Word Normalization for On-Line Handwritten Word Recognition

Yoshua Bengio
Dept. Informatique et Recherche
Opérationelle, Université de Montréal

Montreal, Qc H3C-3J7, Canada

bengioy@iro.umontreal.ca

Abstract

We introduce a new approach to normalizing words
written with an electronic stylus that applies to all
styles of handwriting (upper case, lower case, printed,
cursive, or mized). A geometrical model of the word
spatial structure is fitted to the pen trajectory using
the EM algorithm. The fitting process mazimizes the
likelihood of the trajectory given the model and a set
a priors on its parameters. The method was evaluated
and integrated to a recognition system that combines
neural networks and hidden Markov models.

1 Introduction

Natural handwriting can be a mixture of different
“styles”, lower case printed, upper case, cursive, and
punctuation. In order to improve the success of pen-
based computers, we would like a recognizer that reli-
ably handles such handwriting, but its implementation
faces major technical challenges [9]. It has been long
known that, although characters taken in isolation can
be very ambiguous, considerable information is avail-
able from the context of the whole word. Many recog-
nition systems operate uniquely on the shape of each
candidate character, and delay the use of contextual
information such as the position relative to the base-
line or the height, until the word-level postprocessor.
However, some recent recognition methods, most no-
tably Neural Networks, have been shown to yield bet-
ter results when word-level normalization is performed
instead of individual character normalization. This is
particularly true when scores from the recognizer are
used in an integrated segmentation/recognition sys-
tem. It is even more the case with so-called “Space
Displacement Neural Networks” (SDNN) that take an
entire unsegmented word as input [7].

Many recognition methods, particularly the ones
that use pictorial representations of the characters,

Yann Le Cun
AT&T Bell Laboratories
Holmdel, NJ 07733
U.S.A.

yann@research.att.com

require that the size, position, and orientation of ob-
jects be approximately constant, at least within a sin-
gle class. Word-level normalization can achieve this
by identifying the location of the baseline of a word,
and the approximate height (or, word core height) of
lower case characters without ascenders or descenders
such as “0”. We propose a new word normalization
scheme, based on fitting a geometric model of the word
structure. Our model comprises four “flexible” lines
representing respectively the ascender line, the core
line (i.e. the line that joins the tops of small lower-
case characters), the baseline and the descender line
(see Figure 1). Once the model has been fitted to the
data, the pen trajectories can be normalized (scaled,
rotated, translated) according to the expectations of
a character or word recognizer.

This important preprocessing step has been inte-
grated in a word recognition system described in a
companion paper [3]. This word recognition system
for pen-based devices is based on four main modules:
the word normalization preprocessor described in this
paper; a module that produces an “annotated image”
from the normalized pen trajectory; a replicated con-
volutional neural network that spots and recognizes
characters; and a Hidden Markov Model (HMM) that
interprets the network output by taking word-level
constraints into account. The network and the HMM
are jointly trained to minimize an error measure de-
fined at the word level.

The word normalization preprocessor has been eval-
uated by comparing the performance of the above
system with a character-level normalization. Writer-
independent tests performed on a database of lower
case words showed large reductions in error rates when
using the word normalization preprocessor.

2 Word Model

Several authors have advocated the use geomet-
rical models for locating, recognizing, or performing
measurements on objects in images. A widely used
paradigm is the so called “elastic matching” method.
The main idea is to come up with an “energy” func-
tion composed of two terms. The first term represents
the quality of the fit between the model and the data,
while the second term measures the internal “stress”
in the model, that is, how much the model must be
distorted to fit the data. Various search techniques
can be used to minimize the energy function (gradi-
ent descent, simulated annealing, combinatorial tech-
niques), but formulating the problem in a probabilis-
tic framework allows us to use the fast and powerful
Expectation-Maximization algorithm (EM) [2]. In the
probabilistic framework, the model is viewed as gen-
erating the data through a stochastic process. The
energy function is interpreted as the negative loga-
rithm of the likelihood that the data be generated by
the model.

