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Abstract 1.1. ¢, pooling

The purpose of the pooling layer in each module is to
give invariance to the system, perhaps at the expense of
resolution. This is done via a summary statistic over
the outputs of groups of nodes. In the trained system,

In this work we compute lower Lipschitz bounds
of ¢, pooling operators fop = 1,2,00 as
well as ¢, pooling operators preceded by half-

rectification layers. These give sufficient condi-
tions for the design of invertible neural network
layers. Numerical experiments on MNIST and
image patches confirm that pooling layers can be
inverted with phase recovery algorithms. More-
over, the regularity of the inverse pooling, con-

the columns of the weight matrix corresponding to nodes
grouped together often exhibit similar characteristics] a
code for perturbations of a templatiéagvukcuoglu et a|.
2009 Hyvarinen and Hoye2007).

The summary statistic i, pooling is the/, norm of the
inputs into the pool. That is, if nodes,, ..., z;, are in a

trolled by the lower Lipschitz constant, is empir-
ically verified with a nearest neighbor regression.

pool, the output of the pool is

Pt o )P

(|'r1i
where as usual, f — oo, this is

1. Introduction max (|zr,], ..., |zr,|) -

A standard architecture for deep feedforward networkss the outputs of the nonlinearity are nonnegative (as for
consists of a number of stacked modules, each of whicle half rectification function), thep = 1 corresponds to

consists of a linear mapping, followed by an elementwiseaverage pooling, and the cgse- oo is max pooling.
nonlinearity, followed by a pooling operation. Critical to

the success of this architecture in recognition problems i
its capacity for preserving discriminative signal informa
tion while being invariant to nuisance deformations. TheGivenz € R", a classical problem in signal processing is
recent worksallat, 2012 Bruna and Mallat2012 study  to recoverz from the absolute values of its (1 or 2 dimen-
the role of the pooling operator in building invariance. In sional) Fourier coefficients, perhaps subject to some addi-
this work, we will study a network’s capacity for preserv- tional constraints on; this problem arises in speech gen-
ing information. Specifically, we will study the invertibil eration and X-ray imaginghlsson2013. Unfortunately,
ity of modules with a linear mapping, the half rectification the problem is not well posed- the absolute values of the
nonlinearity, and’,, pooling, forp € {1,2,00}. We will Fourier coefficients do not nearly specify For example,
discuss recent work in the cage= 2, and connections the absolute value of the Fourier transform is translatien i
with the phase recovery problem dfgndes et al.2013  variant. It can be shown (and we discuss this below) that
Gerchberg and Saxtph972 Waldspurger et al2012. the absolute value of the inner products betweamd any
basis ofR™ are not enough to uniquely specify an arbitrary
x; the situation is worse fa€™. On the other hand, recent
works have shown that by taking a redundant enough dic-
tionary, the situation is different, and can be recovered
from the modulus of its inner products with the dictionary

§.2. Phase reconstruction
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(Balan et al.2006 Candes et al2013 Waldspurger et al. Candes et al2013, which suggests that the above obser-
2012. vations are not an artifcact of the alternating method.

Suppose for a moment that there is no elementwise nonlin-

earity in our feedforward module, and only a linear map-2. I njectivity and Lipschitz stability of

ping followed by a pooling. Then with a slightly gener-  Pooling Operators

alized notion of phase, where the modulus is gh@orm ) ] ) o »

of the pool, and the phase is tifg unit vector specify- This sectlt_)n studies necessary and .suff|C|en.t conditions
ing the “direction” of the inner products in the pool, the guaranteeing that pooling representations are invertible

phase recovery problem above asks if the module lose@SO computes upper and lower Lipschitz bounds, which

any information. The/, case has been recently studied in 2'€ tight under certain configurations.

(Cahill et al, 2013 Let us first introduce the notation used throughout the pa-
per. LetF = {fi,..., fu} be areal frame oR”, with
1.3. What vs. Where M > N. The frameF is organized intdk disjoint blocks

If the columns of the weight matrix in a pool correspond Fie = {fi}jen. k = 1... K, such thatl, N I,; = § and

: e I = {1...M}. For simplicity, we shall assume that
to related features, it can be reasonable to see the ent'althe ools have equal sité,| =
pool as a “what”. That is, the modulus of the pool indi- P q o
cates the relative presence of a grouping of (sub)featureshe/,, pooling operatof’,(z) is defined as the mapping
into a template, and the phase of the pool describes the rel- -
ative arrangement of the subfeatures, describing “where” 2 Bp(e) = {[|Fealp , k=1...K}. @)

the template is, or more generally, describing the “pose” of . . , o
the template. A related representation, which has gained popularity in

recent deep learning architectures, introduces a poisg-wi
From this viewpoint, phase reconstruction results make rigthresholding before computing tiig norm. Ifa € RM is
orous the notion that given enough redundant versions o4 fixed threshold vector, ang, (z)); = max(0,z; — a;),
“what” and throwing away the “where”, we can still re- then thef,, rectified poolingoperatorR, () is defined as

cover the “where”. -
= Rp(@) = {llpa,(Fp 2)llp , k=1... K}, (2)
1.4. Contributions of thiswork whereqy, contains the coordinatds of a.

