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Abstract

One long-term goal of machine learning research is to produce methatls
are applicable to highly complex tasks, such as perception (vision, ayditézn
soning, intelligent control, and other artificially intelligent behaviors. Weuarg
that in order to progress toward this goal, the Machine Learning commuomist
endeavor to discover algorithms that can learn highly complex functatismin-
imal need for prior knowledge, and with minimal human intervention. \sent
mathematical and empirical evidence suggesting that many populasaahes
to non-parametric learning, particularly kernel methods, are fundgatig lim-
ited in their ability to learn complex high-dimensional functions. Our analysis
focuses on two problems. First, kernel machines srallow architecturesin
which one large layer osimple template matchers followed by a single layer
of trainable coefficients. We argue that shallow architectures can lyeinefi-
cient in terms of required number of computational elements and exampée-
ond, we analyze a limitation of kernel machines with a local kernel, linkedego th
curse of dimensionality, that applies to supervised, unsupervisedf@itbiearn-
ing) and semi-supervised kernel machines. Using empirical resulisvaniant
image recognition tasks, kernel methods are compareddeigp architecturesn
which lower-level features or concepts are progressively comhbimedmnore ab-
stract and higher-level representations. We argue that deep atatet®bave the
potential to generalize in non-local ways, i.e., beyond immediate neighbnd
that this is crucial in order to make progress on the kind of complex tasksned
for artificial intelligence.



1 Introduction

Statistical machine learning research has yielded a ritbfss@gorithmic and mathe-
matical tools over the last decades, and has given rise tond@uof commercial and
scientific applications. However, some of the initial goaflghis field of research re-
main elusive. A long-term goal of machine learning reseascio produce methods
that will enable artificially intelligent agents capablele&rning complex behaviors
with minimal human intervention and prior knowledge. Exad@spof such complex
behaviors are found in visual perception, auditory peloeptand natural language
processing.

The main objective of this chapter is to discuss fundamdirtatations of cer-
tain classes of learning algorithms, and point towards @ggtes that overcome these
limitations. These limitations arise from two aspects @fsth algorithmsshallow ar-
chitecture andlocal estimators

We would like our learning algorithms to be efficient in threspects:

1. computational: number of computations during trainind during recognition,

2. statistical: number of examples required for good gdizatéon, especially la-
beled data, and

3. human involvement: amount of human labor necessary lar thie algorithm
to a task, i.e., specify the prior knowledge built into thedabbefore training.
(explicitly, or implicitly through engineering designstivia human-in-the-loop).

The last quarter century has given us flexible non-paramkgarning algorithms that
can learn any continuous input-output mappiogvidedenough computing resources
and training data. A crucial question is how efficient are sashthe popular learn-
ing methods when they are applied to complex perceptuastasich a visual pattern
recognition with complicated intra-class variability. &lchapter mostly focuses on
computational and statistical efficiency.

Among flexible learning algorithms, we establish a disimttbetweenshallow
architectures anddeep architectures Shallow architectures are best exemplified by
modern kernel machines [S@lopf et al., 1999], such as Support Vector Machines
(SVMs) [Boser et al., 1992, Cortes and Vapnik, 1995]. Theystst of one layer of
fixed kernel functions, whose role is to match the incomintygoa with templates ex-
tracted from a training set, followed by a linear combinataf the matching scores.
Since the templates are extracted from the training seffistdayer of a kernel ma-
chine can be seen as being trained in a somewhat trivial emgispd way. The only
components subject to supervised training are the coeftief the linear combina-
tion. *

Deep architectures are perhaps best exemplified by mykilaeural networks
with several hidden layers. In general terms, deep ardhites are composed of mul-
tiple layers of parameterized non-linear modules. Therpatars of every module are

1in SVMs only a subset of the examples are selected as tempilagesupport vectors), but this is equiv-
alent to choosing which coefficients of the second layer arezero.



subject to learning. Deep architectures rarely appearénntiachine learning litera-
ture; the vast majority of neural network research has fedus shallow architectures
with a single hidden layer, because of the difficulty of traghnetworks with more
than 2 or 3 layers [Tesauro, 1992]. Notable exceptions delork on convolutional
networks [LeCun et al., 1989, LeCun et al., 1998], and reeerk on Deep Belief
Networks [Hinton et al., 2006].

While shallow architectures have advantages, such as tlsghjibg to use convex
loss functions, we show that they also have limitations @etfficiencyof the represen-
tation of certain types of function families. Although a nloen of theorems show that
certain shallow architectures (Gaussian kernel machibédsgdden layer neural nets,
etc) can approximate any function with arbitrary precisitrey make no statements
as to the efficiency of the representation. Conversely, deelptectures can, in prin-
ciple, represent certain families of functions more effitlie (and with better scaling
properties) than shallow ones, but the associated lossidmscare almost always non
convex.

The chapter starts with a short discussion about task-spgersus more general
types of learning algorithms. Although the human brain ismmetimes cited as an ex-
istence proof of a general-purpose learning algorithmgeapgnces can be deceiving:
the so-called no-free-lunch theorems [Wolpert, 1996], afl as Vapnik's necessary
and sufficient conditions for consistency [Vapnik, 1998&]selearly show that there
is no such thing as a completely general learning algoritAthpractical learning al-
gorithms are associated with some sort of explicit or implicior that favors some
functions over others.

Since a quest for a completely general learning method isnéaolcto failure, one
is reduced to searching for learning models that are wetkeduior a particular type
of tasks. For us, high on the list of useful tasks are thosertiwst animals can per-
form effortlessly, such as perception and control, as welleasks that higher animals
and humans can do such as long-term prediction, reasonlagpipg, and language
understanding. In short, our aim is to look for learning neelh that bring us closer
to an artificially intelligent agent. What matters the mosttiis endeavor is howef-
ficiently our model can capture and represent the required knowletge efficiency
is measured along three main dimensions: the amount ofrigadata required (espe-
cially labeled data), the amount of computing resourcesired to reach a given level
of performance, and most importantly, the amount of humésrtatequired to specify
the prior knowledge built into the model before traininggbeitly, or implicitly) This
chapter discusses the scaling properties of various legumibdels, in particular kernel
machines, with respect to those three dimensions, in péatiche first two. Kernel
machines ar@on-parametric learning modelsvhich make apparently weak assump-
tions on the form of the functiorf() to be learned. By non-parametric methods we
mean methods which allow the complexity of the solution wréase (e.g., by hyper-
parameter selection) when more data are available. Thisdas classical k-nearest-
neighbor algorithms, modern kernel machines, mixture ne@ad multi-layer neural
networks (where the number of hidden units can be selectied tise data). Our ar-
guments are centered around two limitations of kernel nreshi the first limitation
applies more generally to shallow architectures, whicluide neural networks with a
single hidden layer. In Section 3 we consider different g/p&function classes, i.e.,



architectures, including different sub-types of shallawhitectures. We consider the
trade-off between the depth of the architecture and itsdtrehumber of elements
in each layer), thus clarifying the representational latian of shallow architectures.
The second limitation is more specific and concerns kernehinas with docal ker-
nel. This limitation is studied first informally in Section 3.3 bhought experiments
in the use of template matching for visual perception. $ecti then focusses more
formally on local estimators, i.e., in which the predictifx) at pointz is dominated
by the near neighbors af taken from the training set. This includes kernel machines
in which the kernel is local, like the Gaussian kernel. Thalgerithms rely on a prior
expressed as a distance or similarity function betweers diexamples, and encom-
pass classical statistical algorithms as well as modemgkenachines. This limitation
is pervasive, not only in classification, regression, anasig estimation, but also in
manifold learning and semi-supervised learning, whereynmandern methods have
such locality property, and are often explicitly based oa ghaph of near neighbors.
Using visual pattern recognition as an example, we illustow the shallow nature of
kernel machines leads to fundamentally inefficient repreg®ns.

Finally, deep architectures are proposed as a way to esoapettie fundamental
limitations above. Section 5 concentrates on the advastaige disadvantages of deep
architectures, which involve multiple levels of trainalmedules between input and
output. They can retain the desired flexibility in the leafienctions, and increase the
efficiency of the model along all three dimensions of amofitriaining data, amount of
computational resources, and amount of human prior hadidigo Although a num-
ber of learning algorithms for deep architectures have lmegilable for some time,
training such architectures is still largely perceived alfficult challenge. We discuss
recent approaches to training such deep networks thatfadesvs new breakthroughs
in this direction.

The trade-off between convexity and non-convexity has, ntfd tecently, favored
research into learning algorithms with convex optimizatfoblems. We have found
that non-convex optimization is sometimes more efficieat tonvex optimization.
Non-convex loss functions may be an unavoidable propertgarhing complex func-
tions from weak prior knowledge.

2 Learning Models Towards Al

The No-Free-Lunchtheorem for learning algorithms [Wolpert, 1996] statest tha
completely general-purpose learning algorithm can existhe sense that for every
learning model there is a data distribution on which it walté poorly (on both training
and test, in the case of finite VC dimension). Every learnirayledmustcontain im-
plicit or explicit restrictions on the class of functionsatht can learn. Among the set
of all possible functions, we are particularly interestecisubset that contains all the
tasks involved in intelligent behavior. Examples of suctk&ainclude visual percep-
tion, auditory perception, planning, control, etc. Thed®ts not just include specific
visual perception tasks (e.g human face detection), busehef all the tasks that an
intelligent agent should be able to learn. In the following, will call this set of func-
tionsthe Al-set Because we want to achieve Al, we prioritize those taskisarein



the Al-set.

Although we may like to think that the human brain is somevgeteral-purpose,
it is extremely restricted in its ability to learn high-dim&onal functions. The brains
of humans and higher animals, with their learning abilitieen potentially implement
the Al-set, and constitute a working proof of the feasipilif Al. We advance that
the Al-set is a tiny subset of the set of all possible funaijdout the specification of
this tiny subset may be easier than it appears. To illusthasepoint, we will use the
example first proposed by [LeCun and Denker, 1992]. The odiorebetween the
retina and the visual areas in the brain gets wired up relgtiate in embryogenesis.
If one makes the apparently reasonable assumption thabsditde permutations of
the millions of fibers in the optic nerve are equiprobabl&r¢his not enough bits in
the genome to encode the correct wiring, and no lifetime lemgugh to learn it. The
flat prior assumption must be rejected: some wiring must bekr to specify (or
more likely) than others. In what seems like an incrediblstifoate coincidence, a
particularly good (if not “correct”) wiring pattern happgro be one that preserves
topology. Coincidentally, this wiring pattern happens ®\ery simple to describe
in almost any language (for example, the biochemical laggussed by biology can
easily specify topology-preserving wiring patterns tigbiwconcentration gradients of
nerve growth factors). How can we be so fortunate that theecoprior be so simple to
describe, yet so informative? LeCun and Denker [1992] pointtthat the brain exists
in the very same physical world for which it needs to builceimtal models. Hence the
specification of good priors for modeling the world happeibéosimple in that world
(the dimensionality and topology of the world is common teéh)oBecause of this, we
are allowed to hope that the Al-set, while a tiny subset opaisible functions, may
be specified with a relatively small amount of information.

