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Abstract

Many successful models for scene or object recognition

transform low-level descriptors (such as Gabor filter re-

sponses, or SIFT descriptors) into richer representations

of intermediate complexity. This process can often be bro-

ken down into two steps: (1) a coding step, which per-

forms a pointwise transformation of the descriptors into a

representation better adapted to the task, and (2) a pool-

ing step, which summarizes the coded features over larger

neighborhoods. Several combinations of coding and pool-

ing schemes have been proposed in the literature. The goal

of this paper is threefold. We seek to establish the rela-

tive importance of each step of mid-level feature extrac-

tion through a comprehensive cross evaluation of several

types of coding modules (hard and soft vector quantization,

sparse coding) and pooling schemes (by taking the aver-

age, or the maximum), which obtains state-of-the-art per-

formance or better on several recognition benchmarks. We

show how to improve the best performing coding scheme by

learning a supervised discriminative dictionary for sparse

coding. We provide theoretical and empirical insight into

the remarkable performance of max pooling. By teasing

apart components shared by modern mid-level feature ex-

tractors, our approach aims to facilitate the design of better

recognition architectures.

1. Introduction

Finding good image features is critical in modern ap-

proaches to category-level image classification. Many

methods first extract low-level descriptors (e.g., SIFT [18]

or HOG descriptors [5]) at interest point locations, or nodes

in a dense grid. This paper considers the problem of com-

bining these local features into a global image representa-

tion suited to recognition using a common classifier such as

a support vector machine. Since global features built upon

low-level ones typically remain close to image-level infor-

mation without attempts at high-level, structured image de-

scription (in terms of parts for example), we will refer to
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them as mid-level features.

Popular examples of mid-level features include bags of

features [25], spatial pyramids [12], and the upper units of

convolutional networks [13] or deep belief networks [8, 23].

Extracting these mid-level features involves a sequence

of interchangeable modules similar to that identified by

Winder and Brown for local image descriptors [29]. In this

paper, we focus on two types of modules:

• Coding: Input features are locally transformed into

representations that have some desirable properties

such as compactness, sparseness (i.e., most compo-

nents are 0), or statistical independence. The code is

typically a vector with binary (vector quantization) or

continuous (HOG, sparse coding) entries, obtained by

decomposing the original feature on some codebook,

or dictionary.

• Spatial pooling: The codes associated with local im-

age features are pooled over some image neighborhood

(e.g., the whole image for bags of features, a coarse

grid of cells for the HOG approach to pedestrian de-

tection, or a coarse hierarchy of cells for spatial pyra-

mids). The codes within each cell are summarized by a

single “semi-local” feature vector, common examples

being the average of the codes (average pooling) or

their maximum (max pooling).

The same coding and pooling modules can be plugged

into various architectures. For example, average pooling

is found in convolutional nets [13], bag-of-features meth-

ods, and HOG descriptors; max pooling is found in convo-

lutional nets [16, 23], HMAX nets [24], and state-of-the-art

variants of the spatial pyramid model [31]. The final global

vector is formed by concatenating with suitable weights the

semi-local vectors obtained for each pooling region.

High levels of performance have been reported for spe-

cific pairings of coding and pooling modules (e.g., sparse

coding and max pooling [31]), but it is not always clear

whether the improvement can be factored into independent

contributions of each module (e.g., whether the better per-

formance of max pooling would generalize to systems us-

ing vector quantization instead of sparse coding). In this
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work, we address this concern by presenting a comprehen-

sive set of product pairings across known coding (hard and

soft vector quantization, sparse coding) and pooling (aver-

age and max pooling) modules. We have chosen to restrict

ourselves to the spatial pyramid framework since it has al-

ready been used in several comparative studies [27, 31],

defining the state of the art on several benchmarks; but the

insights gained within that framework should easily gen-

eralize to other models (e.g., models using interest point

detectors, convolutional networks, deep belief networks).

