On-line Learning for Very Large
Datasets

Apprentissage Stochastique pour Tres Grands
Echantillons

Léon Bottou & Yann Le Cun
NEC Research Institute,
4 Independence Way,
Princeton NJ 08540, USA
Email: {leonb,yann}@nec-labs.com

Abstract: La conception de trés grand systémes d’apprentissage pose un
grand nombre de problémes non résolus. Savons nous, par exemple, construire
un algorithme qui “regarde” la télévision pendant quelques semaines et apprend
a énumérer les objets présents dans ces images. Les lois d’échelles de nos algo-
rithmes ne nous permettent pas de traiter les quantités massives de données que
cela implique. L’expérience suggere que les algorithmes les mieux adaptés sont
les algorithmes stochastiques. Leur convergence est pourtant réputée beaucoup
plus lente que celle des meilleurs algorithmes d’optimisation. Mais il s’agit de
la convergence vers I’optimum empirique. Notre papier reformule la question
en termes de convergence vers le point de meilleure généralisation et montre la
superiorité d’un algorithme stochastique bien congu.

Keywords: Learning, Convergence speed, Online learning, Stochastic opti-
misation.

1 Introduction

During the last decade, we have seen a considerable improvement in our the-
oretical understanding of learning systems as statistical machines. The Vapnik
Chervonenkis theory (Vapnik, 1974) has spelled out the role of capacity and gen-
eralization in the design of learning algorithms. This understanding has influenced
several recent learning algorithms such as support vector machines (Boser, Guyon
and Vapnik, 1992) and boosting (Drucker, Schapire and Simard, 1993), (Freund
and Schapire, 1996). These algorithms challenge the popular curse of dimension-

ality which says that statistical systems with large number of parameters require
impracticably large data sets.

Bridges have been established between learning algorithms and both classical
and Bayesian statistics. We have seen learning algorithms applied to problems
usually associated with statistics. We also have seen a massive application of
statistics to solve learning problems or improve learning algorithms.

Despite these advances, we have yet to see a spectacular increase in the size of
both the data sets and the learning machines. The MNIST data set (Bottou et al.,
1994), for instance, is still described as a relevant benchmark for more recent
algorithms. Systems dealing with more than a few millions examples seldom
compute more than simple counts or histograms. Do we know how to build a
machine which can learn how to enumerate objects in arbitrary scenes using TV
broadcasts as a data source?

The MNIST experiments were carried out on workstations featuring a 40MHz
processor and 32MB of memory. The computer hardware was a clear bottleneck.
Personal computers now feature fifty times that speed and memory. Hard disk
technology has progressed even faster. Large data sources are now available, be-
cause audio and video capture hardware is now commonplace, and also because
the development of on-line technologies has provided abundant transaction logs.

This discrepancy indicates that we have reached another bottleneck. Our learn-
ing algorithms do not scale well enough to take advantage of such large datasets
and such large computing resources.

As datasets grow to practically infinite sizes, we argue that on-line algorithms
(Bottou and Murata, 2002) outperform traditional learning algorithms that oper-
ate by repetitively sweeping over the entire training set. This paper shows that
performing a single epoch of a suitable on-line algorithm converges to the “true”
solution of the learning problem asymptotically as fast as any other algorithm.

The first part of the paper presents the problem and discusses the main re-
sults and their consequences. The second part of the paper provides proofs and
mathematical details.

2 On-lineLearning and Batch Learning

Many learning algorithms optimize an empirical cost function C(#) that can be
expressed as a very large sum of terms L(z,6). Each term measures the cost
associated with running a model with parameter vector ¢ on independently drawn

examples?! z;.

