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Abstract —The architecture, implementation, and applications
of a special-purpose neural network processor are described.
The chip performs over 2000 multiplications and additions
simultaneously. Its data path is particularly suitable for the
convolutional topologies that are typical in classification net-
works, but can also be configured for fully connected or feed-
back topologies. Resources can be muitiplexed to permit imple-
mentation of networks with several hundreds of thousands of
connections on a single chip. Computations are performed with
6-b accuracy for the weights and 3 b for the neuron states.
Analog processing is used internally for reduced power dissipa-
tion and higher density, but all input/output is digital to
simplify system integration. The practicality of the chip is
demonstrated with an implementation of a neural network for
optical character recognition. This network contains over 130000
connections and is evaluated in 1 ms.

I. InTRODUCTION

EURAL networks have demonstrated their capabili-
ties 1n numerous apphcations, including pattern clas-
sification, speech recogmtion, and control {1]-[8]. How-
ever, the computational requirements, data rates, and size
of neural network classifiers severely limit the throughput
that can be obtained with networks implemented on se-
quential general-purpose computers. Better performance
1s achieved with special-purpose VLSI processors that
employ parallel processing to increase the throughput.
Speed and data rates are not the only challenges faced
by specialized hardware designs for neural networks Be-
cause of the rapid progress of neural network aigorithms,
processors must be flexible enough to accommodate a
wide variety of neural network topologies. Moreover, the
size of networks under nvestigation 1s increasing as pro-
gressively more difficult tasks are solved with neural net-
works. Networks with several tens or hundreds of thou-
sands of connections are typical for high-accuracy pattern
classifiers, and this number 1s expected to grow further.
To be economical, such networks must be implemented
on a small number of chips. Moreover, the hgh-perfor-
mance paraliel-computing unit must be matched with an
equally powerful interface to avoid bottlenecks.
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Meeting all these requirements calls for a trade-off. On
one side, the hardware should be as general as possible to
support a wide range of applications. At the same time,
efficiency dictates a design that carefully matches neural
network characteristics. In Section 11, hardware require-
ments of neural networks are examined, with special
emphasis on classification applications. Issues considered
include the regulanty of neural network architectures, the
feasibility of sharing common hardware for multiple func-
tions, and the effect of limited accuracy computations.

The architecture of the neural network chip is de-
scribed 1n Section II1, and implementation aspects of the
functional blocks are presented. A mixed analog and
digital design has been chosen to exploit the low compu-
tational accuracy typically required by neural network
algorithms, and at the same time address system integra-
tion 1ssues, which call for a digital interface.

Experimental results and performance figures are sum-
marnized in Section IV. The flexibility and speed are
documented with a vanety of sample neural network
architectures and the corresponding update rate that 1s
achieved with the chip.

The practicality of the design is demonstrated in Sec-
tion V with results from an implementation of a neural
network for handwritten digit recognition with over
133000 connections. The network fits on a single chip and
1s evaluated at a rate n excess of 1000 characters per
second, which constitutes a speedup of two orders of
magnitude over a DSP based implementation. Despite
the low resolution of the chip, the error rates of the
neural network processor and DSP implementation are
very similar at 5.3% and 4.9%, respectively. For compari-
son, the measured human performance on the same
database is 2.5% errors.

1. NEurAL NETwWorRK HARDWARE REQUIREMENTS

Artificial neural networks that solve difficult problems
1n areas such as speech recognition and synthesis, or
pattern classification, consist of thousands of neurons
with tens or hundreds of inputs each. Every neuron
computes a weighted sum of its inputs and applies a
nonlinear function to its result. Architectural parameters,
such as the number of inputs per neuron, and each
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neuron’s connectivity, vary considerably within a network,
and from application to application. A special-purpose
neural network processor must be flexible and powerful
enough to accommodate a wide range of applications. At
the same time, the requirements must be carefully bal-
anced and the special nature of the task exploited to
bring an efficient implementation within reach of today’s
technology. In this section, the characteristics and re-
quirements of neural networks are examined and possibie
VLSI implementations investigated.

