Comparison of Classifier Methods: A
Case Study in Handwritten Digit
Recognition

Léon Bottou*, Corinna Cortes, John S. Denker, Harris Drucker, Isabelle Guyon, L. D. Jackel,

Abstract

This paper compares the performance of several classifier algo-
rithms on a standard database of handwritten digits. We consider
not only raw accuracy, but also training time, recognition time, and
memory requirements. When available, we report measurements of
the fraction of patterns that must be rejected so that the remaining
patterns have misclassification rates less than a given threshold.

1 INTRODUCTION

Great strides have been achieved in pattern recognition in recent years. Particularly
striking results have been attained in the area of handwritten digit recognition.
This rapid progress has resulted from a combination of a number of developments
including the proliferation of powerful, inexpensive computers, the invention of new
algorithms that take advantage of these computers, and the availability of large
databases of characters that can be used for training and testing. At AT&T Bell
Laboratories we have developed a suite of classifier algorithms. In this paper we
contrast the relative merits of each of the algorithms. In addition to accuracy, we
look at measures that affect implementation, such as training time, run time, and
memory requirements.

2 DATABASES

We begin by describing the databases we have used as benchmarks in the past and
present. The "old AT&T” database When we first began our research in charac-

ter recognition we assembled our own database of 1200 digits, which is sometimes
known as the ” AT&T” database (). This database consisted of 10 examples of each
digit from 12 different writers. The writers, who were cooperative friends of the
researchers, were instructed to write each character in a box. This database was
made available to other researchers in different institutions in Europe and the US.
Usually, data from the first six writers comprised the training set, with the second
six writers used for testing. We quickly discovered that this data was "too easy,”
since our recognizers soon achieved better than 99% accuracy on the test set. We
therefore abandoned this database. Nevertheless, it is still occasionally used by
other groups.

2.1 A Zipcode database

In order to obtain a database more typical of real-world applications, we contacted
the US Postal Service and its consultants at Arthur D. Little, Inc. in Washington,
DC. Through them we acquired a database of 7064 training and 2007 test digits
that were clipped from images of handwritten Zipcodes. The digits were machine
segmented from the Zipcode string by an automatic algorithm. As always, the
segmented characters sometimes included extraneous ink and sometimes omitted
critical fragments. These segmentation errors often resulted in characters that were
unrecognizable or appeared mislabeled. (For example, a vertical fragment of a ”7”
would appear as a mislabeled ”17.) These butchered characters comprised about
2% of test set, and limited the attainable accuracy. We could improve the accuracy
of our recognizers by removing the worst offenders from the training set, but in
order to maintain objectivity, we kept the butchered characters in our test set.

This database of cleaned training data, and uncleaned test data served for a time as
a standard for our internal AT&T benchmarking. The US Postal Service requested
that we not distribute this database ourselves and instead, the USPS, through
Arthur D. Little, Inc., supplied other researchers with the unsegmented Zipcodes
from which our database was derived. Segmenting was done by the users, often by
hand. Thus no common database was available for meaningful comparisons.

Another shortcoming of this database was the relatively small size of the training
and test sets. As our recognizers improved, we soon realized that we were starved
for training data and that much better results could be had with a larger training
set size. The size of the test set was also a problem. As our test error rates moved
into the range of 3% (60 errors), we were uncomfortable with the large statistical
uncertainty caused by the small sample size.

2.2 The NIST test

Responding to the community’s need for better benchmarking, the US National
Institute of Standards and Technology (NIST) provided a database of handwritten
characters on 2 CD ROMs. NIST organized a competition based on this data in
which the training data was known as NIST Special Database 3, and the test data
was known as NIST Test Data 1.

After the competition was completed, many competitors were distressed to see that
although they achieved error rates of less than 1% on validation sets drawn from the

training data, their performance on the test data was much worse. NIST disclosed
that the training set and the test set were representative of different distributions:
the training set consisted of characters written by paid US census workers, while
the test set was collected from characters written by uncooperative high school
students. Examples from these training and test sets are shown in Figure 1. Notice
that the test images contain some very ambiguous patterns. Although this disparity
in distributions is certainly possible in a real world application, it is prudent (and
usually possible) to guard against it. In general we can expect best test results
when recognizers are tuned to the kind of data they are likely to encounter when
deployed.

