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Abstract

In this work we compute lower Lipschitz bounds
of ℓp pooling operators forp = 1, 2,∞ as
well as ℓp pooling operators preceded by half-
rectification layers. These give sufficient condi-
tions for the design of invertible neural network
layers. Numerical experiments on MNIST and
image patches confirm that pooling layers can be
inverted with phase recovery algorithms. More-
over, the regularity of the inverse pooling, con-
trolled by the lower Lipschitz constant, is empir-
ically verified with a nearest neighbor regression.

1. Introduction

A standard architecture for deep feedforward networks
consists of a number of stacked modules, each of which
consists of a linear mapping, followed by an elementwise
nonlinearity, followed by a pooling operation. Critical to
the success of this architecture in recognition problems is
its capacity for preserving discriminative signal informa-
tion while being invariant to nuisance deformations. The
recent works (Mallat, 2012; Bruna and Mallat, 2012) study
the role of the pooling operator in building invariance. In
this work, we will study a network’s capacity for preserv-
ing information. Specifically, we will study the invertibil-
ity of modules with a linear mapping, the half rectification
nonlinearity, andℓp pooling, forp ∈ {1, 2,∞}. We will
discuss recent work in the casep = 2, and connections
with the phase recovery problem of (Candes et al., 2013;
Gerchberg and Saxton, 1972; Waldspurger et al., 2012).

1.1. ℓp pooling

The purpose of the pooling layer in each module is to
give invariance to the system, perhaps at the expense of
resolution. This is done via a summary statistic over
the outputs of groups of nodes. In the trained system,
the columns of the weight matrix corresponding to nodes
grouped together often exhibit similar characteristics, and
code for perturbations of a template (Kavukcuoglu et al.,
2009; Hyvärinen and Hoyer, 2001).

The summary statistic inℓp pooling is theℓp norm of the
inputs into the pool. That is, if nodesxIi , ..., xIl are in a
pool, the output of the pool is

(|xIi |p + ...+ |xIl |p)1/p ,

where as usual, ifp → ∞, this is

max (|xIi |, ..., |xIl |) .

If the outputs of the nonlinearity are nonnegative (as for
the half rectification function), thenp = 1 corresponds to
average pooling, and the casep = ∞ is max pooling.

1.2. Phase reconstruction

Givenx ∈ Rn, a classical problem in signal processing is
to recoverx from the absolute values of its (1 or 2 dimen-
sional) Fourier coefficients, perhaps subject to some addi-
tional constraints onx; this problem arises in speech gen-
eration and X-ray imaging (Ohlsson, 2013). Unfortunately,
the problem is not well posed- the absolute values of the
Fourier coefficients do not nearly specifyx. For example,
the absolute value of the Fourier transform is translation in-
variant. It can be shown (and we discuss this below) that
the absolute value of the inner products betweenx and any
basis ofRn are not enough to uniquely specify an arbitrary
x; the situation is worse forCn. On the other hand, recent
works have shown that by taking a redundant enough dic-
tionary, the situation is different, andx can be recovered
from the modulus of its inner products with the dictionary
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(Balan et al., 2006; Candes et al., 2013; Waldspurger et al.,
2012).

Suppose for a moment that there is no elementwise nonlin-
earity in our feedforward module, and only a linear map-
ping followed by a pooling. Then with a slightly gener-
alized notion of phase, where the modulus is theℓp norm
of the pool, and the phase is theℓp unit vector specify-
ing the “direction” of the inner products in the pool, the
phase recovery problem above asks if the module loses
any information. Theℓ2 case has been recently studied in
(Cahill et al., 2013)

1.3. What vs. Where

If the columns of the weight matrix in a pool correspond
to related features, it can be reasonable to see the entire
pool as a “what”. That is, the modulus of the pool indi-
cates the relative presence of a grouping of (sub)features
into a template, and the phase of the pool describes the rel-
ative arrangement of the subfeatures, describing “where”
the template is, or more generally, describing the “pose” of
the template.

From this viewpoint, phase reconstruction results make rig-
orous the notion that given enough redundant versions of
“what” and throwing away the “where”, we can still re-
cover the “where”.

1.4. Contributions of this work

In this work we give conditions so that a module consisting
of a linear mapping, perhaps followed by a half rectifica-
tion, followed by anℓp pooling preserves the information
in its input. We extend theℓ2 results of (Cahill et al., 2013;
Balan and Wang, 2013) in several ways: we consider theℓp
case, take into account the half rectification nonlinearity,
and we make the results quantitative in the sense that we
give bounds on the lower Lipschitz constants of the mod-
ules. This gives a measure of thestability of the inversion,
which is especially important in a multi-layer system. Us-
ing our bounds, we prove that redundant enough random
modules withℓ1 or ℓ∞ pooling are invertible.