Two phases of operation are distinguished 1n many
neural network applications. During the learning phase,
the topology and weights of the network are determined
from a labeled set of examples using a rule such as back
propagation {1}, or a network growing algorithm {9]. In
the subsequent retrieval or classification phase, the net-
work parameters are fixed. Patterns are now recognized
by the network based on information stored in the archi-
tecture and weights during traiming. Since the computa-
tional and infrastructure requirements (e.g., training
database) during the learning phase are considerably more
complex than those for classification, efficiency considera-
tions call for separate hardware for learning and retrieval.
Network parameters determined during learning are
downloaded into processors that are specialized for the
classification task. This paper focuses on the latter prob-
lems. This approach contrasts with implementations of
neural network processors with on-chip learning {10}, [11].
Those circuits are not suitable for the pattern recognition
problems investigated here, both because of limitations of
the training algorithms implemented on these chips and
because of the limited size of the network that can be
trained.

The basic operation performed by a neuron during
classification 1s a weighted sum, followed by a nonlinear
squashing function f, typically a hyperbolic tangent or
approximation thereof:

y=f(21‘,w,x,+b).

The mputs x, of the neuron are usually referred to as
connections, and the w, as weights. Each input 1s either
tied to the output y of another neuron or to an external
mnput. Optionally, a bias b is added to the weighted sum.

The total number of connections in neural networks for
applications such as handwritten character recognition 1s
several ten or hundred thousand {12]. Networks that solve
more general problems, for example recognition of entire
words instead of isolated characters, require even larger
numbers of connections. The speed requirements of typi-
cal applications call for a few tens to several thousands of
classifications per second. For each classification, one
multiplication and one addition must be evaluated for
every connection. This translates into up to a few billion
multiply—add operations per second. Such computational
power can be achieved only with a parallel implementa-
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tion, where several connections are evaluated concur-
rently.

The most general network topology permits connec-
tions between any two neurons. Such a hgh degree of
(possible) connectivity, combined with the need for paral-
lel processing, results in enormous hardware require-
ments, and therefore calls for a compromuse. Usually, the
neurons 1n a network are arranged in layers. Each layer
recewves inputs only from neurons in the previous layer.
Layers may be fully connected, that 1s, each neuron may
be connected to every neuron In the preceding layer.
Often, however, local connectivity 1s used 1 order to
express knowledge about the problem (e.g., geometric
relations, such as neighborhood of pixels 1n an 1mage) 1n
the network architecture and thus improve the recogni-
tion performance [6]. For example, the fact that some
pixels in an image are adjacent to each other can be built
mto the network architecture by constraining neurons to
recewve inputs only from neighboring pixels. In a fully
connected topology, such information must be derived
from the traiming set during the learming phase, usually
with only partial success.

A neural network processor could be designed to 1m-
plement only networks with fully connected topology.
Local connectvity would then be realized by simply set-
ting the weights of unused connections to zero. Since, 1n
typical neural networks, the ratio of such unused connec-
tions to actual connections 1s easily 100, such an imple-
mentation is unacceptably mnefficient. Support for local
connectivity adds circuit complexity, but overall a tremen-
dous saving in chip area is realized because of the re-
duced number of connections, more than compensating
for the added complexity.

Another challenge for a compact hardware implemen-
tation of a classifier 1s the amount of memory that 1s
needed for storing several tens or hundreds of thousands
of weights. Fortunately, the weights of many neurons 1n
important connection topologies, including time delay or
feature extraction neural networks [4], [6], [7], are 1denti-
cal. In those architectures, the connection topology cor-
responds to a one- or higher dimensional convolution,
followed by the nonlinear squashing function. Such a
structure can be realized with a single neuron that 1s time
multiplexed, with a corresponding saving of storage and
computing devices.

Further optimization of the hardware complexity 1s
possible by matching the computational accuracy of the
processor to the requirements of typical neural networks.
Both experience and theory [13] indicate that neural
network classifiers can be designed to be insensitive to
low-resolution arithmetic. Experiments with character
recognizers show that the recogmtion performance re-
mains virtually unchanged when the inputs and outputs of
the neurons are quantized to 3 b, and the weights to
approximately 5 b. Higher resolution is required in the
last layer for the rejection of ambiguous or unclassifiable
patterns. Since in typical neural networks the output layer
contains only a small fraction of the total number of
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Fig 1 Block diagram of the neural network processor

connections, system complexity can be reduced by evalu-
ating those connections on a different processor with
higher accuracy

I11. ARCHITECTURE AND IMPLEMENTATION
A. Overview

Fig 1 shows the block diagram of the neural network
processor. Data enter the chip through a shifter [14]. This
interface 1s well suited to the convolutional-type network
topologies discussed in the section above. The matrix
multiphier computes the dot products of input and weight
vectors. The weights are programmable and stored locally
1n the multipher. The nonlinear squashing function 1s
evaluated by the neuron bodies.

