S. Becker and Y. Le Cun. Improving the convergence of back-propagation
learning with sec ond-order methods. In D. Touretzky, G. Hinton, and T Se-
jnowski, editors, Proc. of the 1988 Connectionist Models .Sjummcr School,
pages 29-37, San Mateo, 1989. Morgan Kaufman. also published as techre-
port CRG-TR-88-5, Computer Science Dept, University of Toronto.

Improving the Convergence of
Back-Propagation Learning with
Second Order Methods

Sue Becker & Yann le Cun
Department of Computer Science, University of Toronto

Technical Report CRG-TR-88-5
Sept 1988

Requests for copies of this technical report should be addressed to:

The CRG technical report secretary
Department of Computer Science
University of Toronto

10 Kings College Road

Toronto M5S 1A4

CANADA

This research was supported by a grant to the Information Technology Research Center from
the government of Ontario, and by grants to Geoffrey Hinton from E. I. Du Pont de Nemours &
Company and from the National Science and Engineering Research Council of Canada.

This paper will appear in D. S. Touretzky, G. E. Hinton and T. J. Sejnowski (Eds.) Proceedings
of the 1988 Connectionist Summer School, Morgan Kauffmann: Los Angeles, 1988.

Improving The Convergence of Back-Propagation Learning
With Second Order Methods

Sue Becker, Yann le Cun
Department of Computer Science, University of Toronto
Toronto, Ontario, M5S 1A4. CANADA.

Abstract

Back-propagation has proven to be a ro-
bust algorithm for difficult connectionist
learning problems. However, as with many
gradient based optimization methods, it
converges slowly. We describe an extension
of the back-propagation algorithm which
uses a simple approximation to the second
derivative terms. This method is shown to
reduce the required number of iterations
to learn a random classification problem,
with only a small increase in the complex-
ity of each iteration.

The back-propagation learning algorithm for mul-
tilayer connectionist networks performs a gradient
descent search in weight space for a minimum of
some cost function C (which is frequently the mean
squared error between actual and desired outputs).
A general drawback of gradient-based numerical op-
timization methods is their slow convergence. In
connectionist learning problems in particular, one
typically starts a long way from the solution, and
spends most of the time oscillating around “ravines”
in weight space, because the gradient is sharp in
some directions but shallow in others. Conse-
quently, the learning parameters tend to be selected
in an ad-hoc manner, according to the particular
problem and the current performance of the net-
work. Many numerical optimization methods, e.g.
Newton’s method, use the second derivative in ad-
dition to the gradient to determine the next step
direction and step size, and converge quadratically
when close to a solution of a convex function.

We explore the application of Newton’s and other
optimization methods towards improving the con-
vergence of back-propagation. We then describe a
computationally efficient, locally computable algo-
nthm for incorporating approximate curvature in-

formation in back-propagation learning. Finally, we
present results of simulations on a random four-
way classification problem where this method is
shown to learn somewhat faster than standard back-
propagation.

1 Acceleration Methods

A variation of the back-propagation algorithm adds
a “momentum” term to the weight update formula
[Rumelhart et al., 1986]. This acceleration method
combines successive gradients by adding a fixed pro-
portion of the previous weight change to the current
one (¢ is a learning constant and a, the momentum
rate, is between 0 and 1):

oc
Aw,-,-(t) = —CW + aAw;,-(t - 1)

This tends to accelerate descent in steady down-
hill directions, while having a more “stabilizing” ef-
fect in directions which are oscillating in sign. This
method is reported to accelerate learning once some
stable descent direction has been found [Plaut et al.,
1986],' and has become a standard component of
the back-propagation algorithm.

The method of conjugate gradients (e.g- [Gill et
al., 1981]) is related to the method of gradient de-
scent with momentum, to the extent that both com-
pute a linear combination of successive gradients in
determining the next search direction. To minimize
a quadratic function of n variables, the conjugate
gradient method generates a series of k mutually
conjugate search directions Pj, where pq is the steep-
est descent direction, and Pk is a linear combina-
tion of the steepest descent direction and the Pj,
J =1..k—1. At each step the function is minimized

'In practice, this takes a few iterations through the
training set.

along one of these conjugate directions. For a gen-
eral nonlinear function, each step involves comput-
ing a conjugate direction followed by a line search to
get an approximate minimum in this direction. The
method of conjugate gradients is a leading contender
for large non-sparse optimization problems, since it
uses only gradient information and does not require
the storage of a matrix (unlike Newton’s method,
described in the next section). However, like the
method of steepest descent, it converges only lin-
early in n, hence it may be prohibitively slow for
large problems.

