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This contribution takes the example of a check reading system to discuss the modeling
and estimation issues associated with large scale pattern recognition systems.

1. Problem Decomposition and Model Composition

Consider a system that takes the image of a check and returns the check amount. This
system locates the numerical amount, recognizes digits or other symbols, and parses the check
amount. Accuracy should remain high despite countless variations in check layout, writing style
or amount grammar.

From an engineering perspective, one must design components for locating the amount,
segmenting characters, recognizing digits, and parsing the amount text. Yet it is very difficult
to locate the amount without identifying that it is composed of characters that mostly resemble
digits and form a meaningful check amount (not a date or a routing number). Purely sequential
approaches do not work. Components must interact, form hypotheses and backtrack erroneous
decisions. The orchestration is difficult to design and costly to maintain.

From a statistical perspective, one seeks to estimate and compare the posterior probabilities
P(Y|X) where variable X represents a check image and variable Y represents a check amount.
Let us define a suitable parametric model pg(y|x), gather data pairs (z;,y;), and maximize the
likelihood ), log pg(y;|z;). Such a direct approach leads to problems of unpractical sizes. It is
therefore common to manually annotate some pairs (z;,y;) with detailled information such as
isolated character images T, character codes C, or sequences S of character codes. One can
then model P(C|T) and P(Y|S) and obtain components such as a character recognizer or an
amount parser.

The statistical perspective suggests a principled way to orchestrate the interaction of
these components: let the global model py(y|x) be expressed as a composition of submodels
such as pg(c|t) and pg(y|s). The submodels are first fit using the detailled data. The resulting
parameters are used as a bias when fitting the global model py(y|x) using the initial data pairs
(y;]z;). This bias can be viewed as a capacity control tool for structural risk minimization
(Vapnik, 1982).

Model composition works nicely with generative models where one seeks to estimate the
conditional input density P(XY") instead of the posterior P(Y|X). For instance, Hidden
Markov Models (HMM) for speech recognition (Rabiner, 1989) use the decomposition

(1) po(z)...x@0|y) = Z po(s1)...s(0]y) H po(z®)|s®) po(sw®)|sw—1))
s(1)...s(¢) t=1...4

where (1) . .. z(¢) represents the sound signal, and where the sum is taken over all the sequences
5(1) ... s() of states (e.g. phonemes) that can represent the target word y. Such decompositions
are derived by applying the Bayes rule and making suitable conditional independence assump-
tions. This idea can be extended to write the much more complicated models that our check
reading example demands.

Both theoretical arguments (Vapnik, 1982) and empirical evidence (LeCun et al., 1998a;
Lafferty et al, 2001) indicate that higher performance can be achieved by discriminant models



that directly estimate the posterior probability P(Y|X). For instance, the parser of a dis-
criminant check reader can recognize that a character sequence resembles a date and therefore
cannot be the check amount. In contrast, generative models cannot use such negative reason-
ning: the parser can only describe the syntax of potential check amounts. This restriction must
be compensated by a much more detailled model. In fact, generative models waste computing
resources and data to indirectly estimate the prior input density P(X) which is not useful for
our recognition task.
Early discriminant Markov models were built by rewriting (1) as:

(2) po(y|lz)...x0) = Z pe(y|sq)...sw®) H po(s®)|z(), st-1))
5(1)...s(£) t=1...4

Unfortunately, such discriminant models have a severe flaw (Bottou, 1991) known as
the label-bias problem (Lafferty, 2001). Consider again the check reader example: because
posterior likelihoods are normalized, the submodel py(c|t) cannot express that subimage ¢ does
not represent any recognizable character c. Yet this negative information is very useful for
segmenting image fields into characters.

LeCun etal. (1998a) solves the label-bias problem by modeling measures p(-) instead of
probabilities p(-). Measures obey the same axioms as probabilities except for the normalization
condition. This change does not affect the estimation process because we still estimate the
parameters by maximizing likelihoods computed by normalizing the measures:

The change only affects how complex models are built by composing submodels. Although
we add or multiply submodel measures as we would add or multiply probabilities, we do not
enforce normalization constraints when composing models. Normalization only occurs at the
ultimate level when estimating parameters.

Lafferty etal. (2001) elegantly reach the same solution by casting discriminant Markov
models as Markov Random Fields: the Hammersley-Clifford theorem relates their joint prob-
ability with Gibbs distributions; each submodel score corresponds to a term of the potential
function; the final normalization factor is the partition function. This interpretation provides
an additional justification for our framework.

2. Graph transformers networks

While Hidden Markov model deal with variable length sequences, our check reader must
deal with more complicated variabilities (check layout, character segmentation, fractions, etc.).
Writing the global discriminant model as a big formula like (2) is difficult and not very useful:
it does not suggest tractable algorithms for computing the quantities of interest.

