts, DNA/RNA extracts diluted 1:5, and 

DNA/RNA extracts diluted 1:10. Recovery was compared between conditions, and it was 

determined that inhibition could be addressed through dilution. Due to repeated incidence of 

inhibition with wastewater samples processed by filtration, template was diluted 1:5 or 1:10 in 

all reactions. Technical triplicates were run for detection of gene targets. Thermal cycling was 

performed using a MA6000 qPCR thermocycler (Sansure Biotech, Changsha, China). 

Amplicon Sequencing 

To validate the identity of the amplicon obtained from M1 gene of IAV, RTq-PCR 

products obtained from IAV-positive wastewater samples were sequenced. First, the PCR 

products were cleaned up by adding 1 volume of NEBNext® Sample Purification Beads (NEB). 
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DNA was eluted in 15 μL Nuclease-free water and quantified using Denovix DS-11 

Spectrophotometer. 

Second, the end-prep reaction was performed employing 250–300 ng of DNA mixed with 

1.75 μL UltraII End Prep Buffer, 0.75 μL UltraII End Prep Enzyme and water to a final volume 

of 15 μL. The reaction was incubated at 20°C for 10 minutes and 65°C for 10 minutes, holding at 

4°C. Barcoding of samples was carried out combining 3 μL of end-prepped sample, 2.5 μL 

Native Barcode (ONT, native barcoding EXP-NBD104), 10 μL Blunt/TA Ligase Master Mix 

and 4.5 μL nuclease-free water. Samples were pooled after barcoding and then analyzed in a 

single sequencing run with separated reads obtained from each of the amplicons. Ligation 

reaction was incubated at 22°C for 20 minutes and 65°C for 10 minutes, followed by a hold on 

ice for at least 1 minute. Cleaning up of the ligated sample was performed by adding 0.4 volume 

NEBNext® Sample Purification Beads and eluting with 12 μL of nuclease-free water. The 

Oxford Nanopore sequencing adaptor ligation was performed employing 200 ng of barcoded 

DNA in 30 μL, mixed with 5 μL Adaptor Mix II, 10 μL 5X NEBNext Quick Ligation Reaction 

Buffer (NEB) and 5 μL Quick T4 DNA Ligase (NEB). The incubation was carried out at 25°C 

for 30 minutes. Sample was cleaned up by adding 1 volume of NEBNext® Sample Purification 

Beads, eluted in 12 μL of Elution Buffer and quantified. Twenty ng of the library was loaded 

onto a SpotOn Flow Cell (R9.4 flow cell). Data was collected along 16 hours of sequencing with 

MinION.The FastQ files containing the sequenced reads were uploaded in Epi2me desktop 

application (Oxford Nanopore Technologies). Reads were analyzed employing the WIMP 

(What’s In My Pot) workflow (v2023.06.13–1865548) setting filters for reads length between 

100 bp to 250 bp. WIMP initially filters FASTQ files with a mean q-score below a minimum 

threshold (defaults to 7). For reads above the quality threshold, the Centrifuge classification 

engine is executed to assign each read to a taxon in the NCBI taxonomy. Taxonomical 

assignment is done based on the scores calculated by the microbial classification engine called 

Centrifuge using default settings where the minimum length of partial hits is set to 25 

(min_hit_len) and the minimum summed length of partial hits is set to 0 (6). Manual calculation 

of the identity % for the taxonomical assignments was not completed. The Centrifuge 

classification results are then filtered and aggregated to calculate and report counts of reads at the 

species rank. For reads without a reliable assignment at the species rank, higher ranks of the 
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taxonomy tree are used for the assignment. Supplementary Figure 4 shows a taxonomic tree of 

IAV sequences detected through Nanopore sequencing of the amplicons. 

Additionally, several filtered sequences were randomly selected and manually uploaded 

to Basic Local Alignment Search Tool (BLAST) to confirm the identity of the M1 gene portion 

amplified by RT-qPCR. Raw sequencing data was uploaded to the National Center for 

Biotechnology Information (NCBI) Sequence Read Archive (SRA). Raw sequence data have the 

following accessions: SAMN39936024, SAMN39936025, SAMN39936026, SAMN39936027, 

and SAMN39936028. 
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Appendix Figure 1. Daily count of travellers crossing into Windsor-Essex, ON Canada from Detroit at 

land crossings from January 1, 2018, to December 30, 2023. Dots correspond to the sum of traffic 
arriving through the Detroit-Windsor tunnel and the Ambassador Bridge. The red line is a 30-day moving 

average of the daily arrivals. The onset of the COVID-19 pandemic coincides with a precipitous decline in 

the number of travellers arriving in Windsor-Essex daily. Traveller volume data was publicly available (7). 

https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36729117&dopt=Abstract
https://doi.org/10.2807/1560-7917.ES.2023.28.5.2300043
https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36138059&dopt=Abstract
https://doi.org/10.1038/s41598-022-20076-z


 

Page 7 of 9 

 

Appendix Figure 2. Comparison of the mean number of daily travellers arriving in Windsor-Essex at land 

crossings (Detroit-Windsor tunnel and the Ambassador Bridge) from August to December of 2019 (before 

the COVID-19 pandemic) to the mean number of daily travellers arriving in Windsor-Essex at land 

crossings from August to December of 2022 (following the removal of COVID-19 pandemic restrictions). 

The results of a paired t-test show that ≈6394 (p < 0.0001, 95% CI 5720–7068) fewer daily travellers 

crossed into Windsor-Essex in 2022 than in the same period of 2019 (a mean of 24,260 travellers in 2019 

compared to 17,867 travellers in 2022). This represents an approximate 25% reduction in cross-border 

traffic during the onset and peak of the 2022–23 respiratory season despite the removal of border 
restrictions. Traveller volume data were publicly available (7). 
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Appendix Figure 3. IAV-M1-gene concentration (red line) superimposed on new influenza 

hospitalizations for the Windsor-Essex Region (blue bars) and IAV cases (gray bars) per epi-week for 

2022. Hospitalization data were extracted from the Discharge Abstract Database (DAD) through 

IntelliHealth. Influenza hospitalizations included hospital admissions where the main diagnoses had an 

ICD10 code of J09, J100, J101, J108, J110, J111, or J118. Case data were found on the Windsor-Essex 

County Health Unit’s Public Dashboard (8). Unpublished wastewater surveillance data corroborates an 
abnormal peak in influenza cases and hospitalizations observed in May 2022 following the removal of 

COVID-19 mitigation measures. This late season spike in influenza circulation was observed across 

Canada (9,10). 
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Appendix Figure 4. Taxonomy tree of sequences detected through Nanopore sequencing of the 

amplicons obtained by RT-qPCR. All the IAV subtypes with at least 0.001% of abundance are included in 

this taxonomic representation. 