In practice, prior knowledge can be embedded in a learnindehby specifying
three essential components:

1. The representation of the data: pre-processing, featdractions, etc.

2. Thearchitectureof the machine: the family of functions that the machine can
implement and its parameterization.

3. Theloss function and regularizehow different functions in the family are rated,
given a set of training samples, and which functions aregpred in the absence
of training samples (prior or regularizer).

Inspired by [Hinton, To appear. 2007], we classify machie@hing research strate-
gies in the pursuit of Al into three categories. Onaléfeatism “Since no good pa-

rameterization of the Al-set is currently available, leffsecify a much smaller set for
each specific task through careful hand-design of the pregssing, the architecture,
and the regularizer”. If task-specific designs must be @evisy hand for each new
task, achieving Al will require an overwhelming amount ofnian effort. Neverthe-

less, this constitutes the most popular approach for apgplgiachine learning to new
problems: design a clever pre-processing (or data rept@s@m scheme), so that a
standard learning model (such as an SVM) will be able to |&aertask. A somewhat
similar approach is to specify the task-specific prior kremigle in the structure of a



graphical modelby explicitly representing important intermediate featiand con-

cepts through latent variables whose functional dependenmbserved variables is
hard-wired. Much of the research in graphical models [Jord®98] (especially of

the parametric type) follows this approach. Both of thesgr@@ches, the kernel ap-
proach with human-designed kernels or features, and thghpa models approach
with human-designed dependency structure and semantesesy attractive in the

short term because they often yield quick results in makiogess on a specific task,
taking advantage of human ingenuity and implicit or explciowledge about the task,
and requiring small amounts of labeled data.

The second strategy @enial “Even with a generic kernel such as the Gaussian
kernel, kernel machines can approximate any function, agdlarization (with the
bounds) guarantee generalization. Why would we need amytise?” This belief
contradicts the no free lunch theorem. Although kernel rnrahcan represent any
labeling of a particular training set, they caifficiently represena very small and
very specific subset of functions, which the following sen$ of this chapter will at-
tempt to characterize. Whether this small subset coversge lpart of the Al-set is
very dubious, as we will show. In general, what we think of esegic learning algo-
rithms can only work well with certain types of data repreastions and not so well
with others. They can in fact represent certain types of tions efficiently, and not
others. While the clever preprocessing/generic learniggréhm approach may be
useful for solving specific problems, it brings about litdeogress on the road to Al.
How can we hope to solve the wide variety of tasks requirecctoexe Al with this
labor-intensive approach? More importantly, how can we eepe to integrate each
of these separately-built, separately-trained, spe&dlimodules into a coherent ar-
tificially intelligent system? Even if we could build thoseodules, we would need
another learning paradigm to be able to integrate them ictwh&rent system.

The third strategy isptimism “let’s look for learning models that can be applied to
the largest possible subset of the Al-set, while requirlmgygmallest possible amount
of additional hand-specified knowledge for each specifik teithin the Al-set”. The
question becomes: is there a parameterization of the Athseican be efficiently im-
plemented with computer technology?

Consider for example the problem of object recognition impater vision: we
could be interested in building recognizers for at leasesmvthousand categories of
objects. Should we have specialized algorithms for eachifl&@ly, in natural language
processing, the focus of much current research is on devigapropriate features for
specific tasks such as recognizing or parsing text of a pdaticype (such as spam
emalil, job ads, financial news, etc). Are we going to have tahiw labor-intensive
work for all the possible types of text? our system will notusgy smart if we have
to manually engineer new patches each time new a type of tewe types of object
category must be processed. If there exist more generabparlearning models, at
least general enough to handle most of the tasks that anandliumans can handle,
then searching for them may save us a considerable amouatta@fin the long run.

As discussed in the next section, a mathematically conmémiay to characterize
the kind of complex task needed for Al is that they involverihéiag highly non-linear
functions with many variations (i.e., whose derivative mfg@s direction often). This
is problematic in conjunction with a prior that smooth funas are more likely, i.e.,



having few or small variations. We meginto be smooth when the value ¢fz) and
of its derivativef’(x) are close to the values ¢fz + A) and f'(« + A) respectively
whenz andx + A are close as defined by a kernel or a distance. This chaptanees
several arguments that the smoothness prior alone is ioguifito learn highly-varying
functions. This is intimately related to the curse of dimenality, but as we find
throughout our investigation, it is not the number of diniens so much as the amount
of variation that matters. A one-dimensional function cbbeé difficult to learn, and
many high-dimensional functions can be approximated wedlugh with a smooth
function, so that non-parametric methods relying only oa $imooth prior can still
give good results.

We callstrong priorsa type of prior knowledge that gives high probability (or low
complexity) to a very small set of functions (generally tethto a small set of tasks),
andbroad priorsa type of prior knowledge that give moderately high prokigbiio
a wider set of relevant functions (which may cover a largesstibf tasks within the
Al-set). Strong priors are task-specific, while broad iare more related to the
general structure of our world. We could prematurely conjex that if a function
has many local variations (hence is not very smooth), thénribt learnable unless
strong prior knowledge is at hand. Fortunately, this is moet First, there is no
reason to believe that smoothness priors should have aa$géaius over other types
of priors. Using smoothness priors when we know that thetfans we want to learn
are non-smooth would seem counter-productive. Other bpoials are possible. A
simple way to define a prior is to define a language (e.g., aranaging language)
with which we express functions, and favor functions thateha low Kolmogorov
complexity in that language, i.e. functions whose prograshiort. Consider using the
C programming language (along with standard libraries¢bate with it) to define our
prior, and learning functions such aéx) = sin(x) (with = a real value) ogy(z) =
parity(z) (with = a binary vector of fixed dimension). These would be relayiessy
to learn with a small number of samples because their degnrijs extremely short in
C and they are very probable under the corresponding prémpite the fact that they
are highly non-smooth. We do not advocate the explicit uséotrhogorov complexity
in a conventional programming language to design new lagraigorithms, but we use
this example to illustrate that it is possible to learn appdly complex functions (in
the sense they vary a lot) using broad priors, by using a noatlearning algorithm,
corresponding to priors other than the smoothness prids thiought example and the
study of toy problems like the parity problem in the rest af tthapter also shows that
the main challenge is to design learning algorithms thatiiscover representations of
the data that compactly describe regularities inTis is in contrast with the approach
of enumerating the variations present in the training daal, hoping to rely on local
smoothness to correctly fill in the space between the trgisamples.

As we mentioned earlier, there may exist broad priors, wétbnsingly simple de-
scription, that greatly reduce the space of accessibldifumin appropriate ways. In
visual systems, an example of such a broad prior, which isired by Nature’s bias
towards retinotopic mappings, is the kind of connectiviged in convolutional net-
works for visual pattern recognition [LeCun et al., 1989Cum et al., 1998]. This
will be examined in detail in section 6. Another example abdat prior, which we
discuss in section 5, is that the functions to be learnedldhmiexpressible as multi-



ple levels of composition of simpler functions, wheliéerent levels of functions can
be viewed as different levels of abstractidrhe notion of “concept” and of “abstrac-
tion” that we talk about is rather broad and simply means deanquantity strongly
dependent of the observed data, and useful in building aseptation of its distri-
bution that generalises well. Functions at lower levelshsteaction should be found
useful for capturing some simpler aspects of the data digtan, so that it is possi-
ble to first learn the simpler functions and then compose ttetaarn more abstract
concepts. Animals and humans do learn in this way, with ssmpbncepts earlier in
life, and higher-level abstractions later, expressed imsgeof the previously learned
concepts. Not all functions can be decomposed in this wayhlomans appear to have
such a constraint. If such a hierarchy did not exist, humaoslavbe able to learn
new concepts in any order. Hence we can hope that this typeasfrpay be useful to
help cover the Al-set, but yet specific enough to exclude e najority of useless
functions.

It is a thesis of the present work that learning algorithmes thuild such deeply
layered architectures offer a promising avenue for scaftivaghine learning towards
Al. Another related thesis is that one should not considerléige variety of tasks
separately, but as different aspects of a more general grobthat of learning the
basic structure of the world, as seen say through the eyesamsdf a growing animal
or a young child. This is an instance of multi-task learninigeve it is clear that the
different tasks share a strong commonality. This allowsoulsdpe that after training
such a system on a large variety of tasks in the Al-set, thiesysnay generalize to
a new task from only a few labeled examples. We hypothesitentiany tasks in the
Al-set may be built around commaapresentationswhich can be understood as a set
of interrelated concepts.

If our goal is to build a learning machine for the Al-set, oasearch should con-
centrate on devising learning models with the followingtteas:

e A highly flexible way to specify prior knowledge, hence a kd@ag algorithm
that can function with a large repertoire of architectures.

e A learning algorithm that can deal with deep architectunesyhich a decision
involves the manipulation of many intermediate concepid,raultiple levels of
non-linear steps.

e A learning algorithm that can handle large families of fuoes, parameterized
with millions of individual parameters.

e A learning algorithm that can be trained efficiently evenewtthe number of
training examples becomes very large. This excludes legm@gorithms requir-
ing to store and iterate multiple times over the whole tragnset, or for which
the amount of computations per example increases as mongpde® are seen.
This strongly suggest the use of on-line learning.

e A learning algorithm that can discover concepts that carhbeesl easily among
multiple tasks and multiple modalities (multi-task leag), and that can take
advantage of large amounts of unlabeled data (semi-sigeenearning).



3 Learning Architectures, Shallow and Deep

3.1 Architecture Types

In this section, we define the notions of shallow and deepitaicthires. An informal
discussion of their relative advantages and disadvantsageesented using examples.
A more formal discussion of the limitations of shallow atelastures with local smooth-
ness (which includes most modern kernel methods) is givémeimext section.

Following the tradition of the classic bo®erceptrongMinsky and Papert, 1969],
it is instructive to categorize different types of learniachitectures and to analyze
their limitations and advantages. To fix ideas, considesiimple case of classification
in which a discrete label is produced by the learning machire f (x, w), wherex is
the input pattern, and a parameter which indexes the family of functighishat can
be implemented by the architectufe= { f(-, w), w € W}.

A A A

Weighted Weighted Weighted
Sum Sum Sum

A A

Fixed Basis Template imple Trainable
Functions Matchers Basis Functions

A A A

Figure 1: Different types of shallow architectures. (a) @y fixed preprocessing and
linear predictor; (b) Type-2: template matchers and lingadictor (kernel machine);

(c) Type-3: simple trainable basis functions and lineadjoter (neural net with one

hidden layer, RBF network).

Traditional Perceptrons, like many currently popular féag models, areshal-
low architectures Different types of shallow architectures are represeinidajure 1.
Type-1 architectures have fixed preprocessing in the fingtrige.g., Perceptrons).
Type-2 architectures have template matchers in the firgtrlés.g., kernel machines).
Type-3 architectures have simple trainable basis funstiothe first layer (e.g., neural
net with one hidden layer, RBF network). All three have adingansformation in the
second layer.