The chip uses analog computation internally to capital-
1ze on the low-accuracy requirements of typical neural
network algorithms. All inputs and outputs are digital,
however, to simplify system integration. The overhead for
D/A and A /D conversion 1s neghgible since both func-
tions are combined with the neural computation. The
D/A converters serve simuitaneously as multipliers, and
the A/D converters 1in the neuron bodies evaluate the
noniinear squashing function. Neuron nputs and outputs
are quantized to 3 b, and weights are represented as 6-b
quantities; both are represented in signed-magnitude for-
mat. All circuits are designed such that this accuracy is
maintamed across different chips and fabrication runs.
This is particularly important in this design since learning
is performed off-line and trimming individual chips 1s
therefore not practical.

The shifter is 64 words (3 b each) wide and reads up to
four inputs in each cycle. The use of a shifter limits the
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number of pins required, and provides direct support for
convolutional-type network topologies and muitiplexing of
neurons with 1dentical weights. This is achieved by scan-
ning the nput serially past the matrix multipher Data
loaded 1nto the chip can be buffered temporarily 1n a file
of 16 vector registers to reduce the required input band-
width, and to evaluate neurons with more than 64 1nputs.

The matrix multipher consists of 4096 cells that per-
form a four-quadrant multiphcation of a digital neuron
input and an analog weight that 1s stored locally using a
multiplying D /A converter. The contributions from ndi-
vidual multipliers are accumulated in a current-summing
wire. The aspect ratio of the matrix multiplier 1s pro-
grammable to support neurons with 16 to 256 inputs. This
configuration can be changed without overhead to permt
efficient evaluation of multiple network layers with differ-
ent topologies on a single chip.

The neuron bodies first scale the outputs from the
matrix multiplier by a factor that can be set in the range
of 1/16 to 1/2 mn eight levels to optimize the useful
dynamic range of the circuit. Then the nonlinear squash-
ing function 1s evaluated and the result converted to the
same 3-b signed-magnitude representation as 1s used in
the input of the chip.

The weights in the matrix muitipher are stored as
charge packets on capacitors and must be refreshed peri-
odically from an external RAM. Two on-chip D/A con-
verters update two values each clock cycle, concurrently
with matrix multiplications.

The neuron transfer function implemented on the chip
can be summarized by the following equations:

N
y=f(s- Zw,x,+b)

=1

where
-1, fx<-1
f(x)={ x, f-1<xgl.
1, ifx>1

The vanables and parameters 1n the above equations can
assume the following discrete values:

Neuron States: e{-1,-2/3,-1/3,0,1/3,2/3,1}

Weights: w,E{-—l,~",—1/31,0,1/31,-",1}
Buas: be{-12,---,-1/93,0,1/93,---,12}
Scale Factor: se{1/2,1/4,1/6,1/8,1/10,1/12,1/14,
1/16}
Connections
per Neuron: N < 256.

The implementations of the matrix multipher and neu-
ron bodies are discussed 1n more detail below.

B. Matrix Multipher

The matrix muitiplier consists of 4096 individual multi-
plier cells that are arranged in eight blocks of eight
vectors containing 64 multipliers and a variable bias (Fig
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Fig 3 Schematic of the muitiphier cell

2). The mput to each block 1s held 1n a latch that 1s
loaded from the shifter. The muitiplexer combines the
outputs of one to four vector multipliers and routes the
sums to the neuron bodies. This arrangement supports
neurons with 64, 128, or 256 inputs.