2 The Newton Method

Whereas the acceleration methods described above
use only gradient and function values in performing
minimization, Newton and quasi-Newton methods
(e.g. [Dennis and Schnabel, 1983]) directly incor-
porate the Hessian matrix (of second derivatives of
the error function) or an approximation to it. The
Newton method is based on a quadratic model C
of the objective function C(W) (in our case W is a
weight vector) which takes the first three terms in
the Taylor expansion of C about the current point
We:

C(W.+S) = C(Wc)+VC(Wc)TS+%S” vViC(W.)S

To minimize this quadric, we solve for the step S
where VC.(W. + S) = 0. The solution is S =
~V2C(W.)"'VC(W.). Since the quadratic model
is typically not exact, we cannot directly compute
the solution in this manner in one step. Hence,
Newton'’s algorithm iteratively computes the step S,
adds it to the current point W, to get the next ap-
proximate minimum, and repeats this process until
it is sufficiently close to a solution (i.e. the gradient
is sufficiently close to zero). This method works well
when given a starting point within a convex region
of the function, and converges quickly if the region
is quadratic or nearly so.

There are several drawbacks to using the New-
ton method, making it unsuitable for connectionist
learning, if not all difficult minimization problems.
First, in order to converge it requires a good initial
estimate of the solution, which is typically not avail-
able in a connectionist learning problem: since each
parameter (i.e. each weight in the network) is a rel-
atively meaningless entity by itself, it is difficult to
get better than a random setting of its initial value,

except for very special problems. Further, each iter-
ation requires the computation of the Hessian ma-
trix (of size n?, where n is the number of weights)
and also its inversion (O(n®) operations),? so the
method is expensive in terms of both storage and
computation. Finally, for a non-convex function,
the method can converge (if indeed it converges at
all) to a local maximum, saddle point, or minimum.

3 Quasi-Newton Methods

Quasi-Newton techniques combine Newton’s meth-
od with some more globally convergent algorithm
such as a line search, and overcome many of the
drawbacks described above. One of the best of
these techniques is the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm (see description in [Den-
nis and Schnabel, 1983]). This method has sev-
eral advantages: It has good convergence proper-
ties, both in theory and in practice; it is invariant
under linear transformations of the parameter space
(unlike steepest descent); it computes an approx-
imation to the inverse Hessian in only O(n?) op-
erations, compared to O(n3) for Newton’s method;
and finally, the BFGS Hessian update is symmetric
and positive definite, making the algorithm numeri-
cally stable (for further discussion of the properties
of BFGS see [Dennis and Schnabel, 1983)).

Watrous implemented the BFGS algorithm in a
connectionist learning framework, and compared it
with back-propagation (BP) and two other methods
- steepest descent with line search and the Davidon-
Fletcher-Powell algorithm [Watrous, 1987]. For the
three problems tested, BFGS converged in signifi-
cantly fewer iterations than the other methods. Ad-
ditionally, Watrous has reported good results using
this method on speech recognition applications [Wa-
trous et al., 1987; Watrous, 1988]. Thus the BFGS
method in practice is error tolerant, yields good so-
lutions, and converges in a small number of itera-
tions.)

However, each iteration of BFGS requires O(n?)
operations, compared to O(n) for back-propagation.
Hence, the computational advantage of BFGS over
BP probably holds only for “small to moderate sized
problems” [Watrous, 1987]. The largest problem
reported by Watrous in the comparative study de-
scribed above was a multiplexor task for a network

2Instead of inverting the Hessian, one can somewhat
more efficiently solve the system of linear equations
ViC(W.)S = —VC(W.).

having 33 weights; in this case the number of op-
erations was of the same order of magnitude for
BFGS and BP. Furthermore, the BFGS algorithm
lacks the desirable property of BP of having locally
computable weight update terms.