3.1.1 Shallow Architecture Type 1

Fixed pre-processing plus linear predictor, figure X(a)he simplest shallow archi-
tecture is composed of a fixed preprocessing layer (somstoalled features or ba-
sis functions), followed by a linear predictor. The type iofelar predictor used, and
the way it is trained is unspecified (maximum-margin, ldgistgression, Perceptron,



squared error regression....). The fantilyis linearly parameterized in the parameter
vector: f(x) = Zle w;¢;(x). This type of architecture is widely used in practi-
cal applications. Since the pre-processing is fixed (andi{taafted), it is necessarily
task-specific in practice. It is possible to imagine a shatigpe-1 machine that would
parameterize the complete Al-set. For example, we couldingsa machine in which
each feature is a member of the Al-set, hence each partimganber of the Al-set
can be represented with a weight vector containing all zeewsept for a single 1 at
the right place. While there probably exist more compact wayknearly parame-
terize the entire Al-set, the number of necessary featumadarsurely be prohibitive.
More importantly, we do not know explicitly the functions thie Al-set, so this is not
practical.

3.1.2 Shallow Architecture Type 2

Template matchers plus linear predictor, figure 1(Next on the scale of adaptability
is the traditional kernel machine architecture. The prepssing is a vector of values
resulting from the application of a kernel functidti(x, ;) to each training sample
flz) = b+ X", ;K (x,2;), wheren is the number of training samples, the pa-
rameterw contains all thex; and the bia$. In effect, the first layer can be seen as
a series of template matchers in which the templates aredhnéng samples. Type-2
architectures can be seen as special forms of Type-1 actiniéss in which the features
are data-dependent, which is to s&yx) = K (x, z;). This is a simple form of unsu-
pervised learning, for the first layer. Through the fam&amel trick(see [Schlkopf
etal., 1999]), Type-2 architectures can be seen as a compgaif representing Type-
1 architectures, including some that may be too large to hetjgal. If the kernel
function satisfies the Mercer condition it can be expresseaghdnner product between
feature vectordsy(z, z;) =< ¢(x), ¢(x;) >, giving us a linear relation between the
parameter vectors in both formulations:for Type-1 architectures is_, o;(x;). A
very attractive feature of such architectures is that fees® common loss functions
(e.g., squared error, margin loss) training them involvesravex optimization program.
While these properties are largely perceived as the magintdddernel methods, they
should not distract us from the fact that the first layer of enké machine is often
just a series of template matchers. In most kernel machtheskernel is used as a
kind of template matchers, but other choices are possiblindJtask-specific prior
knowledge, one can design a kernel that incorporates thealgstractions for the task.
This comes at the cost of lower efficiency in terms of humamilaWhen a kernel
acts like a template matcher, we callatal: K (x,z;) discriminates between values
of x that are near; and those that are not. Some of the mathematical resultssin th
chapter focus on the Gaussian kernel, where nearness ponesto small Euclidean
distance. One could say that one of the main issues with keraehine with local
kernels is that they aiétle more than template matcherk is possible to use kernels
that are non-local yet not task-specific, such as the linearéts and polynomial ker-
nels. However, most practitioners have been preferinglikernels or local kernels.
Linear kernels are type-1 shallow architectures, withrtbevious limitations. Local
kernels have been popular because they make intuitive $gmseasier to insert prior
knowledge), while polynomial kernels tend to generalizeyy@oorly when extrapo-
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lating (e.g., grossly overshooting). The smoothness pnilicit in local kernels is
quite reasonable for a lot of the applications that have lweasidered, whereas the
prior implied by polynomial kernels is less clear. Learnihg kernel would move us
to Type-3 shallow architectures or deep architecturesriestbelow.

3.1.3 Shallow Architecture Type 3

Simple trainable basis functions plus linear predictorufig1(c) In Type-3 shallow
architectures, the first layer consists of simple basistfans that ardrainable through
supervised learningThis can improve the efficiency of the function represeatatby
tuning the basis functions to a task. Simple trainable bfasistions include linear
combinations followed by point-wise non-linearities anduSsian radial-basis func-
tions (RBF). Traditional neural networks with one hiddegela and RBF networks
belong to that category. Kernel machines in which the kefungttion is learned (and
simple) also belong to the shallow Type-3 category. Manysking algorithms belong
to this class as well. Unlike with Types 1 and 2, the output i®a-linear function
of the parameters to be learned. Hence the loss functionisniaied by learning are
likely to be non-convex in the parameters. The definition &3 architectures is
somewhat fuzzy, since it relies on the ill-defined conceptsohple” parameterized
basis function.

We should immediately emphasize that the boundary betweevdrious cate-
gories is somewhat fuzzy. For example, training the hiddgel of a one-hidden-layer
neural net (a type-3 shallow architecture) is a non-conveklpm, but one could imag-
ine constructing a hidden layer so large that all possibdelén unit functions would
be present from the start. Only the output layer would nedzkttvained. More specif-
ically, when the number of hidden units becomes very largd,an L2 regularizer is
used on the output weights, such a neural net becomes a keachine, whose kernel
has a simple form that can be computed analytically [Bengal.e2006b]. If we use
the margin loss this becomes an SVM with a particular kerddthough convexity
is only achieved in the mathematical limit of an infinite nuenlof hidden units, we
conjecture that optimization of single-hidden-layer re¢umetworks becomes easier as
the number of hidden units becomes larger. If single-hiddger neural nets have any
advantage over SVMs, it is that they can, in principle, aghisimilar performance
with a smaller first layer (since the parameters of the firgetacan be optimized for
the task).

Note also that our mathematical results on local kernel im&share limited in
scope, and most are derived for specific kernels such as thesiaa kernel, or for
local kernels (in the sense &f (u, v) being near zero whepu — v|| becomes large).
However, the arguments presented below concerning théosmedss of kernel ma-
chines are more general.

3.1.4 Deep Architectures

Deep architectures ammmpositions of many layers of adaptive non-linear comptme
in other words, they are cascades of parameterized noarlim®dules that contain
trainable parameters at all levels. Deep architecturesvate representation of wide
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families of functions in a more compact form than shallowhiexctures, because they
can trade space for time (or breadth for depth) while makivgtime-space product
smaller, as discussed below. The outputs of the intermetiigers are akin to interme-
diate results on the way to computing the final output. Featproduced by the lower
layers represent lower-level abstractions, that are coatbio form high-level features
at the next layer, representing higher-level abstractions

3.2 The Depth-Breadth Tradeoff

Any specific function can be implemented by a suitably desigshallow architec-
ture or by a deep architecture. Similarly, when parameitagia family of functions,
we have the choice between shallow or deep architectures.iriportant questions
are: 1. how large is the corresponding architecture (witiw hwany parameters, how
much computation to produce the output); 2. how much marakadrlis involved in
specializing the architecture to the task.

Using a number of examples, we shall demonstrate that debjietures are often
more efficient (in terms of number of computational compds@md parameters) for
representing common functions. Formal analyses of the atatipnal complexity of
shallow circuits can be found in&stad [1987] or Allender [1996]. They point in the
same direction: shallow circuits are much less expresbiag tleep ones.

Let us first consider the task of adding ti&bit binary numbers. The most natural
circuit involves adding the bits pair by pair and propagatine carry. The carry prop-
agation take®) (V) steps, and als@ (V) hardware resources. Hence the most natural
architecture for binary addition is a deep one, withV) layers andD(N) elements.
A shallow architecture can implement any boolean formularessed in disjunctive
normal form (DNF), by computing the minterms (AND functigrin the first layer,
and the subsequent OR function using a linear classifieréshiold gate) with a low
threshold. Unfortunately, even for simple boolean operetisuch as binary addition
and multiplication, the number of terms can be extremelydgup toO(2") for N-bit
inputs in the worst case). The computer industry has in fagbttd a considerable
amount of effort to optimize the implementation of expomartioolean functions, but
the largest it can put on a single chip has only about 32 infiat(a 4-Gbit RAM
chip, as of 2006). This is why practical digital circuitsg € for adding or multiplying
two numbers are built with multiple layers of logic gateseiti2-layer implementation
(akin to a lookup table) would be prohibitively expensiveee§Utgoff and Stracuzzi,
2002] for a previous discussion of this question in the cardélearning architectures.

Another interesting example is the boolean parity functidrhe N-bit boolean
parity function can be implemented in at least five ways:

(1) with N daisy-chained XOR gates (aw-layer architecture or a recurrent circuit
with one XOR gate andV time steps);

(2) with N —1 XOR gates arranged in a treel(a, N layer architecture), for a total
of O(N log N) components;

(3) a DNF formula withO(2") minterms (two layers).
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Architecture 1 has high depth and low breadth (small amoticomputing elements),
architecture 2 is a good tradeoff between depth and breadith,architecture 3 has
high breadth and low depth. If one allows the use of multinpinary threshold
gates (linear classifiers) in addition to traditional logates, two more architectures
are possible [Minsky and Papert, 1969]:

(4) a3-layer architecture constructed as follows. Thel@gtr hasV binary thresh-
old gates (linear classifiers) in which uritadds the input bits and subtradts
hence computing the predicate = (SUM_OF _BITS > i). The second layer
contains(N — 1)/2 AND gates that computér; AND(NOT X, 1)) for all ¢
that are odd. The last layer is a simple OR gate.

(5) a2-layer architecture in which the first layer is ideatito that of the 3-layer ar-
chitecture above, and the second layer is a linear thregfadtgl(linear classifier)
where the weight for input; is equal to(—2)¢.

The fourth architecture requires a dynamic range (acclranythe weight linear in

N, while the last one requires a dynamic range exponenti@VinA proof that N-

bit parity requiresO(2V) gates to be represented by a depth-2 boolean circuit (with
AND, NOT and OR gates) can be found in Ajtai [1983]. In theoréifsection 4.1.1)
we state a similar result for learning architectures: armeemntial number of terms is
required with a Gaussian kernel machine in order to reptebenparity function. In
many instances, space (or breadth) can be traded for tingefiih) with considerable
advantage.

These negative results may seem reminiscent of the classidts in Minsky and
Papert’'s book Perceptrons [Minsky and Papert, 1969]. Thosisl come as no surprise:
shallow architectures (particularly of type 1 and 2) fatbiMinsky and Papert’s general
definition of a Perceptron and are subject to many of its atrons.

Another interesting example in which adding layers is beedfis the fast Fourier
transform algorithm (FFT). Since the discrete Fourier $famm is a linear operation, it
can be performed by a matrix multiplication wiffi> complex multiplications, which
can all be performed in parallel, followed &y (N?) additions to collect the sums.
However the FFT algorithm can reduce the total cos%l‘czﬁlog2 N, multiplications,
with the tradeoff of requirindog, N sequential steps invoIving multiplications each.
This example shows that, even with linear functions, addéygrs allows us to take
advantage of the intrinsic regularities in the task.