Fig. 3 shows the diagram of a multiplier cell with the
local weight storage. Transistors M1 to M3 and switches
S1to S4 constitute a multiplying D /A converter (MDAC)
that computes the product of the magnitude of the digital
mput (X0, X1) and the weight. The magnitude of the
weight 1s stored as a charge packet on capacitor C and
the gates of the MDAC current sources [15], [16]. Proper
operation requires that the gate capacitances of M1 to
M3 be constant. This is ensured by dumping the current
into Vg when it 1s not needed at the output. The sign of
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the product is computed digitally by an xor gate that
controls switches §5 and S6. These connect the MDAC
output either directly to the YSUM, or through the
mirror M4, M5. The summing wire Y SUM accumulates
the contributions from all neuron nputs. It must be held
at a constant potential of approximately 1 V by the
neuron bodies to ensure proper biasing of the MDAC
and current mirror outputs.

Despite increased area, a local current mirror in each
multiplier cell has been preferred over a solution where
positive and negative contributions from individual cells
are summed on separate wires and the difference taken in
the neuron body (cf. [17]). This latter solution 1s not viable
for neurons with a large number of inputs because 1t 1s
difficult to suppress quickly and accurately the large com-
mon-mode current in the two summing wires.

The capacitive storage of the magmtude of the weight
must be refreshed pernodically to compensate charge
leakage. This 1s accomplished by the programming circuit
shown in Fig. 4. The desired current is generated by a
D /A converter and forced into the load transistor M to
produce the correct programming voltage, which 1s then
copied onto the storage capacitor of the cell. This ar-
rangement ensures a wide programming range from 0.8 to
4 V and consequent good accuracy. Simulations and mea-
surements show that the error resulting from mismatch
between M, and the current sources in the MDAC 1s
neghgible compared to the quantization error of the neu-
ral network chip. Two refresh D/A cenverters are inte-
grated on the chip to achieve a 110-us update cycle for all
weights.

The refresh D/A converters and the A/D converters
in the neuron bodies share a common on-chip reference
current source. Since chip inputs and outputs are digital,
the anthmetic results are independent of the reference,
which is designed to maximize the dynamic range of
internal analog signals independent of process parameter
variations. In particular, the voltage range of the weight
storage capacitors 1S chosen to be as large as possible to
minimize errors due to charge leakage. The nominal
full-scale current per MDAC is approximately 50 p A.
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C Neuron Bodies

The neuron body circuit, illustrated in Fig 5, scales the
current output from the matrix multipher and converts 1t
to a 3-b digital representation. The nonlinear squashing
function 1s a side effect of the overload characteristics of
the converter.

A successive-approximation converter has been chosen
over a flash converter to avoid the need to create several
copies of the signed output current from the vector muiti-
plier. A programmable scaler in the reference current
generator permits the slope of the noniinear function to
be adjusted 1n eight steps from 1 /16 to 1/2 Depending
on the setting, the full-scale output of the neuron 1s
generated when at least two to 16 multipher cells produce
their maximum output current

The comparator at the input of the A/D converter
senses the sign of the sum of the current from the vector
multiplier, and the D /A reference current. The design of
the multiphier cells mandates that the output 1s termu-
nated into a low-impedance voltage source of about 1 V.
Conversely. a high-impedance load 1s preferred 1in order
to reduce the sensitivity requirements on the comparator.
These conflicting requirements are reconciled n the cir-
cuit shown 1n Fig 6, where the requirements are met
individually 1n two separate clock phases. The vector
muitipher 1s represented as a varniable current source with
a parasitic capacitance and resistance. Simulations indi-
cate that these parasitics vary between 3 and 40 pF, with a
resistive component that can be as low as 1.8 k), depend-
ing on the number of multipher cells connected to the
vector.

The current comparator operates as follows. During
clock phase 1, the vector multiplier output is connected to
a voltage source Vg, =1 V to minimize the load
impedance. It consists now only of the sum of the
impedance of the voltage source and the switch resis-
tance During phase 2, the comparison phase, a high load
1s desired This 1s achieved by disconnecting the compara-
tor 1nput from Vg, .. Now, the parasitic impedance acts as
a load. Since its time constant 1s usually larger than the
duration of the clock phase (25 ns), this impedance is
mostly capacitive. The current charges the parasitic ca-
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pacitance and causes a voltage difference to develop at
the input of the comparator circuit which is detected with
a high-gain amplifier followed by a latch.