We also show the results of numerical experiments de-
signed to explore the gaps in our results and the results
in the literature. We note that the alternating minimiza-
tion method of (Gerchberg and Saxton, 1972) can be used
essentially unchanged for theℓp case, with or without rec-
tification, and show experiments giving evidence that re-
covery is roughly equally possible forℓ1, ℓ2, andℓ∞ us-
ing this algorithm; and that half rectification before pool-
ing can make recovery easier. Furthermore, we show that
with a trained initialization, the alternating method com-
pares favorably with the state of the art recovery methods
(for ℓ2 with no rectification) in (Waldspurger et al., 2012;

Candes et al., 2013), which suggests that the above obser-
vations are not an artifcact of the alternating method.

2. Injectivity and Lipschitz stability of
Pooling Operators

This section studies necessary and sufficient conditions
guaranteeing that pooling representations are invertible. It
also computes upper and lower Lipschitz bounds, which
are tight under certain configurations.

Let us first introduce the notation used throughout the pa-
per. LetF = {f1, . . . , fM} be a real frame ofRN , with
M > N . The frameF is organized intoK disjoint blocks
Fk = {fj}j∈Ik , k = 1 . . .K, such thatIk ∩ Ik′ = ∅ and⋃

k Ik = {1 . . .M}. For simplicity, we shall assume that
all the pools have equal size|Ik| = L.

Theℓp pooling operatorPp(x) is defined as the mapping

x 7→ Pp(x) = {‖FT
k x‖p , k = 1 . . .K} . (1)

A related representation, which has gained popularity in
recent deep learning architectures, introduces a point-wise
thresholding before computing theℓp norm. Ifα ∈ RM is
a fixed threshold vector, and(ρα(x))i = max(0, xi − αi),
then theℓp rectified poolingoperatorRp(x) is defined as

x 7→ Rp(x) = {‖ραk
(FT

k x)‖p , k = 1 . . .K} , (2)

whereαk contains the coordinatesIk of α.

We shall measure the stability of the inverse pooling with
the Euclidean distance in the representation space. Given
a distanced(x, x′) in the input space, the Lipschitz bounds
of a given operatorΦ(x) are defined as the constants0 ≤
A ≤ B such that

∀ x , x′ , Ad(x, x′) ≤ ‖Φ(x)− Φ(x′)‖2 ≤ Bd(x, x′) .

In the remainder of the paper, given a frameF , we de-
note respectively byλ−(F) andλ+(F) its lower and upper
frame bounds. IfF hasM vectors andΩ ⊂ {1, . . . ,M},
we denoteFΩ the frame obtained by keeping the vectors
indexed inΩ. Finally, we denoteΩc the complement ofΩ.

2.1. Absolute value and Thresholding nonlinearities

In order to study the injectivity of pooling representations,
we first focus on the properties of the operators defined by
the point-wise nonlinearities.

The properties of thephaselessmapping

x 7→ M(x) = {|〈x, fi〉| , i = 1 . . .m} , x ∈ R
n , (3)

have been extensively studied in the literature (Balan et al.,
2006; Balan and Wang, 2013), in part motivated by ap-
plications to speech processing (Achan et al., 2003) or
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X-ray crystallography (Ohlsson, 2013). It is shown in
(Balan et al., 2006) that if m > 2n − 1 then it is possi-
ble to recoverx fromM(x), up to a global sign change. In
particular, (Balan and Wang, 2013) recently characterized
the stability of the phaseless operator, that is summarized
in the following proposition:

Proposition 2.1 ((Balan and Wang, 2013), Theorem 4.3)
LetF = (f1, . . . , fM ) with fi ∈ R

N and
d(x, x′) = min(‖x − x′‖, ‖x + x′‖). The mapping
M(x) = {|〈x, fi〉|}i≤m satisfies

∀x, x′ ∈ R
n , AF d(x, x′) ≤ ‖M(x)−M(x′)‖ ≤ BF d(x, x′) ,

(4)
where

AF = min
Ω⊂{1...M}

√
λ2
−(FΩ) + λ2

−(FΩc) , (5)

BF = λ+(F) . (6)

In particular,M(x) is injective if and only if for any subset
Ω ⊆ {1, . . . ,M}, eitherFΩ or FΩc is an invertible frame.