Because each variable can be either absent, present, dedéga minterm, there
are M = 3V different possible minterms when the circuit hasinputs. The set of
all possible DNF formulae with: minterms andV inputs has”' (M, k) elements (the
number of combinations df elements from\/). Clearly that set (which is associated
with the set of functions representable witiminterms) grows very fast with. Going
from k — 1 to k£ minterms increases the number of combinations by a fddtbr &)/ k.
Whenk is not close toM, the size of the set of DNF formulae is exponential in the
number of inputsV. These arguments would suggest that only an exponentially (
N) small fraction of all boolean functions require a less tleaponential number of
minterms.
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We claim that most functions that can be represented cotydactleep architec-
tures cannot be represented by a compact shallow archi¢edimagine representing
the logical operations ovel layers of a logical circuit into a DNF formula. The op-
erations performed by the gates on each of the layers ary likegget combined into
a number of minterms that could be exponential in the origmenber of layers. To
see this, consider A layer logical circuit where every odd layer has AND gatestiiwi
the option of negating arguments) and every even layer hagdd#s. Every AND-OR
consecutive layers corresponds to a sum of products in roe2iatithmetic. The whole
circuit is the composition of{ /2 such sums of products, and it is thus a d&soriza-
tion of a formula. In general, when a factored representationpsieded into a single
sum of products, one gets a number of terms that can be expani@nthe number
of levels. A similar phenomenon explains why most compacFOdrmulae require
an exponential number of terms when written as a Conjuctigemél Form (CNF)
formula. A survey of more general results in computatiomahplexity of boolean cir-
cuits can be found in Allender [1996]. For exampléadtad [1987] show that for all
k, there are depth + 1 circuits of linear size that require exponential size todaie
with depthk circuits. This implies thamost functions representable compactly with
a deep architecture would require a very large number of comemts if represented
with a shallow one Hence restricting ourselves to shallow architecturesutyniiimits
the spectrum of functions that can be represented compandyearned efficiently (at
least in a statistical sense). In particular, highly-vialégfunctions (in the sense of hav-
ing high frequencies in their Fourier spectrum) are diffi¢alrepresent with a circuit
of depth 2 [Linial et al., 1993]. The results that we presergection 4 yield a similar
conclusion: representing highly-variable functions vatiGaussian kernel machine is
very inefficient.

3.3 The Limits of Matching Global Templates

Before diving into the formal analysis of local models, wengare the kernel machines
(Type-2 architectures) with deep architectures using g@tasn One of the fundamental
problems in pattern recognition is how to handle intra-gleariability. Taking the ex-
ample of letter recognition, we can picture the set of allgbssible images of the letter
'E’ on a 20 x 20 pixel grid as a set of continuous manifolds in the pixel sp@cg., a
manifold for lower case and one for cursive). The E’s on a ficdshican be continu-
ously morphed into each other by following a path on the ntdaifThe dimensionality
of the manifold at one location corresponds to the numbendépendent distortions
that can can be applied to an image while preserving its oage§or handwritten let-
ter categories, the manifold has a high dimension: lettansbe distorted using affine
transforms (6 parameters), distorted using an elastictstefermation (high dimen-
sion), or modified so as to cover the range of possible wrisigtes, shapes, and stroke
widths. Even for simple character images, the manifold iy ven-linear, with high
curvature. To convince ourselves of that, consider theesbéthe letter 'W’. Any pixel

in the lower half of the image will go from white to black and itehagain four times as
the W is shifted horizontally within the image frame fromtlegf right. This is the sign
of a highly non-linear surface. Moreover, manifolds for@tlcharacter categories are
closely intertwined. Consider the shape of a capital U an@at the same location.
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They have many pixels in common, many more pixels in fact thih a shifted ver-
sion of the same U. Hence the distance between the U and Oatuani$ smaller than
the distance between two U’s shifted by a few pixels. Anothsight about the high
curvature of these manifolds can be obtained from the exaimglgure 4: the tangent
vector of the horizontal translation manifold changes phyuas we translate the im-
age only one pixel to the right, indicating high curvatures discussed in section 4.2,
many kernel algorithms make an implicit assumption of allgcamooth function (e.g.,
locally linear in the case of SVMs&round each training example. Hence a high cur-
vature implies the necessity of a large number of trainingneples in order to cover
all the desired twists and turns with locally constant oalbclinear pieces.

This brings us to what we perceive as the main shortcomingmwiptate-based
methods: a very large number of templates may be requiredderdo cover each
manifold with enough templates to avoid misclassificatidhgrthermore, the number
of necessary templates can grow exponentially with thénisitt dimension of a class-
invariant manifold. The only way to circumvent the problerithna Type-2 architec-
ture is to design similarity measures for matching templdternel functions) such
that two patterns that are on the same manifold are deematasitynfortunately,
devising such similarity measures, even for a problem ag& lzsdigit recognition,
has proved difficult, despite almost 50 years of active nesed-urthermore, if such a
good task-specific kernel were finally designed, it may bejitiaable to other classes
of problems.

To further illustrate the situation, consider the probleidetecting and identifying
a simple motif (say, of siz8 = 5x 5 pixels) that can appear atdifferent locations in a
uniformly white image with/V pixels (say10° pixels). To solve this problem, a simple
kernel-machine architecture would require one templatthefmotif for each possi-
ble location. This requireV.D elementary operations. An architecture that allows
for spatially localfeature detectors would merely requiteD elementary operations.
We should emphasize that this spatial locality (featurectets that depend on pixels
within a limited radius in the image plane) is distinct fronetlocality of kernel func-
tions (feature detectors that produce large values onlinfaut vectors that are within
a limited radius in the input vector space). In fact, spbtilaical feature detectors have
non-local response in the space of input vectors, since thput is independent of
the input pixels they are not connected to.

A slightly more complicated example is the task of detectimgl recognizing a
pattern composed of two different motifs. Each motif ocegpl pixels, and can appear
at D different locations independently of each other. A kernakthine would need a
separate template for each possible occurrence of the twistriee., N.D? computing
elements. By contrast, a properly designed Type-3 ardhiteevould merely require a
set of local feature detectors for all the positions of th&t finotifs, and a similar set for
the second motif. The total amount of elementary operati®asmere2.S.D. We do
not know of any kernel that would allow to efficiently handtEnepositional structures.

An even more dire situation occurs if the background is natoumly white, but
can contain random clutter. A kernel machine would probatggd many different
templates containing the desired motifs on top of many difiebackgrounds. By con-
trast, the locally-connected deep architecture desciiibéte previous paragraph will
handle this situation just fine. We have verified this type elfidvior experimentally
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(see examples in section 6).

These thought experiments illustrate the limitations ahkémachines due to the
fact that their first layer is restricted to matching the imiog patterns with global tem-
plates. By contrast, the Type-3 architecture that usesadiydbcal feature detectors
handles the position jitter and the clutter easily and effitdy. Both architectures are
shallow, but while each kernel function is activated in a kau@a of the input space,
the spatially local feature detectors are activated by &ling— S)-dimensional sub-
space of the input space (since they only lookSgtixels). Deep architectures with
spatially-local feature detectors are even more efficise¢ Section 6). Hence the lim-
itations of kernel machines are not just due to their shalkess, but also to thiecal
character of their response function (local in input spau#,in the space of image
coordinates).

4 Fundamental Limitation of Local Learning

A large fraction of the recent work in statistical machinart@ng has focused on
non-parametric learning algorithms which rely solely, kigy or implicitly, on a
smoothness prior A smoothness prior favors functionssuch that wherr ~ 2/,
f(z) = f(2'). Additional prior knowledge is expressed by choosing thecepof the
data and the particular notion of similarity between exasfltypically expressed as
a kernel function). This class of learning algorithms imlgs most instances of the
kernel machine algorithms [Sotkopf et al., 1999], such as Support Vector Machines
(SVMs) [Boser et al., 1992, Cortes and Vapnik, 1995] or Gaunsgrocesses [Williams
and Rasmussen, 1996], but also unsupervised learningtalgarthat attempt to cap-
ture the manifold structure of the data, such as Locally aiffembedding [Roweis and
Saul, 2000], Isomap [Tenenbaum et al., 2000], kernel PCAd&opf et al., 1998],
Laplacian Eigenmaps [Belkin and Niyogi, 2003], Manifold &ting [Brand, 2003],
and spectral clusteringalgorithms (see Weiss [1999] for a review). More recently,
there has also been much interest in non-paramsémi-supervised learning algo-
rithms such as Zhu et al. [2003], Zhou et al. [2004], Belkin et a0(2], Delalleau
et al. [2005], which also fall in this category, and share ynateas with manifold
learning algorithms.

Since this is a large class of algorithms and one that coasinia attract attention,
it is worthwhile to investigate its limitations. Since tieesiethods share many char-
acteristics with classical non-parametric statisticalriteéng algorithms — such as the
k-nearest neighbors and the Parzen windows regression ansitydestimation algo-
rithms [Duda and Hart, 1973] — which have been shown to stiften the so-called
curse of dimensionalityit is logical to investigate the following question: to vilex-
tent do these modern kernel methods suffer from a similablpra? See [Krdle et al.,
2004] for a recent and easily accessible exposition of thsecaf dimensionality for
classical non-parametric methods.

To explore this question, we focus on algorithms in whichlgened function is
expressed in terms of a linear combination of kernel fumstiapplied on the training
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examples:

f(z) = b—|—ZaiKD(m,xi) (1)
=1

where we have included an optional bias térnThe setD = {z,...,z,} contains
training examples; = z; for unsupervised learning;, = (z;,y;) for supervised
learning. Target valug; can take a special missing value for semi-supervised legrni
Theq;'s are scalars chosen by the learning algorithm ugh@nd K (-, -) is the ker-
nel function, a symmetric function (sometimes expectedet@dsitive semi-definite),
which may be chosen by taking into account all thés. A typical kernel function is
the Gaussian kernel,

K, (u,0) = e~ a2 llv=vl, 2)

with the widtho controlling how local the kernel is. See Bengio et al. [20@4ee that
LLE, Isomap, Laplacian eigenmaps and other spectral mianiéarning algorithms
such as spectral clustering can be generalized and writtéreiform of eq. 1 for a test
pointz, but with a different kernel (that is data-dependent, galheperforming a kind
of normalization of a data-independent kernel).

One obtains the consistency of classical non-parametiioa®rs by appropriately
varying the hyper-parameter that controls the localityhs estimator as increases.
Basically, the kernel should be allowed to become more ane mogal, so that statis-
tical bias goes to zero, but the effective number of examiplesived in the estimator
at z (equal tok for the k-nearest neighbor estimator) should increase a@wreases,
so that statistical variance is also driven to 0. For a widsglof kernel regression
estimators, the unconditional variance and squared biadeahown to be written as
follows [Hardle et al., 2004]:

Ch
expected error = — + Cho?,
nod

with C; andC; not depending om nor on the dimensiod. Hence an optimal band-
width is chosen proportional mﬁ, and the resulting generalization error (not count-
ing the noise) converges i */(4+4) which becomes very slow for large Consider
for example the increase in number of examples requiredttthgesame level of error,
in 1 dimension versug dimensions. Ifz; is the number of examples required to get a
particular level of error, to get the same level of erroidimensions requires on the
order ofng“d)/5 examples, i.e., theequired number of examples is exponentiadin
For thek-nearest neighbor classifier, a similar result is obtairgthpp and Venkatesh,
1998]:

o0
expected error = F, + Z cjn_j/d
=2

whereFE, is the asymptotic error] is the dimension and the number of examples.
Note however that, if the data distribution is concentrasada lower dimensional
manifold, it is themanifold dimensiorthat matters. For example, when data lies on
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a smooth lower-dimensional manifold, the only dimensigpahat matters to &:-
nearest neighbor classifier is the dimensionality of the ifolh since it only uses
the Euclidean distances between the near neighbors. Masyparvised and semi-
supervised learning algorithms rely on a graph with one nueteexample, in which
nearby examples are connected with an edge weighted by ttlel&an distance be-
tween them. If data lie on a low-dimensional manifold thendgsic distances in this
graph approach geodesic distances on the manifold [Tenemled al., 2000], as the
number of examples increases. However, convergence catpbaentially slower for
higher-dimensional manifolds.