In this work we give conditions so that a module consistingwe shall measure the stability of the inverse pooling with
of a linear mapping, perhaps followed by a half rectifica-the Euclidean distance in the representation space. Given
tion, followed by an/,, pooling preserves the information a distancel(z, ) in the input space, the Lipschitz bounds
in its input. We extend thé, results of Cabhill et al, 2013 of a given operato®(z) are defined as the constaifts<
Balan and Wang2013 in several ways: we considerthg A < B such that

case, take into account the half rectification nonlinearity , , , ,

and we make the results quantitative in the sense that we? €, 25 Ad(z,2') < [|[@(x) — @(2")]]2 < Bd(z, ") .

give bounds on the lower Lipschitz constants of the mod- ) )

ules. This gives a measure of tability of the inversion, [N the remainder of the paper, given a frafie we de-
which is especially important in a multi-layer system. Us- Note respectively by_ (7) andA.. () its lower and upper

ing our bounds, we prove that redundant enough randorffame bounds. IfF has) vectors and} C {1,..., M},
modules with; or /., pooling are invertible. we denoteF,, the frame obtained by keeping the vectors

) ) indexed inQ). Finally, we denoté&2 the complement of.
We also show the results of numerical experiments de-

signed to explore the gaps in our results and the results ;1 Apsoute value and Thresholding nonlinearities

in the literature. We note that the alternating minimiza-

tion method of Gerchberg and Saxtph972 can be used In order to study the injectivity of pooling representaon
essentially unchanged for tiig case, with or without rec-  we first focus on the properties of the operators defined by
tification, and show experiments giving evidence that rethe point-wise nonlinearities.

covery is roughly equally possible fdg, ¢5, and/., us-
ing this algorithm; and that half rectification before pool-
ing can make recovery easier. Furthermore, we show that = — M (z) = {|{z, fi)|,i=1...m}, z € R", (3)
with a trained initialization, the alternating method com-
pares favorably with the state of the art recovery method
(for £5 with no rectification) in YWaldspurger et 31.2012

The properties of thphaselessnapping

ave been extensively studied in the literatBealén et al.
006 Balan and Wang2013, in part motivated by ap-
plications to speech processingchan et al. 2003 or
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X-ray crystallography Qhlsson 2013. It is shown in
(Balan et al. 2009 that if m > 2n — 1 then it is possi-
ble to recover: from M (), up to a global sign change. In
particular, Balan and Wang2013 recently characterized

The rectified linear operator creates a partition of the in-
put space into polytopes, defined 8),(and computes a
linear operator on each of these regions. A given input
activates a sef2, € Q, encoded by the sign of the linear

the stability of the phaseless operator, that is summarizetheasurements, f;) — ;.

in the following proposition:

Proposition 2.1 ((Balan and Wang, 2013), Theorem 4.3)
LetF = (f1,..., fur) with f; € RN and
d@,a’) = min(le — [l Jle + ']).
M(x) = {|{=, fi)|}i<m satisfies

The mapping

Ve, o' e R", Ard(z,2') < |M(z)-M(2")|| < Brd(z,z")

(4)
where
Ar = i 2 2 . 5
r QCI{I]}{I.lM} \/)\_ (Fa) + X2 (Fae), (5)
Br = Ap(F). (6)
In particular, M (z) is injective if and only if for any subset
QO C{1,..., M}, eitherFq or Fq. is an invertible frame.

A frame F satisfying the previous condition is said to be
phase retrievable

We now turn our attention to the half-rectification operator
defined as

Mu(z) = pa(F' ). )

As opposed to the absolute value operator, the inverse of
M., whenever it exists, can be computed directly by lo-
cally inverting a linear operator. Indeed, the coordinates
M, (z) satisfying M, (x); > «; form a sets(z), which
defines a linear modef,) which is invertible if Ag > 0.

In order to compare the stability of the half-rectification
versus the full rectification, one can modify,, so that it
mapsz and—xz to the same point. If one considers

{

then ), satisfies the following:

Ma(w)={ M@

M_,(—z)

if )\*(]:s(w)) > A (‘Fs(m)c) )
otherwise.

Corollary 2.3

Va,2' € R", Ad(z,2) < |Mo(z)—Ma(2)|| < Bd(z, '),

(10)
with
A = minmax(A\2 (Fq), A2 (Foe)), (11)
Qch
B = max\;(Fa) < A\ (F), (12)

QCQ

For that purpose, let us introduce some extra notation.

Givenaframer = {fy,...
is admissiblaf

(s (@, fi) > i} n (e (@, fi) <ai} #0. (8)

ieQ i¢Q

,fam} asubsef2 C {1...M}

We denote by the collection of all admissible sets, and
Vg, the vector space generated®y The following propo-
sition, proved in SectioB, gives a necessary and sufficient
condition for the injectivity of the half-rectification.

Proposition 2.2 Let Ay = ming.g A-(Fal, ). Then the
half-rectification operatoi\/,,(x) = p,(F* ) is injective
if and only if A > 0. Moreover, it satisfies

Va, o', Aollz—a'|| < ||Ma(x) = Ma(2")|| < Bollz—2"||,

9)
with By = maxqq A (Fo) < Ay (F).

The half-rectification has the ability to recover the input
signal, without the global sign ambiguity. The ability to
reconstruct from\/,, is thus controlled by the rank of any

matrix Fo whose columns are taken from a subset belong-

ing to Q. In particular, ifa = 0, since) € O = Q° € Q, it
results thatn > 2n is necessary in order to havig > 0.

andd(z,2’) = min(z — #',x + 2'), S0A > 27%/24 and
B < B. In patrticular, if M is invertible, so isM.,.

It results that the bi-Lipschitz bounds of the half-
rectification operator, when considered in under the equiva
lencex ~ —x, are controlled by the bounds of the absolute
value operator, up to a fact@r'/2. However, the lower
Lipschitz bound {1) consists in a minimum taken over a
much smaller family of elements than i8)(

2.2. 4, Pooling

We give bi-Lipschitz constants of thg, Pooling and’,
rectified Pooling operators for= 1, 2, oc.

From its definition, it follows that pooling operataFs and

R, can be expressed respectively as a function of phase-
less and half-rectified operators, which implies that fer th
pooling to be invertible, it is necessary that the absolute
value and rectified operators are invertible too. Naturally
the converse is not true.