4 A Computationally
Feasible Approximation To
Newton’s Method

Second order methods may converge faster than gra-
dient methods by taking into account additional in-
formation about the objective function. However,
the Hessian matrix of the error function in a connec-
tionist minimization problem is typically too large
to compute and store, and too expensive to invert.
(le Cun, 1987] has proposed an efficient means of
computing approximate curvature information, in
an extension of the back-propagation algorithm, us-
ing a simple diagonal approximation to the Hessian.
Like BP, this algorithm also requires only O(n) op-
erations. The terms that must be computed by each
unit depend only on that unit’s outgoing weights
and on the second derivative terms computed by
units in the layer above; hence the diagonal Hessian
terms can be computed and stored locally, using a
procedure similar to the back-propagation method
of obtaining the gradients. First we compute the
second derivatives with respect to the total input to
each unit a,, as follows (where f(a) is the nonlinear
activation function computed by each unit, and w;,
is the weight from unit i to unit k):

0C . 2 20°C aC
5;-; —f(al) ;wh m—f (al);wkl —5‘;)

From this, we can compute the second derivatives
with respect to weights, again ignoring off-diagonal
terms, as follows:

8°C _ 9
5uT = pap @)’
3] '

Since this approximate Hessian has only diagonal
elements, it becomes trivial to invert. The diag-
onal method also has the advantage of being able
to deal with negative curvature (Newton’s method
requires that the Hessian be positive definite, and
BFGS forces it to be s0); we can simply reverse the
step direction for weights having negative second
derivative terms.

Instead of the usual back-propagation weight up-
date rule Aw;; = —eb%%, we can now take the
“pseudo-Newton step”:

ac
dw,,

Auyj = —rog
Ow.-’_‘.

By taking the absolute value of the Hessian term in
the weight update formula, we are simply reversing
the sign of the Newton step for directions having
negative diagonal terms. To deal with regions of
very small curvature, such as inflection points and
plateaus, we can modify the above weight update
rule slightly to add a small value 4 to the second
derivative terms:

.13
dw

Ay = —rooT
e | TH

This heuristic is commonly used in numerical op-
timization methods to improve the conditioning of
the Hessian.

Whereas the full Newton method performs both
a scaling and rotation of the steepest descent step,
the pseudo-Newton method described above has the
effect of merely scaling the descent step in each di-
rection. If the directions of maximal and minimal
curvature are aligned with the axes in weight space,
our method should capture most of the curvature
information.

5 Numerical Analysis of the
Diagonal Approximation

The applicability of the Newton-like method de-
scribed above depends on how well the diagonal
Hessian approximation models the true Hessian. If
the ravines of the error surface are usually parallel
to the axes in weight space, the diagonal terms of
the Hessian should capture a sufficient proportion
of the information about the curvature of the error
function.

To determine how close our diagonal approxima-
tion is to the full Hessian, we compared matrix
norms and eigenvalues for three small problems: a
tiny problem for a network having only three units
(one of these being a hidden unit) and one input pat-
tern with no thresholds, a 4:2:4 encoder with four
input patterns, and an 8:4:8 encoder with eight in-
put patterns. For the tiny problem, the input unit
is always on, and the desired output is 1 (we used a

nonlinear activation function symmetric about the
origin, having the values +1 well within its range; it
is described in the next section). Since this problem
has only two weights, we can easily sweep through
the entire weight-space to get complete information
on the characteristics of the Hessian. In the encoder
problems, the input vector has one bit on and the
rest off, and the desired output pattern is identical
to the input. The 4:2:4 and 8:4:8 encoders have 22
and 76 weights respectively (including thresholds).
All simulations described in this and the next sec-
tion were run using the SN neural network simula-
tion package [le Cun and Bottou, 1988].

For our numerical experiments, the full and
diagonal Hessians were approximated using a
finite-difference method, that involved forward-
differencing on the (analytic) gradient. This in-
volved an initial pass through the input cases to
compute the gradient, followed by n more passes
varying one weight at a tlme by Aw, to compute
the n rows of the Hessian.® After this, the Hessian
was made symmetnc by replacing it by 1(H T4+ H).
The step size Aw; for each row of the Hessian H,
was determined according to the recommendatlon
of [Dennis and Schnabel, 1983] as follows:

= /n maz(wj, Typical Weight) sign(w,)

where 1 is the computed machine epsilon (the
largest number such that within machine precision
1.0+ n = 1.0), and TypicalWeight is set to 0.3.
This method is precise to within about half the dig-
its of precision of the gradient [Dennis and Schnabel,
1983]. Although the method is not terribly efficient,
and is not recommended for large scale optimization
problems, it is reasonably fast for small networks,
and suitable for the present analyses.