4.1 Minimum Number of Bases Required

In this section we present results showing the number ofiredbases (hence of train-
ing examples) of a kernel machine with Gaussian kernel maw dinearly with the
number of variations of the target function that must be wagat in order to achieve a
given error level.

4.1.1 Result for Supervised Learning

The following theorem highlights the number of sign chanteg a Gaussian kernel
machine can achieve, when it Wavases (i.e.k support vectors, or at leakttraining
examples).

Theorem 1(Theorem 2 of Schmitt [2002])Let f : R — R computed by a Gaussian
kernel machine (eg. 1) with bases (non-zera;’s). Thenf has at mos2k zeros.

We would like to say something about kernel machineRinand we can do this
simply by considering a straight line iR? and the number of sign changes that the
solution functionf can achieve along that line.

Corollary 2. Suppose that the learning problem is such that in order tdgeagha given
error level for samples from a distributioR with a Gaussian kernel machine (eq. 1),
thenf must change sign at lea&k times along some straight line (i.e., in the case of a
classifier, the decision surface must be crossed at asitnes by that straight line).
Then the kernel machine must have at ldaases (non-zera;’s).

A proof can be found in Bengio et al. [2006a].

Example 3. Consider the decision surface shown in figure 2, which is assidal
function. One may take advantage of the global regularityetorn it with few pa-
rameters (thus requiring few examples), but with an affimalmioation of Gaussians,
corollary 2 implies one would need at ledsf | = 10 Gaussians. For more complex
tasks in higher dimension, the complexity of the decisiafase could quickly make
learning impractical when using such a local kernel method.

Of course, one only seeks to approximate the decision sufa@nd does not
necessarily need to learn it perfectly: corollary 2 saysimgf about the existence of
an easier-to-learn decision surface approximaing-or instance, in the example of
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Class -1

decision surface

Class 1

Figure 2: The dotted line crosses the decision surface 1éstimne thus needs at least
10 Gaussians to learn it with an affine combination of Ganssigth same width.

figure 2, the dotted line could turn out to be a good enougimeséd decision surface
if most samples were far from the true decision surface, aigdline can be obtained
with only two Gaussians.

The above theorem tells us that in order to represent a fumtiat locally varies a
lot, in the sense that its sign along a straight line changag/times, a Gaussian kernel
machine requires many training examples and many compuotdtelements. Note that
it says nothing about the dimensionality of the input sphaewe might expect to have
to learn functions that vary more when the data is high-dsmaral. The next theorem
confirms this suspicion in the special case of dHats parity function:

. d .
parity : (by,...,bg) € {0,1}% — { lf O%E:&N?;és even
Learning this apparently simple function with Gaussiangt@ed on points if0, 1}¢
is actually difficult, in the sense that it requires a numbkeGaussians exponential
in d (for a fixed Gaussian width). Note that our corollary 2 doesagpply to thed-
bits parity function, so it represents another type of lo@iation (not along a line).
However, it is also possible to prove a very strong resulpfmity.

d
Theorem 4. Let f(x) = b+Zf:1 a; K, (x;, z) be an affine combination of Gaussians
with same widthr centered on points; € X,. If f solves the parity problem, then
there are at leas2?~! non-zero coefficients;.

A proof can be found in Bengio et al. [2006a].
The bound in theorem 4 is tight, since it is possible to sdheedarity problem with
exactly2?—! Gaussians and a bias, for instance by using a negative higstdting a
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positive weight on each example satisfyipagyity(z;) = 1. When trained to learn the
parity function, a SVM may learn a function that looks liketbpposite of the parity
on test points (while still performing optimally on traigrpoints), but it is an artifact
of the specific geometry of the problem, and only occurs whertriaining set size is
appropriate compared & ;| = 2¢ (see Bengio et al. [2005] for details). Note that if
the centers of the Gaussians are not restricted anymorepoibts in the training set
(i.e., a Type-3 shallow architecture), it is possible tosedhe parity problem with only
d + 1 Gaussians and no bias [Bengio et al., 2005].

One may argue that parity is a simple discrete toy problenititd interest. But
even if we have to restrict the analysis to discrete samplég,i1 }¢ for mathematical
reasons, the parity function can be extended to a smoothiémnen the|0, 1]¢ hyper-
cube depending only on the continuous stm- ... + bg. Theorem 4 is thus a basis
to argue that the number of Gaussians needed to learn adanetih many variations
in a continuous space may scale linearly with the numberesdtvariations, and thus
possibly exponentially in the dimension.

4.1.2 Results for Semi-Supervised Learning

In this section we focus on algorithms of the type descrilbe@cent papers [Zhu et al.,
2003, Zhou et al., 2004, Belkin et al., 2004, Delalleau et205], which are graph-
based, non-parametric, semi-supervised learning algost Note that transductive
SVMs [Joachims, 1999], which are another class of semi+siges algorithms, are
already subject to the limitations of corollary 2. The grdgased algorithms we con-
sider here can be seen as minimizing the following cost fancas shown in Delalleau
et al. [2005]: R R o R
C(V) = % = Yil|> + pu¥V TLY + pel| V|2 (3)

with ¥ = (1, -..,0n) the estimated labels on both labeled and unlabeled data, and
L the (un-normalized) graph Laplacian matrix, derived tiglol, = D~1/2W D~1/2

from a kernel functions’ between points such that the Gram malffix with W;; =
K(z;,z;), corresponds to the weights of the edges in the graph [aisla diagonal
matrix containing in-degreeD;; = Zj Wij. Here,Y;, = (1,...,41) is the vector

of estimated labels on tHdabeled examples, whose known labels are givernyby
(y1,....u), and one may constrairi = Y; as in Zhu et al. [2003] by letting — 0.

We define a region with constant label as a connected subdbé afraph where all
nodesr; have the same estimated label (sig9f and such that no other node can be
added while keeping these properties.

Minimization of the cost criterion of eq. 3 can also be seea label propagation
algorithm, i.e., labels are spread around labeled examplidsnearness being defined
by the structure of the graph, i.e., by the kernel. An intaitview of label propagation
suggests that a region of the manifold near a labeled (eogitiye) example will be
entirely labeled positively, as the example spreads its@nfte by propagation on the
graph representing the underlying manifold. Thus, the remobregions with constant
label should be on the same order as (or less than) the nurhltedveded examples.
This is easy to see in the case of a sparse Gram mifrixNe define a region with
constant label as a connected subset of the graph whereddkmg have the same
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estimated label (sign af;), and such that no other node can be added while keeping
these properties. The following proposition then holdsténibat it is also true, but
trivial, whenW defines a fully connected graph).

Proposition 5. After running a label propagation algorithm minimizing tkest of
eg. 3, the number of regions with constant estimated labdessthan (or equal to) the
number of labeled examples.

A proof can be found in Bengio et al. [2006a]. The consequé&nttet we will need
at least as many labeled examples as there are variatiohs tidss, as one moves by
small steps in the neighborhood graph from one contiguagismeof same label to an-
other. Again we see the same type of non-parametric leaalgmyithms with a local
kernel, here in the case of semi-supervised learning: wemeayg about as many la-
beled examples as there are variations, even though areaitigitarge number of these
variations could have been characterized more efficiehtin by their enumeration.

4.2 Smoothness versus Locality: Curse of Dimensionality

Consider a Gaussian SVM and how that estimator changes asdeso, the hyper-
parameter of the Gaussian kernel. For lasgene would expect the estimated function
to be very smooth, whereas for smallone would expect the estimated function to
be very local, in the sense discussed earlier: the near peiglofxz have dominating
influence in the shape of the predictonat

The following proposition tells us what happens wheis large, or when we con-
sider what a ball whose radius is small compared.to

Proposition 6. For the Gaussian kernel classifier, asincreases and becomes large
compared with the diameter of the data, within the smallpkese containing the data

the decision surface becomes lineapif, o; = 0 (e.g., for SVMs), or else the normal
vector of the decision surface becomes a linear combinatfotwo sphere surface

normal vectors, with each sphere centered on a weightecageeof the examples of
the corresponding class.

A proof can be found in Bengio et al. [2006a].

Note that with this proposition we see clearly that wlsebecomes large, a kernel
classifier becomes non-local (it approaches a linear €legsi However, this non-
locality is at the price of constraining the decision suefé be very smooth, making it
difficult to model highly varying decision surfaces. Thighe essence of the trade-off
between smoothness and locality in many similar non-pat@en@odels (including
the classical ones such as k-nearest-neighbor and Paradows algorithms).

Now consider in what senses a Gaussian kernel machine is(tb@zing about
o small). Consider a test point that is near the decision surface. We claim that
the orientation of the decision surface is dominated by thighborsz; of = in the
training set, making the predicttorcal in its derivative If we consider they; fixed (i.e.,
ignoring their dependence on the trainings), then it is obvious that the prediction
f(z) is dominated by the near neighbatsof z, sinceK (z,x;) — 0 quickly when
||z — x;||/c becomes large. However, the can be influenced by all the;’s. The
following proposition skirts that issue by looking at thesfiderivative off.
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Figure 3: For local manifold learning algorithms such as | ld6map and kernel PCA,
the manifold tangent plane atis in the span of the difference vectors between test
point z and its neighbors; in the training set. This makes these algorithms sensitive
to the curse of dimensionality, when the manifold is highi€einsional and not very flat.

Proposition 7. For the Gaussian kernel classifier, the normal of the tangsrhe
decision surface at: is constrained to approximately lie in the span of the vector
(z — ;) with || — z;|| not large compared te andz; in the training set.

Sketch of the Proof
The estimator i (z) = >, a; K (z, 2;). The normal vector of the tangent plane at
a pointx of the decision surface is

of(x T — T
% = zj:ai(gz)K(x,xi).
Each term is a vector proportional to the difference vegtoerz. This sum is dominated
by the terms with/|x — z;|| not large compared te. We are thus left with%
approximately in the span of the difference vectors x; with x; a near neighbor of
z. Theq; being only scalars, they only influence the weight of eaclghmsor x; in
that linear combination. Hence althougfz) can be influenced by; far from z, the
decision surface nearhas a normal vector that is constrained to approximatelinlie
the span of the vectors — x; with x; nearx. Q.E.D.