=1
Two kinds of optimization procedures are often mentioned in connection with this
problem:

2

Cn(6)

SRS

e Batch gradient: Parameter updates are performed on the basis of the gradi-
ent and Hessian information accumulated over the entire training set:

ac,
Ok) = Ok —1) = & (0(k— 1))

= -1 - e Y k=) @

where &, is an appropriately chosen positive definite symmetric matrix.

e On-line or stochastic gradient: Parameter updates are performed on the ba-
sis of a single sample z; picked randomly at each iteration:

1) = 0 —1) 1 B9 (2,000 1) ®
where &, is again an appropriately chosen positive definite symmetric ma-
trix. \Very often the examples z; are chosen by cycling over a randomly
permuted training set. Each cycle is called an epoch. This paper how-
ever considers situations where the supply of training samples is practically
unlimited. Each iteration of the online algorithm utilizes a fresh sample,
unlikely to have been presented to the system before.

Simple batch algorithms converge linearly to the optimum 6 of the empirical
cost, that is to say (6(k)—6:)? converges like e~*). Careful choices of &, make the
convergence super-linear (e.g. like 1/eet in favorable cases (Dennis and Schnabel,
1983).

By comparison, on-line algorithms appear to converge very slowly. This con-
vergence has been studied extensively (Benveniste, Metivier and Priouret, 1990;
Bottou, 1998). Under mild assumptions, they are shown to converge almost surely
to a local minimum? of the cost. However, whereas on-line algorithms may con-
verge to the general area of the optimum at least as fast as batch algorithms (Le
Cun et al., 1998b), stochastic fluctuations due to the noisy gradient estimate make

1Each example z; typically is an input/output pair (z;, y;)-
2We assume in this paper that the parameters § are confi ned in the neighborhood of a single
minimum.

the parameter vector randomly wobble around the optimum in a region whose size
decreases slowly. The analysis shows that E(6(t) —67) converges like 1/t at best.

At first glance, on-line algorithms seem hopelessly slow. However, the above
discussion addresses the convergence toward the minimum of the empirical cost
C,,(6), whereas one should be much more interested in the convergence toward
the minimum of the expected cost:

Cno(0) = / L(z 0)p(z) dz @)

where p(z) is the unknown probability distribution from which the samples are
drawn (Vapnik, 1974).

The main point of this paper is to show that, in situations where the supply
of training samples is essentially unlimited, a well designed on-line algorithm
converges toward the minimum of the expected cost just as fast as any batch algo-
rithm. In those situations, the convergence speed is mainly limited by the fact that
some informative examples have not yet been seen rather than by the fact that the
examples already seen have not been fully exploited by the minimization process.

This point is very significant because on-line algorithms are considerably eas-
ier to implement. Each iteration of the batch algorithm (2) involves a large sum-
mation over all the available examples. Memory must be allocated to hold these
examples, and computations must be performed on each of them. On the other
hand, each iteration of the on-line algorithm (3) only involves one random exam-
ple which can be discarded afterward.

3 Learning Speed

Assume we have immediate access to an infinite number of examples (z; ... z; .. .)
independently drawn from p(z). We must decide how to use our computer cycles:

e We can run an on-line learning algorithm (3) and visit as many examples
as possible during the allowed computer time. This procedure produces a
sequence of parameter vectors 6(¢) with¢ = 1,..., T where T represent the
total number of iterations achieved within the imparted time.

e We can run a batch super-linear algorithm (2) on a subset of examples ex-
amples {z1, ..., zy} where NN is the size of the largest subset of examples
that can be processed within the imparted time. This procedure accurately
produces the parameter vector 8% that minimizes the empirical cost Cy (6).

The number of examples N processed by the batch algorithm cannot be as large
as the number of examples 7" processed by the on-line algorithm. Comparing the

complexity of equations (2) and (3) clearly shows that this would only allow for
a couple iterations of the batch algorithm. Even if we assume that N = T', we
show in this contribution that no batch algorithm can perform better than a well
designed on-line algorithm.

3.1 On-linealgorithm

The mathematics of on-line learning algorithm easily extend to the minimization
of the expected cost. Examples z; are drawn at each iteration of an on-line al-
gorithm. When these examples are drawn from a set of n examples, the on-line
algorithm minimizes the empirical error C,,. When these examples are drawn
from the asymptotic distribution p(z), it minimizes the expected cost C.