Two striking results of our evaluation are that (1) sparse

coding systematically outperforms the other coding mod-

ules, irrespective of the pooling module, and (2) max pool-

ing dramatically improves linear classification performance

irrespective of the coding module, to the point that the

worst-performing coding module (hard vector quantization)

paired with max pooling outperforms the best coding mod-

ule (sparse coding) paired with average pooling. The rest of

our paper builds on these two findings. Noting that the dic-

tionary used to perform sparse coding is trained to minimize

reconstruction error, which might be suboptimal for classi-

fication, we propose a new supervised dictionary learning

algorithm. As for the superiority of max pooling in lin-

ear classification, we complement the empirical finding by

a theoretical analysis and new experiments. Our article thus

makes three contributions:

• We systematically explore combinations of known

modules appearing in the unified model presented in

this paper, obtaining state-of-the-art results on two

benchmarks (Sec. 3).

• We introduce a novel supervised sparse dictionary

learning algorithm (Sec. 4).

• We present theoretical and experimental insights into

the much better linear discrimination performance ob-

tained with max pooling compared to average pooling,

in a large variety of settings (Sec. 5).

2. Notation and Related Work

In this section, we introduce some notation used through-

out this paper, and present coding and pooling modules pre-

viously used by other authors. Let an image I be repre-

sented by a set of low-level descriptors (e.g., SIFT) xi at

N locations identified with their indices i = 1, · · · , N .

M regions of interests are defined on the image (e.g., the

21 = 16 + 4 + 1 cells of a three-level spatial pyramid),

with Nm denoting the set of locations/indices within region

m. Let f and g denote some coding and pooling operators,

respectively. The vector z representing the whole image is

obtained by sequentially coding, pooling over all regions,

and concatenating:

αi = f(xi), i = 1, · · · , N (1)

hm = g
(

{αi}i∈Nm

)

, m = 1, · · · , M (2)

z
T = [hT

1 · · ·hT
M ]. (3)

The goal is to determine which operators f and g provide

the best classification performance using z as input to either

a non-linear intersection kernel SVM [12], or a linear SVM.

In the usual bag-of-features framework [25], f mini-

mizes the distance to a codebook, usually learned by an un-

supervised algorithm (e.g., K-means), and g computes the

average over the pooling region:

αi ∈ {0, 1}K, αi,j = 1 iff j = argmin
k≤K

‖xi − dk‖2
2, (4)

hm =
1

|Nm|
∑

i∈Nm

αi, (5)

where dk denotes the k-th codeword. Note that averaging

and using uniform weighting is equivalent (up to a constant

multiplicator) to using histograms with weights inversely

proportional to the area of the pooling regions, as in [12].

Van Gemert et al. [27] have obtained improvements by

replacing hard quantization by soft quantization:

αi,j =
exp

(

−β‖xi − dj‖2
2

)

∑K

k=1 exp (−β‖xi − dk‖2
2)

, (6)

where β is a parameter that controls the softness of the soft

assignment (hard assignment is the limit when β → ∞).

This amounts to coding as in the E-step of the expectation-

maximization algorithm to learn a Gaussian mixture model,

using codewords of the dictionary as centers.

Sparse coding [22] uses a linear combination of a small

number of codewords to approximate the xi. Yang et

al. [31] have obtained state-of-the-art results by using sparse

coding and max pooling:

αi = argmin
α

L(α,D) , ‖xi − Dα‖2
2 + λ‖α‖1, (7)

hm,j = max
i∈Nm

αi,j , for j = 1, · · · , K, (8)

where ‖α‖1 denotes the ℓ1 norm of α, λ is a parameter

that controls the sparsity, and D is a dictionary trained by

minimizing the average of L(αi,D) over all samples, al-

ternatively over D and the αi. It is well known that the ℓ1

penalty induces sparsity and makes the problem tractable

(e.g., [15, 19]).

