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Abstract. Semantic segmentation refers to the process of assigning an object
label (e.g., building, road, sidewalk, car, pedestrian) to every pixel in an image.
Common approaches formulate the task as a random field labeling problem mod-
eling the interactions between labels by combining local and contextual features
such as color, depth, edges, SIFT or HoG. These models are trained to maximize
the likelihood of the correct classification given a training set. However, these
approaches rely on hand—designed features (e.g., texture, SIFT or HoG) and a
higher computational time required in the inference process.

Therefore, in this paper, we focus on estimating the unary potentials of a con-
ditional random field via ensembles of learned features. We propose an algorithm
based on convolutional neural networks to learn local features from training data
at different scales and resolutions. Then, diversification between these features is
exploited using a weighted linear combination. Experiments on a publicly avail-
able database show the effectiveness of the proposed method to perform semantic
road scene segmentation in still images. The algorithm outperforms appearance
based methods and its performance is similar compared to state—of—the—art meth-
ods using other sources of information such as depth, motion or stereo.

1 Introduction

Road scene understanding from a mobile platform is a central task for vehicle environ-
ment perception. This process is the key to success in autonomous driving and driver
assistance systems such as vehicle and pedestrian detection. Understanding road scenes
involves comprehending the scene structure (e.g., sidewalks, buildings, trees, roads),
scene status (i.e., traffic situations) or understanding the motion patterns of other ob-
jects present in the scene. A core component of road scene understanding systems is
its semantic segmentation [1/2]]. Semantic segmentation is the process of partitioning
an image into disjoint regions and the interpretation of each region for semantic mean-
ings (Fig.[I). Semantic segmentation provides important information to support higher
level scene interpretation tasks. Therefore, in this paper, we focus on the semantic seg-
mentation of road images.
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Fig. 1. Semantic scene segmentation aims at assigning every pixel in an image by one of the
predefined semantic labels available (i.e., pedestrian, car, building, road, sidewalk, tree, sky).
Image taken from [3].

Common semantic scene segmentation approaches formulate the problem as a ran-
dom field labeling problem and model the dependencies of labels of pairs of variables
by combining different types of features such as color, texture, depth, edges among oth-
ers [413]. Then, a model describing these interactions is built and trained to maximize
the likelihood of the correct classification. For instance, Gupta et al. [6] include the 3D
geometry of the scene to improve the segmentation task by discarding physically im-
plausible relations between segments. Floros et al. [3] include top—down segmentations
from a densely sampled part—based detector. Other approaches include other sources of
information such as structure from motion or stereo disparity [4]. However, these
conditional random field models have two main limitations. First, their dependency on
hand-designed features that may not be appropriated for the specific task. Second, these
approaches tend to be costly in terms of inference since inference requires searching
over different label configurations.

In this paper, we focus on multi—scale learning features for road detection. Feature
learning has received a lot of attention recently. For instance, a multi—scale end to end
learning algorithm is proposed in [7]. In that approach, the authors train a Convolutional
Neural Network in two steps. First, features are extracted at different scales and their
output is concatenated to generate a feature vector. Then, in a second stage these fea-
tures are trained to learn predictions of different classes. The approach shows promising
results in different databases. However, the training stage is complex and also involve
large (intermediate) feature vectors. Therefore, we propose a different approach to ob-
taining pixel potentials to represent the unary potentials of a conditional random field.
The core of the algorithm is a Convolutional Neural Network trained to extract local
features exploiting the 2D structures present in an image. In addition, the algorithm in-
cludes contextual information by extracting features at different visual scales (i.e., the
larger scale, the smaller area of the image is occupied by the object being analyzed).
Finally, robustness to scale variations is achieved by extracting these features at multi-
ple resolutions. Then, all these features are considered as weak features and combined
into a CRF as unary potentials. The ensemble of features is learned using global opti-
mization to exploit inter—feature diversification. Different experiments conducted on a
publicly available database show the effectiveness of the proposed method to perform
semantic road scene segmentation.
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The rest of this paper is organized as follows. First, in Sect. 2] we introduce condi-
tional random fields for image segmentation. Convolutional neural networks for feature
extraction are introduced in Sect. Bland the algorithm to compute ensembles of multi—
scale features is detailed in Sect.[3.1l Then, in Sect. d] experiments are presented and
the results are discussed. Finally, conclusions are drawn in Sect.