Because the supply of training samples is practically unlimited, each iteration
of the on-line update rule (3) utilizes a fresh example. These fresh examples then
follow the asymptotic distribution. The parameter vectors 6(¢) thus converge to
the optimum 6* of the expected cost C,. Furthermore, E(#(¢) — 6*)? converges
like 1/¢ at best.

3.2 Batch algorithm

How fast does 6% converge to the optimum 6* of the expected cost C,(6)?

A first hint is provided by the well known Cramer-Rao bound. In the Maxi-
mum Likelihood case®, the bound suggests that E(0;; — 6*)? converges no faster
than O (1/1).

We consider now the sequence of solutions #; computed by a batch learning
algorithm running on a set of n examples (z1, ..., 2,). Our first result (section
A.3) provides the following recursive relation between 6 and 67 _,.

. . 1_ 0L . 1
gn - 077,—1 - E\I!n%(%u gn—l) +0 (ﬁ) (5)
with

-1
A 1S &2 . RZ A\
v, = (ﬁ 2 8030L(2’i,9n1)) 7;)0 (mcoo(e)) (6)

This relation (5) describes the 67 sequence as a recursive stochastic process
that is essentially similar to the on-line learning algorithm (3). Each iteration
of this “algorithm” consists in picking a fresh example z,, and updating the pa-
rameters according to (5). This is not a practical algorithm because we have no

Si.e. L(z,0) = —log ¢(z,8) with both conditions [¢(z,6) dz = 1 and ¢(2,6*) = p(z).

analytical expression for the second order term. We can however apply the math-
ematics of on-line learning algorithms to this stochastic process. The similarity
between (5) and (3) can be enhanced by an appropriate choice of the positive
definite symmetric matrix @, in the on-line algorithm (3).

3.3 Convergence speed result

Therefore, the convergence of the following stochastic process describes both the
convergence of an online learning algorithm and the behavior of the solutions of
a batch learning algorithm.

0y = 0,1 — %@t?—g(%,@t—ﬂ +0 (%2) (7)
Because a same stochastic process describes both convergences, we can hope
that they occur at identical speeds. It is therefore important to determine how the
convergence speed of (7) depends on the unspecified second order terms and on
the choice of ®,.
Our main result (section A.4) characterizes the convergence speed of this
stochastic process under the following assumptions:

i) We only consider the final convergence phase (Bottou and Murata, 2002).
More precisely we consider that the 6, are confined in a bounded domain
where C(6) has a single minimum 6*.

i) We assume that &, converges to the inverse of the hessian 7 of the expected
risk at the optimum.

: 0?
-1 _ *
o, — H with ”H_—aeaa(?oo(e)

iif) We first assume that ®; only depends on zi,..., z;_;. The result however
still holds when @, depends mildly on z; as in equation (6).

This convergence speed neither depends on the second order terms in our
stochastic process nor depends on how fast ®, converges to ~. More precisely

we have: 1 Gyt .

where tr (-) represents the trace of a matrix, 7 is the hessian of the expected
risk in 6%, and G is a Gauss-Newton approximation of the hessian (Le Cun et al.,

1998b): /
oo (][]

In the Maximum Likelihood case, it is well known that both H and G are equal
to the Fisher information matrix on the optimum. Equation (8) then indicates that
the convergence speed reaches the Cramer-Rao bound. Such a result was already
reported in the case of the Natural Gradient algorithm (Murata and Amari, 1999).
Our result extends Murata’s result to vast classes of on-line learning algorithms
beyond Natural Gradient.

3.4 Discussion

This result has implications for our initial dilemma. Should we visit as many
examples as possible with a well designed on-line algorithm, or run a batch algo-
rithm on the largest subset of examples we can afford ?

The surprisingly simple answer is to use the algorithm that uses the most ex-
amples. Learning is mainly limited by the fact that some informative examples
have not yet been seen rather than by the fact that the examples already seen have
not been fully exploited by the minimization process.

As discussed above, the higher complexity of the batch algorithm update (2)
implies that the on-line algorithm can process more examples®.

This result holds for any on-line algorithm where ®, converges to the inverse
of the Hessian of the cost function. The speed of this convergence is not critical.
It is however essential that ®; be a full rank approximation of the inverse hes-
sian. Maintaining such a full rank approximation in a large system is very costly.
This is probably the main justification for avoiding the otherwise elegant Natural
Gradient algorithm.