The complete schematic of the comparator is shown in
Fig. 7. It consists of a differential amplifier with symmet-
ric load, followed by two inverters that amplify the signal
to logic levels. In the first clock phase, all switches are
closed and the input is connected to Vg,,.. In this phase,
the current flowing from the differentjal stage into in-
verter I'1 1s close to zero, since M1 and M2 have equal
gate voltages, and the drain-to-source voltages are forced
to be equal by the cascode transistors M3 and M4. These
transistors together with the cascode current mirror en-
sure a low comparator offset. In the second clock phase,
all switches are opened and the comparator detects the
sign of the voltage difference that builds up at its input.
The diode at the input clamps the voltage to a maximum
of about 1.7 V to speed up discharge during the first
phase.

IV. EXPERIMENTAL REsuLTs

The neural network chip has been fabricated in a
single-poly, double-metal 0.9-um CMOS technology with
5-V power supply. The die measures 4.5X 7 mm? (Fig. 8)
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Fig 8 Die photograph of the neural network chip

and 1s packaged n a 96-pin grid array. The matrix
multiplier (center) and the shifter and register file are
pitch-matched 1n order to avoid the need for extra
routing channels The typical operating current 1s less
than 100 mA, but reaches 250 mA when all weights are
programmed to their maximum value. The chip contains
over 180 000 transistors. Despite the lack of redundancy,
the yield 1s high since many devices are larger than
mimimal size, and since the circuits are insensitive to
parameter variations.

Testing 1s performed 1n several steps. The overflow of
the shifter 1s connected to pins and used to check the
shifter and vector register file for correct operation A
test pin provides access to the summng wire of one of the
vector multipliers. This feature has been used to function-
ally test the multiplier cells, neuron bodies, and refresh
D/ A converters. Finally, statistical techniques are used to
determine the overall computation error of the chip,
which 1s comprised of the nonidealities in the multiplier
cells, the neuron bodies, and the weight storage and
refresh circuits. This error cannot be measured by simply
comparing the chip output with a perfectly accurate simu-
lation, since the quantization errors from the ADC’s in
the actual and simulated neuron body are correlated.
Instead, the quantized output of the chip 1s compared to
the simulation result before quantization. Ideally, this
signal contains only the quantization error with approxi-
mately uniform distribution between plus and minus half
the quantizer step size, as 1s indicated by the simulation
result shown in Fig. 9. The measured distribution is wider
due to inaccuracies in the analog computation, with a
peak error of 0.7 LSB. The measured standard deviation
of the error 1s 0.30 and corresponds to an inaccuracy of
less than 0.5 dB (0.1 b) compared to an ideal chip. This
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Fig 9 Error statistics

result 1s obtained consistently across different dies where
fabrication tolerances have been simulated with inten-
tional exposure time variations in the manufacturing pro-
cess.

The chip executes three nstructions, CALC, SHIFT,
and STORE, to perform computations, load data from an
external data source, and transfer data between the
shifter, register file, and vector multiplier banks. The
CALC instruction takes four cycles of 50 ns; the other two
operations execute n a single clock cycle concurrent with
an ongoing CALC nstruction. In 200 ns the chip can, for
example, load eight states and store them in a register
and two latches, and evaluate the dot product and nonlin-
ear function of eight vectors with 256 components each.
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TABLE 1

SysTEM FEATURES
Weights (physical) 4096
Bias Units 256
lnputs per Neuron 16 to 256
Weight Accuracy 6b
State Accuracy 3b
Input Rate 120 Mb /s
Output Rate 120 Mb /s
On-chip Data Buffers 46Kkb
Computation Rate (sustained) 5GC/s
Refresh (all weights) 110 ps
Clock Rate 20 MHz

TABLE 11
SAMPLE NETWORK ARCHITECTURES AND PERFORMANCE

Network Topology Average Performance

Fully Connected (single layer)

64 inputs 64 outputs 21GC/s

128 inputs, 32 outputs 12GC/s

32 inputs, 128 outputs 12GC/s
Local Receptive Fields

64 x 1 receptive field, 64 features 23GC/s

16 x 16 receptive field, 16 features 47GC/s

16 x 8 receptive field, 32 features 36 GC/s
Multilayer Network

64 inputs, 32 hidden, 32 mdden, 32 outputs 08GC/s
Hopfield Neural Network

64 neurons 21GC/s

Programming 1s supported by an assembler and a code
generator Table 1 summarnizes the features of the chip.