The approximate Hessians, computed with the
forward-differencing method described above, were
sampled for various weight settings for the three test
problems, and the L, norms of the Hessians were
computed at each sample point. For the tiny net-
work, the Hessians were sampled across the weight
space for weights in the interval [-1.6, 1.6] at incre-
ments of 0.2. For the larger networks, samples were

*Instead, one can more efficiently forward dxﬂ'erence
on the gradient w.r.t. the total input to a umt , Vary-
ing the state of the unit by a small amount t.o obt.a.m

8ic

Bat and from this directly compute . This involves

on]y m passes (where m is the number of units), instead
of n passes (where n is the number of weights).

taken at random weight settings, as well as at so-
lution points found by standard back-propagation
learning. Learning began from an initial random
weight setting, with weights in [-0.2,0.2], and ¢ =
0.3. The 4:2:4 net was run for 500 learning itera-
tions using online BP, and the 8:4:8 for 1000; in both
cases this was well beyond the point of 100% correct
classification. (Note that these “solution weights”
would not be considered exact solutions by the usual
numerical minimization criteria that the gradient be
zero and the Hessian positive.)

Table 1: Norms of Hessians, Diagonal Hessians,
And Gradients For Three Networks

Net | weights | I1H) | DI | 1LD1]
EL

Vel

tiny | Random | 1.87| 1.17 | 0.63 1.01

Solution | 0.77 | 0.43{ 0.56 0.098

4:2:4 | Random | 14.7| 5.35| 0.36 2.87

Solution | 246 { 4.76 { 0.19 0.042
8:4:8 | Random | 99.7 | 10.88 | 0.11 8.69
Solution { 164.8 | 16.07 | 0.10 0.048

The Hessians for the two larger problems exhib-
ited certain characteristic structure. Their largest
terms were predominantly in the diagonals, al-
though there were many off-diagonal terms of the
same order of magnitude. These matrices had small
off-diagonal sub-blocks of zeroes, but were by no
means sparse. The sub-blocks of zeros were located
in regions where one would expect pairs of weights
to be independent. For example, for two units ¢
and k in the same layer having incoming weights
w;; and wy, respectively, we find that the Hessian

8¢
components Bu,;0uy; Bre very close to zero.

The norm of the diagonal Hessian relative to that
of the full Hessian indicates the extent to which the
latter matrix is diagonally dominant. These (L,)
norms are shown for the three networks in Table 1.
All values shown were averaged over 20 replications
of random weight settings, and 20 replications of

solution weights.* The norm of the gradient is also
given in each case, to indicate the proximity to a
minimum.

For the tiny network, for the majority of points
in weight space, the norm of the diagonal was found
to be close in value to the norm of the full Hessian.
For the larger encoder networks, as can be seen by
the ratio of the norms of the diagonal to the full
Hessians in Table 1, the diagonal terms account for
a smaller proportion of the Hessian. As the weights
approach a solution, it seems that the off-diagonal
terms become even larger; this is especially true for
the 8:4:8 network.

An analysis of the eigenvalues of the Hessian can
yield much information about the applicability of
second order methods, and in particular, of the di-
agonal approximation. For example, the spread be-
tween the largest and smallest eigenvalues indicates
the eccentricity of the error surface, or how badly
conditioned the problem is. Hence, the clustering of
eigenvalues of our Hessian approximation, compared
with those of the full Hessian, can tell us how similar
these matrices are, and to what extent the principal
curvatures of the error surface are captured in the
diagonal terms. We show histograms of the eigen-
values of the diagonal versus the full Hessian for
random weights (Figure 1), and weights near a solu-
tion (Figure 2). The EISPACK numerical software
package [Smith et al., 1974] was used to compute
these eigenvalues. Since the clustering patterns in
the eigenvalues are similar for both the small and
large encoder networks, we only show those for the
8:4:8 encoder.

