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Real-time collaborative forecast efforts have be-
come the standard to generate and evaluate fore-

casts for infectious disease outbreaks (1,2). Individual 
forecasts are aggregated into an ensemble prediction 
that has historically outperformed individual models  

and is the primary external communication used 
(3–5). Because of the focus on the singular ensemble 
model and the costs associated with producing in-
dividual forecasts, public health officials starting or 
maintaining a forecast hub face 2 key challenges: 
identifying target participation rates and optimizing 
ensemble performance of participating models. To 
guide this decision-making, we analyzed data from 
recent US-based collaborative outbreak forecast hubs 
to identify how the size and composition of an ensem-
ble influences performance.

We analyzed hub forecasts for influenza-like 
illness (ILI) from 2010–2017 (5); for COVID-19 re-
ported cases, hospital admissions, and deaths from 
2020–2023 (6); and for influenza hospital admissions 
from 2021–2023 (7). For each hub, we identified time 
periods with maximal model participation that had 
at least 2 increasing and 2 decreasing epidemiologic 
phases and obtained forecasts for individual models 
that produced >90% of all possible forecasts (Appen-
dix Table 1, Figure 1, https://wwwnc.cdc.gov/EID/
article/30/9/24-0026-App1.pdf). For each ensemble 
size, nD ∈ {1, … ,ND}, where ND is the disease-specific 
total number of models matching our inclusion crite-
ria; we created unweighted ensemble forecasts for ev-
ery combination of individual models of size nD. We 
followed the hub forecast methodologies and made 
probabilistic forecasts for ILI by using a linear pool 
methodology (5), and we made quantile forecasts for 
all others by taking the median across all individual 
forecasts (Figure 1) (8). For each hub, we compared 
the ensemble performance against 2 hub-produced 
models. The first is a baseline model that produces 
naive forecasts and serves as a skill reference point; 
and the second is the published ensemble produced 
in real-time that is an unweighted ensemble of all 
submitted forecasts and is the current standard for 
performance (3,5). We summarized probabilistic en-
semble forecast skill by using the log score for ILI 
forecasts and the weighted interval score for all oth-
ers (9,10). We took the reciprocal of the log score so 
that lower values would indicate better performance 
similar to the weighted interval score (Appendix).

Looking across all ensemble sizes and combi-
nations, we found that including more models im-
proved average forecast performance and that all 
ensembles composed of >3 models outperformed 
the baseline model (Figure 2). Further increases to 
the ensemble size slightly improved the average 
forecast performance, but substantially decreased 
the variability of performance across ensembles. 
When we increased the ensemble size of influenza 
hospital admission forecasts from 4 to 7, the average 
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On the basis of historical influenza and COVID-19 fore-
casts, we found that more than 3 forecast models are 
needed to ensure robust ensemble accuracy. Additional 
models can improve ensemble performance, but with di-
minishing accuracy returns. This understanding will as-
sist with the design of current and future collaborative 
infectious disease forecasting efforts.



performance improved by 2%, but the interquartile 
range decreased by 56.5%. Increasing the ensemble 
size therefore reduces the variability in expected 
performance of an ensemble.

To assist with decision-making regarding opti-
mal ensemble assembly, we tested 2 approaches for 
model selection on the basis of past performance. 

We either ranked models by their individual per-
formance and chose the top nD models (individual 
rank) or we compared the performance of all ensem-
ble combinations of size nD and chose the models 
from the top performing ensemble (ensemble rank). 
Across all hubs, the individual rank methodology 
outperformed randomly assembled ensembles of 
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Figure 1. Comparison between individual and ensemble forecasts for COVID-19 mortality for Massachusetts, USA, from 1–4 weeks 
ahead, November 15, 2021–December 3, 2022, in study of optimizing disease outbreak forecasting ensembles. A) Individual forecasts 
of 10 models meeting inclusion criteria compared with weekly COVID-19 mortality estimates. B) An ensemble forecast constructed by 
taking the median across 10 individual forecasts compared with weekly COVID-19 mortality estimates. Black dots, weekly COVID-19 
mortality estimates; colored lines, medians; ribbons, 95% prediction intervals.

Figure 2. Summarized ensemble forecast scores from collaborative forecast efforts in study of optimizing disease outbreak forecasting 
ensembles. Scores correspond to the average forecast performance during testing periods across all dates, locations, and forecast 
horizons (Appendix Table 1, https://wwwnc.cdc.gov/EID/article/30/9/24-0026-App1.pdf). All scores are standardized by the baseline 
forecast model for that metric (Y = 1). Scores <1 indicate better accuracy than baseline. A) COVID-19 cases with 15 included models. B) 
COVID-19 admissions with 17 included models. C) COVID-19 deaths with 19 included models. D) Influenza admissions with 21 included 
models. D) Influenza-like illness with 23 included models. Solid black lines indicate mean scores; gray shading indicates minimum–
maximum range. Horizontal purple dashed line indicates unweighted published ensemble used as standard.



the same size 63% (range 33.1%–87.2%) of the time, 
and the ensemble rank methodology outperformed 
randomly assembled ensembles of the same size 
87.9% (range 70.9%–99.7%) of the time (Appendix 
Table 2, Figure 2). Performance of those ensembles is 
similar during both the training and testing periods, 
suggesting that ensemble performance is consistent 
through time (Appendix Figures 2, 3). Overall, en-
semble rank outperforms individual rank for ensem-
ble construction for 89.8% (range 66.7%–100%) of all 
sizes, and it provides a 6.1% (range 1.3%–11.9%) 
skill improvement (Appendix Table 2). The size 4 
ensemble rank performed similarly to the published 
hub ensemble, although performance often declined 
with additional models (Appendix Figures 2, 3). 
Relative forecast performance across ensemble strat-
egies was consistent when stratified by the ensemble 
size, forecast location, forecast date and phase of the 
epidemic, forecast target, and the skill metric (Ap-
pendix Figures 4–18).

Our results provide guidance for future collab-
orative forecast efforts. Hub organizers should target 
a minimum of 4 validated forecast models to ensure 
robust performance compared with baseline models. 
Adding more models reduces the variability in ex-
pected ensemble performance but might come with 
diminishing returns in average forecast skill. Orga-
nizers should use past ensemble performance rather 
than individual performance when selecting models 
to include in forecast ensembles; it is likely that fur-
ther gains and different relationships between ensem-
ble size and performance will come from weighted 
ensemble approaches (8). As public health officials 
and researchers look to expand collaborative fore-
cast efforts, and as funding agencies allocate budgets 
across methodological and applied forecast efforts, 
our results can be used to identify target participation 
rates, assemble appropriate forecast models, and fur-
ther improve ensemble forecast performance.
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