3. Systematic Evaluation of Unsupervised Mid-

Level Features

This section offers comprehensive comparisons of unsu-

pervised coding schemes. In all experiments, we use the



Method Caltech-101, 30 training examples 15 Scenes, 100 training examples

Average Pool Max Pool Average Pool Max Pool

Results with basic features, SIFT extracted each 8 pixels

Hard quantization, linear kernel 51.4 ± 0.9 [256] 64.3 ± 0.9 [256] 73.9 ± 0.9 [1024] 80.1 ± 0.6 [1024]

Hard quantization, intersection kernel 64.2 ± 1.0 [256] (1) 64.3 ± 0.9 [256] 80.8 ± 0.4 [256] (1) 80.1 ± 0.6 [1024]

Soft quantization, linear kernel 57.9 ± 1.5 [1024] 69.0 ± 0.8 [256] 75.6 ± 0.5 [1024] 81.4 ± 0.6 [1024]

Soft quantization, intersection kernel 66.1 ± 1.2 [512] (2) 70.6 ± 1.0 [1024] 81.2 ± 0.4 [1024] (2) 83.0 ± 0.7 [1024]

Sparse codes, linear kernel 61.3 ± 1.3 [1024] 71.5 ± 1.1 [1024] (3) 76.9 ± 0.6 [1024] 83.1 ± 0.6 [1024] (3)

Sparse codes, intersection kernel 70.3 ± 1.3 [1024] 71.8 ± 1.0 [1024] (4) 83.2 ± 0.4 [1024] 84.1 ± 0.5 [1024] (4)

Results with macrofeatures and denser SIFT sampling

Hard quantization, linear kernel 55.6 ± 1.6 [256] 70.9 ± 1.0 [1024] 74.0 ± 0.5 [1024] 80.1 ± 0.5 [1024]

Hard quantization, intersection kernel 68.8 ± 1.4 [512] 70.9 ± 1.0 [1024] 81.0 ± 0.5 [1024] 80.1 ± 0.5 [1024]

Soft quantization, linear kernel 61.6 ± 1.6 [1024] 71.5 ± 1.0 [1024] 76.4 ± 0.7 [1024] 81.5 ± 0.4 [1024]

Soft quantization, intersection kernel 70.1 ± 1.3 [1024] 73.2 ± 1.0 [1024] 81.8 ± 0.4 [1024] 83.0 ± 0.4 [1024]

Sparse codes, linear kernel 65.7 ± 1.4 [1024] 75.1 ± 0.9 [1024] 78.2 ± 0.7 [1024] 83.6 ± 0.4 [1024]

Sparse codes, intersection kernel 73.7 ± 1.3 [1024] 75.7 ± 1.1 [1024] 83.5 ± 0.4 [1024] 84.3 ± 0.5 [1024]

Table 1. Average recognition rate on Caltech-101 and 15-Scenes benchmarks, for various combinations of coding, pooling, and classifier

types. The codebook size shown inside brackets is the one that gives the best results among 256, 512 and 1024. Linear and histogram

intersection kernels are identical when using hard quantization with max pooling (since taking the minimum or the product is the same for

binary vectors), but results have been included for both to preserve the symmetry of the table. Top: Results with the baseline SIFT sampling

density of 8 pixels and standard features. Bottom: Results with the set of parameters for SIFT sampling density and macrofeatures giving

the best performance for sparse coding.

Method Caltech 15 tr. Caltech 30 tr. Scenes

Boiman et al. [3] Nearest neighbor + spatial correspondence 65.0 ± 1.1 70.4 -

Jain et al. [9] Fast image search for learned metrics 61.0 69.6 -

Lazebnik et al. [12] (1) SP + hard quantization + kernel SVM 56.4 64.4 ± 0.8 81.4 ± 0.5

van Gemert et al. [27] (2) SP + soft quantization + kernel SVM − 64.1 ± 1.2 76.7 ± 0.4

Yang et al. [31] (3) SP + sparse codes + max pooling + linear SVM 67.0 ± 0.5 73.2 ± 0.5 80.3 ± 0.9

Yang et al. [31] (4) SP + sparse codes + max pooling + kernel SVM 60.4±1.0 − 77.7±0.7

Zhang et al. [32] kNN-SVM 59.1 ± 0.6 66.2 ± 0.5 -

Zhou et al. [33] SP + Gaussian mixture − − 84.1 ± 0.5

Table 2. Results obtained by several recognition schemes using a single type of descriptors. Bold numbers in parentheses preceding the

method description indicate methods reimplemented in this paper. SP: spatial pyramid.

Caltech-101 [6] and Scenes datasets [12] as benchmarks.