The eigenvalues of the full Hessian are most
densely clustered in the same regions as the diag-
onals. However, there are in addition a small num-
ber of very large eigenvalues for the full Hessian, and
also many negative eigenvalues. The negative eigen-
values are large in magnitude for random weights,
and as would be expected, these negative values get
dramatically small for weights near the solution.
In contrast, the eigenvalues of the diagonal Hes-
sian (which are simply the diagonal Hessian terms
themselves) are always positive, and there are no ex-
tremely large diagonal terms. Many of the eigenval-
ues for both matrices are very near zero, indicating
that the solution is highly degenerate.

‘For the tiny network, 20 solution points were se-
lected from the statistics obtained acroes weight space
based on the magnitude of the gradient.

Our analyses of the clustering of the eigenval-
ues of the Hessian, together with our observation
that there are many off-diagonal zero blocks in the
Hessian, suggest that the diagonal approximation
should capture much of the curvature information.
However, there are some large eigenvalues in the
true Hessian not accounted for by the diagonal ap-
proximation. There may be regions in the error sur-
face where small changes in some weights result in
very large changes in the gradient, as evidenced by
the large range in eigenvalues found for the encoder
problems. If the diagonal Hessian terms are rela-
tively small in such regions, a descent step computed
strictly from these terms and the gradient may be
catastrophic. Thus, care must be taken in applying
this method. In the next section, we present some
experimental results of a comparison between our
Newton-like algorithm and back-propagation on a
classification problem.

6 Learning Experiments
With The Pseudo-Newton
Algorithm

For our experiments, we created a problem which
would be difficult for back-propagation to solve, and
where hopefully the use of second order information
would improve the learning speed. 64 patterns con-
sisting of 32 bits randomly set to +1 (with equal
probability) were generated. Each pattern was then
randomly assigned to one of four classes. Our net-
works thus have 32 input units and 4 output units.

We used the symmetric activation function
f(z) = 1.7159 tanh(2z); the scale factor was cho-
sen such that f(1) = 1 and f(-1) = —1. The
cost function was the usual mean squared error be-
tween actual and desired outputs. Desired outputs
were +1 and —1. The relative learning rate was set
for each layer of the network to be 7‘; where 1§ is
the fan-in or number of inputs to each unit in that
layer.® The learning parameter ¢ was selected to be
near optimal for each algorithm we tested. It was
gradually increased until a smooth learning curve
was observed, such that any further increase would
cause the error to oscillate during learning. Once a
near optimal epsilon was found for a particular algo-
rithm, it was fixed at that value, for all subsequent

*We compared three different rules for setting the
learning rate: dividing by v/%, dividing by i, and dividing
by 1, and found that the first rule worked best.

Figure 1: Eigenvalue histogram for the full and diagonal hessians of an 8:4:8 encoder network at random point in
weight space. White bars are for the full Hessian, and grey bars are for the diagonal terms.

experiments. When momentum was used, its initial
value was zero for the first two passes through the
training set, and 0.8 from then on.®

We compared our algorithm with
back-propagation, using both the “online” version
of BP, in which the weights are adjusted after each
pattern presentation, and “batch” BP, where the
gradient is accumulated over the whole training set,
and then weights are updated. The addition of mo-
mentum significantly accelerated learning for batch
BP and Newton, but had little effect for online BP.
The best performance was obtained with € = 07:- for

online BP, ¢ = %’-‘- for batch BP, and ¢ = 12 for

Newton. For the Newton weight update rule: the
parameter u was set to 1; hence for any weight hav-
ing a second derivative term less than 1 the weight
change would be maximal, while for a weight with
a larger second derivative term the step size would
be reduced in proportion to the magnitude of that
term.