A more subtle, but, for us, a more serious problem arises from having the training
and test data belonging to different distributions. Most of our machine learning
techniques now use the principles of Structural Risk Minimization (?) in which
the capacity (roughly speaking, the number of free parameters) of a classifier is
adjusted to match the quantity and the complexity of the training data. Because
of the difference in distributions, we cannot use our full machine learning tool set
on the NIST data when it is partitioned in this way.

2.3 Modified NIST (MNIST) training and test sets

For the reasons described above, we repartitioned the NIST data to provide large
training and test sets that share the same distribution. We now describe how our
new database was created. The original NIST test contains 58,527 digit images
written by 500 different writers. In contrast to the training set, where blocks of
data from each writer appeared in sequence, the data in the NIST test set is scram-
bled. Writer identities for the test set is available and we used this information to
unscramble the writers. We then split this NIST test set in two: characters written
by the first 250 writers went into our new training set. The remaining 250 writ-
ers were placed in our test set. Thus we had two sets with nearly 30,000 examples
each. The new training set was completed with enough examples from the old NIST
training set, starting at pattern # 0, to make a full set of 60,000 training patterns.
Similarly, the new test set was completed with old training examples starting at
pattern # 35,000 to make a full set with 60,000 test patterns.

All the images were size normalized to fit in a 20 x 20 pixel box, and were then
centered to fit in a 28 x 28 image using center of gravity. Grayscale pixel values
were used to reduce the effects of aliasing. These are the training and test sets used
in the benchmarks described in this paper. In this paper, we will call them the
MNIST data.

3 THE CLASSIFIERS

In this section we briefly describe the classifiers used in our study. For more complete
descriptions readers may consult the references.

3.1 Baseline Linear Classifier

Possibly the simplest classifier that one might consider is a linear4 classifier shown
in Figure 2. Each input pixel value contributes to a weighted sum for each output
unit. The output unit with the highest sum (including the contribution of a bias
constant) indicates the class of the input character. In this kind of classifier there
are 10 N weights + 10 biases, where N is the number of input pixels. For our
28 x 28 input units, we have 7850. Because this is a linear problem, the weight
values can be determined uniquely. The deficiencies of the linear classifier are well
documented (?) and it is included here simply to form a basis of comparison for
more sophisticated classifiers. On the MNIST data the linear classifier achieved
8.4% error on the test set.

3.2 Baseline Nearest Neighbor Classifier

Another simple classifier is a k-nearest neighbor classifier with a Euclidean distance
measure between input image pixel maps. This classifier has the advantage that no
training time is required. However, the memory r

3.3 LeNet 1

LeNet 1, which is shown in Figure 3, is a multilayer neural network that performs
successive non-linear convolutions and subsampling to automatically extract rel-
evant features (7). Although about 100,000 multiply/add steps are required to
evaluate LeNet, its convolutional nature keeps the number of free parameters to
only about 3000. The LeNet 1 architecture was developed using our own version
of the USPS database and its size was tuned to match the available data. On the
MNIST LeNet 1 achieved 1.7% error.

3.4 LeNet 4

LeNet 4, which was designed for the larger MNIST database, is an expanded version
of LeNet 1 that includes more feature maps and an additional layer of hidden units
that is fully connected to both the last layer of features maps and to the output
units. LeNet 4 requires about 260,000 multiply /add steps and has about 17,000
free parameters. LeNet 4 achieves 1.1% error on the MNIST test.

3.5 Large Fully Connected Multi-Layer Neural Network

Another classifier that we tested was a fully connected multi-layer neural network
with two layers of weights. Best results were obtained with 300 hidden units. For
this network, the search for the optimal number of hidden units was aided by use
of the MUSIC (?) supercomputer. (For purposes of comparison, numbers quoted
in Figures 8 and 9 are for equivalent times on a Sparc 10.) This classifier attains
1.6% error on the test set.