It is therefore important to design new approximations of the inverse hessian
that simultaneously are cost effective and still deliver near Cramer-Rao efficiency.
We hope to achieve such a result using the new insights provided by the mathe-
matical tools underlying the results presented in this paper.

4 Conclusion

We have shown that learning very large data sets is best achieved using a well
designed on-line learning procedure. A well designed on-line learning algorithm
learns just as fast as any batch algorithm in terms of the number of examples.
Furthermore, on-line learning algorithms require less computing resources per
example, and therefore are able to process more examples for a given amount of
computing resources.

4Section A.5 showsthat T = O(N loglog N) where T is the number of examples visited by
the on-line algorithm and NV is the maximum set processed by a super-linear algorithm with the
same computing resources.

A Mathematical discussion

A.1 Ordersof magnitude

The main discussion uses the well known notations o (.) and O (.) without much
analysis. In the case of stochastic sequences, these notations can have several
distinct definitions. Let us first recall the definitions for non stochastic sequences
feand gy

ft = O(gt) = VC, Elt(), Vit > to, ‘ft‘ <c |gt‘
fi=0(9:) & 3Fe, 3o, Vt > 1o, [fi] < c g

Let F;(w) and G(w) be two stochastic sequences. The parameter represents
the elementary random variables. In the case of stochastic learning algorithms, for
instance, w represents the initial conditions and the sequence of observed exam-
ples z1, ..., z. Although it is customary to simply write F; or Gy, it is sometimes
useful to make the w parameter explicit.

We use the unmodified o (.) and O (.) notations to represent pointwise orders
of magnitude. It means that the above definitions apply for each particular w and
that ¢, depends on w.

Definition 1. Pointwise orders of magnitude.
F,=0(Gy) & VYw, Ve, 3tg, Yt > 1y, |Fi(w)] < ¢|G(w)|
F,=0(Gy) & VYw, 3e, Fto, Yt > ty, |[Fi(w)| < ¢|Gi(w)|

The above definitions is poorly adequate for deriving probabilistic results. We
do not need the inequality to be true for absolutely all w. Nothing bad happens
if the inequality is violated on a set with zero probability. On the other hand it
is often desirable to make ¢, independent from w. This motivates the following
definition.

Definition 2. Almost uniform order of magnitudes.

Fy=0,(Gy) & Ve, Ttg, Vi > to, P{|F(w)] < c|Gy(w)] } =1
E = Ou (Gt) = E|C, Elt(), Vvt > t(), P{ |Ft(w)| <c |Gt((U)‘ } =1

It is more practical however to make a slight modification of the above defini-
tion, in the spirit of the concept of convergence in probability.

Definition 3. Stochastic order of magnitudes (Mann and Wald, 1943).

F,=0,(G:) & Ve, Ve, 3y, V> to, P{|Fi(w)| < c|Gyw)| } >1—¢
F,=0,(Gy) & Ve, de, 3y, Vt > ty, P{ |Fi(w)| < c|Gi(w)| } >1—¢

Most of the properties of the usual orders of magnitude also apply to stochastic
orders of magnitude. In particular it is known that F;, = o (G,) implies F; =
0, (Gt). On the other hand the relation E (o, (g:)) = o (g:) is not true in general.
This is why we introduce yet another concept:

Definition 4. Almost uniformly bounded stochastic order of magnitude.
_F;g = Og (Gt) <~ _F;g = 0p (Gt) and Ft = Ou (Gt)
Theorem 1. With the above definitions

E (05 (9:)) = 0 (g1)

Proof. Let us write Fi(w) = o5 (g¢). Since Fy(w) = O, (g¢), there is a constant
M and a subscript ¢, such that

Vi >y, P{|F(w)| < Mlg|} =1

Let us choose an arbitrary positive number c. We define the event R, as follows:

2

C
R 2w IFw)l = 5 o}
Since Fi(w) = o, (g¢) there is a subscript ¢, such that

Vt > to, P(R,) < 2i

Therefore, for all ¢ > max(¢4, t5), we can write

E (Fw)) < (1 - P(R))elgl + P(ROM lgi| < (5 + 55:M) |l = clad

This proves the theorem. O

A.2 Problem setup

Let the loss function L(z,) measure how much a learning system with parameter
6 fails to handle example z. The unknown example distribution p(z) represents
the ground truth. Our goal is to minimize the expected risk Co(6).