The constraint OPJ;—(;) being in the span of the vectois— x; for neighborsz;
of z is not strong if the manifold of interest (e.g., the regiontloé decision surface
with high density) has low dimensionality. Indeed if thatn@insionality is smaller or
equal to the number of dominating neighbors, then there isomstraint at all. How-
ever, when modeling complex dependencies involving maotofa of variation, the
region of interest may have very high dimension (e.g., atersine effect of variations
that have arbitrarily large dimension, such as changesuitter] background , etc. in
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images). For such a complex highly-varying target functisa also need a very local
predictor ¢ small) in order to accurately represent all the desiredatams. With a
smalleo, the number of dominating neighbors will be small compacethé dimension
of the manifold of interest, making this locality in the detiive a strong constraint,
and allowing the following curse of dimensionality argurhen

This notion of locality in the sense of the derivative allavgsto define a ball around
each test point:, containing neighbors that have a dominating influencegéfg@.
Smoothness within that ball constrains the decision sarfade approximately either
linear (case of SVMs) or a particular quadratic form (theisien surface normal vector
is a linear combination of two vectors defined by the centenass of examples of each
class). LetN be the number of such balls necessary to cover the regiainere the
value of the estimator is desired (e.g., near the targesaecsurface, in the case of
classification problems). Lét be the smallest number such that one needs at keast
examples in each ball to reach error level The number of examples thus required
is kN. To see thatV can be exponential in some dimension, consider the maximum
radiusr of all these balls and the radidgof €. If 2 has intrinsic dimensiod, thenN
could be as large as the number of radiusalls that can tile @-dimensional manifold

of radiusR, which is on the order o(%)d.

In Bengio et al. [2005] we present similar results that applynsupervised learn-
ing algorithms such as non-parametric manifold learniggadhms [Roweis and Saul,
2000, Tenenbaum et al., 2000, $thopf et al., 1998, Belkin and Niyogi, 2003]. We
find that when the underlying manifold varies a lot in the seofshaving high curva-
ture in many places, then a large number of examples is rdjuMote that the tangent
plane of the manifold is defined by the derivatives of the kemachine functioryf, for
such algorithms. The core result is that the manifold tahgéme atr is dominated
by terms associated with the near neighbors of the training set (more precisely it is
constrained to be in the span of the vectors x;, with z; a neighbor ofr). This idea
is illustrated in figure 3. In the case of graph-based maahifiehrning algorithms such
as LLE and Isomap, the domination of near examples is pefifect the derivative is
strictly in the span of the difference vectors with the ndigis), because the kernel im-
plicit in these algorithms takes value 0 for the non-neigkbW®Vith such local manifold
learning algorithms, one needs to cover the manifold withlsenough linear patches
with at leasi/ 4+ 1 examples per patch (whetids the dimension of the manifold). This
argument was previously introduced in Bengio and Monp€f2085] to describe the
limitations of neighborhood-based manifold learning aildpns.

An example that illustrates that many interesting mangadn have high curvature
is that of translation of high-contrast images, shown inriigdh. The same argument
applies to the other geometric invariances of images ofaibje

5 Deep Architectures

The analyzes in the previous sections point to the difficaftiearninghighly-varying
functions These are functions with a large numbervafiations (twists and turns) in
the domain of interest, e.g., they would require a large remab pieces to be well-
represented by a piecewise-linear approximation. Sineetimber of pieces can be

23



tangent imagem
N\ =

high—contrast image

gent directions
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Figure 4: The manifold of translations of a high-contrasaga has high curvature. A
smooth manifold is obtained by considering that an imagedaraple on a discrete
grid of an intensity function over a two-dimensional spadée tangent vector for
translation is thus tangent imaggeand it has high values only on the edges of the ink.
The tangent plane for an image translated by only one pixdddaimilar but changes
abruptly since the edges are also shifted by one pixel. Héngcevo tangent planes are
almost orthogonal, and the manifold has high curvaturectvis bad for local learning
methods, which must cover the manifold with many small Imggtches to correctly
capture its shape.

made to grow exponentially with the number of input variabtéis problem is directly
connected with the well-known curse of dimensionality fassical non-parametric
learning algorithms (for regression, classification anasity estimation). If the shapes
of all these pieces are unrelated, one needs enough exafopkesch piece in order
to generalize properly. However, if these shapes are cbkatel can be predicted from
each othemon-local learning algorithméave the potential to generalize to pieces not
covered by the training set. Such ability would seem necg$salearning in complex
domains such as in the Al-set.

One way to represent a highly-varying function compactlyttijview parameters)
is through the composition of many non-linearities. Suchtiple composition of non-
linearities appear to grant non-local properties to thévesbr, in the sense that the
value of f(x) or f'(x) can be strongly dependent on training examples far figm
while at the same time allowing to capture a large number datians. We have al-
ready discussed parity and other examples (section 3.2¥timangly suggest that the
learning of more abstract functions is much more efficienéwt is done sequentially,
by composing previously learned concepts. When the reptats@m of a concept re-
quires an exponential number of elements, (e.g., with dshaircuit), the number of
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training examples required to learn the concept may alsalpesactical.

Gaussian processes, SVMs, log-linear models, graph-baaedold learning and
graph-based semi-supervised learning algorithms careadelen as shallow architec-
tures. Although multi-layer neural networks with many les/ean represent deep cir-
cuits, training deep networks has always been seen as sahef challenge. Until
very recently, empirical studies often found that deep oet& generally performed no
better, and often worse, than neural networks with one orttidden layers [Tesauro,
1992]. A notable exception to this is the convolutional méuetwork architecture [Le-
Cunetal., 1989, LeCun et al., 1998] discussed in the nexibsgthat has a sparse con-
nectivity from layer to layer. Despite its importance, thpit of deep network training
has been somewhat neglected by the research community. idgvaepromising new
method recently proposed by Hinton et al. [2006] is causingsargence of interest in
the subject.

A common explanation for the difficulty of deep network leamis the presence
of local minima or plateaus in the loss function. Gradieasdd optimization meth-
ods that start from random initial conditions appear tofjet trapped in poor local
minima or plateaus. The problem seems particularly direnemrow networks (with
few hidden units or with a bottleneck) and for networks witany symmetries (i.e.,
fully-connected networks in which hidden units are exclesige). The solution re-
cently introduced by Hinton et al. [2006] for training degy¢red networks is based
on a greedy, layer-wise unsupervised learning phase . Thigpenvised learning phase
provides an initial configuration of the parameters with etha gradient-based super-
vised learning phase is initialized. The main idea of theupesvised phase is to pair
each feed-forward layer with a feed-back layer that attenptreconstruct the input
of the layer from its output. This reconstruction criterignarantees that most of the
information contained in the input is preserved in the otigdihe layer. The resulting
architecture is a so-called Deep Belief Networks (DBN).eAthe initial unsupervised
training of each feed-forward/feed-back pair, the feedvird half of the network is
refined using a gradient-descent based supervised metlac#-fivopagation). This
training strategyholds great promise as a principle to break through the peoiblof
training deep networkUpper layers of a DBN are supposed to represent more abstrac
concepts that explain the input observatignwhereas lower layers extract low-level
features frome. Lower layers learn simpler concepts first, and higher layeiild on
them to learn more abstract concepts. This strategy hasetdieen much exploited
in machine learning, but it is at the basis of the greedy kayiee constructive learning
algorithm for DBNs. More precisely, each layer is traine@munsupervised way so as
to capture the main features of the distribution it sees pstint produces an internal
representation for its input that can be used as input fonéxe layer. In a DBN, each
layer is trained as a Restricted Boltzmann Machine [Teh aimtiod, 2001] using the
Contrastive Divergence [Hinton, 2002] approximation of tbg-likelihood gradient.
The outputs of each layer (i.e., hidden units) constitutecéofed and distributed rep-
resentation that estimates causes for the input of the.l#@fesr the layers have been
thus initialized, a final output layer is added on top of théwwek (e.g., predicting
the class probabilities), and the whole deep network istiimed by a gradient-based
optimization of the prediction error. The only differencélwan ordinary multi-layer
neural network resides in the initialization of the paraangtwhich is not random, but
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is performed through unsupervised training of each layer sequential fashion.

Experiments have been performed on the MNIST and other elat&s try to un-
derstand why the Deep Belief Networks are doing much beltten either shallow
networks or deep networks with random initialization. Tdessults are reported and
discussed in [Bengio et al., 2007]. Several conclusionseadrawn from these exper-
iments, among which the following, of particular interesté:

1. Similar results can be obtained by training each layemagudo-associator in-
stead of a Restricted Boltzmann Machine, suggesting thathamr general prin-
ciple has been discovered.

2. Test classification error is significantly improved witlich greedy layer-wise
unsupervised initialization over either a shallow networla deep network with
the same architecture but with random initialization. Ihcalses many possible
hidden layer sizes were tried, and selected based on vialidatror.

3. When using a greedy layer-wise strategy thatupervisednstead of unsuper-
vised, the results are not as good, probably becausti igreedy unsupervised
feature learning extracts more information than stricég@ssary for the predic-
tion task, whereas greedy supervised feature learningdgreecause it does not
take into account that there will be more layers later) ettrdess information
than necessary, which prematurely scuttles efforts to avpby adding layers.

4. The greedy layer-wise unsupervised strategy helps ghration mostly be-
cause it helps the supervised optimization to get startadabetter solution.

6 Experiments with Visual Pattern Recognition

One essential question when designing a learning architet how to represent in-
variance. While invariance properties are crucial to anyrieg task, it is particularly
apparent in visual pattern recognition. In this section wesider several experiments
in handwriting recognition and object recognition to iliize the relative advantages
and disadvantages of kernel methods, shallow architegtarel deep architectures.

6.1 Representing Invariance

The example of figure 4 shows that the manifold containingrafislated versions of a
character image has high curvature. Because the manifbigh$y varying, a classifier
that is invariant to translations (i.e., that produces astamt output when the input
moves on the manifold, but changes when the input moves tihanclass manifold)
needs to compute a highly varying function. As we showed éptevious section,
template-based methods are inefficient at representirtgyhigrying functions. The
number of such variations may increase exponentially withdimensionality of the
manifolds where the input density concentrates. That dgieslity is the number of
dimensions along which samples within a category can vary.

We will now describe two sets of results with visual patteznagnition. The first
part is a survey of results obtained with shallow and deepitctures on the MNIST
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dataset, which contains isolated handwritten digits. Bu®sd part analyzes results of
experiments with the NORB dataset, which contains objeota five different generic
categories, placed on uniform or cluttered backgrounds.

For visual pattern recognition, Type-2 architectures haweble handling the wide
variability of appearance in pixel images that result froariations in pose, illumi-
nation, and clutter, unless an impracticably large numbiidemplates (e.g., support
vectors) are used. Ad-hoc preprocessing and feature éixinazan, of course, be used
to mitigate the problem, but at the expense of human labore Hee will concentrate
on methods that deal with raw pixel data and that integrateife extraction as part of
the learning process.

6.2 Convolutional Networks

Convolutional nets are multi-layer architectures in whilsh successive layers are de-
signed to learn progressively higher-level features | tinéi last layer which represents
categories. All the layers are trained simultaneously toimize an overall loss func-
tion. Unlike with most other models of classification andtpat recognition, there is
no distinct feature extractor and classifier in a convohaiometwork. All the layers are
similar in nature and trained from data in an integrateditash

The basic module of a convolutional net is composed fefagure detection layer
followed by afeature pooling layer A typical convolutional net is composed of one,
two or three such detection/pooling modules in seriesp¥adld by a classification
module. The input state (and output state) of each layer easebn as a series of
two-dimensional retinotopic arrays called feature maps.lafer i, the valuec;;,,
produced by thg-th feature detection layer at positiém, y) in the j-th feature map
is computed by applying a series of convolution kernels, to feature maps in the
previous layer (with index — 1), and passing the result through a hyperbolic tangent
sigmoid function:

Pi—-1Q;—1
Cijay = tanh (bij 3> wijkpqc(i1>,k,<x+p>,(y+q>> (4)

k p=0 ¢=0

where P, and@Q); are the width and height of the convolution kernel. The cdutvon
kernel parameters;;;,, and the bias;; are subject to learning. A feature detection
layer can be seen as a bank of convolutional filters followgdalpoint-wise non-
linearity. Each filter detects a particular feature at evepation on the input. Hence
spatially translating the input of a feature detection tay#l translate the output but
leave it otherwise unchanged. Translation invariance isnadly built-in by constrain-

INg wijrpq = wijkpq forallp,p’,q, ¢, i.e., the same parameters are used at different
locations.