3.6 Boosted LeNet 4

Several years ago, Schapire (?7) proposed methods (called ”boosting”) for building
a committee of learning machines that could provide increased accuracy compared
to a single machine. Drucker et al. (?) expanded on this concept and developed
practical algorithms for increasing the performance of a committee of three learning
machines. The basic method works as follows: One machine is trained the usual
way. A second machine is trained on patterns that are filtered by the first machine
so that the second machine sees a mix of patterns, 50% of which the first machine
got

Notice that if the first machine is a version of LeNet 4, its 1% error rate means that
an enormous amount of data must filtered to glean enough mis-classified patterns to
train a second machine that is as complex as LeNet 4. Even more data is required
to train the third machine. For this MNIST database there was insufficient data to
train all three machines. In order to circumvent this problem, an unlimited number
of training patterns was generated by distorting the training data with a set of affine
transformations and line-thickness variations. This choice of distortions, in effect,
builds some of our knowledge about character recognition into the training process.
With this trick, a composite machine, consisting of three versions of LeNet 4, was
trained. It attained a test error rate of 0.7%), the best of any of our classifiers. At first
glance, boosting appears to require three times as much time to perform recognition
as a single machine. In fact, with a simple trick, the additional computation cost i

3.7 Tangent Distance Classifier (TDC)

The TDC is a memory-based, k-nearest-neighbor classifier in which test patterns
are compared to labeled, prototype patterns in the training set. The class of the
training pattern ”closest” to the test pattern indicates the class of the test pattern.
The key to performance is to determine what ”close” means for character images.
In simple nearest-neighbor classifiers, Euclidean distance is used: we simply take
the squares of the difference in the values of corresponding pixels between the test
image and the prototype pattern. The flaw in such an approach is apparent: a
misalignment between otherwise identical images can lead to a large distance.

Simard and his coworkers () realized that a better distance measure should be
invariant against small distortions, including line thickness variations, translations,
rotations, scale change, etc. If we consider an image as a point in a high dimensional
pixel space where the dimensionality equals the number of pixels, then an evolving
distortion of a character traces out a curve in pixel space. Taken together, all these
distortions define a low-dimensional manifold in pixel space. For small distortions,
in the vicinity of the original image, this manifold can be approximated by a plane,
known as the tangent plane. Simard et al. found that an excellent measure of
”closeness” for character images is the distance between their tangent planes. Using
this ”tangent distance”, a high accuracy classifier was crafted for use on the postal

data. On the MNIST data a TDC with k=3 achieved 1.1% error.

3.8 LeNet 4 with K-Nearest Neighbors

As an alternative to a smart distance measure like the one used in the TDC, one
can seek a change in representation so that Euclidean distance is a good measure
of pattern similarity. We realized that the penultimate layer of LeNet 4, which has
50 units, can be used to create a feature vector that is appropriate for a Euclidean
distance search. With these features, a 1.1% test error was attained, the same as
LeNet 4.

3.9 Local Learning with LeNet 4

Bottou and Vapnik () employed the concept of local learning in an attempt to get
higher classifier accuracy. They had observed that the LeNet family of classifiers
performs poorly on rare, atypical patterns, and interpreted this behavior as a ca-
pacity control problem. They surmised that the modeling capacity of the network
is too large in areas of the input space where the patterns are rare and too small in
areas where patterns are plentiful. To alleviate this problem they decided to train
simple linear classifiers which operate on feature vectors produced by the penul-
timate layer of LeNet 4. Local training uses only the k patterns in training set
that are closest to the test pattern. In order to control the capacity of these linear
classifiers, they imposed a weight decay parameter g. The parameters k and g are
determined by cross validation experiments. With this local learning approach, an
error rate of 1.1% was achieved on the MNIST test, essentially the same as LeNet
4.