Our geometrical model of the word structure is
based on four lines that must respectively go through
the ascenders (top of tall characters, like “E” or “17),
the top of the word core (top of lower case characters
such as “0”), the baseline points, and the descenders
(bottom of characters like “p” and “q”). The fitting
energy reflects how close the bottom two lines are to
the local minima of the vertical displacement, and how
close the top two lines are to the local maxima of the
vertical displacement. The internal “stress” term of
the energy can be understood with a mechanical anal-
ogy. Each line behaves like a flexible rod with a given
stiffness. The rods are linked with each other with
“springs” that have given spring constants and rest
lengths. The rods are constrained to be parallel, and
are all kept nearly horizontal with another “spring”.
The energy of a spring is proportional to the square of
the difference between its length and its rest length. In
the equivalent probabilistic framework, the exponen-
tial of the negative of the above energy corresponds
to a prior probability distribution on the parameters
of the model (i.e. the probability distribution of the
parameters in the absence of data). Because of the
quadratic form of the energy, these distributions are
Gaussians whose means are the rest lengths of the
springs, and whose variances are the inverse of the
spring constants.

Formally, the lines are parameterized as second de-
gree polynomials of the following form:

¥ = fi(x) = wlx = 20)* 4 s(x —20) F w0 (1)

where & controls curvature, s is the slant, and (z0,y0)
is a translation vector. The parameters k, s, and zg
are shared among all four curves, whereas each curve
has its own vertical translation parameter yor. The
reference abscissa zg is computed as the horizontal
center of mass of the set of extrema points. The pa-
rameters of the model (i.e., of the four lines) are col-
lectively referred to as the vector 8.

The input to this preprocessor is the pen trajec-
tory, i.e. a sequence of spatio-temporal coordinates
{(z,y,t)} produced when the pen touches the tablet.
After simple preprocessing (resampling, smoothing),
the local minima and maxima of the vertical position
are extracted. These points are used as the observa-
tions that the model will fit.

Let U be the set of local maxima (upper extremes),
and L be the set of local minima (lower extremes).
The likelihood that a particular maximum point (resp.
minimum point) (z;,y;) be generated by the model
with parameter vector # is computed from the square
distances between that point and the top two curves
(resp. bottom two curves). Now, since each point can
be assigned to one of two lines, there is an ambiguity
in choosing what line to compute the distance from.
The probabilistic framework provides us with an ele-
gant solution to this problem by modelling the like-
lihood of a maximum point (resp minimum point) as
a mizture of two Gaussian distributions whose means
are the ordinates of the top two lines (resp. bottom
two lines) at the corresponding abscissa. In addition,
the points are assigned a small probability to be gener-
ated by a diffuse “background model” B that is meant
to account for outliers.

More formally, the likelihood for a minimum point
is:

P(zi,yi | pi € L;0) = woNoeSo(wi—fo(#:))*
|,w1N1651(yz—f1(xz))2
+waP (s, yi|B) (2)

and the likelihood for a maximum point is

P(ai,yi | pi €Us0) = wyNoyeHimfaled)’
+w3N3653(y1_.f3(x1))2

+wy P (x4, y;|B) (3)

where the N are the appropriate normalization
constants for the Gaussians; fi(x;) is the ordinate
of line k at abscissa #; as given by equation (1).
The inverse variances of the Gaussian distribution
So, 51,52, 53 control the “strength” of the force that
pulls the points and the lines together. The wy are

mixture parameters which control the prior probabil-
ity of assigning a point to one of the four lines or to
the background model B.

The background model prevents points that are
very far from all four lines (outliers) to have too much
of an influence on the result of the fit. We chose the
background model to be a uniform distribution over
the range of accessible coordinates (i.e. P(z;,y;|B)
is a constant P;). The first four mixing coefficients
wo, W1, Wa, w3 were pre-computed from the frequency
of association of extrema to curves measured on a large
corpus of words.

The parameters to be estimated for the fit, collec-
tively denoted by @, are those defined in (1), i.e., global
curvature, slant, and baseline position, and relative
vertical position of the three other lines with respect
to the baseline.