These datasets respectively comprise 101 object categories

(plus a ”background” category) and fifteen scene categories.

Following the usual procedure [12, 31], we use 30 train-

ing images and the rest for testing (with a maximum of 50

test images) on the Caltech-101 dataset, and 100 training

images and the rest for testing on the Scenes dataset. Ex-

periments are conducted over 10 random splits of the data,

and we report the mean accuracy and its standard devia-

tion. Hyperparameters of the model are selected by cross-

validation within the training set. The general architecture

follows [12]. Low-level descriptors xi are 128-dimensional

SIFT descriptors [18] of 16 × 16 patches. The descriptors

are extracted on a dense grid rather than at interest points,

as this procedure has been shown to yield superior scene

classification [17]. Pooling regions m comprise the cells of

4×4, 2×2 and 1×1 grids (forming a three-level pyramid).

We use the SPAMS toolbox [1] to compute sparse codes.

3.1. Interaction Between Modules

Here, we perform a systematic cross evaluation of all the

coding, pooling and classifier types presented in Sec. 2, with

SIFT descriptors extracted densely every 8 pixels. Results

are presented on Table 1. The ranking of performance when

changing a particular module (e.g., coding) is quite consis-

tent:

• Sparse coding improves over soft quantization, which

improves over hard quantization;

• Max pooling almost always improves over average

pooling, dramatically so when using a linear SVM;

• The intersection kernel SVM performs similarly or

better than the linear SVM.

In particular, the global feature obtained when using hard

vector quantization with max pooling achieves high accu-



racy with a linear classifier, while being binary, and merely

recording the presence or absence of each codeword in the

pools. While much research has been devoted to devising

the best possible coding module, our results show that with

linear classification, switching from average to max pooling

increases accuracy more than switching from hard quanti-

zation to sparse coding. These results could serve as guide-

lines for the design of future architectures.

For comparison, previously published results obtained

using one type of descriptors on the same dataset are shown

on Table 2. Note that better performance has been re-

ported with multiple descriptor types (e.g., methods using

multiple kernel learning have achieved 77.7% ± 0.3 [7]

and 78.0% ± 0.3 [2, 28] on Caltech-101 with 30 train-

ing examples), or subcategory learning (83% on Caltech-

101 [26]). The coding and pooling module combinations

used in [27, 31] are included in our comparative evaluation

(bold numbers in parentheses on Tables 1 and 2). Over-

all, our results confirm the experimental findings in these

works, except that we do not find superior performance for

the linear SVM, compared to the intersection kernel SVM,

with sparse codes and max pooling, contrary to Yang et

al. [31]. Results of our reimplementation are similar to

those in [12]. The better performance than that reported by

Van Gemert et al. [27] or Yang et al. [31] on the Scenes is

not surprising since their baseline accuracy for the method

in [12] is also lower, which they attributed to implementa-

tion differences. Discrepancies with results from Yang et

al. [31] may arise from their using a differentiable quadratic

hinge loss instead of the standard hinge loss in the SVM,

and a different type of normalization for SIFT descriptors.

3.2. Macrofeatures and denser SIFT sampling

In convolutional neural networks (e.g., [16, 23]), spa-

tial neighborhoods of low-level features are encoded jointly.

On the other hand, codewords in bag-of-features methods

usually encode low-level features at a single location (see

Fig. 1). We propose to adapt the joint encoding scheme to

the spatial pyramid framework.

Jointly encoding L descriptors in a local spatial neigh-

borhood Li amounts to replacing Eq. (1) by:

αi = f([xT
i1
· · ·xT

iL
]T ), i1, · · · , iL ∈ Li. (9)

In the following, we call macrofeatures vectors that

jointly encode a small neighborhood of SIFT descriptors.

The encoded neighborhoods are squares determined by two

parameters: the side of the square (e.g., 2 × 2 square

on Fig. 1), and a subsampling parameter determining how

many SIFT descriptors to skip along each dimension when

selecting neighboring features. For example, a 3×3 macro-

feature with a subsampling parameter of 2 jointly encodes 9

descriptors out of a 6× 6 grid, skipping every other column

and row.