3.10 Optimal Margin Classifier (OMC)

The Optimal Margin Classifier (OMC) is a method for constructing decision rules for
two-group pattern classification problems. (For digit recognition () such classifiers
are constructed, each one checking for the presence of a particular digit.) The
OMC can accommodate arbitrarily shaped decision surfaces. This is achieved by
automatically transforming the input patterns and constructing a linear decision
surface in the transformed space. A simple example of such a transformation is
shown in Figure 4.

In the transformed space, only some of the initial patterns are required to define
the decision boundaries. These are known as the support patterns. Only support
patterns need be stored, so the memory requirements of the OMC is less than a
memory-based classifier that stores all the training patterns. Support patterns in
the transformed space are illustrated in Figure 5

The original OMC algorithm, developed by Boser, Guyon, and Vapnik () , only
succeeds if the training set is linearly separable in the transformed space. The
technique was extended by Cortes and Vapnik to cover in-separability, and thus
allows for labeling errors in the training set (7). The test results reported here
make use of a 4th degree polynomial decision surface in the input space. A MNIST
test error of 1.1% was obtained.

4 DISCUSSION

A summary of the performance of our classifiers is shown in Figures 6 -10. Figure
6 shows the raw error rate of the classifiers on a 10,000 example test set. Although
all the classifiers, with the exception of the simple linear classifier, did well on the
test set, Boosted LeNet 4 is clearly the best, achieving a score of 0.7%. This can
be compared to our estimate of human performance, 0.2%.

Figure 7 illustrates another measure of accuracy, namely the number of patterns
in the test set that must be rejected to attain a 0.5% error on the remaining test
examples. In many applications, rejection performance is more significant than raw
error rate. Again, Boosted LeNet 4 has the best score.

Classification speed is also of prime importance. Figure 8 shows the time re-
quired on a Sparc 10 for each method to recognize a test pattern starting with
a size-normalized pixel map image. Here we see that there is an enormous vari-
ation in speed. The times shown in Figure 8 represent reasonably well-optimized
code running on general purpose hardware. Using special purpose hardware, much
higher speeds might be attained, provided that the hardware matches the algorithm.
Single-board hardware designed with LeNet 1 in mind performs recognition at 1000
characters/sec (7).

Another measure with practical significance is the time required to train the classi-
fiers. For the local learning, training time is dominated by the time required to train
a version of LeNet 4 which produces the feature vectors needed for this method.
For the other algorithms, again there is significant variation in the training time.
Figure 9 shows the required training on a Sparc 10 measured in days.

Figure 10 shows a further measure of performance: the memory requirements of
our various classifiers. Clever compression of the data or elimination of redundant
training examples might reduce the size requirements of the memory-based clas-
sifiers that we tested — at the cost of increased run time. Of the high-accuracy
classifiers, LeNet 4 requires the least memory.

Many real-world applications require a multi-character recognizer. This can be
implemented as a number of single-character recognizers in conjunction with an
alignment lattice. The recognizers must be designed and trained to find not only
the correct character (as discussed above), but also the correct segmentation (?) .
We find that neural networks have a big advantage over memory-based techniques,
because the latter cannot easily make use of information about counterexamples.

5 CONCLUSIONS

This paper is a snapshot of ongoing work. Although we expect continued changes
in all aspects of recognition technology, there are some conclusions that are likely
to remain valid for some time.

Performance depends on many factors including high accuracy, low run time, low
memory requirements, and reasonable training time. As computer technology im-
proves, larger-capacity recognizers become feasible. Larger recognizers in turn re-
quire larger training sets. LeNet was appropriate to the available technology five

- N0
~IQNQ
o O — U &
Qowth
N Q%
on o0 ~B «¢ ~f
Sy~
NN L s
VWL
~o) — £ oo

Figure 1: a) Typical images from the NIST training set, and b) Typical images
from the NIST test set.

years ago, just as LeNet 4 is appropriate now. Five years ago a recognizer as com-
plex as LeNet 4 would have required several months’ training, and was therefore
not even considered.