A frameF satisfying the previous condition is said to be
phase retrievable.

We now turn our attention to the half-rectification operator,
defined as

Mα(x) = ρα(FTx) . (7)

For that purpose, let us introduce some extra notation.
Given a frameF = {f1, . . . , fM}, a subsetΩ ⊂ {1 . . .M}
is admissibleif
⋂

i∈Ω

{x ; 〈x, fi〉 > αi} ∩
⋂

i/∈Ω

{x ; 〈x, fi〉 < αi} 6= ∅ . (8)

We denote byΩ the collection of all admissible sets, and
VΩ the vector space generated byΩ. The following propo-
sition, proved in SectionB, gives a necessary and sufficient
condition for the injectivity of the half-rectification.

Proposition 2.2 LetA0 = minΩ∈Ω λ−(FΩ

∣∣
VΩ

). Then the

half-rectification operatorMα(x) = ρα(FTx) is injective
if and only ifA0 > 0. Moreover, it satisfies

∀x, x′ , A0‖x−x′‖ ≤ ‖Mα(x)−Mα(x
′)‖ ≤ B0‖x−x′‖ ,

(9)
with B0 = maxΩ∈Ω λ+(FΩ) ≤ λ+(F).

The half-rectification has the ability to recover the input
signal, without the global sign ambiguity. The ability to
reconstruct fromMα is thus controlled by the rank of any
matrixFΩ whose columns are taken from a subset belong-
ing toΩ. In particular, ifα ≡ 0, sinceΩ ∈ Ω ⇒ Ωc ∈ Ω, it
results thatm ≥ 2n is necessary in order to haveA0 > 0.

The rectified linear operator creates a partition of the in-
put space into polytopes, defined by (8), and computes a
linear operator on each of these regions. A given inputx
activates a setΩx ∈ Ω, encoded by the sign of the linear
measurements〈x, fi〉 − αi.

As opposed to the absolute value operator, the inverse of
Mα, whenever it exists, can be computed directly by lo-
cally inverting a linear operator. Indeed, the coordinatesof
Mα(x) satisfyingMα(x)j > αj form a sets(x), which
defines a linear modelFs(x) which is invertible ifA0 > 0.

In order to compare the stability of the half-rectification
versus the full rectification, one can modifyMα so that it
mapsx and−x to the same point. If one considers

M̃α(x) =

{
Mα(x) if λ−(Fs(x)) > λ−(Fs(x)c) ,

M−α(−x) otherwise.

thenM̃α satisfies the following:

Corollary 2.3

∀x, x′ ∈ R
n , Ã d(x, x′) ≤ ‖M̃α(x)−M̃α(x

′)‖ ≤ B̃ d(x, x′) ,
(10)

with

Ã = min
Ω⊂Ω

max(λ2
−(FΩ), λ

2
−(FΩc)) , (11)

B̃ = max
Ω⊂Ω

λ+(FΩ) ≤ λ+(F) , (12)

andd(x, x′) = min(x − x′, x + x′), soÃ ≥ 2−1/2A and
B̃ ≤ B. In particular, if M is invertible, so isM̃α.

It results that the bi-Lipschitz bounds of the half-
rectification operator, when considered in under the equiva-
lencex ∼ −x, are controlled by the bounds of the absolute
value operator, up to a factor2−1/2. However, the lower
Lipschitz bound (11) consists in a minimum taken over a
much smaller family of elements than in (5).

2.2. ℓp Pooling

We give bi-Lipschitz constants of theℓp Pooling andℓp
rectified Pooling operators forp = 1, 2,∞.

From its definition, it follows that pooling operatorsPp and
Rp can be expressed respectively as a function of phase-
less and half-rectified operators, which implies that for the
pooling to be invertible, it is necessary that the absolute
value and rectified operators are invertible too. Naturally,
the converse is not true.

2.2.1.ℓ2 POOLING

The invertibility conditions of theℓ2 pooling representation
have been recently studied in (Cahill et al., 2013), where
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the authors obtain necessary and sufficient conditions on
the frameF . We shall now generalize those results, and
derive bi-Lipschiz bounds.

Let us define

Q2 =
{
(UkFk)k≤K ; ∀ k ≤ K , Uk ∈ R

d×d , UT
k Uk = Id

}
.

(13)
Q2 thus contains all the orthogonal bases of each subspace
Fk.