2 Conditional Random Fields for Image Segmentation

Image segmentation consists of partitioning an image into several disjoint regions that
show homogeneity to certain features such as color, texture, edges. This process is usu-
ally formulated as a random field labeling problem to aggregate local cues such as color,
texture along with contextual cues describing the possible spatial interactions between
labels [413]]. To this end, an image is represented with a graph structure ¥ =< ¥, & >
where 7 is a set of N random variables Y = Y1,..., Yy representing the nodes of the
graph (i.e., |¥/| = N) and corresponding to the pixels in the image. Each of these vari-
ables is allowed to take values from a discrete domain of labels £ =1I;,,...,Ilx. Fur-
thermore, & is the set of edges modeling the relationships between neighboring pixels.
Then, image segmentation is done by assigning every pixel in the image x; € ¥ a mean-
ingful label /; € Z. Finally, let y = {Y; € ¥} a label assignment with values in .£. Then,
we consider a Conditional Random Field (CRF) to model the Gibbs energy as follows:

E(y)=Y will.x)+ Y wijlli1;), (1)

icy (i,j)e&

where y;(l;,x;) is the unary potential modeling the likelihood of a pixel taking a certain
label, and v;;(l;,1;) is the pairwise potential modeling the coherence of neighboring
pixels taking the same label. Then, the most probable label assignment y is obtained by
minimizing the Gibbs energy on the graph structure: = argmin, E(y).

Conventionally, the unary potential is computed using features in an image such
as color, texture, shape or hand—designed features such as SIFT or HoG. Then, the
model is build and trained to maximize the likelihood of the correct classification. In the
next section, we introduce the use of convolutional neural networks to extract specific
features representing each possible label.

3 Feature Learning via Convolutional Neural Networks

In this paper we focus on learning/extracting features from training images using con-
volutional neural networks (CNN). CNNs are hierarchical architectures widely used for
object detection and recognition [8] that alternate different type of layers (e.g., con-
volution, sub—sampling) to extract and combine visual patterns presents in the input
data [9]. An example of this type of architectures is shown in Fig. 2l This architecture
can be interpreted as a set of filter banks divided in three different layers and a set of
connections to fuse them. The kernels of these filters and the connection weights are
learned off-line using training data [9].

Based on this learning architecture we extract features at two different visual scales:
fine and coarse. These two scales (levels from now on) consider different amount of
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Fig.2. Convolutional neural networks alternate layers of convolution (C-layers) and sub-
sampling layers (S—layers) to learn high—order local features directly from training data. Con-
nection weights are given by w;; (i-th layer, j—th kernel), the size of convolutional kernels is
kin % kips and the subsampling size for the S—layer is s;y X sijps.

contextual information by varying the size of the input patch. In particular, we consider
patch sizes of 32 x 32 and 64 x 64 for the fine and coarse levels respectively. Moreover,
robustness to scale variations is improved by extracting features using different kernel
sizes. In practice, this is done by resizing input images to 4 different scales: 1, é 411 and
é. Hence, this stage takes a RGB image of size X x Y as input and extracts fine and
coarse features at multiple resolutions by applying a sliding window on patches of size
32 x 32 and 64 x 64 respectively. The output is a K x X x Y confidence map relating a
set of K (i.e., number of labels available) floating point numbers, ranging from O to 1,
to each pixel in the image to indicate their per—class potential. The higher the potential
is, the more likely the pixel belongs to that class.

3.1 Multi-scale Feature Ensembles as Unary Potentials

Unary potentials (e.g., y; in Eq. (1)) model the likelihood of a pixel taking a certain
label. These potentials are usually estimated using common features extracted from
incoming data (e.g., color, texture, depth, edges). If more than one feature is available,
the unary potentials are estimated as a combination of them either using predefined
rules (e.g., sum, product, maximum, minimum [[10]]) or learned weighted combinations.
Using fixed rules does not exploit the fact that different objects (classes) have different
needs in terms of context and scale information. Therefore, if training sets are available,
a more powerful combining approach consists of a weighted combination of features.
In this case, the unary potentials can be estimated as follows:

R
vi(li,x|6;) = Zwrl//r(liax‘@r)v @)

r=1

where Oy, ..., 0O is the set of R features and w, is the weight modeling the relative rel-
evance of that feature for the given label. In this section, unary potentials are computed
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as a weighted combination of multi—scale learned features. To this end, we consider
the output of each CNN (different scales and different levels) as a different feature and
fuse them using a weighted linear combination. More precisely, we focus on class—
dependent weighted linear combination were each feature (scale and resolution) for
each class receives a different weight. These class—dependent weights are learned glob-
ally (all weights and all classes at the same time) off-line by minimizing the sum of
squared errors between the output of the CNN and the target label.