For quite a long time, LeNet 1 was considered the state of the art. The local learning
classifier, the optimal margin classifier, and the tangent distance classifier were
developed to improve upon LeNet 1 — and they succeeded at that. However, they in
turn motivated a search for improved neural network architectures. This search was
guided in part by estimates of the capacity of various learning machines, derived
from measurements of the training and test error (on the large MNIST database) as
a function of the number of training examples. We discovered that more capacity
was needed. Through a series of experiments in architecture, combined with an
analysis of the characteristics of recognition errors, LeNet 4 was crafted.

We find that boosting gives a substantial improvement in accuracy, with a relatively
modest penalty in memory and computing expense. Also, distortion models can be
used to increase the effective size of a data set without actually taking more data.

The optimal margin classifier has excellent accuracy, which is most remarkable,
because unlike the other high performance classifiers, it does not include knowledge
about the geometry of the problem. In fact, this classifier would do just as well if
the image pixels were encrypted e.g. by a fixed, random permutation.

When plenty of data is available, many methods can attain respectable accuracy.
Although the neural-net methods require considerable training time, trained net-
works run much faster and require much less space than memory-based techniques.
The neural nets’ advantage will become more striking as training databases continue
to increase in size.

- N0
~I QNN
o O — U &
Qeowth
N Q%
on o0 ~B «¢ ~f
Sy~
NN s
VWL
~o) — £ oo

Figure 2: Linear Classifier. Each input unit pixel value contributes to a weighted
sum for each output unit. The output unit with the largest sum indicates the class
of the input digit.

- N0 a0
~I QNN
o O — U &
Qeowth
N QW%
on o0 ~B «¢ ~f
Sy~
NN L s
VWL
~o) — £ oo

Figure 3: Architecture of LeNet. Each small box represents a neural-net ”unit” or
“neuron”. The weighted connections between units (not shown in this figure) are
highly structured. The maps are generated by convolutions with feature extraction
kernels. Input images are sized to fit in a 20 x 20 pixel field, but enough blank pixels
are added around the border of this field to avoid edge effects in the convolution
calculations. In this figure, the activation of the input and the first two layers of
the network are indicated: darker shading indicates greater activity.

- NOoxW»n
~I QNN
o O — U &
Qeowth
N Q%
on o0 ~B «¢ ~f
Sy~
NN s
VWL
~o) — £ oo

Figure 4: The Optimal Margin Classifier can transform patterns from an input
space in which they are not linearly separable to a new space in which they are
linearly separable. a) shows the input space in which class 1 and class 2 are not
linearly separable. b) shows the transformed space in which separation is possible.

5062V 16663
£ 63 %5 ¥/ Sd4
Co\5 ¢ 73431
/H4 660 ¥9¢ 67
1 ¢80c2 EW7 21

Figure 5: The support patterns (filled squares and circles) defining the decision
boundary are a subset of the training patterns (all squares and circles).

50 b2 Y T66 068
63 %S Y1 SdY
o\ 5 ¢ 72393 |
/JHGQQ ¥aq9/ 6
11 802 sW7 2

Figure 6: Performance of classifiers on the MNIST test set. The uncertainty in the
quoted error rates is about 0.1%. The error rate for the simple linear classifier (not

shown) is 8.4%

5062 Y T66 068
63«85 Y/ SdY
o\ 5 ¢ 72393 |
H 660 a6
11 802 sW7 2

Figure 7: Percent of test patterns rejected to achieve 0.5% error on the remain-
ing test examples. Results are not available for the linear classifier and the fully
connected net.

5062V 16663
£ 6345 ¥/ Sd4
Co\5 ¢ 73431
/4660 ¥49¢ 67
1 ¢80c2 EW7 21

Figure 8: Time required on a Sparc 10 for recognition of a single character starting
with a size-normalized pixel map image.

5062y T6606%
£ 6345 ¥/ S3d4
Co\5 ¢ 73931
/4660 ¥49¢ 67
1802 sW7 21

Figure 9: Training time, in days, on a Sparc 10.

5062y T6606%
£ 6345 ¥/ Sd4
Co\5 ¢ 73931
/4660 ¥49¢ 67
1802 sW7 21

Figure 10: Memory requirements for classification of test patterns.