2.2.1./5 POOLING

The invertibility conditions of thés pooling representation
have been recently studied i€4hill et al, 2013, where
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the authors obtain necessary and sufficient conditions 08.2.2.¢,, POOLING
the frameF. We shall now generalize those results, and

derive bi-Lipschiz bounds. We give in this section sufficient and necessary conditions

such that the max-pooling operatBy, is injective, and we
Let us define compute a lower bound of its lower Lipschitz constant.

Givenz € RY, we define thewitchess(z) of = as theK
— . < dxd T — . l : 3 A )
Q> = {(UnFirer s VE S K, Uy € RV, Uy Uy (13 I)d} vector of coordinates in each pool where the maximum is

Qs thus contains all the orthogonal bases of each subspace attalned thatis, foreache {1,..., K}:

Fi.

The following proposition, proved in sectid, computes

upper and lower bounds of the Lipschitz constant&of and we denote byS the set of all attained switches:
S = {s(z);z € RM}. This is a discrete subset of

Proposition 2.4 The/, pooling operatorP; satisfies [1.{1,...,Ix}. Givens € S, the set of input signals hav-
ing s(x) = s defines a linear cong, ¢ RV:

s(z)r = argmax [(z, f;)],
JjEl)

Va,z's, Asd(z,2) < ||Pa(x) — Po(2)|| < Bad(z,2) ,
2 . e ALY SIS

where k<K jeIy,

. . Py Py and as a result the input space is divided into a collection
A = 2e8, ot \//\7(]‘—9) +AZ(Fae) of Voronoi cells defined from linear equations. Restricted
2 QC{1...M} .
B, = AL(F) (15) to each con&,, the max-pooling operator computes the
2Tt ' phaseless mappiny/ (z) from equation 8) corresponding
to F; = (fsla---afs;()'
This proposition thus generalizes the results from .. -
(Cahill et al, 2013, since it shows thatls > 0 notonly ~ C&" Ve&?};ﬁ“ andv, as ustjal, set the anglgu, v) =
controls whenP, is invertible, but also controls the stabil- arccos (||uH’Hv||) -Foreachs, s’ € S such thal,NCy = 0

ity of the inverse mapping. and foreach) C {1... K}, we define

We also consider the rectifigd pooling case. For simplic- B(s, s, Q) =

ity, we shall concentrate in the case where the pools have

dimensiond = 2. For that purpose, for each z’, we con-

sider a modification of the familie§,, by replacing each This is a modified first principal angle between the sub-

sub-frameF;, by F7, ns(z)ns(2r), that we denot@s ;. .. spacesF, ]Q where the infimum is taken only
on the dlrectlons mcluded in the respective cones. Set

Corollary 25 Let d = 2, and setp(z,z') = s(z) U Ao o= ]:‘ -sin(B(s, s/, Q)).

s(z")\(s(x) N s(z')). Then the rectified, pooling oper-

ator R, satisfies

min O(u,v).
: Q (CS)

Givens, s’, we also defing7 (s, s’) = {k; s, = s, }. Re-
call L is the size of each pool. Set

Yz, 2, Agd(:zr,:zr/) < ||Ra(z) — Ra(2")|| £ Bad(z,2"),

(16)
Als. ) — { . 2 2 -
where (s:8) Szglggs,)/\_(fsz) + A (Fr-a) +
As = inf min min ()\2 (Foiz.an) + L min A2 + A2 }1/2
ral F1EQ,, , QCs@mns) N PO AL acg(ssye’ V0T et

1/2
2 / 2 /
AZ(Fa) + )‘*(fﬂc)) ’ The following proposition, proved in sectioB, gives a

lower Lipschitz bound of the max-pooling operator.

Proposition2.4 and Corollary2.5 give a lower Lipschitz
bound which gives sufficient guarantees for the inversio
of pooling representations. Corolla?y5indicates that, in
the cased = 2, the lower Lipschitz bounds are sharper , ] , ,

than the non-rectified case, in consistency with the results 4(22") (??S?A(S’ 5 )> < [1Poc (@) = Poo (2, (A7)
of section2.1 The general casé > 2 remains an open ’

issue. whered(z, ') = min(||x — 2|, ||« + 2’]]).

Proposition 2.6 For all z andz’, the max-pooling opera-
Yor P, satisfies
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Propostior?.6shows that the lower Lipschitz bound is con- 2.3. Random Pooling Operator s

trolled by two different phenomena. The first one depend hat is the minimum amount of redundancy needed to in-

upon how the cones corresponding to disjoint switches ar ; ) .
grt a pooling operator? As in previous works on com-

aligned, whereas the second one depends on the intern& .
incoherence of each franE;, .-y. One may ask how do pressed sensing@ndes and Ta@004 and phase recov-

these constants evolve in different asymptotic regimes. FooY (Balan et al. 2009, one may address this question by

example, if one lets the number of podtsbe fixed but in- SF”dyiﬂg random poqling.operat.()rs. In th_is case, the lower
creases the size of each pool by increagingln that case, Lipschitz .b-ound.s derived In previous sections can be shown
the set of possible switchesincreases, and each cofie to be positive with probability given appropriate parame-
gets smaller. The bound corresponding’ton Css # 0 ters K and_.

decreases since the infimum is taken over a larger familyThe following proposition, proved in Appendi analyzes
However, as the congs become smaller, the likelihood the invertibility of a generic pooling operator construtte
that any pairz # 2’ share the same switches decreasesfrom random measurements. We consider a frémwehere

thus giving more importance to the caBen Cy = 0. its M columns are iid Gaussian vectorsR¥ .
Although the ratio% decreases, the lower frame bounds
A_(Fa)?, A_(Fqe)? will in general increase linearly with  Proposition 2.8 LetF = (f1,..., fu) be arandom frame