Figure 1. Standard features encode the SIFT features at a single

spatial point. Macrofeatures jointly encode small spatial neigh-

borhoods of SIFT features (i.e., the input of the coding module is

formed by concatenating nearby SIFT descriptors).

We have experimented with different macrofeature pa-

rameters, and denser sampling of the underlying SIFT de-

scriptor map (e.g., extracting SIFT every 4 pixels instead of

8 pixels as in the baseline of [12]). We have tested sampling

densities of 2 to 10, and macrofeatures of side length 2 to 4

and subsampling parameter 1 to 4. When using sparse cod-

ing and max pooling, the best parameters (selected by cross-

validation within the training set) for SIFT sampling den-

sity, macrofeature side length and subsampling parameter

are respectively of 4, 2, 4 for the Caltech-101 dataset, and

8, 2, 1 for the Scenes dataset. Our results (Table 1, bottom)

show that large improvements can be gained on the Caltech-

101 benchmark, by merely sampling SIFT descriptors more

finely, and jointly representing nearby descriptors, yielding

a classification accuracy of 75.7%, which to the best of our

knowledge is significantly better than all published classifi-

cation schemes using a single type of low-level descriptor.

However, we have not found finer sampling and joint encod-

ing to help recognition significantly on the Scenes dataset.

4. Discriminative dictionaries

The feature extraction schemes presented so far are all

unsupervised. When using sparse coding, an adaptive dic-

tionary is learned by minimizing a regularized reconstruc-

tion error. While this ensures that the parameters of the dic-

tionary are adapted to the statistics of the data, the dictio-

nary is not optimized for the classification task. In this sec-

tion, we introduce a novel supervised method to learn the

dictionary.

Several authors have proposed methods to obtain dis-

criminative codebooks. Lazebnik and Raginsky [11] incor-



porate discriminative information by minimizing the loss of

mutual information between features and labels during the

quantization step. Winn et al. [30] prune a large codebook

iteratively by fusing codewords that do not contribute to dis-

crimination. However these methods are optimized for vec-

tor quantization. Mairal et al. [20] have proposed an algo-

rithm to train discriminative dictionaries for sparse coding,

but it requires each encoded vector to be labelled. Instead,

the approach we propose is adapted to global image statis-

tics.

With the same notation as before, let us consider the ex-

traction of a global image representation by sparse coding

and average pooling over the whole image I:

x̂
T
i = [xT

i1
· · ·xT

iL
], i1, · · · , iL ∈ Li, (10)

αi = argmin
α

L(α,D) , ‖x̂i − Dα‖2
2 + λ‖α‖1, (11)

h =
1

|I|
∑

i∈I

αi, (12)

z = h. (13)

Consider a binary classification problem. Let z
(n) de-

note the global image representation for the n-th training

image, and yn ∈ {−1, 1} the image label. A linear classi-

fier is trained by minimizing with respect to parameter θ the

regularized logistic cost:

Cs =
1

N

N
∑

n=1

log
(

1 + e−ynθT
z
(n)
)

+ λr‖θ‖2
2, (14)

where λr denotes a regularization parameter. We use logis-

tic regression because its level of performance is typically

similar to that of linear SVMs but unlike SVMs, its loss

function is differentiable. We want to minimize the super-

vised cost Cs with respect to D to obtain a more discrimi-

native dictionary. Using the chain rule, we obtain:

∂Cs

∂Djk

= − 1

N

N
∑

n=1

yn

(

1 − σ(ynθ.z(n))
)

θT ∂z
(n)

∂Djk

(15)

∂z
(n)

∂Djk

=
1

|I(n)|
∑

i∈I(n)

∂α
(n)
i

∂Djk

, (16)

where σ denotes the sigmoid function

σ(x) = 1/(1 + exp(−x)). We need to compute the

gradient ∇D(αi). Since the αi minimize Eq. (11), they

verify:

