Hardware Requirements for

Neural Network Pattern Classifiers
A Case Study and Implementation

Bernhard E. Boser
Eduard Sackinger
Jane Bromley
Yann leCun
Lawrence D. Jackel

AT&T Bell Laboratories

32 IEEE Micro

A special-purpose chip, optimized for computational needs of neural networks, performs
over 2,000 multiplications and additions simultaneously. Its data path is suitable particularly
for the convolutional architectures typical in pattern classification networks but can also be
configured for fully connected or feedback topologies. A development system permits rapid
prototyping of new applications and analysis of the impact of the specialized hardware on
system performance. We demonstrate the power and flexibility of the processor with a neural
network for handwritten character recognition containing over 133,000 connections.

eural networks are rapidly gaining ac-

ceptance as powerful and versatile

tools for pattern classification.”? How-

ever, the widespread use of neural

network classifiers remains contingent on the
availability of powerful hardware to provide ad-
equate speed. Such hardware is particularly im-
portant as the computational requirements of
neural network algorithms are quite different from
the high-precision processing for which general-
purpose computers are optimized. Typical neu-
ral network problems involve huge amounts of
low-resolution and possibly redundant data and
require a correspondingly high number of low-
precision arithmetic operations to be performed.
Special-purpose VLSI (very large-scale integra-
tion) processors let us overcome neural network
implementation problems. With their regular struc-
ture and the small number of well-defined arith-
metic operations, these networks are well matched
to integrated circuit technology. The high den-
sity of modern technologies lets us implement a

large number of identical, concurrently operat-
ing processors on one chip, thus exploiting the
inherent parallelism of neural networks. The regu-
larity of neural networks and the small number
of well-defined arithmetic operations used by
neural algorithms greatly simplify the design and
layout of VLSI circuits.

But processing speed is not the only constraint
on neural network hardware design; neural net-
work classifiers benefit from a highly structured
topology with local receptive fields. Of particu-
lar importance are convolutional architectures in
which neurons with identical weights process
different parts of the input or internal state. This
topology builds into the network knowledge
about locality of data, improving recognition per-
formance. At the same time it lets us multiplex
neurons with identical sizes and realize the large
networks required for difficult classification tasks
within the density limitations of current VLSI tech-
nology. The high speed of VLSI technology—
five orders of magnitude greater than that of
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natural neurons—compensates for the loss of computing
speed resulting from partial serial processing in such an imple-
mentation.

Matching the arithmetic precision of the hardware to the
requirements of neural networks is crucial for an efficient
hardware implementation. Neural networks are often quoted
for their low-resolution requirement, which lends itself well
to analog implementation. Experiments, however, show that
the precision requirements of neurons within a single net-
work vary. Specifically, research indicates that higher accu-
racy is often needed in the output layer, for example, for
selective rejection of ambiguous or otherwise unclassifiable
patterns. This situation can be handled with a hybrid archi-
tecture, which evaluates the bulk of the network with low-
resolution analog hardware but implements selected
connections on a digital processor with higher accuracy.

Based on these considerations, we designed and fabricated
ANNA (Artificial Neural Network ALU), a special-purpose chip
for neural network pattern classification.? The chip features
4,096 individual synapses that can be multiplexed to imple-
ment networks with several hundred thousand connections.
We can program the number of synapses per neuron to val-
ues between 16 and 256; the number of neurons varies ac-
cordingly between 256 and 16. Implementable network
topologies include fully connected architectures with or with-
out feedback, local receptive fields, and TDNNs (time-delay
neural networks) or higher order convolutional connections.
Depending on the network topology, the chip can sustain a
performance of up to 5 x 10° connections per second (C/s).
Arithmetic operations take place with 6-bit resolution on the
weights and 3-bit resolution on the states.

Because of the high speed, parallelism, low resolution,
and other characteristics of ANNA, which differ considerably
from those of general-purpose computers, this hardware must
be readily accessible to the network designer, so new appli-
cations can be prototyped easily. A development system, con-
sisting of a PC or VME board containing an ANNA chip and a
digital signal processor (DSP), addresses these needs. We
download the topology and weights of a network into the
VME board, and the DSP issues control commands to ANNA.
The DSP also preprocesses and trains the networks and pro-
cesses operations that require higher precision than that of
ANNA.