Table 2 shows the mean trials to reach 100% cor-
rectness on the random classification problem for

®In practice, this means of applying momentum has
been found to work well on a variety of problems, for
the following reason: during the first few learning it-
erations the error tends to drop very sharply and the
gradient changes quickly in different directions, so mo-
mentum can adversely affect learning; after these first
few iterations, a stable descent direction is found and
momentum begins to have an accelerating effect on the
learning rate.

the three algorithms for optimally tuned learning
parameters. These learning trials were repeated
from 100 different random initial weight settings.
The Newton algorithm performed significantly bet-
ter than batch BP (by Student’s t-test, two-tailed,
t = 19.2, p < .005), which performed better than
online BP (t = 15.1, p < .005). Figure 3 shows
learning curves for Newton and batch BP; the mean
and standard deviation of the error over 100 repeti-
tions of learning (from 100 different initial random
weight settings) are plotted over learning trials. The
curves shown are for 20 passes through the learning
set of 64 patterns. We omitted the learning curve for
online BP from the figure since it overlapped that
of batch BP to such an extent that it was difficult
to tell the two curves apart.

Table 2: Mean Trials to Reach 100% Correctness
On A Random Classification Problem

Algorithm Mean Standard
Deviation
Online Back-propagation | 1671.20 383.93
Batch Back-propagation 949.12 148.10
Pseudo-Newton 603.52 101.00

Figure 2: Eigenvalue histogram for the full and diagonal hessians of an 8:4:8 encoder network at a solution point.
White bars are for the full Hessian, and grey bars are for the diagonal terms.

7 Discussion

The results presented above show that with momen-
tum and optimally tuned learning parameters our
Newton-like algorithm performs significantly better
than back-propagation. The number of iterations
required to learn the task to 100% correctness is re-
duced by a factor of about 1.5 compared to batch
BP, and about 2.5 compared to online BP. The small
increase in the complexity of our algorithm over BP
(only in the backward pass of each iteration) is more
than offset by this reduction in learning time.”
Under certain conditions, our algorithm fails to
converge: if the initial weights are set to be very
large or very small values. This is probably indica-
tive of the fact that there are regions in weight space
where the gradient is very steep and where the cur-
vature is very shallow; hence the algorithm tends to
compute steps that are too big. The standard so-
lution to this problem would be to perform a line
search in the Newton direction until a true descent
step is found. However, a line search would add to
the complexity of our algorithm, and require that we
sacrifice the property of local computation. Other
alternatives would be to either begin with a small
learning rate for the first few iterations, or simply
use gradient descent at first, and then switch to our
second-order method to accelerate learning.
Another point to note is that without momentum,

"On a digit recognition task, we found that our al-

gorithm consumed approximately 30% more CPU time
than BP.

our algorithm performed about the same as back-
propagation; this suggests that the method was un-
derestimating the curvature at times, and therefore
oscillating. With the addition of momentum, these
oscillations would tend to be averaged out, as ap-
pears to be the case in practice with standard BP.

It is interesting that online and batch BP both
performed about the same on the random associa-
tion task. This particular task is rather special in
that it is very low in redundancy. We have found in
practice that on more “natural” pattern recognition
problems which tend to have higher redundancy, on-
line BP seems to outperform the batch version. This
is not surprising: since batch BP accumulates the
gradient terms for all cases in the learning set before
it updates the weights, a training case that appears
repeatedly in the same set contributes an identical
term to the gradient each time. In contrast, on-
line BP takes a step after each case presentation, so
when presented with a case that it has seen already,
it is at a different point in weight space (presum-
ably closer to the solution), hence this presentation
is not equivalent to the last one.

Finally, we note that the values of the learning pa-
rameters u and ¢ are critical in getting reasonable
behaviour with our Newton-like algorithm. If the
value of u is very small, our algorithm behaves more
like the pure Newton method (given our Hessian ap-
proximation), and suffers the same pitfalls - we may
take very large steps in regions of near-zero curva-
ture, such as ravines and inflection points. On the

8.6 +

8.5 -

B Back Prop
O Newton

[e°4 136 162 230 350 a4 ale 5i2 555 8l 764 76& e§2 1) oéa 1624 1858 1152 1216 1280

Figure 3: Mean error and standard deviation for 100 repetitions of 1280 pattern presentations with Batch Back

Propagation versus Pseudo-Newton learning.

other hand, if u is very large, our algorithm behaves
like pure steepest descent, and will not take advan-
tage of the curvature information. If ¢ is too large,
we may see oscillations in the learning curve, or we
may fail to converge at all, as is also true of back-
propagation. We would predict that our method
should be somewhat less sensitive to variations in ¢
than back-propagation, since we are using extra in-
formation about the curvature to scale the step size.
More experiments are needed to determine whether
this is the case on a variety of problems.