4 Experiments

Experiments validating the proposed algorithm are conducted on the Cambridge-driving
Labeled Video Database (CamVid) [3]]. CamVid is a publicly available database of
high-quality images acquired using a camera mounted on the windshield of a vehi-
cle driving in an urban scenario at different daytime. Thus, these sequences include
challenging situations as crowded scenes, different lighting conditions and different
road type. Ground-truth is provided as manual annotations at 1fps. These annotations
include 32 different classes [3]. However, for fair comparison with other approaches,
we use 11 object categories as in [2l11]. We follow the experimental setup in [2J11]]
by dividing into 367 training and 233 testing images and providing evaluations by
down-scaling the images by a factor of 3. Quantitative evaluations are provided using
pixel-wise confusion matrices including global and average accuracy. The former is the
number of pixels correctly classified over the number of pixels in the testing set. The
latter is the number of pixel correctly classified per class divided by the total number of
pixels in that class.

For testing purposes we devise a simple road scene segmentation algorithm based
on CNN and CREF. The core of the algorithm is a CNN which takes an N x M image as
input and outputs a K x N x M confidence map relating a set of K (i.e., number of labels
available) floating point numbers indicating the per—class potential of each pixel in the
image. The higher the potential is, the more likely the pixel belongs to that class. Then,
a single unary potential per class is computed using Eq. (2). Finally, the most probable
label assignment is estimated minimizing the energy function in Eq. ().

The parameters of the algorithm are empirically fixed as follows. First, the algorithm
uses two levels (fine and coarse) and four different scales (R = 8): 1x, ;x Jlx and ;x
resolution. Further, the input layer (RGB data) at each level is sparsely connected to the
first convolutional layer: each color plane is connected to two different kernels and then
all three color planes are connected to two more kernels. The first connections enforce
learning independent preprocessing kernels for each color while the last ones combine
them.

4.1 Training and Data Preparation

The training set consists of 367 high—quality images manually labeled. This results in
millions of highly correlated training samples that difficult the training process. Hence,
to obtain a reasonable overhead we reduce the number of training samples by consider-
ing only a subset of training patches for each image. This subset per image is generated
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using over—segmentation and selecting a representative number of pixels within each
region. In this paper, the over—segmented image is obtained using the turbo—pixel ap-
proach in [12]. Then, training samples are selected as the centroid of each superpixel.
This sampling technique has two main advantages. First, it improves diversity in the
training set by reducing the number of samples (i.e., iterative learning algorithms such
as back—propagation can explore more samples in less time). Second, the selection of
the centroid improves the intra—class variance since the centroid is the best representa-
tion of the superpixel area and maximize the distance between samples from two con-
secutive superpixels. Based on this sampling technique, two non—overlapping training
sets are generated using different dilation masks around the centroid of each super-
pixel (Fig. B). The first subset is used to train the CNN and, the second one is used
to learn the weights. Thus, the weights of the ensemble are learned globally using the
approach in Sect. 3.1] using unseen samples. Both training subsets are resampled to
improve the balance between classes.
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Fig. 3. The number of training samples is sub—sampled to reduce the computational training over-
head. The incoming image is over—segmented using superpixels. Then, patches centered at the
centroid of each superpixel and several pixels in its surrounding area are selected as training
samples.

The layers of the CNN are trained in supervised mode using the pixel labels in the
first training subset. To this end, image patches centered in the training set are ex-
tracted. Robustness to scale and noisy acquisition conditions is reinforced using jit-
ter in each patch. More precisely, we consider a random scale per sample between
[0.6,...,1.4], random Gaussian noise o = [0.3,...,1.2] and random rotations in the
range [—17°,...,17°]. Given this resampled training set, CNN at each level is trained
(weight learning) independently using classical back—propagation. The parameters of
the CNN are corrected due to standard stochastic gradient descent by minimizing the
sum of square differences between the output of the CNN and the target label. Training
is stopped when the error in consecutive epochs does not decrease more than 0.001.
Finally, the CREF is trained using the Conditional Random Field toolbox in [13]].

The set of weights obtained is listed in Table [Il The larger the weight, the more
important the feature. As shown, different weights are obtained for each class. For
instance, high weights are given to the 4th—scale of the coarse level for the bicyclist
and sign—symbol classes (i.e., more contextual information is needed to predict these
classes) while the road ensemble mainly consists of fine scales.
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Table 1. Set of weights obtained for the experiments. Weights are computed globally without
bounding their possible values.

