An Analog Neural Network Processor and its
Application to High-Speed Character Recognition

Bernhard E. Boser, Eduard Sackinger, Jane Bromley,
Yann LeCun, Richard E. Howard, and Lawrence D. J ackel

AT&T Bell Laboratories
Crawford Corner Road, Holmdel, NJ 07733

Abstract—A high-speed programmable neural network chip and its appli-
cation to character recognition are described. A network with over 130,000
connections has been implemented on a single chip and operates at a rate of
over 1000 classifications per second. The chip performs up to 2000 multiplica-
tions and additions simultaneously. Its datapath is suitable particularly for the
convolutional architectures that are typical in pattern classification networks,
but can also be configured for fully connected or feedback topologies. Com-
putations are performed with 6 Bits accuracy for the weights and 3 Bits for
the states. The chip uses analog processing internally for higher density and
reduced power dissipation, but all input/output is digital to simplify system
integration.

Introduction

Learning from example and the ability to generalize are two features that make neural
networks attractive for pattern recognition applications. However, the computational re-
quirements, data rates, and size of neural network classifiers severely limit the throughput
that can be obtained with networks implemented on serial general purpose computers.
Better performance is achieved with special purpose VLSI processors that employ parallel
processing to increase the processing rate.

Speed and data rates are not the only challenges faced by specialized hardware designs
for neural networks. Because of the rapid progress of neural network algorithms, processors
must be flexible enough to accommodate a wide variety of neural network topologies.
Moreover, the size of neural networks is increasing steadily. Networks with several ten
or hundred thousand connections are typical for high-accuracy pattern classifiers [1, 2],
and this number is expected to grow further. To be economical, such networks must
be implemented on a small number of chips. Moreover, the high-performance parallel-
computing unit must be matched with an equally powerful interface to avoid bottlenecks.

In this paper, the architecture and implementation of a special purpose neural network
chip that addresses these issues are described. The circuit uses analog processing internally
to exploit the low resolution requirements typical of neural network, but employs an all
digital external interface to simplify system integration. The practicality of the design
is illustrated with results from an implementation of a neural network for handwritten
optical digit recognition with over 130,000 connections. The entire network fits on a single
chip and is evaluated at a rate in excess of 1000 characters per second.
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Figure 1. Block diagram of the neural network chip.

Hardware Description

Figure 1 shows the building blocks of the neural network chip. Its function is to eval-
uate concurrently several dot products of state and weight vectors and apply a nonlinear
squashing function to the results. Data enters the chip through a 64 state (3Bit word)
deep shift register, that reads up to four values at a time. A file with 16 vector registers
is used to extend the length of the input vector to more than 64 states, and as a buffer to
store intermediate results when multi-layer networks are evaluated.

The actual computation is performed by eight banks of vector multipliers. Each bank
consists of a latch to hold the state vector, and eight vector ALUs with 64 synapses each.
The outputs from the vector multipliers are routed to the neuron bodies by a multiplexer
that can be configured to combine the contributions from one to four vector multipliers.
This feature, along with appropriate programming of the shifter and register file, allows
the configuration of the chip to be set to extremes of 16 neurons with 256 inputs each, or
256 neurons with 16 inputs, as well as many intermediate arrangements [3]. The topology
can be rearranged on a per instruction basis to permit evaluation of several layers of a
network with different architectures on a single chip without performance penalty.

The neuron bodies first scale the output from the vector multipliers by a factor that
can be set in the range 1/8 to 1 in eight levels to optimize the useful dynamic range of
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Synapses 4096
Bias Units 256
Synapses per Neuron 16 to 256
Weight Accuracy 6 Bits
State Accuracy 3 Bits
Input Rate 120 MBits/sec
Output Rate 120 MBits/sec
On-chip Data Buffers 4.6 kBits
Computation Rate (sustained) 5GC/sec
Refresh (all weights) 110 ps
Clock Rate 20 MHz
Table 1

System features.

Figure 2. Die photograph. The synapse array can be seen in the center, the shifter and
register file on the left, the neuron bodies at the top, and the weight refresh
DACs on the right.

the circuit. Then the squashing function is evaluated and the result converted to the same
3 Bit signed magnitude representation as is used at the input of the chip.

The weights in the vector multipliers are stored as charge packets on capacitors and
must be refreshed periodically. Two on-chip DACs update the values of two different
synapses in each clock cycle for a refresh speed of 110 pus for the entire array.