E (L(z,0) 2 / L(z,0) dp(z)

To achieve this goal, it is common to collect a finite training set z4, . . ., z, and to
minimize the objective function C,,(9).

1>

Coo(0)

Cal®) & 37 L(e0)

Online learning algorithms provide another way to achieve this goal. Each iter-
ation of a typical online algorithm consists of drawing a random example z and
applying the following parameter update rule, where the &, are well chosen posi-
tive definite symmetric matrices.

0y = 01— %@tg—g(zt, 9t—1)

We assume that functions L(z,), C,(0), and C(6) are three times differ-
entiable with continuous derivatives. We also assume that both the examples z,
the parameters 6, and the matrices ®, are uniformly bounded. These assumptions
imply that many dependent variables are uniformly bounded because they are con-
tinuous functions of uniformly bounded variables. This rather strong assumption
is supported by experience. Unbounded online algorithms tend to diverge and be
useless.

Our discussion addresses the final convergence phase of online learning algo-
rithms. Therefore we further assume that the parameters 6 remain confined in a
bounded domain D where the cost function C'(¢) is convex and has a single non
degenerate minimum 6* € D.

Notation # denotes the definite positive hessian of the expected cost in 6*.

H=H(O) =E (agggL(z, 9*))

Notation G denotes the expectation of the squared Jacobian of the loss func-
tion at the optimum. This matrix measures the noise introduced by the stochastic
selection of the examples. It is also related to the Gauss-Newton approximation
(Le Cun et al., 1998b). In the Maximum Likelihood case, it is equal to the well
known Fisher Information matrix (see (Murata and Amari, 1999) for a definition).

o= [o]

A.3 Recursive formulation of the batch algoritms

The result discussed in section 3.2 addresses the minima 6 of the empirical objec-
tive functions C,,(#). We must assume that the empirical costs C,,(6) are convex
and have a minimum on domain D.

We define the empirical hessians

= =D 397 L (20 0n1) ©)

and further assume that the eigenvalues of the empirical hessians are bounded by
some constants Amax > Amin > 0 With probability one®. This implies that the
hessians and their inverses are all O, (1).

Theorem 2. With the above assumptions and notations,

. « 1 oL . 1
en = en 1 anlae(ﬂ79n—1) +OU (ﬁ)

Proof. Let us define

5.0 =23 %

Z_

and write a first order expansion in point &}, _,
Su(6) = Su(051) = Ha (0 — 05_1) + Ou ((6; — 6521)%) -

where we use a uniform order of magnitude because the boundedness assump-
tions described in section A.2 mean that the second derivative of S,, is uniformly
bounded. Since S,,(0;) = S,—1(6;;_,) = 0, we can then rewrite the left hand side
of this equality.

10L
" n b

We can then transform the right hand side as

(Zm 0*—1) = I:In (0;: - 9:—1) + Ou ((02 - 07*1—1)2) (10)

n 60 (Zn’ 071 1) (H + 0 (en - Gn—l)) (an - Hn—l)
and write
* * 1 Fr— * % aL %
0y =01 = — (H +0 (0, = 0,1)) 5 (20 03)

Thanks to our pervasive boundedness assumptions, the above equality implies that
0 —6:_, = O, (1/n). We can then rewrite equation (10) as

* & * * 1
nae(znae—l):Hn (gn_e)+0 <n2>

and derive the theorem. O

5This assumption is not very satisfying. We could consider that it is true only with some
probability 1 — n. The results would then hold with probability 1 — n aswell.