Fine Level Coarse Level

Scales Ist 2nd  3rd 4th Ist 2nd  3rd 4th

Byciclist 0.023 0.360 0.120 —0.009 0.008 0.608 0.062 —1.0
Building 0.185 0.658 0.244 0.106 0.188 0.388 0.280 —1.0
Car 0.092 0.296 0.220 0.192 —0.007 0.337 0.189 —1.0
Column-pole 0.022 0.132 0.078 —0.020 0.101 0.251 0.021 —0.536
Fence —0.145 0.344 0.182 0.027 0.058 0.487 0.181 —1.0
Pedestrian 0.020 0.197 0.100 0.032 0.079 0.320 0.092 —0.746
Road 0.050 0.272 0.074 0.109 0.089 0.478 0.3414 —1.0
Sidewalk —0.040 0.309 0.174 0.051 —0.023 0.546 0.184 —1.0
Sign-symbol 0.060 0.247 0.191 0.048 0.076 0.314 0.040 —0.823
Sky 0.383 0.375 0.361 —0.008 0.026 0.096 0.062 —0.867
Tree 0.063 0.351 0.380 0.087 0.208 0.301 0.047 —1.0

4.2 Results

Representative qualitative results are shown in Fig. H] and pixel-wise confusion ma-
trices are shown in Fig. Bl These matrices provide per—class classification rates given
by the total number of correctly classified pixels divided by the total number of pixels
in the training set. For comparison, we provide confusion matrices for three different
configurations. First, using a linear combination only at the finner level. Second, the
confusion matrix using both levels and learned weights and finally, the confusion ma-
trix using the CRF framework and CNN to estimate the unary potentials. As shown,
the best average per—class accuracy is provided by the fusion of weights without the
pairwise potentials Fig. Bb. However, using the pairwise potentials reinforce relation
between neighboring pixels and improves the global accuracy of the algorithm. In this
case, the accuracy of large classes (e.g., road, sidewalk) is improved at the expense of
lowering the accuracy of classes with small presence in the dataset (e.g., sign—symbol).
These contingency table suggests that miss—classifications are mainly located in small
objects such as column-pole and sign-symbol corresponding with those classes with
less examples in the training set. Further, the algorithm exhibits lower performance in
classifying bicycles, buildings, fences and trees. The former are usually classified as
pedestrian due to their similarity (Fig. ).

The performance of the proposed CNN—-CRF algorithm is also compared to several
methods in the state—of—the—art. These approaches include different types of features
such as appearance [2], motion cues (SfM) [2], their combination [2] , depth [1L1],
semantic texton and superpixels [11] and their combination [11}4] to improve their
performance. We also include approaches including object detectors [Si4]] since they
provide the highest accuracy within the state—of-the—art. Moreover, for comprehen-
sive evaluation, we include five different instances of our algorithm. First, the com-
plete CNN-CRF using all the scales and features. Then, two different multi—scale
instances excluding the CRF: using both levels (MultiScale CNN-no CRF) and using
only the fine level (CNN-MR Fine). Finally, an instance where histogram of superpixel
labels is used to reinforce the spatial consistency of object labels (CNN—superpixels)
is also included. We also include a CNN approach based on a single scale at the finer
level (Fine Level). This configuration outputs the maximum response over each class,
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Fig. 4. Qualitative semantic road segmentation results. First and fourth rows: input image. Second
and fifth rows: manually annotated labels. Third and sixth rows: results of our algorithm.
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Fig. 5. Confusion matrix over the CamVid test set. a) Using directly the ensemble of learned
features (average recognition rate per class is 54.95% + 23.3). b) Using directly the ensemble of
learned features (average recognition rate per class is 58.6% +21.7%). b) Using the ensemble of
learned features and the CRF (average rate per class is 55.57% +33.41).

computes the superpixel histogram of object labels (using the approach in [14]) and
finally, assigns the predominant class label to each pixel in the superpixel. The base-
line is the appearance based algorithm in [2] since it is based on appearance features
extracted in a single image. A summary of per—class accuracy is listed in Table 2l As
shown, our approach significantly improves the performance of the maximum fusion
method, the baseline and the combination of motion and appearance. Furthermore, the
proposed approach provides similar per class average accuracy compared to the rest of
methods. However, the proposed algorithm provides a lower global performance. This
is mainly due to the lack of accuracy in the road class (89.0% compared to 95%) since
this is the class with more pixels in the database. As shown, using depth information
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provides the highest accuracy for the road class and high global accuracy but lower per
class average performance. Hence, we expect a significant improvement in the overall
performance by including temporal information to our approach. From these results,
we can conclude that using learning ensembles of trained multi—scale features provides
promising semantic road image segmentation in a single image.