α = (Dα
T
Dα)−1(Dα

T
x̂ − λsign(α)), (17)

where we have dropped subscript i to limit notation clutter,

and Dα denotes the columns corresponding to the active

set of α (i.e., the few columns of D used in the decomposi-

tion of the input). Note that this formula cannot be used to

compute α, as parts of the right-hand side of the equation

depend on α itself, but it can be used to compute a gradient

once α is known. When perturbations of the dictionary are

small, the active set of α often stays the same (since the cor-

relation between the atoms of the dictionary and the input

vector varies continuously with the dictionary). Assuming

that it is constant, we can compute the gradient of the active

coefficients with respect to the active columns of D (setting

it to 0 elsewhere):

∂α̃k

∂(Dα)ij

= biAkj − α̃jCki, (18)

A , (Dα
T
Dα)−1, (19)

b , x̂ − Dα, (20)

C , ADα
T , (21)

where α̃k denotes the k-th non-zero component of α.

We train the discriminative dictionary by stochastic gra-

dient descent [4, 14]. Recomputing the sparse decompo-

sitions αi at each location of a training image at each it-

eration is costly. To speed-up the computation while re-

maining closer to global image statistics than with individ-

ual patches, we approximate z
(n) by pooling over a random

sample of ten locations of the image. Furthermore, we up-

date only a random subset of coordinates at each iteration,

since computation of the gradient is costly. We then test the

dictionary with max pooling and a three-layer spatial pyra-

mid, using either a linear or intersection kernel SVM.

Unsup Discr Unsup Discr

Linear 83.6 ± 0.4 84.9 ± 0.3 84.2 ± 0.3 85.6 ± 0.2

Intersect 84.3 ± 0.5 84.7 ± 0.4 84.6 ± 0.4 85.1 ± 0.5

Table 3. Results of learning discriminative dictionaries on the

Scenes dataset, for dictionaries of size 1024 (left) and 2048 (right),

with 2×2 macrofeatures and grid resolution of 8 pixels,

We compare performance of dictionaries of sizes 1024

and 2048 on the Scenes dataset, encoding 2×2 neighbor-

hoods of SIFT. Results (Table 3) show that discriminative

dictionaries perform significantly better than unsupervised

dictionaries. A discriminative dictionary of 2048 code-

words achieves 85.6% correct recognition performance,

which to the best of our knowledge is the highest pub-

lished classification accuracy on that dataset for a single fea-

ture type. Discriminative training of dictionaries with our

method on the Caltech-101 dataset has yielded only very

little improvement, probably due to the scarcity of training

data.

5. Comparing Average and Max Pooling

One of the most striking results of our comparative

evaluation is that the superiority of max pooling over av-



erage pooling generalizes to many combinations of cod-

ing schemes and classifiers. Several authors have already

stressed the efficiency of max pooling [10, 31], but they

have not given theoretical explanations to their findings. In

this section, we study max pooling in more details theoreti-

cally and experimentally.

5.1. A Theoretical Comparison of Pooling Strategies

With the same notation as before, consider a binary lin-

ear classification task over cluttered images. Pooling is per-

formed over the whole image, so that the pooled feature

h is the global image representation. Linear classification

requires distributions of h over examples from positive and

negative classes (henceforth denoted by + and −) to be well

separated.

We model the distribution of image patches of a given

class as a mixture of two distributions [21]: patches are

taken from the actual class distribution (foreground) with

probability (1 − w), and from a clutter distribution (back-

ground) with probability w, with clutter patches being

present in both classes (+ or −). Crucially, we model the

amount of clutter w as varying between images (while being

fixed for a given image).

There are then two sources of variance for the distribu-

tion p(h): the intrinsic variance caused by sampling from a

finite pool for each image (which causes the actual value of

h over foreground patches to deviate from its expectation),

and the variance of w (which causes the expectation of h

itself to fluctuate from image to image depending on their

clutter level). If the pool cardinality N is large, average

pooling is robust to intrinsic foreground variability, since

the variance of the average decreases in 1
N

. This is usually

not the case with max pooling, where the variance can in-

crease with pool cardinality depending on the foreground

distribution.

However, if the amount of clutter w has a high variance,

it causes the distribution of the average over the image to

spread, as the expectation of h for each image depends on

w. Even if the foreground distributions are well separated,

variance in the amount of clutter creates overlap between

the mixture distributions if the mean of the background dis-

tribution is much lower than that of the foreground distri-

butions. Conversely, max pooling can be robust to clutter

if the mean of the background distribution is sufficiently

low. This is illustrated on Fig. 2, where we have plotted the

empirical distributions of the average of 10 pooled features

sharing the same parameters. Simulations are run using

1000 images of each class, composed of N = 500 patches.