Programmability 1s one of the key features of the neu-
ral network chip. Table II lists a selection of network
topologies that can be implemented and the achieved
performance 1n each case. The chip processes networks
with full or sparse connection patterns of selectable size,
as well as networks with feedback at a sustained rate of
over 10° connection updates per second. An external
feedback path must be provided for multilayer and
Hopfield neural networks.

V HicH-SPEED CHARACTER
RECOGNITION APPLICATION

Speed, capacity, and programmabiiity are 1mportant
aspects of neural network hardware. Their practical rele-
vance, however, must be proven on a real-world applica-
tion. In this section, the implementation of an optical
digit recognizer [6], {18] on the neural network chip 1s
described. This network has been trained with the back-
propagation algorithm [1] on a workstation with floating-
pont arithmetic to recognize handwntten digits from a
20 % 20-pixel image The classification error rate on a test
set consisting of 2000 handwritten digits 1s 4.9% mss
classifications, compared to a human performance of 2.5%
on the same data.

Fig. 10 illustrates the architecture of the network. The
more than 3500 neurons with a total of over 133 000
connections are arranged in five layers. The first four
layers employ a two-dimensional convolutional type topol-
ogy with various kernel sizes and subsampling factors.

10 Outputs Layer | Neurons Connections
eeee s . 3,000
4 300 1,200
3 1,200 50,000
2 784 3,136
1 3,136 78,400

20 x 20 (= 400) Inputs

e Neuron [l Receptlive Field of Neuron

Fig 10  Architecture of the character recogmtion network
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Fig 11 Example chip output for optical character recogmtion The
gray levels encode the neuron state

The last layer 1s fully connected. This topology has been
chosen to maximize recognition performance and classifi-
cation speed of an implementation on a floating-point
digital signal processor (DSP-32C [19D.

Special steps are necessary to adapt the network to the
low resolution of the chip. Simple quantization of all
weight values from floating-point accuracy to the 6-b
signed-magnitude representation of the chip results 1n an
unacceptable loss of accuracy. However, experiments re-
veal that the computational accuracy provided by the chip
1s adequate for all but the 3000 weights n the last layer of
the network. This last layer 1s retrained with quantized
data obtained from the chip to elimnate performance
degradation. After retraining, the classification error rate
on the test set is 5.3%, compared to the original 4.9%.
This result 1s obtained consistently with different chips for
which the last layer has not been retrained mdwidually.
Fig. 11 shows the input, output, and internal states of the
neural network for a sample mnput that has been pro-
cessed by the neural network chip.

The first four layers of the network with 97% of the
connections fit on a single neural network chip. The
remaining 3000 connections of the last layer are evaluated
on a DSP32C digital signal processor. The throughput of
the chip is more than 1000 characters per second or 130
MC/s. This figure 18 considerably lower than the peak
performance of the chip (5 GC/s), a consequence of the
small number of inputs of most neurons 1n the network
for which the chip cannot fully exploit its parallelism
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Nevertheless, the chip’s performance compares favorably
to the 20 characters per second that are achieved when
the entire network 1s evaluated on the DSP32C. The
recognition rate of the chip 1s far higher than the
throughput of the preprocessor, which relies on conven-
tional hardware. Improvements of both the recognition
rate and accuracy can be expected when the network
architecture is tuned to take full advantage of the power
of the neural network chip.

V1 ConcrLusions

Neural networks are attractive for pattern classification
applications but suffer in practice from the hmited speed
that can be achieved with implementations based on
classical sequential processors. This problem can be over-
come with highly parallel special-purpose VLSI circuits.
While a fully parallel implementation of sufficiently large
networks 1s currently not feasible, adequately high perfor-
mance can be achieved with an architecture that exploits
the limited connectivity and weight sharing that are typi-
cal for pattern classifiers. This has been demonstrated
with a neural network classifier with over 133 000 connec-
tions that has been implemented on a single neural net-
work chip performing more than 1000 classifications per
second The availability of fast special-purpose hardware
for large applications permits exploration of new neural
network algorithms and problems of a scale that would
not be feasible with conventional processors.
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