A.4 Convergence speed

Section 3 defines a stochastic process that simultaneously describes (a) the dy-
namics of an online learning algorithm, and (b) the convergence of the solutions
of a batch learning algorithm running on training sets of increasing sizes. The fol-
lowing theorem addresses the convergence speed of this stochastic process when
the scaling matrices ®; converge to H~! in probability.

Theorem 3. We consider the following stochastic process

1. 0L

1
0, = 0,1 — ?I)t%(zt, 0;—1) + O, (t_z) (11)

with the assumptions described in section A.2 and where
|) (I)t = %_1 + Op (1)
ii.) &, isafunction of (z,...,z;1) only.

We have then

B (- o) = TEIHD Lo ()

The proof relies on the following technical lemma.

Lemma 1. : Let the positive sequence u; verify

o (g mscdol

If « > 1and g > 0, then
g

tu, — ———
a—1

This result proves that u; is asymptotically equivalent to 1/¢ and also provides
the value of the constant factor. Amazingly enough, this constant does not depend
on the unspecified low order terms of the recurrence.

Proof. Let us define v, = tu; and observe that

(e () (1) (-2)

Multiplying the recurrence by t gives:

vtz(1—a;1+0<%)>vt_1+§+0<%> (12)

Let us define v* = a% and rewrite (12) as:

(0 —) = (1—0‘;1+o<%)) (vt_l—v*)-l—o(%)

a—1 A B
= (1_ f +Tt>(vt—1—v)+7t (13)
with A; — 0 and B, — 0.
By repeated substitutions of (13), we obtain
t
h: B;
(e —v") = hy(vo — ") + h—t - (14)

i=1

with
t

a—1+A;
= qT (1)
j=1 J
To prove the lemma, we must prove that (14) converges to zero. There is an integer
ip > 0 such that 1 — &= 1+A1 is positive for all 7 > ¢,. For all ¢ > iy we can then
write:

log h Z log (1 — LA) Z _M 5 —00

j=to+1 1=jo+1

Therefore h; — 0.

This result implies that the first term of (14) converges to zero. We now focus
on the second term. Since A; — 0, there isa 4; > 4o such that |4;| < “7*1 For all
7 > 14, We can also write:

t t

10g%=210g<1—a_1j+Aj> S_Za_1]-+A _Za—l

b =it j=i+1 j=i+1

It is well known that

t
/ifﬂ'*'l Z—</—dm

Jj=i+1
and that
| b1
Vi>1,/ d:v>/—dx—1
; T+1 i T
Therefore we can write
h] -1
log = < ——1 gE a

and

a—1

h/) T2 . a—1
Vi >i>i, ogh—t§K1<%> with K, = e°7

Furthermore, for all ¢ > 0 there is a i > 4; such that |B;| < ¢ for all i > i,.
We can now bound the second term of (14) as follows:

> - (1)‘ (15)

i=ip+1

t

h; B;
20T

i=1

2

B;
ht;m

e The first term of this sum converges to zero because h; — 0.

<

+€K1

e When ¢ is large enough, the second term is smaller than 2¢ K K5 because

L1 /iNT 1. T Lo
vl B < - - — z2 ldr=K
Y () =)~ :

i=12+1

We can now gather all the terms in (14) and (15). We can choose ¢ large enough
to ensure that the first term of (14) and the first term of (15) are each smaller than
. We can also choose ¢ large enough to ensure that the last term of (15) is smaller
than 2¢ K K,.

Therefore we have just proven that for all ¢ > 0, we can choose ¢ large enough
to ensure that |v; — v*| < ¢ (2 4+ 2K K5). Hence v, — v*. O

We can now proceed with the proof of theorem 3.

Proof. To simplify the notation in the following proof, we assume that the opti-
mum 6&* is located on the origin. This assumption entails no loss of generality
since it only involves a translation of the coordinate system. We also use notation
J(2,0) = %(z,0).

The assumptions described in section A.2 are sufficient conditions for the gen-
eral results discussed in section 4 of (Bottou, 1998). We know therefore that 6,
converges to #* = 0 almost surely. This almost sure convergence implies that
6; = o, (1). Since the 6, are uniformly bounded, we have 6, = o, (1).