Let X % U/ UL be the set of observed extrema
points. Given a point p; = (&4, ¥,) from X, we
write

oo | Plaiyi|lpieL;0) if ppel
P(plla)_{P('xi:yilPiEUSa) if p; eV (4)

3 Model Fitting with the EM Algo-
rithm

Given an input word, our goal is to find the param-
eter vector # that is the most likely according to our
probabilistic model. In other words we want to find
the vector #* that maximizes

o = emaxP(9] X) (5)

Since X is fixed while we allow @ to vary, this can be
shown to be equivalent to finding the maximum of the
joint probability of # and X:

0 = argmax P(6, X) = argmax P(X | 0)P(9) (6)

where P(f) is an a priori probability distribution on
the parameters, the negative logarithm of which is
the “internal stress” term of the energy. Appropri-
ate choice for these prior probabilities is crucial to
the success of the method. As stated above, they in-
corporate the internal geometrical constraints of the
model. For example, we know a priori that words are
mostly straight and horizontal. We also know that
the lines should be approximately equally spaced and
should not be on top of each other. In addition, we
may also have a good a priori estimate of the base-
line position or of the core height. All of these can be

modelled as simple independent Gaussian prior distri-
butions on the parameters in § (quadratic, spring-like
energy terms).

P(6) = NH6KJ'(9J'—®1)2 (7)
J

where ©; is the correct a priori value for 6; (i.e., the
rest length of the springs in the mechanical metaphor);
K; is the inverse variance of the Gaussian controlling
the strength of the prior (i.e., the spring constant);
and N is an appropriate normalization constant.

The energy function to be minimized is the negative
log of the joint probability:

C(9) = —logP(X | 0) — logP(#) (8)

As expected, the first term in the right hand side mea-
sures the quality of fit, while the second term measures
the internal stress. According to our model, the first
term is given by a sum over all extrema points of the
logarithm of a mixture of Gaussians, while the second
term is simply a sum of quadratic terms.

Because of the mixture, no simple, direct method
exists to find the minimum of this function. In fact,
the function is likely to be non-convex and have lo-
cal minima. Although minimizing this function can
be done with standard techniques such as gradient
descent or conjugate gradient, the probabilistic for-
mulation allows us to use the more efficient EM algo-
rithm [2].

The idea of EM in this context is to express C' as a
function C'(6, Z) of # and a of set of “hidden” random
variables Z whose distribution depends on #. Let C(f)
represent the expected value of C(6,7) over Z. The
hidden variables are chosen in such a way that, if their
distribution is kept constant, the minimization of C(0)
reduces to a trivial (or simple) problem. Here, the
hidden variables are discrete variables that determine
the assignment of an extremum point to one of the
elements of the mixture: for example, z; = 2 means
that point ¢ is accounted for by line 2, z; = 4 means
that it is accounted for by the background model. As
stated above, the distribution of Z really depend on @,
but if it is held constant, the expected value of C(f)
is quadratic with respect to f. The basic mechanism
of EM is, at iteration k, to compute the distribution
of Z given the current parameter vector 6(*) (Expec-
tation step), then to find the new parameter vector
0(+1) which minimizes the expected value C'(6), while
keeping the distribution on Z constant (Maximization
step), and to iterate until convergence. Since the ex-
pected value C(f) is quadratic, the second step in-
volves solving a simple linear system.

In our experiments, convergence was always very
quick. At most four iterations were required to obtain
a good estimate of the parameters.

4 Preliminary Preprocessing

To help fitting the model to the observations, pre-
liminary preprocessing was performed to remove gross
variabilities from the extrema points. The whole se-
quence of operations performed to extract the normal-
ization information from the trajectory is sketched by
the following:

1. The pen trajectory is dehooked, smoothed, and
rotated to an approximately horizontal orienta-
tion using simple projection techniques.

2. An approximate estimate of the word scale is
computed.

3. Maxima and minima of vertical displacement are
extracted.

4. The priors on the model parameters are either
set from an application dependent directive or
set according to the results of steps 1 and 2.

5. The model parameters are estimated with four
iterations or less of the EM algorithm described
in the previous section.

6. These parameters can be used to normalize the
original pen trajectory with respect to the word
model.

5 Experiments on the Word Recog-
nizer

The handwriting recognition system described in [3]
is based on a spatial representation, convolutional neu-
ral networks, and a post-processor that integrates lex-
ical and grammatical constraints. After the word nor-
malization preprocessing, the input trajectory is trans-
formed into a representation scheme called AMAP,
which is a low-resolution image in which each picture
element contains information about the local prop-
erties of the trajectory (e.g. orientation, curvature).
This representation is particularly well suited for use
in combination with Multi-Layer Convolutional Neu-
ral Networks (MCLNN) [6, 4]. These networks are