L. The lower bound will thus mainly be driven by the prin- of RY, organized intoK disjoint pools of dimensioiL.
cipal angles3(s, s’, Q). Although the minimum inZ8) is  With probabilityl P, is injective (modulec ~ —z) if K >
taken over a larger family, each angle is computed over &N forp = 1,c0oand if K > 2N — 1 for p = 2.
smaller region of the space, suggesting that one can indeed
increase the size of each pool without compromising thel'he size of the pool does not influence the injectivity of
injectivity of the max-pooling. random pooling, but it affects the stability of the inverag,

i ) ) , . shown in propositior2.6. The half-rectified case requires
Another asymptotic regime considers pools of fixed SiZ€aytra care, since the set of admissible switcRemight

L and increases the number of podis In that case, onain frames with < N columns with non-zero prob-
the bound increases as long as the principal angles remagbi”ty’ and is not considered in the present work.
lower bounded.

We also consider the stability of max-pooling with a half- 3, Numerical Experiments

rectification. By redefining the switcheéz) accordingly:
Our main goal in this section is to experimentally compare

the invertibility of £, pooling forp € {1,2, o0}, with and
s(x) = {Jj; (=, fi)+a; > max(0, (z, f)+ay ; V5 € pool(jWithout rectification. Unlike in the previous sections, we
(18)  will not consider the Lipschitz bounds, as we do not know
the following proposition, proved in sectid@) computesa a good way to measure these experimentally. Our experi-

lower bound of the Lipschitz constant &f... ments suggest that recovery is roughly the same difficulty
for p = 1,2, 00, and that rectification makes recovery eas-

Corollary 2.7 The rectified max-pooling operat®., sat-  ier.

isfies

In the/, case without rectification, and with= 2, a grow-
ing body of works Candes et al2013 Waldspurger et al.

Va,a’ ||z — 2| min A(s,5") < |Roo(2) = Roo(2)]] 2012 describe how to invert the pooling operator. This is
’ (19) often called phase recovery. A problem for us is a lack
with of a standard algorithm whem # 2 or with rectification.

We will see that the simple alternating minimization algo-

1 1/2 rithm of (Gerchberg and Saxtpi972 can be adapted to
A(s,s') = {)\2_ (Fj(s,s’)) + EAg,s/,J(s,s/)c} these situations. However, alternating minimization with
random initialization is known to be an inferior recovery
algorithm forp = 2, and so any conclusions we will draw
about ease of recovery will be tainted, as we would be test-
ing whether the algorithm is equally bad in the various situ-
ations, rather than if the problems are equally hard. We will
Propostion2.6 can be used to obtain a bound of the lowershow that in certain cases, a training set allows us to find a
Lipschitz constant of thé; pooling operator, as well as good initialization for the alternating minimization, tiag
the Maxout operatorGoodfellow et al.2013; see section to excellent recovery performance, and that in this setting
B.4.2in the supplementary material. or the random setting, recovery via alternating minimiza-

defined using the con€s obtained from {8).

2.2.3./1 POOLING AND MAX-OUT
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tion is roughly as succesful for each of thesuggesting better than the greedy alternating minimization. However,
invertibility is equally hard for eaclp. In the same way, itis not obvious to us how to adapt these algorithms to the
we will see evidence that half rectification before pooling ¢, setting.
makes recovery easier.

3.1.3. NEAREST NEIGHBORS REGRESSION

3.1. Recovery Algorithms We would like to use the same basic algorithm for all set-

3.1.1. ATERNATING MINIMIZATION tings to get an idea of the relative difficulty of the recovery
) problem for differentp, but also would like an algorithm
A greedy method for recovering the phase fromy good recovery performance. If our algorithm simply

the modulus of complex measurements is given iNerms poor results in each case, differences between the
(Gerchberg and Saxtpri972); this method naturally ex-  ~;ceg might be masked.

tends to the case at hand. As above, denote the frame
{f1,.... fu} = F, let F;, be the frame vectors in theth The alternating minimization can be very effective when
block, and sefl; to be the indices of théth block. Let Wellinitialized. When given a training set of the data to re-
F(=1) be the pseudoinverse &, set(P,(z)), = || Frz||,. ~ COVer, we usea simple regression to find Fix a number
Starting with an initial signat?, update of neighbors; (in the experiments below we uge= 10,
and supposeX is the training set). Setr = P,(X),
n Foo™ and for a new point: to recover fromP,(z), find theq
L ypy) = (@) TR, b =1 K, nearest neighbors it of P,(z), and th(e) their princi-
pal component to serve ag in the alternating minimiza-
tion algorithm. We use the fast neighbor searcher from

, ) (Vedaldi and Fulkersqr2009 to accelerate the search.
This approach is not, as far as we know, guarantee to con-

verge to the correct solution, even whéj is invertible.
However, in practice, if the inversion is easy enough, or if
x0 is close to the true solution, the method can work well.We discuss results on the MNIST dataset, available at
Moreover, this algorithm can be run essentially unchangedit t p: / / yann. | ecun. conf exdb/ mi st/, and on

for each?,; for half rectification, we only use the nonega- 16 x 16 patches drawn from the VOC dataset, avail-
tive entries iny for reconstruction. able athttp://pascallin.ecs.soton.ac. uk/

. . ._chal | enges/ VOC/ voc2012/ . For each of these data
In the experiments below, we will use random, Gaussian

i.i.d. F, but also we will use the outputs of dictionary learn- Sets, we run experiments with random dictionaries and

ing with block sparsity. TheF generated this way is not adapted dictionaries. We also run experiments where the

really a frame, as the condition number of a trained dictio—data and the dictionary are both Gaussian i.i.d.; in this,cas