As shown, compared to state—of-the—art approaches, the proposed algorithm
provides the higher accuracy for car, column—pole and bicyclist and it outperforms
algorithms combining appearance and structure from motion features. In addition, it
provides promising results compared to algorithms using CRF frameworks to combine
multiple features from diversified sources of information. For instance, the top per-
forming algorithm combines depth, semantic textons, object detection and superpixel
features to achieve the higher class average accuracy. Nevertheless, the proposed algo-
rithm outputs a per—class confidence map indicating the pixel potential per class that
could be combined with the rest of features and integrated into a CRF framework im-
proving the global and class average accuracy.

Table 2. Quantitative comparison of our method with state—of-the—art road scene recognition
approaches on the CamVid database. These approaches include different cues such as motion,
appearance, depth or stereo information. Bold names indicate an instance of the proposed method.
Bold values indicate the best performing method.

Sign-Symbol
Road
Pedestrian
Fence
Column-Pole
Sidewalk
Bicyclist
Average
Global

]
[2a] = wn @]
Our approach (CNN-CRF) 84.3 65.393.1 74.6 0.4 93.525.6 32.3 13.8 85.0 54.3 56.6 83.6
MultiScale CNN - noCRF  47.6 68.7 95.6 73.9 32.9 88.9 59.1 49.0 38.9 65.7 22.5 58.6 72.9

CNN-MR Fine 37.7 66.2 92.5 77.0 26.0 84.0 50.9 43.7 31.0 65.7 29.7 54.9 68.3
CNN-superpixels 3.2 59.793.5 6.6 18.186.5 1.9 0.8 4.0 66.0 0.0 30.9 54.8
Fine Level 33.253.9 87.8 67.1 23.2 83.9 42.7 44.1 31.3 63.0 26.1 50.6 63.5
[LL] Unary 61.9 67.391.1 71.1 58.5 92.9 49.5 37.6 25.8 77.8 24.7 59.8 76.4
Baseline (App. [2]) 38.7 60.7 90.1 71.1 51.4 88.6 54.6 40.1 1.1 55.523.6 52.3 66.5
[2](StM) 43.946.279.544.6 19.5 82.524.458.8 0.1 61.818.043.661.8
[2](SfM combined) 46.2 61.9 89.7 68.6 42.9 89.5 53.6 46.6 0.7 60.5 22.5 53.0 69.1
[L1] Unary & pairwise 70.7 70.8 94.7 74.4 55.9 94.1 45.7 37.2 13.0 79.3 23.1 59.9 79.8
[L1] higher order 84.572.697.572.7 33.095.334.245.7 8.1 77.628.559.283.8
[4] (no det.) 79.3 76.0 96.2 74.6 43.2 94.0 40.4 47.0 14.6 81.2 31.1 61.6 83.1
[4] (det.) 81.576.6 96.2 78.7 40.2 93.9 43.0 47.6 14.3 81.5 33.9 62.5 83.8
[S] (top down) 80.4 76.1 96.1 86.7 20.4 95.1 47.1 47.3 8.3 79.1 19.5 59.6 83.2
[l depth 85.357.395.469.2 46.5 98.5 23.8 44.3 22.0 38.1 28.7 55.4 82.1

Finally, the computational cost required to process a single image is analyzed.
Currently we have a sub—optimal implementation based on Lua code and Matlab. Our
implementation takes approximately 5 seconds to output the features of a 320 x 240
image and approximately 5 seconds to estimate the optimum labeling. Further, our ap-
proach is highly parallelizable and specially suitable for FPGA—based processors [15].
From these results, we can conclude that the proposed CNN-based algorithm provide
promising semantic road scene segmentation in a single image.
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Conclusions

In this paper, we proposed a semantic road image segmentation algorithm based on
the fusion of multiple features. The algorithm first extracts learned features at multiple
scales and multiple resolutions and then, fuses them at pixel level using a weighed linear
combiner. Features and weights are learned off-line directly from training data.

Experiments conducted on a publicly available database demonstrate that a weighted

combination outperforms other fusion methods based on fixed rules or single scale
methods. Moreover, the algorithm outperforms state—of—the—art appearance based
methods and it performs similar in terms of class average performance compared to
algorithms using other types of cues such as motion, depth or stereo.
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