A feature pooling layer has the same number of features imidye as the feature
detection layer that precedes it. Each value in a subsagpliap is the average (or
the max) of the values in a local neighborhood in the corredpwy feature map in
the previous layer. That average or max is added to a tragnaiak, multiplied by a
trainable coefficient, and the result is passed through alinearity (e.g., thetanh
function). The windows are stepped without overlap. Theneethe maps of a feature

27



24@18x18

8@92x92 24@0x6 100

2@96x96

,Fully connected

> _r oy \(500 weights)
4x4 6x6 v
5x5 . lution 6X6
. subsampling convolutio 3x3 .
convolution (96 kernels) convolution

(12 kernels) subsampling (2400 kernels)

Figure 5. The architecture of the convolutional net usedtfier NORB experiments.
The input is an image pair, the system extracts 8 feature wfegige92 x 92, 8 maps
of 23 x 23, 24 maps ofi8 x 18, 24 maps of x 6, and 100 dimensional feature vector.
The feature vector is then transformed into a 5-dimensigaelor in the last layer to
compute the distance with target vectors.

pooling layer are less than the resolution of the maps in teeipus layer. The role

of the pooling layer is build a representation that is inatito small variations of the
positions of features in the input. Alternated layers oftdiea detection and feature
pooling can extract features from increasingly large réigefields, with increasing

robustness to irrelevant variabilities of the inputs. TastImodule of a convolutional
network is generally a one- or two-layer neural net.

Training a convolutional net can be performed with stodog&in-line) gradient
descent, computing the gradients with a variant of the lgokagation method. While
convolutional nets are deep (generally 5 to 7 layers of mogak functions), they do not
seem to suffer from the convergence problems that plagye fdég-connected neural
nets. While there is no definitive explanation for this, wepses that this phenomenon
is linked to the heavily constrained parameterization, af as to the asymmetry of
the architecture.

Convolutional nets are being used commercially in severdely-deployed sys-
tems for reading bank check [LeCun et al., 1998], recoggihiandwriting for tablet-
PC, and for detecting faces, people, and objects in videgsairtime.

6.3 The lessons from MNIST

MNIST is a dataset of handwritten digits with 60,000 tragnsamples and 10,000 test
samples. Digit images have been size-normalized so as tatfitva 20 x 20 pixel
window, and centered by center of mass if8ax 28 field. With this procedure, the
position of the characters vary slightly from one samplertother. Numerous authors
have reported results on MNIST, allowing precise compagsamong methods. A
small subset of relevant results is listed in table 1. Notgalbd results on MNIST
are listed in the table. In particular, results obtainechvdeslanted images or with
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hand-designed feature extractors were left out.

Results are reported with three convolutional net archites: LeNet-5, LeNet-6,
and the subsampling convolutional net of [Simard et al.,3200he input field is a
32 x 32 pixel map in which the&8 x 28 images are centered. In LeNet-5 [LeCun et al.,
1998], the first feature detection layer produces 6 featuapsrof size28 x 28 using
5 x 5 convolution kernels. The first feature pooling layer progsi614 x 14 feature
maps through & x 2 subsampling ratio an2l x 2 receptive fields. The second feature
detection layer produces 16 feature maps of gi@e< 10 using5 x 5 convolution
kernels, and is followed by a pooling layer withx 2 subsampling. The next layer
produces 100 feature maps of sizex 1 using5 x 5 convolution kernels. The last
layer produces 10 feature maps (one per output categoryyet-6 has a very similar
architecture, but the number of feature maps at each leegahaich larger: 50 feature
maps in the first layer, 50 in the third layer, and 200 featuspin the penultimate
layer.

The convolutional net in [Simard et al., 2003] is somewhatilsir to the original
one in [LeCun et al., 1989] in that there is no separate caari and subsampling
layers. Each layer computes a convolution with a subsampkdt (there is no feature
pooling operation). Their simple convolutional networlsitafeatures at the first layer,
with 5 by 5 kernels and 2 by 2 subsampling, 60 features at ttensElayer, also with 5
by 5 kernels and 2 by 2 subsampling, 100 features at the oyt Wwith 5 by 5 kernels,
and 10 output units.

The MNIST samples are highly variable because of writindestiput have little
variation due to position and scale. Hence, it is a datasgtistparticularly favorable
for template-based methods. Yet, the error rate yielded upp8rt Vector Machines
with Gaussian kernel (1.4% error) is only marginally betten that of a considerably
smaller neural net with a single hidden layer of 800 hidderitsufl.6% as reported
by [Simard et al., 2003]), and similar to the results obtdingh a 3-layer neural net as
reported in [Hinton et al., 2006] (1.53% error). The bestiesson the original MNIST
set with a knowledge free method was reported in [Hinton .e28i06] (0.95% error),
using a Deep Belief NetworkBy knowledge-free method, we meanethod that has
no prior knowledge of the pictorial nature of the signal. $aanethods would produce
exactly the same result if the input pixels were scramblatl wifixed permutation.

Convolutional nets use the pictorial nature of the data, taednvariance of cate-
gories to small geometric distortions. It is a broad (low pbexity) prior, which can
be specified compactly (with a short piece of code). Yet ingsiabout a considerable
reduction of the ensemble of functions that can be learndte Best convolutional
net on the unmodified MNIST set is LeNet-6, which yields a rdd®60%. As with
Hinton’s results, this result was obtained by initializiting filters in the first layer us-
ing an unsupervised algorithm, prior to training with bamlopagation [Ranzato et al.,
2006]. The same LeNet-6 trained purely supervised fromaenahitialization yields
0.70% error. A smaller convolutional net, LeNet-5 yield8@%. The same network
was reported to yield 0.95% in [LeCun et al., 1998] with a deralumber of training
iterations.

When the training set is augmented with elastically distbviersions of the training
samples, the test error rate (on the original, non-distidetst set) drops significantly. A
conventional 2-layer neural network with 800 hidden uni&dds 0.70% error [Simard
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Classifier Defor- Error Reference
mations %

Knowledge-free methods

2-layer NN, 800 hid. units 1.60 Simard et al. 2003

3-layer NN, 500+300 units 1.53 Hinton et al. 2006

SVM, Gaussian kernel 140 Cortesetal. 1992

Unsupervised stacked RBM + backprop 0.95 Hinton et al. 2006
Convolutional networks

Convolutional network LeNet-5 0.80 Ranzato et al. 2006

Convolutional network LeNet-6 0.70  Ranzato et al. 2006

Conv. net. LeNet-6 + unsup. learning 0.60 Ranzato et al. 2006
Training set augmented with affine distortions

2-layer NN, 800 hid. units Affine  1.10 Simard et al. 2003

Virtual SVM, deg. 9 poly Affine 0.80 DeCoste et al. 2002

Convolutional network, Affine  0.60  Simard et al. 2003
Training set augmented with elastic distortions

2-layer NN, 800 hid. units Elastic 0.70 Simard et al. 2003

SVM Gaussian Ker. + on-line training Elastic 0.67 this vokjrohapter 13
Shape context features + elastic K-NN Elastic 0.63 Belorga. 2002
Convolutional network Elastic 0.40 Simard et al. 2003
Conv. net. LeNet-6 Elastic 0.49 Ranzato et al. 2006
Conv. net. LeNet-6 + unsup. learning Elastic 0.39 Ranzath @006

Table 1: Test error rates of various learning models on thel$Ndataset. Many
results obtained with deslanted images or hand-desigradréeextractors were left
out.

et al., 2003]. While SVMs slightly outperform 2-layer neuredts on the undistorted
set, the advantage all but disappears on the distorted setid volume, Loosli et
al. report 0.67% error with a Gaussian SVM and a sample seteprocedure. The
number of support vectors in the resulting SVM is considgrédyger than 800.

Convolutional nets applied to the elastically distortetesshieve between 0.39%
and 0.49% error, depending on the architecture, the losgibm and the number of
training epochs. Simard et al. [2003] reports 0.40% with lassmpling convolutional
net. Ranzato et al. [2006] report 0.49% using LeNet-6 witidmam initialization, and
0.39% using LeNet-6 with unsupervised pre-training of the fayer. This is the best
error rate ever reported on the original MNIST test set.

Hence a deep network, with small dose of prior knowledge eldéeé in the archi-
tecture, combined with a learning algorithm that can de&hwmiillions of examples,
goes a long way towards improving performance. Not only depdeetworks yield
lower error rates, they are faster to run and faster to traitagge datasets than the best
kernel methods.
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Figure 6: The 25 testing objects in tmermalized-uniformNORB set. The testing
objects are unseen by the trained system.

6.4 The lessons from NORB

While MNIST is a useful benchmark, its images are simple ehdogllow a global
template matching scheme to perform well. Natural image3bbjects with back-
ground clutter are considerably more challenging. NORB(Jue et al., 2004] is a
publicly available dataset of object images from 5 genegiegories. It contains im-
ages of 50 different toys, with 10 toys in each of the 5 geneategories: four-legged
animals, human figures, airplanes, trucks, and cars. Thebfgrts are split into a
training set with 25 objects, and a test set with the remgi@ object (see examples
in Figure 6).

Each object is captured by a stereo camera pair in 162 diffetews (9 elevations,
18 azimuths) under 6 different illuminations. Two datas#dsived from NORB are
used. The first dataset, called thermalized-unifornset, are images of a single object
with a normalized size placed at the center of images witfoumi background. The
training set has 24,300 stereo image pairs of size®H and another 24,300 for testing
(from different object instances).

The second set, thitered-clutteredset, contains objects with randomly perturbed
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positions, scales, in-plane rotation, brightness, andrashh The objects are placed
on highly cluttered backgrounds and other NORB objectsqulain the periphery. A
6-th category of images is included: background imagesadoinig no objects. Some
examples images of this set are shown in figure 7. Each imate ijittered-cluttered
set is randomly perturbed so that the objects are at diffgresitions ([-3, +3] pixels
horizontally and vertically), scales (ratio in [0.8, 1.lijpage-plane angles-{p°, 5°]),
brightness ([-20, 20] shifts of gray scale), and contrgf§t$8( 1.3] gain). The central
object could be occluded by the randomly placed distracforgenerate the training
set, each image was perturbed with 10 different configunatas the above parameters,
which makes up 291,600 image pairs of size 3@88. The testing set has 2 drawings
of perturbations per image, and contains 58,320 pairs.