We selected an optical character recognition neural net-
work to test and demonstrate the flexibility and power of the
neural network chip.' This network identifies handwritten
digits from a 20 x 20-pixel input image and employs neurons
with local receptive fields as well as a fully connected layer.
The network with over 133,000 connections fits on one ANNA
and is evaluated at a rate in excess of 1,000 characters per
second, which constitutes a speedup of two orders of magni-
tude over a DSP-based implementation. Despite the low reso-
lution of the chip, the error rates of the neural network

Our OCR neural network with

133,000 connections identifies

handwritten digits at 1,000 cps
and fits on one ANNA chip.

processor and DSP implementation are very similar at 5.3
percent and 4.9 percent. For comparison, the measured hu-
man performance on the same database is 2.5 percent errors.

Neural network hardware

Artificial neural networks that solve difficult problems in
areas such as speech recognition and synthesis, or pattern
classification, consist of thousands of neurons with tens or
hundreds of inputs each. Every neuron computes a weighted
sum of its inputs and applies a nonlinear function to its re-
sult. Architectural parameters, such as the number of inputs
per neuron, and each neuron’s connectivity vary consider-
ably within a network, and from application to application. A
special-purpose neural network processor must be flexible
and powerful enough to accommodate a wide range of ap-
plications. At the same time, the requirements must be care-
fully balanced and the special nature of the task exploited to
bring an efficient implementation within reach of today’s
technology.

We can distinguish two phases of operation in many neu-
ral network applications. During the learning phase, the to-
pology and weights of the network are determined from a
labeled set of examples using a rule such as backpropagation,*
or a network-growing algorithm.” In the subsequent retrieval
or classification phase, the network parameters are fixed.

The network recognizes patterns based on information
stored in the architecture and weights during training. Since
the computational and infrastructure requirements (training
database) during the learning phase are considerably more
complex than those for classification, efficiency considerations
call for separate hardware for learning and retrieval. Network
parameters determined during learning are downloaded into
processors specialized for the classification task. This approach,
which we focus on here, contrasts with implementations of
neural network processors with on-chip learning.®” Those
circuits are not suitable for the pattern recognition problems
we investigate here, because of limitations of the training
algorithms implemented on these chips or because of the
limited size of the network that can be trained.

The basic operation performed by a neuron during classi-
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fication is a weighted sum, followed by a nonlinear squash-
ing function f, typically a hyperbolic tangent or approxima-
tion thereof:

y=SExw + b).

We generally refer to the inputs x; of the neuron as con-
nections and the w, parameters as weights. Each input is
either tied to the output y of anothet neuron or to an external
input. Optionally, a bias b may be added to the weighted
sum.

The total number of connections in neural networks for
applications such as handwritten character recognition may
amount to 10,000 to several hundred thousands.® Networks
that solve more general problems, such as recognition of
entire words instead of isolated characters, require even larger
numbers of connections. The speed requirements of typical
applications call for a few tens to several thousands of classi-
fications per second. For each classification, the network must
evaluate one multiplication and one addition for every con-
nection, which translates to a few billion multiply-add opera-

ANNA evaluates dot products of
state and weight vectors and
applies a nonlinear squashing

function to results.

tions per second. Only parallel implementations, in which
several connections are evaluated concurrently, achieve such
computational power.

The most general network topology permits connections
between any two neurons. Such a high degree of (possible)
connectivity, combined with the need for parallel process-
ing, results in enormous hardware requirements, and there-
fore calls for a compromise. Usually, the neurons in a network
are arranged in layers, each of which receives inputs only
from neurons in the previous layer. Layers may be fully con-
nected; that is, each neuron may be connected to every neu-
ron in the preceding layer. Often, however, we use local
connectivity to express knowledge about the problem (geo-
metric relations such as the neighborhood of pixels in an
image) in the network architecture and thus improve the rec-
ognition performance.

For example, the fact that some pixels in an image are
adjacent to each other can be built into the network architec-
ture by constraining neurons to receive inputs only from neigh-
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boring pixels. In a fully connected topology, such informa-
tion must be derived from the training set during the learning
phase, usually meeting with only partial success.