We first derive an expression for 6,6, by squaring the recursive update formula.
This operation generates a number of high order terms that can be summarized as
0, (1/t%). In particular the term 6, ;O (1/t*) can be summarized as o, (1/t?)
because we have established that ; _; = o, (1).

et—lJ'(Zt, 0t—1)q) _ ‘DtJ(Zt, 9t—1)9,lg_1
t t

@tJ(Zt,Ht_l)JI(Zt,Ht_l)q)t 1
+ 12 + 0y t_2

0,592 = 9?5—101/5—1 -

We shall now take compute the conditional expectation E (6,6} | P;) where the
notation P; represents all variables known by time ¢, including the initial condi-
tions Ay and the selected examples z1, ..., z; ;.

When the past P; is known, variables &, and 6,_, are fixed and can be moved
outside the expectation operator.

E(q)tJ(Ztaet—l)Jl(Ztaet—l)q)t |P) = ®,E, (J(Zaet—l)J,(Zaet—l)) o, (16)

The following relation holds because 6, = o, (1) and because function J(z,) is
continuous and uniformly bounded.

E, (J(z,0,_1)J'(2,0,.1)) = G+ o0 (1)

We also remark that &, = H ! + o, (1) because ®; = H ' + o, (1) and because
both ®; and ! are uniformly bounded. Then

E (®;J(2s,0;-1)J" (24,0,_1)®: | Py) = H'GH ™ +0,(1) (17)

Using similar arguments we can also write the following equality.

ac
rY)

= (M 405 (1)) (HOi—1 + 05 (0-1)) 04— = 0,_10;_1 + 05 (|61—1]%)
We can now derive E (6,0} | P;).

2 01/ HLGH! 1
E (97507,5 | Pt) = 9t7191lt—1 - E Ht_10£_1 + Og (' ¢ 1|) + g + Og (—)

E (@tJ(Zt, 0t_1)0é_1 | Pt) - @t EZ(J(Z, 915_1)) 91,5_1 - @ (Ht_l) 0?,5_1

4 2 2

Applying the trace operator gives the following expression.

2 t -1 -1
E(|0t|2|Pt) _ (1_%) ‘975—1'2 +Os(|0t—1|) + I'(H gH) + Os(1>

t 12 2

We can then take the unconditional expectation, invoke theorem 1, and obtain

E (|6, = (1 2o (%)) B () + TOCIHD (;2)

Lemma 1 allows us to conclude.

B (o) = T

tr(H'GH™) o (1)

Theorem 3 makes the assumption that &, only depends on z4, ...,z and is
therefore independent from z;. This assumption is reasonable for online learning
algorithms. However it is not verified by the empirical hessian (9) introduced in
theorem 2. The following result relies on a weaker assumption which is verified
by the empirical hessian (9).

Theorem 4. The result from theorem 3 still holds when &, can be written as

. 1
ét =E ((I)t ‘ Pt) + ¢t(zt) with ¢t(zt) = O (¥>
The proof is essentially identical to the proof of theorem 3. The difference
shows in equation (16). The scaling matrix @, is no longer a constant when the
past P; is known. We cannot move &, outside the expectation operator. \We must
instead use the following derivation where X is a uniformly bounded random
variable.

E(@X |P) = EE(®:|P)X|P)+E(¢:X|P)
— @ |P)E(X|P)+o. (})

The last equality E (¢, X | P;) = o, (1/t) is a consequence of Schwartz’s inequal-
ity:

E (60X | P) | <E(16:/1X] | Ps) < VE (|02 | POVE (X2 [Py)
We can then invoke the following relation
E(@ |P)=E(H '"+o0s(1) |P)=EH ' |P) +os(1)=H ' +o04(1)
and obtain equation (17) without changes.
E, (J(2,0i_1)J" (z,6,_1)) = H 'GH ' +0,(1)

The same argument yields

1
E ((I)tJ(Zt, 07571)0;71 ‘ Pt) = 975,102,1 + ‘0t71‘205 (1) + o4 <;>

The proof then proceeds without changes.