For each image, the clutter level w is drawn from a truncated

normal distribution with either low (top) or high (bottom)

variance. Local feature values at each patch are drawn from

a mixture of exponential distributions, with a lower mean

for background patches than foreground patches of either
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Figure 2. Empirical probability densities of x =
1

K

PK

j=1
hj ,

simulated for two classes classes of images forming pools of car-

dinality N = 500. The local features are drawn from one of three

exponential distributions. When the clutter is homogeneous across

images (top), the distributions are well separated for average pool-

ing and max pooling. When the clutter level has higher variance

(bottom), the max pooling distributions (dashed lines) are still well

separated while the average pooling distributions (solid lines) start

overlapping.

class. When the clutter has high variance (Fig. 2, bottom),

distributions remain well separated with max pooling, but

have significant overlap with average pooling.

We now refine our analysis in two cases: sparse codes

and vector quantized codes.

5.1.1 Sparse Codes.

In the case of a positive decomposition over a dictionary,

we model the distribution of the value of feature j for each

patch by an exponential distribution with mean µj , variance

µ2
j , and density f(x) = 1

µ j
exp

− x
µj . The choice of an expo-

nential distribution (or a Laplace distribution when decom-

positions are not constrained to be positive) to model sparse

codes seems appropriate because it is highly kurtotic and

sparse codes have heavy tails.

The corresponding cumulative distribution function is

F (x) = 1 − e
− x

µj . The cumulative distribution function of

the max-pooled feature is FN(x) = (1−e
− x

µj )N for a pool

of size N . Clutter patches are sampled from a distribution

of mean µb. Let Nf and Nb denote respectively the num-

ber of foreground and background patches, N = Nf + Nb.

Assuming Nf and Nb are large, Taylor expansions of the

cumulative distribution functions of the maxima yield that

95% of the probability mass of the maximum over the back-

ground patches will be below 95% of the probability mass

of the maximum over the foreground patches provided that



Nb < | log(0.95)|
(

Nf

| log(0.05)|

)

µj
µb . In a binary discrimi-

nation task between two comparatively similar classes, if

an image is cluttered by many background patches, with

µb ≪ µ+
j and µb ≪ µ−

j , max-pooling can be relatively

immune to background patches, while average-pooling can

create overlap between the distributions (see Fig. 2). For

example, if µb < 2µj and Nf = 500, having fewer than

Nb < 1400 background patches virtually guarantees that

the clutter will have no influence on the value of the maxi-

mum. Conversely, if Nb <
Nf

59 ≤ | log(0.95)|
| log(0.05)|Nf , clutter will

have little influence for µb up to µj . Thus, max-pooling

creates immunity to two different types of clutter: ubiqui-

tous with low feature activation, and infrequent with higher

activation.

However, a downside is that the ratio of the mean to the

standard deviation of the maximum distribution does not

decrease as 1√
N

, as in the case of the distribution of the

average. In fact, the mean and variance of the maximum

distribution over N samples can be shown to be:

ν = (H(N)) .µj ,

σ2 =

(

N
∑

l=1

1

l
(2H(l) −H(N))

)

.µ2
j ,

where H(k) =
∑k

i=1
1
i

denotes the harmonic series, which

grows like log(k). It can be shown that:

N
∑

l=1

1

l
(2H(l) −H(N)) = log(N) + O(1),

so that the ratio ν
σ

decreases like 1√
log(N)

. Thus, if the

pool cardinality is too small, the distributions of foreground

patches from both classes will be better separated with av-

erage pooling than max pooling.

5.1.2 Vector Quantization.

We model binary patch codes for feature j by i.i.d.