: : . . we do not use adapted dictionaries.
nary on real data is often very high. In this case, we will
renormalize each data pointto have ndrmrand modify the  The basic setup of the experiments in each case is the
updater("*+1t) = F(=1Dy (") to same: we vary the number of measurements (that is, num-
2 pntl) — . Fo — )2 ber of pools) over some range, and attempt to recover the
- X = arguﬁifil [ Fz —y™%. original signal from thel,, pooled measurements, using

. hi dificati iah I b bl various methods. We record the average angle between
In practice, this modification might not always be possible, recovered signal and the originak;, that is, we use

since the normiz|| is not explicitly presented it How- rTx?/(|Ir]|?||z||*) as the measure of success in recovery.
ever, in the classical setting of Fourier measurements and

positivez, this information is available. Moreover, our em- In each case the random analysis diction&rjs built by
pirical experience has been that using this regularization fixing a size parameter, and generating a Gaussian i.i.d.
well conditioned analysis dictionaries offers no benefit; i matrix 7o of size2m x n, wheren = 100 for MNIST,
particular, it gives no benefit with random analysis matri-andn = 256 for VOC. Each pair of rows ofFy is then

2. x(n+1) = f(_l)y(n)

3.2. Experiments

ces. orthogonalized to obtairF; that is we use groups of size
2, where the pair of elements in each group are orthogonal.
3.1.2. PHASELIFT AND PHASECUT This allows us to use standard phase recovery software in

) the /s case to get a baseline. We used the ADMM version
Two recent algorithms Gandesetal. 2013 and ¢ nhaselift from Ohlsson et a).2019 and the phasecut
(Waldspurger etal. 2012 are guaranteed with high g46rithm of (Waldspurger et 412012, For all of our data
probability to solve the (classical) problem of recoveringges; the latter gave better results (note that phasecut can

the phase of a complex signal from its modulus, giveng,pjicitly use the fact that the solution to the problem is
enough random measurements. In practice both perform


http://yann.lecun.com/exdb/mnist/
http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2012/
http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2012/

Signal recovery from Pooling Representations

real, whereas that version of phaselift cannot), so we tepor ~ without regularization (the bottom row of each pair of
only the phasecut results. graphs vs the top row of each pair in Fig@e

In the experiments with adapted dictionaries, the dictipna Each of these conclusions is unfortunately only true up to
is built using block OMP and batch updates with a K-SVD the optimization method- it may be true that a different op-
type update Aharon et al, 2009; in this case,F is the  timizer will lead to different results. With learned initia

transpose of the learned dictionary. We again use groupgations and alternating minimization, recovery resuis c
of size2 in the adapted dictionary experiments. be better without half rectification. Note this is only up un-

) ) L til the point where the alternating minimization gets bette
We run two sets of experiments with Gaussian i.i.d. datgy,ap the learned initialization without any refinement, and
_and dictionaries, it = 20 andr_z = 40. We conS|d_em is especially true for random dictionaries. The simplerinte
in the range from/2 to 8n. On this data set, phaselift out- pretation is that the reconstruction step 2 of the altengati

perfor.ms alternating minimization; see the supplementary, i ii-ation just does not have a large enough span with
material. roughly half the entries removed; that is, this is an effect

For MNIST, we use the standard training set projected taf the optimization, not of the difference between the diffi-

R1% via PCA, and we let the number of dictionary ele- culty of the problems.

ments range from 60 to 600 (that is, 30 to 300 measure-

ments). On this data set, alternating minimization with4, Conclusion

nearest neighbor initialization gives exact reconstounciy

130 measurements; for comparison, Phaseliftiat= 130 ~ We have studied conditions under which neural network

has mean square angle.d§; see the supplementary mate- layers of the form ) and @) preserve signal information.

rial. As one could expect, recovery from pooling measurements
. . ) is only guaranteed under large enough redundancy and con-

We draw approximately 5 millioh6 x 16 grayscale image figurations of the subspaces, which depend upon whjch

patche; from the PASCAL VOC ‘?'ata set, thgse are sorteg considered. We have proved conditions which bound the

by variance, and the largest variance 1 million are ',(e,ptiower Lipschitz constants for these layers, giving quantit

The mean is removed from each patch. These are splitintfy ¢ gescriptions of how much information they preserve.

a training set of 900000 patches and a test set of 100008, thermore, we have given conditions under which mod-

patches. In this experiment, we letrange from 3010 830. a5 yith random filters are invertible. We have also given

O.n .th'.s data set, byn. = 330 measurements, alternating experimental evidence that for both random and adapted
minimization with nearest neighbor initialization recose modules, it is roughly as easy to invers pooling with

mean angle of97; for comparison, Phaselift at = 330 » = 1, 2, andoo; and shown that when given training

has mean angle o39; see the supplementary material. a5 alternating minimization gives state of the art phase

_ recovery with a regressed initialization.
3.3. Analysis )
However, we are not anywhere near where we would like to

The experiments show (see figueand?) that: be in understanding these systems, or even the invesibilit

« For every data set, with random initializations and dic-of the layers of these systems. This work gives little direct
tionaries, recovery is easier with half rectification be-help to a practicioner asking the question “how should |

fore pooling than without (green vs dark blue in fig- design my network?”. In particular, our results just barely
ures). touch on the distribution of the data; but the experiments

make it clear (see als®hlsson et a).2012) that knowing
e (., £1, andly pooling appear roughly the same diffi- more information about the data changes the invertibility o
culty to invert, regardless of algorithm (each columnthe mappings. Moreover, preservation of information needs
of figures, corresponding to &f, is essentially the to be balanced against invariance, and the tension between
same). these is not discussed in this work. Even in the setting of
o ) this work, without consideration of the data distributian o
e Good initialization improves performance; indeed, al- tansjon with invariance, Propositidh4 although tight, is
ternating minimization with nearest neighbor regres-,ot easy to use, and even though we are able t@6®
sion outperforms phaselift and phasecut (which ofget an invertibility result, it is probably not tight.