The chip executes three instructions, CALC, SHIFT, and STORE, to perform compu-
tations, load data from an external data source, and to transfer data between the shifter,
register file, and vector multiplier banks. The CALC instruction takes four cycles of 50 ns,
the other two operations execute in a single clock cycle concurrent with an ongoing CALC
instruction. In 200 ns the chip can, for example, load eight states and store them in a reg-
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Network Topology Average Performance
Fully Connected (single layer)
64 inputs, 64 outputs 2.1GC/sec
128 inputs, 32 outputs 1.2GC/sec
32 inputs, 128 outputs 1.2GC/sec
Local Receptive Fields
64 x 1 receptive field, 64 features 2.3GC/sec
16 x 16 receptive field, 16 features 4.7GC/sec
16 x 8 receptive field, 32 features 3.6 GC/sec
Multi-Layer Network
64 inputs, 32 hidden, 32 hidden, 32 outputs 0.8 GC/sec
Hopfield Neural Network
64 neurons 2.1GC/sec
Table 2

Sample network architectures and performance.

ister and two latches, and evaluate the dot product and nonlinear function of eight vectors
with 256 components each. The weight refresh is performed in parallel and is transparent
to the user. Table 1 summarizes the features of the chip.

The chip contains 180,000 transistors and measures 4.5 x 7Tmm? (Figure 2). It was
fabricated in a single poly, double metal 0.9 pum CMOS technology with 5V power supply.
The current drawn by the chip reaches 250 mA when all weights are programmed to their
maximum value, but is less than 100 mA in typical operation.

Programmability is one of the key features of the neural network chip. Table 2 lists a
selection of network topologies that can be implemented and the achieved performance in
each case. The chip processes networks with full or sparse connection patterns of selectable
size, as well as networks with feedback at a sustained rate of over 10° connection updates
per second.

Of particular importance for neural network pattern classifiers are neurons with local
receptive fields and weight sharing, such as TDNNs [4]. In those architectures, several
neurons with identical weights process different parts of the network inputs or hidden
units. The neural network chip supports weight sharing in several ways: The shifter and
register file enable loading of data and the computation to go on in parallel. Also, data
that has been loaded on the chip once, can be buffered and reused in a later computation.
Finally, rather than requiring separate hardware for all weights, neurons with identical
parameters can be multiplexed.

High-Speed Character Recognition Application

An optical character recognition neural network has been selected to test and demon-
strate the flexibility and power of the neural network chip [1]. The OCR identifies hand-
written digits from a 20 by 20 pixel input image and employs neurons with local receptive
fields as well as a fully connected layer. Overall, the network contains more than 136,000
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Figure 3. Example chip output for optical character recognition. The gray levels encode
the neuron state.

connections organized in five layers.

Special steps are necessary to adapt the network to the low resolution of the chip. The
network is trained on a workstation with floating point arithmetic using the backpropa-
gation algorithm. Simple quantization of all weight values results in an unacceptable loss
of accuracy. However, experiments reveal that the computational accuracy provided by
the chip is adequate for all but the 3000 weights in the last layer of the network. Higher
accuracy is needed in that layer to permit selective rejection of ambiguous or otherwise
unclassifiable patterns.

The first four layers of the network with 97 % of the connections fit on a single neural
network chip. The remaining 3000 connections of the last layer are evaluated on a DSP32C
digital signal processor. The throughput of the chip is more than 1000 characters per
second or 130 MC/sec. This figure is considerably lower than the peak performance of the
chip (5GC/sec.), a consequence of the small number of synapses of most neurons in the
network for which the chip cannot fully exploit its parallelism. Nevertheless, the chip’s
performance compares favorably to the 20 characters per second that are achieved when
the entire network is evaluated on the DSP32C. The recognition rate of the chip is far
higher than the throughput of the preprocessor, which relies on conventional hardware.

The network was tested on 2000 handwritten digits provided by the U.S. postal service.
A sample input, and the states of the outputs and hidden layers are shown in Figure 3. The
classification error rate is 5.0 % errors when network weights and states are not quantized.
After quantization, the error rate increases to 5.8%. On the chip, a performance of 7.0 %
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has been measured.

These results can be improved in several ways. For example, the effects of quantization
can be reduced by retraining the last layer of the quantized network. However, the true
benefits of the parallel hardware will be realized only when the topology of the network
is adapted to explicitly take advantage of the chip’s throughput. While the size of the
current network has been constrained by the speed of conventional hardware, such issues
loose importance when powerful special purpose processors are used.

Conclusions

Neural networks are attractive for pattern classification applications but suffer in prac-
tice from the limited speed that can be achieved with implementations based on classical
processors. This problem can be overcome with highly parallel special purpose VLSI cir-
cuits. While a fully parallel implementation of sufficiently large networks is currently not
feasible, adequately high performance can be achieved with an architecture that exploits
the limited connectivity and weight sharing that are typical for pattern classifiers. This
has been demonstrated with a neural network classifier with over 130,000 connections that
has been implemented on a single neural network chip performing over 1000 classifications
per second. This result eliminates throughput from the constraints faced by network de-
signers. The availability of fast special purpose hardware for large applications sets the
conditions to explore new neural network algorithms, and problems of a scale that would
not be feasible with conventional processors.
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