A neural network processor could be designed to imple-
ment only networks with fully connected topology. Local
connectivity would then be realized by simply setting the
weights of unused connections to zero. Since, in typical neu-
ral networks, the ratio of such unused connections to actual
connections is easily 100, such an implementation is unac-
ceptably inefficient. The added complexity of the hardware
required to support local connectivity is no match for the
millions of connections saved.

Another challenge for a compact hardware implementa-
tion of a classifier is the amount of memory needed for stor-
ing several tens or hundreds of thousands of weights.
Fortunately, the weights of many neurons in important con-
nection topologies, including time-delay or feature extrac-
tion neural networks,?? are identical. In these architectures
the connection topology corresponds to a one- or higher
dimensional convolution, followed by the nonlinear squash-
ing function, as is illustrated. We can realize such a structure
with a single, time-multiplexed neuron with a corresponding
saving of storage and computing devices.

We can further optimize the hardware complexity by match-
ing the computational accuracy of the processor to the re-
quirements of typical neural networks. Both experience and
theory" indicate that neural network classifiers can be de-
signed to be insensitive to low-resolution arithmetic. Experi-
ments with character recognizers show that the recognition
performance remains virtually unchanged when the inputs
and outputs of the neurons are quantized to 3 bits, and the
weights to approximately 5 bits. Higher resolution is required
in the last layer for the rejection of ambiguous or unclassifiable
patterns. Since in typical neural networks the output layer
contains only a small fraction of the total number of connec-
tions, we reduce system complexity by evaluating those con-
nections on a different processor with higher accuracy.

ANNA

Figure 1 shows the building blocks of ANNA, a neural net-
work chip that implements the concepts just outlined. It con-
currently evaluates several dot products of state and weight
vectors and applies a nonlinear squashing function to the re-
sults. Data enters the chip through a shift register, which reads
up to four values at a time. A file with 16 vector registers stores
intermediate results when multilayer networks are evaluated.

The 64-word-wide (3 bits per word) shifter reads up to four
inputs in each cycle. In this process, the current shifter con-
tents shift left one to four word positions. The use of a shifter
limits the number of pins required and supports convolutional
network topologies and multiplexing of neurons with identi-
cal weights. The shifter alone handles one-dimensional con-
volutions, while an external data formatter; for example, a line




delay register,'" is needed for two- or
higher dimensional computations. Data
loaded into the chip can be buffered tem-
porarily in a file of 16 vector registers to
reduce the required input bandwidth, to
evaluate neurons with more than 64 in-
puts, or to store intermediate results.

Eight banks of vector multipliers per-
form the actual computation. Each bank
consists of a latch to hold the state vector
plus eight vector ALUs with 64 synapses
each. A multiplexer that can be config-
ured to combine the contributions from
one to four vector multipliers connects the
outputs from the vector multipliers to the
neuron bodies. When the latches of sev-
eral vector multiplier banks hold different
data, the network evaluates neurons with
up to 256 inputs. The number of neurons
depends on the number of inputs: Ex-
tremes of 16 neurons with 256 inputs
each, or 256 neurons with 16 inputs, as
well as many intermediate arrangements
are possible.'? The topology can be rear-
ranged on a per-instruction basis to per-
mit evaluation of several layers of a
network with different architectures on a
single chip without performance penalty.

The neuron bodies first scale the out-
put from the vector multipliers by a factor
that can be set in the range 1/16 to 1/2 in
eight levels to optimize the useful dy-
namic range of the circuit. Then the neu-
ron bodies evaluate the squashing
function and convert the result to the
same 3-bit, signed magnitude representa-
tion used at the input of the chip. The
weights in the vector multipliers are stored
as charge packets on capacitors and must
be refreshed periodically. Two on-chip
digital/analog converters (DACs) update
the values of two different synapses in
each clock cycle for a refresh speed of
110 ps for the entire array.