course do not have the luxury of samples from the ) _
prior, as the regressor does). We believe this of in-This work also shows there is much research to do in the

dependent interest. field of algorithmic phase recovery. What are correct al-
gorithms for¢,, inversion, perhaps with half rectification?
e Adapted analysis “frames” (with regularization) are How can we best use knowledge of the data distribution
easier to invert than random analysis frames, with orfor phase recovery, even for the well studiédcase? Is
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Figure 1.Average recovery angle using alternating projections emleen data; each is Gaussian i.i.d. ifR*°. The vertical axis
measures the average value|ofz|/(||r||?||z||?), wherer is the recovered vector, over 50 random test points. The il axis

is the number of measurements (the siz@f the analysis dictionary is twice theaxis in this experiment). The leftmost figuredis
pooling, the middl€/s, and the right max pooling. The dark blue curve is altermatirinimization, and the green curve is alternating
minimization with half rectification; both with random iratization.
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Figure 2. Average recovery angle using alternating projections cagienpatch data points. The vertical axis measures the aveahge

of [»Tx?/(||r|[*||x||*), wherer is the recovered vector, over 50 random test points. Thedatal axis is the number of measurements
(the size of the analysis dictionary is twice theaxis in this experiment). The leftmost figureds pooling, the middle/z, and the
right max pooling. In the top row of each pair of rows the as@ydictionary is Gaussian i.i.d.; in the bottom row of eaalr pf rows,

it is generated by block OMP/KSVD with nozero blocks of size 2. The dark blue curve is alternatinginmization, and the green
curve is alternating minimization with half rectificatidmpth with random initialization. The magenta and yellowmasrare the nearest
neighbor regressor described3dri.3without and with rectification; and the red and aqua curvesa#iernating minimization initialized
via neighbor regression, without and with rectificatione Sectior8.3for a discussion of the figures.
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A. Comparison between phaselift and the
various alternating minimization
algorithms

Here we give a brief comparison between the phaselift al-
gorithm and the algorithms we use in the main text. Our
main goal is to show that the similarities between the

Lo, Ly recovery results are not just due to the alternat-
ing minimization algorithm performing poorly on all three
tasks; however we feel that the quality of the recovery with
a regressed initialization is interesting in itself, esplg
considering that it is much faster than either phaselift or
phasecut.

In figures3, and4 we compare phaselift against alternat-
ing minimization with a random initialization and alternat
ing minimization with a nearest neghbor/locally linear re-
gressed initialization. Because we are comparing against
phasecut, here we only show inversiorgfpooling.

In figure of3, we use random data and a random dictionary.
As the data has no structure, we only compare against ran-
dom initialization, with and without half rectification. We
can see from figur8 in this case, where we do not know

a good way to initialize the alternating minimization, alte
nating minimization is significantly worse than phasecut.
On the other hand, recovery after rectified pooling with al-
ternating minimization does almost as well as phasecut.

In the examples where we have training data, shown in
figure 4, alternating minimization with the nearest neigh-
bor regressor (red curve) performs significantly bettentha
phasecut (green and blue curves). Of course phasecut doe
not get the knowledge of the data distribution used to gen-
erate the regressor.
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Figure 3.Average recovery angle using phaselift and alternating
minimization on random data, Gaussian i.i.d. pointRi‘H. The
blue curve is phaselift followed by alternating minimizatj the
green curve is alternating minimization, and the red isaéténg
minimization on pooling following half rectification.
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B. Proofs of resultsin Section 2
B.1. Proof of Proposition 2.2

Let us first show thatd, > 0 is sufficient to construct an
inverse ofM,,. Letz € RY. By definition, the coordinates
of M, (z) > « correspond to

s(x) ={i stz fi) >a;} C{1,...,. M},

which in particular implies that is known to lie inVs,),
the subspace generated &iyr). But the restrictionF,,,
is a linear operator, which can be invertedig as long as
)\7(]:3(1)“/5) > Ay > 0.

Let us now show tha#l, > 0 is also necessary. Let us
suppose that for some, Fs is such thatx_(}‘s|vs) =0.

It results that there exists € Vs such that|n|| > 0 but
[IFsn|l = 0. SinceS is a cone, we can find € S and

e # 0 small enough such that+ ee € S. It results that
M, (x) = My (z + ee) which implies that),, cannot be
injective.

Finally, let us prove9). If =,z are such thaf = s(z)
s(z’), then

| Ma(@) = Ma(@)]| = |1 Fs(a —2')]| = Ao(w — ).

If s(z) # s(a’), we have thatM,, (z); — My (2');| = [(x —
2, fi)| if ¢ € s(x) Ns(a’) and| My (x); — Ma(2')i| >
[(z—a, f)|if i € s(x)Us(a’), i ¢ s(x)Ns(z'). Itresults
that

[ Mo ()Mo (2")|| > | Fs@yus(ar (@—2")|| > Aollz—2"| .
.