Graph Transformer Networks (Bottou etal., 1997) provide a more convenient way to
express such models. Graph transformer networks use weighted acyclic directed graphs to
track multiple hypothesis. Figure 1 shows how a graph can be used to represent segmentation
hypotheses for an image representing a sequence of digits. Each hypotesis is represented by a
path linking the start node to the end node. The score p(-) of an hypothesis is the product of
the scores of each path component. The most likely hypothesis is easily found using the Viterbi
algorithm. The sum of all hypotheses scores is easily computed using similar factorization
techniques.

Figure 2 shows how a check reader model p(y|z) is expressed as a sequence of graph
transformations A first transformer produces a graph representing the various fields of the
check. A second transformer refines this graph by describing segmentation hypotheses for
each field. The next transformer emits character hypotheses C' for each segment 7. The next
transformer composes this graph with a grammar transducer. This composition produces a
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graph representing the amount hypotheses independently of the detailled syntax of the character
strings. The final step produces the most likely amount using a Viterbi algorithm.

This structure was suggested by Pereira etal. (1994) in the case of generative models.
Instead of storing graphs in memory, they advocate representing graphs procedurally by defining
accessor functions that can be called to navigate the graph structure. Furthermore, they show
how graph transformations can be expressed as the composition of the input graph with a
third graph named a transducer. The composition operation defines the accessor functions of
the output graph on the basis of the accessor functions of the input graph and the accessor
functions of the transducer graph. The composition function is generic. All the specifics of a
particular graph transformer are neatly encapsulated in the accessor functions of the transducer
graph.

The composition operation defines how output graph scores are computed by combining
input graph scores and transducer graph scores. The parameters of a particular graph trans-
former are expressed through the transducer graph scores. For instance, scores on the recog-
nition graph are computed by a convolutional neural network (figure 3) whose 60000 weights
represent the majority of the tunable parameters in the global model. This network is invoked
by the accessor functions of the transducer graph representing the recognition transformer.

All the critical graph transformer algorithms are implemented in terms of abstract graph
accessor functions. This level of abstraction provides a clear separation between the generic
model composition machinery, and the specific heuristics expressed through the transducer
accessor functions. For instance, the field location and segmentation stages of the check reader
(figure 2) were simply lifted from a previous system. Time-proven heuristic algorithms were
seamlessly integrated into the global statistical framework.

3. Fitting the model

Model fitting starts with fitting each submodel with detailled data. For instance, the
character recognition network was initially trained using 500000 labeled character images, ran-
domly distorted using simple affine transformations. The network was then further trained
on character images produced by the segmentation transformer and manually labelled. It was
also trained to produces low scores on non-character images resulting from erroneous segmen-
tation hypotheses. In contrast, the field locator and the segmenter parameters were simply
copied from a previous hand-tuned check reader. The trained models were then inserted into
the check reading system. Because only a few thousand check images were available, only the



network last layer and the grammar score scaling factors were optimized by maximizing the
global model likelihood. This was just enough to make the various submodels work smoothly
together.

The numerical optimzation of such large scale systems requires specific techniques whose
full discussion exceeds the scope of this paper. Technical details can be found in (LeCun et al.,
1998b) and a posteriori justifications in (Bottou et al. 2005).

On 646 business checks that were automatically categorized as machine printed the per-
formance of this system was 82% correctly recognized checks, 1% errors, and 17% rejects. This
can be compared to the performance of the previous system on the same test data: 68% cor-
rect, 1% errors, and 31% rejects. An independent test performed by systems integrators showed
the superiority of this system over commercial check reading systems. This check reader was
integrated in NCR’s line of check reading systems. It has been fielded in several banks across
the US since June 1996. It has been reading millions of checks per month since then.

4. Conclusion

Graph Transformer Networks provide a very expressive language for discriminant statisti-
cal models with very high structural complexity. Our check reader experience shows how they
can harness time—proven heuristics into the single framework of a statistical model.
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RESUME

Les systemes réels de reconnaissance d’images sont composés de modules successifs: pré-
traitement, segmentation, classification, interpretation, etc. L’ensemble de ces modules peut
étre vu comme un modele statistique unique dont les parametres doivent minimiser une fonction
de cout unique. Cela pose en pratique des problemes considérables. Les variables d’entrée sont
trés simples (pizels), mais le modéle possede une structure tré riche. Le nombre de paramétres
peut étre tres élevé et la fonction de coit, non convexe. Cette contribution présente une’approche
générale, les “Graphs Transformer Networks” et les solutions pratiques que nous avons retenues.
Cette discussion est illustrée par une application significative de lecture de cheques.