8 Conclusions

In general, second derivative methods show promise
for speeding up the convergence of connectionist
learning algorithms. The results of [Watrous, 1987]
mentioned earlier indicate that the BFGS method,
which uses a positive-definite approximation to the
inverse Hessian, is in fact able to solve typical
connectionist problems in relatively few iterations.
However, since each iteration is computationally
costly as compared to taking a Newton or steepest
descent step, this method may only be advantageous
on relatively small problems.

We lave described an efficient means of esti-

mating curvature, using an extension of the back-
propagation algorithm which has been proposed by
[le Cun, 1987]. Our analysis of the norms and eigen-
values of the Hessian for some simple problems sug-
gest that while much of the curvature information
is captured by the diagonal approximation, the true
Hessian may have some large eigenvalues due to the
off-diagonal terms. Thus our method may at times
take a step which is much too large, and oscillate.

Our experiments on a random classification prob-
lem show that our pseudo-Newton method learns
somewhat faster than both online and batch back-
propagation, when all three methods have optimally
tuned learning parameters and use. momentum. The
reduction in the number of learning iterations by
a factor of 1.5 to 2.5 more than offsets the small
increase in complexity of our algorithm. The use
of momentum seems to help the pseudo-Newton
method in cases where it underestimates the cur-
vature and would otherwise tend to oscillate. The
algorithm fails to converge under some extreme con-
ditions, such as when the initial weights are very
large or very small, or the learning rate is too large.
To get a more globally convergent algorithm, it may
be desirable to use a hybrid technique, combining

the Newton approximation with gradient descent as
in standard BP.

Acknowledgements

The authors wish to acknowledge the contribution
of Philip Sharp in providing us with many insights in
the area of numerical optimization. We also thank
Geoffrey Hinton and Mike Mozer for their useful
discussion and comments. This work was supported
in part by a grant from the government of Ontario
to the Information Technology Research Center.

References

(Dennis and Schnabel, 1983] J. E., Jr. Dennis and
R. B. Schnabel. Numerical Methods For Uncon-
strained Optimization and Nonlinear Equations.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey,
1983.

(Gill et al., 1981] P.E. Gill, W. Murray, and M.H.
Wright. Practical Optsmization. Academic Press,
1981.

[le Cun and Bottou, 1988] Y. le Cun and Léon-
Yves Bottou. SN: A simulator for connectionist
models. SN Manual, March 1988.

{le Cun, 1987] Y. le Cun. Modéles Connezionnistes
de ’Apprentissage. PhD thesis, Université Pierre
et Marie Curie, Paris, France, 1987.

[Plaut et al., 1986] D. C. Plaut, S. J. Nowlan, and
G. E. Hinton. Experiments on learning by
back-propagation. Technical Report CMU-CS-
86-126, Carnegie-Mellon University, Pittsburgh
PA 15213, June 1986.

[Rumelhart et al., 1986] D. E. Rumelhart, G. E.
Hinton, and R. J. Williams. Learning internal
representations by error propagation. In Par-
allel distributed processing: Ezplorations in the

macrostructure of cognition, volume I. Bradford
Books, Cambridge, MA, 1986.

[Smith et al., 1974] B.T. Smith, J.M. Boyle, B.S.
Garbow, Y. Ikebe, V.C. Klema, and C.B. Moler.

Matriz Eigensystem Routines - EISPACK Guide.
Springer-Verlag, 1974.

[Watrous et al., 1987] R. Watrous, L. Shastri, and
A Waibel. Learned phonetic discrimination us-
ing conncctionist networks. In European Con-
ference on Speech Technology, pages 377-380,
September 1987. Edinburgh.

[Watrous, 1987] R. Watrous. Learning algorithms
for connectionist networks : Applied gradient
methods of non-linear optimization. Technical
Report MS-CIS-87-51, University of Pennsylva-
nia, 1987.

[Watrous, 1988] R. Watrous. Connectionist speech
recognition using the temporal flow model. In
IEEE Workshop On Speech Recognition, 1988.