B.2. Proof of Proposition 2.4

The upper Lipschitz bound is obtained by observing that
in dimensiond,

Vy e R, [lyllr < Vdlyllz, yllse < dllyll2 -

It results that
| Pp(x) — Pp(z")]| ap|Pa(z) — Pa(a’)]] (20)

apl|M(x) = M(2')]| < aphy (F) -

Let us now concentrate on the lower Lipschitz bound.
Givenz,z’ € R™, we first consider a rotatiof, on each
subspacé;, such thatz, fi. ;) = (', fr;) = 0forj > 2,
which always exists. If now we modif§;. by applying a

which implies, by denoting/ (z) = (|(z, ﬁ7j>|)kﬂj, that

| Py(x) — Po(z")|| = || M (x) — M(z')]. SinceF € Qo, it
results from Propositiof.1that

1) = P > da) min AN (Fe) 402 (Foo)
> d(x,2")Ay O (21)

B.3. Proof of Corollary 2.5

Givenz, z’, let I denote the group#., ¥ < K such that
S, NSy NI, = I It results that

[ Rp(z) — Rp(:v')H2
Z |Rp(2)k — Rp(x/)klz + Z |Rp(2)k — Rp(x/)klz

kel kgl
> 3 Ry (@)= Ryl )i P43 (1Mo(@)], ~Mo(a)], )
kel kgl

On the groups il we can apply the same arguments as
in theorem2.4, and hence find a fram& from the family
Qp.z,» SUCh that

[1Rp(x) — Ry (')l = || M (z) — M(2")]|,

with M (x) = (|(z. fij)Dker; and {fr;} € Qpuar.
Then, by following the same arguments used previously,
it results from the definition ofi,, that

| Ry(x) — Rp(x/)H > Apd(x,x/) .

Finally, the upper Lipschitz bound is obtained by noting
that
[Ma(z) — Ma(2)|| < || F(z —2")]

and using the same argument as20) (.

B.4. Proof of Proposition 2.6

Let z,2’ € RY, and letJ = s(z) N s(z’). Suppose
first thatCy(,) N Cypry # 0. Since|[Poz — Poof >
[l Fsx| — | Fsa'|| ;| it results that

d(Ia I/)As(m),s(w’) < HP)OOJ7 - POO:C/H (22)
by Propositior2.1and by definition ??).

Let us now sUppose,(,) NCy(ry = 0, and letz = Pz —
Poa'. Itresults that: = |Fyz| — |Fsena'| € RE,

rotation of the remaining two-dimensional subspace sucland hence we can split the coordinates. . K) into 2, Q¢

thatz andz’ are bisected, one can verify that

(1 Fwellz = || Fra'l|2)?

({2, fre)l = 142’ fun)])?
+((, fr2) = 1, fr2)))?

2
(IFrzll2 = [ Fra'll2)” =

such that

Fs@) g (@) = For)
]:s(m) (I) + ‘Fs(m’)

o)

Qe (CC/) .

Z‘sz

z

Qe Qe
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We shall concentrate in each restriction independentlylt results thatP; (z; F) = Ps (z;

SinceF Q(:c’) € Fi(ar)|o(Cs(ary), it results that
HZ‘Q” > H]:s(z)’gz(x) - y”
yE]‘—S(I/) o
> || Fon|o@) - [sin(B(s(x), s(z"), 2))(23)

Since by definition

Vi, > =

J€lk

fj |2 ||< fs(m)k>| s

it results, assuming without loss of generality that all[soo

have equal size|(;,| = 1),
~/ H]:’Q

NESWEN

) € Fuw)|g(Cs(x)) We also

Vaels, ||Fs

\

(m)’Q(x)H ft

Y

)lz( 24)

Equivalently, sinceF, )|, («
have

HZ‘Q” > \/%)\_(]:’Q)- lsin(B(s(x), s(z"), Q)| -

It follows that

2]

Y

Y

By aggregating the bound fér and2¢ we obtain 28) (1.

B.4.1. MAXoOUT

K / /
\/; (Flg) Isin(B(s(), s(z"), )| max([l]], [|=']])

K ’ ’
”4M f| ) Isin(B(s(x), s(z"), Q)| d(z, z")

F), with

]?:(ka,e:Ze(i)fk’i; k=1...,K;ec{-1,1}*}.

i

Each poolF;, can be rewritten a¥;, = H; 7, whereH ,
is the L x 2 Hadamard matrix whose rows contain the
vectors. One can verify thdf? H;, = 2-1, which implies

that foranyQ C {1... K}, )\—(j‘v—’ﬂ) = 2L/2)‘_(}—}Q)' It
results that

Corollary B.2 The/; pooling operatorP; satisfies

Vo, d(z,2') <r;1£nA(s s )) <||Pi(z) — Pi(2))],
(28)

whered(z, ') = min(||x — 2’|, ||« + 2’||) and

A / 2 2
A(s, s max{(zcrglrsls \/)\ (Fo) + A2 (Fr_q),

2 2
\/As,s’,SZ + As,s/,QC} ’

with s, s and3(s, s’) are defined on the framg.

1
—  min
2 QC{1..K}

Similarly as in Corollary2.7, one can obtain a similar
bound for the Rectified, pooling.

B.5. Proof of Corollaries2.7 and B.1

'Tr%Gl)esult follows immediately from Propositiéh6, by

replacing the phaseless invertibility condition of Projmms
2.1by the one in PropositioR.2. (1.

B.6. Proof of Proposition 2.8

These results easily extend to the so-called Maxout opera-

tor (Goodfellow et al. 2013, defined asc — MO(z) =
{maxjer, (z, f;); k 1...K}. By redefining the
switches ofr as

s(x) ={j; (=

i) ¥ i e poolg)},
(27)

, fj) > max((z

the following corollary computes a Lower Lipschitz bound

of MO(a):

Corollary B.1 The Maxout operatorM O satisfies 19
with A(s, s’) defined using the switche®7).

B.4.2.¢1 POOLING

Propostior2.6 can be used to obtain a bound of the lower

Lipschitz constant of thé, pooling operator.