The chip is programmed with three in-
structions, CALC, SHIFT, and STORE, to
perform computations, load data from an
external data source, and transfer data
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Figure 1. Block diagram of the neural network chip, ANNA.

between the shifter, register file, and vector multiplier banks.
Parameters for each instruction determine shift count, source
of data, number of inputs per neuron, or neuron gain. The
CALC instruction executes in four 50-ns cycles, and the net-
work evaluates the other two operations in one clock cycle

concurrently with an ongoing CALC instruction. In 200 ns the
chip can, for example, load eight states and store them in a
register and two latches, and evaluate the dot product and
nonlinear function of eight vectors with 256 components each.
The weight refresh takes place simultaneously transparent to
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Table 1. System features.
Characteristic Value
Synapses 4,096
Bias units 256
Synapses per neuron 16 to 256
Weight accuracy 6 bits
State accuracy 3 bits
Input rate 120 Mbps
Output rate 120 Mbps
On-chip data buffers 4.6 Kbits
Computation rate (sustained) 5 Geps
Refresh (all weights) 110 ps
Clock rate 20 MHz

Figure 2. Die photograph. The synapse array can be seen
in the center, the shifter and register file on the left, the
neuron bodies at the top, and the weight refresh DACs on
the right.

the user. Table 1 summarizes the features of the chip.

The chip contains 180,000 transistors and measures 4.5 x 7
mm* (see Figure 2). It was fabricated in single-polysilicon,
double-metal, 0.9-um CMOS technology with a 5V power sup-
ply. The current drawn by the chip reaches 250 mA when ali
weights are programmed to their maximum value but is less
than 100 mA in typical operation.

Programmability is one of the key features of the neural
network chip. Table 2 lists a selection of network topologies
that can be implemented and the achieved performance in
each case. The chip processes networks with full or sparse
connection patterns of selectable size, as well as networks
with feedback at a sustained rate of over 10° connections per
second.
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Table 2. Sample network architectures
and performance.
Average performance
Network topology (GC/s)
Fully connected (one layer)
64 inputs, 64 outputs 2.1
128 inputs, 32 outputs 1.2
32 inputs, 128 outputs 1.2
Local receptive fields
64 x 1, 64 features 2.3
16 x16, 16 features 4.7
16 x 8, 32 features 3.6
Multilayer network
64 inputs, 32 hidden,
32 hidden, 32 outputs 0.8
Hopfield neural network
64 neurons 2.1

Of particular importance for neural network pattern classifi-
ers are neurons with local receptive fields and weight sharing,
such as TDNNs.” The neural network chip supports weight
sharing in several ways. The shifter and register file enable
loading of data and the computation to go on in parallel. Also,
data that has been loaded onto the chip once can be buffered
and reused in a later computation. Finally, rather than requir-
ing separate hardware for all weights, neurons with identical
parameters are stored only once.

Development system

As mentioned before, the characteristics of the ANNA chip—
high speed, parallel computation, limited instruction set, and
low resolution—differ considerably from those of general-pur-
pose computers. Efficient algorithms that derive optimal ben-
efit from the special processor can be designed only if the
processor is available in the early design stages. A develop-
ment system consisting of an ANNA, a workstation, and ap-
propriate software addresses this requirement. Figures 3 and 4
illustrate the hardware setup, which includes an ANNA and a
20-Mflops DSP32C with 1-Mbyte fast static RAM.

A DMA interface that directly maps the SRAM into the ad-
dress space of the PC bus or VMEbus exchanges data with the
host computer. The DSP, which is also used for pre- and
postprocessing and for computations that require higher pre-
cision than that of ANNA, generates instructions for ANNA.
The entire system is controlled by a program running on the
workstation that calls routines and exchanges data with the
DSP transparently to the user. The software for the system is
written in the high-level language C++, with the exception of
a few time-critical routines that are handcoded in DSP assem-
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Figure 3. Block diagram of the neural network accelerator
board.

bly language.

Networks are trained on the workstation or the DSP. The
neural network chip can also be included in the training pro-
cess, for example, to adjust the network to ANNA's low-reso-
lution processing. Training of individual chips is not necessary,
however, because of the good matching between individual
devices. Once trained, the network topology and weight val-
ues are downloaded into the DSP for execution on ANNA.