Bernoulli random variables of mean µj . The distribu-

tion of the average-pooled feature also has mean µj ,

and its variance decreases like 1
N

. The maximum is a

Bernoulli variable of mean 1 − (1 − µj)
N and variance

(1 − (1 − µj)
N )(1 − µj)

N . Thus, it is 1 with probability

0.95 if N ≥ log(0.05)
log(1−µj)

≈ | log(0.05)|
µj

, and 0 with probability

0.95 if N ≤ log(0.95)
log(1−µj)

≈ | log(0.95)|
µj

, for µj ≪ 1. The sep-

arability of classes depends on sample cardinality N. There

exists a sample cardinality N for which the maximum over

class + is 0 with probability 0.95, while the maximum over

class − is 1 with probability 0.95, if:

µ−
j

µ+
j

>
log(0.05)

log(0.95)
, e.g. if

µ−
j

µ+
j

> 59.

As
∑

j µj = 1 in the context of vector quantization, µj be-

comes very small on average if the codebook is very large.

For µj ≪ 1, the characteristic scale of the transition from 0

to 1 is 1
µj

, hence the pooling cardinality range correspond-

ing to easily separable distributions can be quite large if

the mean over foreground patches from one class is much

higher than both the mean over foreground patches from

the other class and the mean over background patches.

5.2. Experimental Validation

Our analysis suggests that there may be a purely statis-

tical component to the improvement seen with max pool-

ing when using pyramids instead of plain bags of features.

Taking the maximum over several pools of smaller cardinal-

ity may lead to a richer estimate, since max pooling differs

from average pooling in two important ways:

• the maximum over a pool of smaller cardinality is not

merely an estimator of the maximum over a larger

pool;

• the variance of the maximum is not inversely propor-

tional to pool cardinality, so that summing over sev-

eral estimates (one for each smaller pool) can provide

a smoother output than if pooling had merely been per-

formed over the merged smaller pools.

We have tested this hypothesis by comparing three types of

pooling procedures: standard whole-image and two-level

pyramid pooling, and random two-level pyramid pooling,

where local features are randomly permuted before being

pooled, effectively removing all spatial information.

For this experiment, SIFT features are extracted densely

every 8 pixels, and encoded by hard quantization over a

codebook of size 256 for Caltech-101, 1024 for the Scenes.

The pooled features are concatenated and classified with a

linear SVM, trained on 30 and 100 examples for Caltech-

101 and the Scenes, respectively.

Caltech 101 15 Scenes

Pyramid 1 × 1 2 × 2 1 × 1 2 × 2

Avg, random 31.7 ± 1.0 29.5 ± 0.5 71.0 ± 0.8 69.4 ± 0.8

Avg, spatial 43.2 ± 1.4 73.2 ± 0.7

Max, random 26.2 ± 0.7 33.1 ± 0.9 69.5 ± 0.6 72.8 ± 0.3

Max, spatial 50.7 ± 0.8 77.2 ± 0.6

Table 4. Classification accuracy for different sets of pools and

pooling operators.

Results (Table 4) show that with max pooling, a substan-

tial part of the increase in accuracy seen when using a two-

level pyramid instead of a plain bag of features is indeed

still present when locations are randomly shuffled. On the

contrary, the performance of average pooling tends to dete-

riorate with the pyramid, since the added smaller, random

pools only contribute noisier, redundant information.



6. Discussion

By deconstructing the mid-level coding step of a well-

accepted recognition architecture, it appears that any pa-

rameter in the architecture can contribute to recognition per-

formance; in particular, surprisingly large performance in-

creases can be obtained by merely sampling the low-level

descriptor map more finely, and representing neighboring

descriptors jointly. We have presented a scheme to train su-

pervised discriminative dictionaries for sparse coding; our

ongoing research focuses on extending this framework to

the much harder PASCAL datasets, on which methods very

similar to the ones discussed in this paper [31] currently

define the state of the art. We plan to combine our discrimi-

native sparse training algorithm with the various techniques

(e.g., local coordinate coding) that have been successful on

PASCAL. Another research direction we are pursuing is the

analysis of pooling schemes. Understanding pooling opera-

tors is crucial to good model design, since common heuris-

tics suited to average pooling may be suboptimal in other

contexts. In this paper, we have only briefly touched upon

the statistical properties of max pooling. We are currently

investigating how to expand these theoretical insights, and

turn them into guidelines for better architecture design.
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