\
-~)
= — Nl
T e e e —

Figure 1: Word Normalization Model: y-mazima are
fit to the ascenders and core curves, whereas y-minima
are fit to the descenders and baseline curves. There
are 6 parameters: a (ascenders curve height relative
to baseline), b (baseline absolute vertical position), ¢
(core line position), d (descenders curve position), &
(curvature), s (angle).

feedforward and their architecture is tailored to mini-
mizing sensitivity to translations, rotations or distor-
tions of the input image. They are trained with a vari-
ation of the Back-Propagation algorithm [8, 5]. The
neural network gives scores associated to characters
when the network has an input field, called segment,
that covers a connected subset of the whole word in-
put. A segmentation is a sequence of such segments
that covers the whole word input. Hidden Markov
Models and dynamic programming are used to model
constraints at the word level and search for the best
segmentation.

The experiments described here concern the recog-
nition of lower case words independently of the writer.
The tests were performed on a database of 881 words.
We evaluated the improvements brought by the word
normalization to a word recognition system that is
based on optimally combining a large number of char-
acter candidates in order to form a word hypothe-
sis. With the word recognition system described in a
companion paper [3], and before doing any word-level
training, we obtained without word normalization (us-
ing character-level normalization) 7.3% and 3.5% word
and character errors (adding insertions, deletions and
substitutions) when the search was constrained within
a 25461-word dictionary. When using the word nor-
malization preprocessing instead of a character level
normalization, error rates dropped to 4.6% and 2.0%
for word and character errors respectively, i.e., a rela-

tive drop of 37% and 43% in word and character error
respectively.

Further improvements were obtained by training at
the word level (as in [1]) both the neural network rec-
ognizer and the post-processor. With the 25461-word
dictionary, errors dropped to 3.2% and 1.4% word and
character errors respectively.

6 Conclusion

We have demonstrated a new approach to hand-
written word normalization that fits a geometrical
model of word structure to the pen trajectory with
the EM algorithm. Tests of this new algorithm with
a neural network based word recognizer yielded large
reductions in error rates.

References

[1] Y. Bengio, R. De Mori, G. Flammia, and
R. Kompe. Global optimization of a neural
network-hidden Markov model hybrid. IEFEFE
Transactions on Neural Networks, 3(2):252-259,
1992.

[2] A. P. Dempster, N. M. Laird, and D. B. Rubin.
Maximum-likelihood from incomplete data via the
EM algorithm. Journal of Royal Statistical Society
B, 39:1-38, 1977.

[3] Y. Le Cun and Y. Bengio. Word-level training
of a handritten word recognizer based on convolu-
tional neural networks. In IEEE, editor, ICPR’94,
Jerusalem 1994, 1994.

[4] Y. Le Cun, Y. Matan, B. Boser, J.S. Denker,
D. Henderson, R.E. Howard, W. Hubbard, L.D.
Jackel, and H.S. Baird. Handwritten zip code
recognition with multilayer networks. In IAPR,

editor, International Conference on Pattern Recog-
nition, Atlantic City, 1990. IEEE.

[5] Y. LeCun. Learning processes in an asym-
metric threshold network. In E. Bienenstock,
F. Fogelman-Soulié, and G. Weisbuch, edi-
tors, Disordered Systems and Biological Organiza-
tion, pages 233-240. Springer-Verlag, Berlin, Les
Houches 1985, 1986.

[6] Y. LeCun, B. Boser, J.S. Denker, D. Henderson,
R.E. Howard, W. Hubbard, and L.D. Jackel. Back-
propagation applied to handwritten zip code recog-
nition. Neural Computation, 1:541-551, 1989.

[7] O. Matan, C.J.C. Burges, Y. LeCun, and J.S.
Denker. Multi-digit recognition using a space dis-
placement neural network. In J.E. Moody, S.J.
Hanson, and R.P. Lipmann, editors, Advances in
Neural Information Processing Systems 4, pages

488-495, San Mateo CA | 1992. Morgan Kaufmann.

[8] D.E. Rumelhart, J.L.. McClelland, and the PDP
Research Group. Parallel Distributed Processing:
Ezxplorations in the Microstructure of Cognition,
volume 1. MIT Press, Cambridge, 1986.

[9] C. Tappert, C. Suen, and T. Wakahara. The state
of the art in on-line handwriting recognition. /EEE
Transactions on Pattern Analysis and Machine In-

telligence, 8(12), 1990.