Observe that for: € R,

lalh = 3 foul = max |,
3

Propositior?2.8also extends to the maxout case. We restate
it here with the extra result:

PropositionB.3 Let ¥ = (f1,...,fm) be a random
frame ofRY, organized intak” disjoint pools of dimension
L. Then these statements hold with probability

1. P, is injective (modula: ~ —z) if K > 4N forp =
1,00, and if K > 2N — 1 forp = 2.

2. The Maxout operatakb/ O is injective if K > 2N + 1.

Let us first prove (i), withp = co. Letz, 2’ € RY such
that P (z) = Px(2), and lets = s(x), s’ = s(a').
The set ofK pooling measurements is divided into the in-
tersection” (s, s’) = {k; s(z)r = s(2’)r} and its com-
plement7(s,s")¢ = {k; s(x)r # s(a’)r}. Suppose first
that| 7 (s, s’)] > 2N — 1. Then it results that we can pick
d= [%’S/)'} > N elements of7 (s, s’) to form a frame
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V, such that eithex — =’ € Ker(V) orxz + = € Ker(V).  to explain the connections between the theoretical and ex-
Since a random frame of dimension N spansR™ with perimental parts of the paper, as requested by the reviewers
probability 1, it results thatr = +2’. Suppose otherwise We also added results on the invertibility of random mod-
that |7 (s,s’)] < 2N — 1. It follows that|J(s,s')¢| >  ules.

2N + 1, and hence that any partition gf(s, s’)¢ into two
frames will contain always a fram’e‘\ o With at leastV +1
columns. Since two random subspaces of dimenaidn
RM have nonzero largest principal angle with probability
1 aslong ask > N, it results that\, ;» o > 0 and hence
that Prolﬁ|Poo(x)‘\7(S_’S,)C| = |Pw($’)\g(s,sqc|) =0. The
casep = 1 is proved identically thanks to CorollaBy.2. The introduction and conclusion more explicitly address
take messages. Note that the take home message is not
of the form “this is how to design a network”, but rather,

We have edited the text in the experiments section and in
the captions of the figures to clarify them. Each curve is
described in the caption and the text; the graphs are also
now specifically referenced in the analysis bullets in secti
3.3

Finally, in order to prove (ii) we follow the same strategy.

If |7 (s, )| > N, thenMO(z) = JJ\V/[O_(I/) = 2 =1 wpase conditions allow (stable) inversion”. We are sym-
with probability1 since| , spansk™ with probabilityl.  yathetic to the reviewers desire for a take home message
Otherwise it results thgt7 (s, s')¢| > N + 1, whichim-  giving insight into the actual design of networks for prac-
pliesMO(x) # MO(a'), since two random subspaces of (ica| applications. That is, of course, the ultimate goal of

dimension in RI¥(**)°| have0 intersection with proba- 5 mathematical analysis of a learning algorithm. However,

bility 1. if the standard for theoretical papers analyzing deep mod-
Let us now prove the cage= 2. We start drawing a ran- €ls is that they lead immediately to design suggestions with
dom basis for each of the poal§, . . ., Fi. From propo- associated performance increases on benchmarks, it is un-
sition 2.4, it follows that we have to check thatiff > 2,  likely thatthere will ever be a mature enough theory to give
the quantity B honest design suggestions.

s min A2 (FQ) + X2 (Fbmega®) > 0 Finally, we reprint larger versions of the figures below.
F'=UF,UTU=1QC{1...M}

with probability1. If M > 2N — 1, it follows that either
 has the property that it intersects at leAspools, either
Q¢ intersectsV pools. Say it i€2. Now, for each pool with
nonzero intersection, say;, we have that

IEDTyl > ——|(Fio9)]

Vi)

for somef;, ; belonging to the initial random basis 6.
It results that

1
N(F) > —=—=M2(F7),

~ VW)
where F’* is a subset ofV columns of the original frame
F, which means

MN(FL) > Fx)>0.

1
)\2
V(L) -
O.

C. Notes on changesfrom cycle 1

The mathematical results have been essentially rewritten,
for clarity as well as to sharpen the bounds. The proofs are
now in the supplementary material, as requested by the re-
viewers. We have used the extra space to expand the indro-
duction, conclusion, and intro to the experiments, in part t
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Figure 6.Average recovery angle using alternating projections on®MN\data points. The vertical axis measures the average adlu
[#Tx2/(||r|*||z||*) over 50 random test points. The horizontal axis is the nurobereasurements (the size of the analysis dictionary
is twice thez axis in this experiment). The top row £s pooling, the middle/z, and the bottom max pooling. In the left column the
analysis dictionary is Gaussian i.i.d.; in the right colymenerated by block OMP/KSVD withnozero blocks of size 2. The dark blue
curve is alternating minimization, and the green curvetarahting minimization with half rectification; both witamdom initialization.
The magenta and yellow curves are the nearest neighborssegrdescribed i8.1.3without and with rectification ; and the red and
aqua curves are alternating minimization initialized vigghbor regression, without and with rectification.
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Figure 7 Average recovery angle using alternating projections oagenpatch data points. The vertical axis measures the averag
value of |r”z|/(||||?||=||*) over 50 random test points. The horizontal axis is the nurobereasurements (the size of the analysis
dictionary is twice ther axis in this experiment). The top row 3 pooling, the middle/s, and the bottom max pooling. In the left
column the analysis dictionary is Gaussian i.i.d.; in tlylticolumn, generated by block OMP/KSVD withnozero blocks of size 2.
The dark blue curve is alternating minimization, and theegreurve is alternating minimization with half rectificatidooth with random
initialization. The magenta and yellow curves are the regareighbor regressor describedsii.3without and with rectification; and
the red and aqua curves are alternating minimization liziée via neighbor regression, without and with rectifioati
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