A.5 Complexity of Batch vs. Online Learning

Each iteration of a batch learning algorithm running on N training examples re-
quires a time K; N + K,. Constants K; and K, respectively represent the time
to compute the gradient for each example, and the time to apply the update to the
parameters. Theorems 2 and 4 indicate that

_tr (H1GH™Y
N

We must perform enough iterations of the batch algorithm to approximate 6%
with at least the same accuracy O (1/N). A superlinear algorithm with quadratic
convergence will achieve this in O (loglog N) iterations.

Each iteration of an online learning algorithm requires a constant time. Pro-
cessing T examples therefore requires time K37'. The number of examples pro-
cessed by both algorithms with the same computing resources are therefore related
by the following relation.

Oy —0)°

T = 0O (N loglogN)

We assume now that the online learning algorithm fulfils the conditions of theorem
3. Comparing the acuracies of both algorithms shows that the online algorithm
asymptotically performs better.

tr(H1GH™ e tr (H1GH™
T N

The essential condition for such a fast online algorithm is the convergence
of the scaling matrices ®, to #~!. This is not very difficuly in theory. The
well known Natural Gradient algorithm, for instance, meets this condition and
is known to perform optimally (Murata and Amari, 1999).

This means however that a full rank scaling matrix must be maintained. This
is unfortunately not practical for large learning systems with many parameters. It
is therefore important to find out whether reduced rank scaling matrices offer the
same asymptotic properties.

(Or —07)" ~ ~ (0 —0)

References

Benveniste, A., Metivier, M., and Priouret, P. (1990). Adaptive Algorithms and Stochastic
Approximations. Springer Verlag, Berlin, New York.

Boser, B., Guyon, I., and Vapnik, V. (1992). A Training Algorithm for Optimal Margin
Classifiers. In Proceedings of the Fifth Annual Workshop on Computational Learn-
ing Theory, volume 5, pages 144-152.

Bottou, L. (1998). Online Algorithms and Stochastic Approximations. In Saad, D., editor,
Online Learning and Neural Networks. Cambridge University Press, Cambridge,
UK.

Bottou, L., Cortes, C., Denker, J. S., Drucker, H., Guyon, I., Jackel, L. D., Le Cun, Y.,
Muller, U. A., Sackinger, E., Simard, P., and Vapnik, V. N. (1994). Comparison of
Classifier Methods: A Case Study in Handwritten Digit Recognition. In Proceed-
ings of the 13th International Conference on Pattern Recognition, Jerusalem.

Bottou, L. and Murata, N. (2002). Stochastic Approximations and Efficient Learning. In
Arbib, M. A., editor, The Handbook of Brain Theory and Neural Networks, Second
edition,. The MIT Press, Cambridge, MA.

Dennis, J. and Schnabel, R. B. (1983). Numerical Methods For Unconstrained Optimiza-
tion and Nonlinear Equations. Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

Drucker, H., Schapire, R., and Simard, P. (1993). Improving performance in neural net-
works using a boosting algorithm. In Hanson, S. J., Cowan, J. D., and Giles, C. L.,
editors, Advances in Neural Information Processing Systems 5, pages 42-49, San
Mateo, CA. Morgan Kaufmann.

Freund, Y. and Schapire, R. E. (1996). Experiments with a new boosting algorithm. In
Machine Learning: Proceedings of the Thirteenth International Conference, pages
148-156.

Le Cun, Y., Bottou, L., Orr, G. B., and Miller, K.-R. (1998). Efficient Backprop. In
Neural Networks, Tricks of the Trade, Lecture Notes in Computer Science 1524.
Springer Verlag.

Mann, H. B. and Wald, A. (1943). On Stochastic Limit and Order Relationships. Annal
of mathematical Statistics, 14:217-226

Murata, N. and Amari, S. (1999). Statistical analysis of learning dynamics. Sgnal Pro-
cessing, 74(1):3-28.

Vapnik, V. N. and Chervonenkis, A. (1974). Theory of Pattern Recognition (in russian).
Nauka. German translation: Theorie der Zeichenerkennung, Akademie Verlag,
Berlin, 1979.