In the NORB datasets, the only useful and reliable clue istape of the object,
while all the other parameters that affect the appearaneesatject to variation, or
are designed to contain no useful clue. Parameters thauajecs to variation are:
viewing angles (pose), lighting conditions. Potentialedwhose impact was elimi-
nated include: color (all images are grayscale), and olgttire. For specific object
recognition tasks, the color and texture information mayhb#ful, but for generic
recognition tasks the color and texture information aréraeions rather than useful
clues. By preserving natural variabilities and elimingtirrelevant clues and system-
atic biases, NORB can serve as a benchmark dataset in whitldaen regularity that
would unfairly advantage some methods over others can lgk use

A six-layer net dubbed LeNet-7, shown in figure 5, was used@experiments
with the NORB dataset reported here. The architecture isnisdly identical to that
of LeNet-5 and LeNet-6, except of the sizes of the featuresn@pe input is a pair of
96x 96 gray scale images. The first feature detection layer usdse 5x 5 convolution
kernels to generate 8 feature maps of $i2ex 92. The first 2 maps take input from
the left image, the next two from the right image, and the faftom both. There
are 308 trainable parameters in this layer. The first fegbo@ing layer uses ax4
subsampling, to produce 8 feature maps of 8ize& 23. The second feature detection
layer uses 96 convolution kernels of size®to output 24 feature maps of siz8& x
18. Each map takes input from 2 monocular maps and 2 binoculaspeach with
a different combination, as shown in figure 8. This configorats used to combine
features from the stereo image pairs. This layer contaih8(Btrainable parameters.
The next pooling layer uses &3 subsampling which outputs 24 feature maps of size
6 x 6. The next layer haé x 6 convolution kernels to produce 100 feature maps of
sizel x 1, and the last layer has 5 units. In the experiments, we ajsortreesults
using a hybrid method, which consists in training the coatiohal network in the
conventional way, chopping off the last layer, and trairtnGaussian kernel SVM on
the output of the penultimate layer. Many of the results ia ection were previously
reported in [Huang and LeCun, 2006].

6.5 Results on thenormalized-uniform set

Table 2 shows the results on the smaller NORB dataset witformmibackground.
This dataset simulates a scenario in which objects can Heqpgrsegmented from
the background, and is therefore rather unrealistic.
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| | SWM | Conv Net | SVM/Conv |

test error 11.6% | 10.4% | 6.0% | 6.2% 5.9%
train time
(Min*GHz) 480 64 448 | 3,200 50+
test time
per sample 0.95 0.03 0.04+
(sec*GHz)
fraction of S.V. 28% 28%
dim=80
parameters | ¢=2,000 step size = 0=5
C=40 2x107°-2x107" C=0.01

Table 2: Testing error rates and training/testing timingstloe normalized-uniform
dataset of different methods. The timing is normalized tpdilietical 1GHz single
CPU. The convolutional nets have multiple results withetdint training passes due to
iterative training.

The SVM is composed of five binary SVMs that are trained tosifgone object
category against all other categories. The convolutioealtrained on this set has a
smaller penultimate layer with 80 outputs. The input feasuto the SVM of the hybrid
system are accordingly 80-dimensional vectors.

The timing figures in Table 2 represent the CPU time on a fiet#ilGHz CPU. The
results of the convolutional net trained after 2, 14, 10Gpasre listed in the table. The
network is slightly over-trained with more than 30 passesrégularization was used in
the experiment). The SVM in the hybrid system is trained dkerfeatures extracted
from the network trained with 100 passes. The improvemerthefcombination is
marginal over the convolutional net alone.

Despite the relative simplicity of the task (no positionigdion, uniform back-
grounds, only 6 types of illuminations), the SVM performthiex poorly. Interestingly,
it require a very large amount of CPU time for training andites The convolutional
net reaches the same error rate as the SVM with 8 times lasingaime. Further
training halves the error rate. It is interesting that desjiis deep architecture, its
non-convex loss, the total absence of explicit regulaicratand a lack of tight gener-
alization bounds, the convolutional net is both better astier than an SVM.

6.6 Results on thgittered-cluttered set

The results on this set are shown in table 3. To classify thet€gories, 6 binary (“one
vs. others”) SVM sub-classifiers are trained independeetigh with the full set of
291,600 samples. The training samples are 1% x 108 pixel image pairs turned
into a 23,328-dimensional input vector, with values betw@¢o 255.

SVMs have relatively few free parameters to tune prior torésy. In the case of
Gaussian kernels, one can choeg&aussian kernel sizes) agt(penalty coefficient)
that yield best results by grid tuning. A rather disappuwigtiest error rate 03.3% is
obtained on this set, as shown in the first column of table & tfining time depends
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| | SUM | Conv Net | SVM/Conv |

testerror | 43.3% | 16.38% | 7.5% | 7.2% 5.9%

train time

(Min*GHz) 10,944 420 2,100 | 5,880 330+

test time

persample| 2.2 0.04 0.06+

(sec*GHz)

#SV 5% 2%
dim=100

parameters| o=10* step size = o=5

C=40 2x107°-1x107° Cc=1

Table 3: Testing error rates and training/testing timingsteejittered-cluttereddataset
of different methods. The timing is normalized to hypotbatilGHz single CPU. The
convolutional nets have multiple results with differemiiting passes due to its iterative
training.

heavily on the value of for Gaussian kernel SVMs. The experiments are run on a
64-CPU (1.5GHz) cluster, and the timing information is natized into a hypothetical
1GHz single CPU to make the measurement meaningful.

For the convolutional net LeNet-7, we listed results afiedent number of passes
(1, 5, 14) and their timing information. The test error ratgténs out a?.2% after
about 10 passes. No significant over-training was obsear&tino early stopping was
performed. One parameter controlling the training procedoust be heuristically cho-
sen: the global step size of the stochastic gradient proee@est results are obtained
by adopting a schedule in which this step size is progrelysilecreased.

A full propagation of one data sample through the networluieg about 4 mil-
lion multiply-add operations. Parallelizing the convaduial net is relatively simple
since multiple convolutions can be performed simultanBousd each convolution
can be performed independently on sub-regions of the layldre convolutional nets
are computationally very efficient. The training time ssaseiblinearly with dataset
size in practice, and the testing can be done in real-timerateaof a few frames per
second.

The third column shows the result of a hybrid system in whioh last layer of
the convolutional net was replaced by a Gaussian SVM afténitrg. The training
and testing features are extracted with the convolutioealtrained after 14 passes.
The penultimate layer of the network has 100 outputs, toeeethe features are 100-
dimensional. The SVMs applied on features extracted fragrctinvolutional net yield
an error rate 05.9%, a significant improvement over either method alone. Byiipoe
rating a learned feature extractor into the kernel funcgttbe SVM was indeed able to
leverage both the ability to use low-level spatially locgdtures and at the same time
keep all the advantages of a large margin classifier.

The poor performance of SVM with Gaussian kernels on rawlIpiienot unex-
pected. As we pointed out in previous sections, a Gaussiarek8VM merely com-
putes matching scores (based on Euclidean distance) betheacoming pattern and
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templates from the training set. This global template matgs very sensitive to vari-
ations in registration, pose, and illumination. More imotly, most of the pixels in
a NORB image are actually on the background clutter, rathesn bn the object to be
recognized. Hence the template matching scores are dadibgtirrelevant variabili-
ties of the background. This points to a crucial deficiencgtahdard kernel methods:
their inability to select relevant input features, and igniorelevant ones.

SVMs have presumed advantages provided by generalizatiomds, capacity con-
trol through margin maximization, a convex loss functiomg aniversal approximation
properties. By contrast, convolutional nets have no gédizetion bounds (beyond the
most general VC bounds), no explicit regularization, a higion-convex loss func-
tion, and no claim to universality. Yet the experimentalutesswith NORB show that
convolutional nets are more accurate than Gaussian SVMsfagtar of 6, faster to
train by a large factor (2 to 20), and faster to run by a factd®

7 Conclusion

This work was motivated by our requirements for learningoatyms that could ad-
dress the challenge of Al, which include statistical scititgocomputational scala-
bility and human-labor scalability. Because the set ofd¢askolved in Al is widely
diverse, engineering a separate solution for each task s@apractical. We have
explored many limitations okernel machinesand othershallow architectures Such
architectures are inefficient for representing compleghhy-varying functions, which
we believe are necessary for Al-related tasks such as angperception.

One limitation was based on the well-known depth-breadttigoff in circuits de-
sign Hastad [1987]. This suggests that many functions can be muach afficiently
represented with deeper architectures, often with a madesber of levels (e.g., log-
arithmic in the number of inputs).

The second limitation regards mathematical consequerfdd® @urse of dimen-
sionality. It applies to local kernels such as the Gaussamnd!, in whichK (z, x;)
can be seen as a template matcher. It tells us that archigeatelying on local kernels
can be very inefficient at representing functions that haeeywariations, i.e., func-
tions that are not globally smooth (but may still be localtyooth). Indeed, it could be
argued thakernel machines are little more than souped-up templateineas

A third limitation pertains to the computational cost ofrieiag. In theory, the con-
vex optimization associated with kernel machine learniieddg efficient optimization
and reproducible results. Unfortunately, most currenbatgms are (at least) quadratic
in the number of examples. This essentially precludes tgitication to very large-
scale datasets for which linear- or sublinear-time algoni are required (particularly
for on-line learning). This problem is somewhat mitigatgdrécent progress with on-
line algorithms for kernel machines (e.g., see [Bordes.e28D5]), but there remains
the question of the increase in the number of support veatotise number of examples
increases.

A fourth and most serious limitation, which follows from tfiest (shallowness) and
second (locality) pertains to inefficiency iapresentation Shallow architectures and
local estimators are simply too inefficient (in terms of regd number of examples and
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adaptable components) to represent many abstract fusaifonterest. Ultimately, this

makes them unaffordable if our goal is to learn the Al-set.d&/aot mean to suggest
that kernel machines have no place in Al. For example, oudtesuggest that com-
bining a deep architecture with a kernel machine that takeshigher-level learned
representation as input can be quite powerful. Learningrdresformation from pixels

to high-level features before applying an SVM is in fact a wajearn the kernel. We

do suggest that machine learning researchers aiming atltheoBlem should investi-

gate architectures that do not have the representationgitions of kernel machines,
and deep architectures are by definition not shallow andliysuat local as well.

Until recently, many believed that training deep architees was too difficult an
optimization problem. However, at least two different aygarthes have worked well
in training such architectures: simple gradient desceptiegh to convolutional net-
works [LeCun et al., 1989, LeCun et al., 1998] (for signalsl @amages), and more
recently, layer-by-layer unsupervised learning followsdgradient descent [Hinton
et al., 2006, Bengio et al., 2007, Ranzato et al., 2006]. &ebkeon deep architectures
is in its infancy, and better learning algorithms for deegh#tectures remain to be dis-
covered. Taking a larger perspective on the objective afalisring learning principles
that can lead to Al has been a guiding perspective of this wékkhope to have helped
inspire others to seek a solution to the problem of scalinghime learning towards Al.
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Figure 7: Some of the 291,600 examples from jittered-clutteredtraining set (left
camera images). Each column shows images from one cate§dyth background
category is added
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Figure 8: The learned convolution kernels of the C3 layee Tblumns correspond to
the 24 feature maps output by C3, and the rows corresponé ®fémature maps output
by the S2 layer. Each feature map draw from 2 monocular mag® d&nocular maps
of S2. 96 convolution kernels are use in total.
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