Character recognition

Speed, capacity, and programmability are important aspects
of neural network hardware. Their practical relevance, how-
ever, must be proven on a real-world application, such as the
implementation of an optical digit recognizer' on the neural
network chip we describe here. This network has been trained
with the backpropagation algorithm® to recognize handwritten
digits from a 20 x 20-pixel image. The classification error rate
on a test set consisting of 2,000 handwritten digits is 4.9 per-
cent miss classifications, compared to a human performance
of 2.5 percent on the same data.

Figure 5 illustrates the architecture of the network; Table 3
lists statistical information about each layer. The more than
3,500 neurons with a total of over 133,000 connections are
arranged in five layers. The first four layers employ a 2D con-
volutional topology with various kernel sizes and subsampling
factors. Because of weight sharing, the number of weights
(free parameters) in these layers is much smaller than the num-
ber of connections. The last layer is fully connected. We chose
this topology to maximize recognition performance and classi-
fication speed of an implementation on a floating-point
DSP32C digital signal processor.'

Special steps are necessary to adapt the network to the low
resolution of the chip. Simple quantization of all weight values

Figure 4. Neural network accelerator with ANNA and the
DSP32C.

10 outputs
0000

20x20 (=400) inputs

@ Neuron
Receptive field of neuron

Figure 5. Architecture of the character recognition
network.

Table 3. Connectivity of character
recognizer neural network.

Layer Neurons C/s Weights
5 10 3,000 3,000
4 300 1,200 12
3 1,200 50,000 500
2 784 3,136 4
1 3,136 78,400 100
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Figure 6. Sample chip output for optical character recognition. The gray levels encode the neuron state.

results in an unacceptable loss of accuracy. However, experi-
ments reveal that the computational accuracy provided by the
chip is adequate for all but the 3,000 weights in the last layer
of the network. This last layer is retrained with quantized data
obtained from the chip to eliminate performance degradation.
After retraining, the classification error rate on the test set is 5.3
percent, compared to the original 4.9 percent. This result is
obtained consistently with different chips for which the last
layer has not been retrained individually. Figure 6 shows the
input, output, and internal states of the neural network for a
sample input that has been processed by the neural network
chip.

The first four layers of the network with 97 percent of the
connections but only 616 weights fit on a single neural net-
work chip. The remaining 3,000 connections of the last layer
are evaluated on the DSP32C. The throughput of the chip is
more than 1,000 characters per second or 130,000 connections
per second. This figure is considerably lower than the peak
performance of the chip (5G connections per second), a con-
sequence of the small number of inputs of most neurons in
the network for which the chip cannot fully exploit its parallel-
ism. Nevertheless, the chip’s performance compares favorably
to the 20 characters per second that are achieved when the
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entire network is evaluated on the DSP32C. The recognition
rate of the chip is far higher than the throughput of the prepro-
cessor, which relies on conventional hardware. Improvements
of both the recognition rate and accuracy can be expected
when the network architecture is tuned to take full advantage
of the parallelism of the ANNA chip.

NEURAL NETWORKS ARE ATTRACTIVE FOR PATTERN classi-
fication applications but suffer in practice from the limited
speed that can be achieved with implementations based on
classical processors. This problem can be overcome with
highly parallel special-purpose VLSI circuits. While a fully par-
allel implementation of sufficienty large networks is currently
not feasible, we can achieve adequately high performance with
an architecture that exploits the limited connectivity and weight
sharing that are typical for pattern classifiers. We demonstrated
this performance with a neural network classifier with over
133,000 connections that has been implemented on a single




neural network chip performing over 1,000 classifications per
second. This result eliminates throughput from the constraints
faced by network designers. The availability of fast special-
purpose hardware for large applications sets the conditions to
explore new neural network algorithms and problems of a
scale that would not be feasible with conventional processors.
We expect further advances when the architecture of the
network is modified to fully take advantage of the chip’s par-
allelism. While the size of the current network has been con-
strained by the speed of conventional hardware, such issues
vanish because of the high speed of the chip. The price for
this throughput is the specialization of the circuit, specifically
its low resolution, and its focus on neural network algorithms.
Future research will benefit from the speed of the novel hard-
ware but must also address questions regarding the limitations
of special-purpose hardware. Furthermore, it appears attrac-
tive to implement larger tasks (to include image location, seg-
mentation, and scaling into the recognition process) with
neural networks to benefit from the powerful hardware. B
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