The following proposition, proved in sectionB, computes
upper and lower bounds of the Lipschitz constants ofP2.

Proposition 2.4 Theℓ2 pooling operatorP2 satisfies

∀ x, x′; , A2d(x, x
′) ≤ ‖P2(x)− P2(x

′)‖ ≤ B2d(x, x
′) ,

(14)
where

A2 = min
F ′∈Q2

min
Ω⊂{1...M}

√
λ2
−(F ′

Ω) + λ2
−(F ′

Ωc) ,

B2 = λ+(F) . (15)

This proposition thus generalizes the results from
(Cahill et al., 2013), since it shows thatA2 > 0 not only
controls whenP2 is invertible, but also controls the stabil-
ity of the inverse mapping.

We also consider the rectifiedℓ2 pooling case. For simplic-
ity, we shall concentrate in the case where the pools have
dimensiond = 2. For that purpose, for eachx, x′, we con-
sider a modification of the familiesQ2, by replacing each
sub-frameFk byFIk∩s(x)∩s(x′), that we denotẽQ2,x,x′.

Corollary 2.5 Let d = 2, and setp(x, x′) = s(x) ∪
s(x′)\(s(x) ∩ s(x′)). Then the rectifiedℓ2 pooling oper-
atorR2 satisfies

∀ x, x′; , Ã2d(x, x
′) ≤ ‖R2(x)−R2(x

′)‖ ≤ B2d(x, x
′) ,

(16)
where

Ã2 = inf
x,x′

min
F ′∈Q̃2,x,x′

min
Ω⊂s(x)∩s(x′)

(
λ2
−(Fp(x,x′)) +

λ2
−(F ′

Ω) + λ2
−(F ′

Ωc)
)1/2

,

Proposition2.4 and Corollary2.5 give a lower Lipschitz
bound which gives sufficient guarantees for the inversion
of pooling representations. Corollary2.5 indicates that, in
the cased = 2, the lower Lipschitz bounds are sharper
than the non-rectified case, in consistency with the results
of section2.1. The general cased > 2 remains an open
issue.

2.2.2.ℓ∞ POOLING

We give in this section sufficient and necessary conditions
such that the max-pooling operatorP∞ is injective, and we
compute a lower bound of its lower Lipschitz constant.

Givenx ∈ RN , we define theswitchess(x) of x as theK
vector of coordinates in each pool where the maximum is
attained; that is, for eachk ∈ {1, . . . ,K}:

s(x)k = argmax
j∈Ik

|〈x, fj〉|,

and we denote byS the set of all attained switches:
S = {s(x) ; x ∈ RN}. This is a discrete subset of∏

k{1, . . . , Ik}. Givens ∈ S, the set of input signals hav-
ing s(x) = s defines a linear coneCs ⊂ RN :

Cs =
⋂

k≤K

⋂

j∈Ik

{x ; |〈x, fsk 〉| ≥ |〈x, fj〉|} ,

and as a result the input space is divided into a collection
of Voronoi cells defined from linear equations. Restricted
to each coneCs, the max-pooling operator computes the
phaseless mappingM(x) from equation (3) corresponding
toFs = (fs1 , . . . , fsK ).

Given vectorsu andv, as usual, set the angleθ(u, v) =

arccos
(

|〈u,v〉|
‖u‖‖v‖

)
. For eachs, s′ ∈ S such thatCs∩Cs′ = ∅

and for eachΩ ⊂ {1 . . .K}, we define

β(s, s′,Ω) = min
u∈Fs

∣∣∣
Ω
(Cs) v∈Fs′

∣∣∣
Ω
(Cs′)

θ(u, v).

This is a modified first principal angle between the sub-
spacesFs

∣∣
Ω

andFs′
∣∣
Ω

, where the infimum is taken only
on the directions included in the respective cones. Set
Λs,s′,Ω = λ−(F

∣∣
Ω
) · sin(β(s, s′,Ω)).

Givens, s′, we also defineJ (s, s′) = {k ; sk = s′k}. Re-
call L is the size of each pool. Set

A(s, s′) =
{

min
Ω⊆J (s,s′)

λ2
−(FΩ) + λ2

−(FJ−Ω) +

1

4L
min

Ω⊆J (s,s′)c
Λ2
s,s′,Ω + Λ2

s,s′,Ωc

}1/2

.

The following proposition, proved in sectionB, gives a
lower Lipschitz bound of the max-pooling operator.

Proposition 2.6 For all x andx′, the max-pooling opera-
tor P∞ satisfies

d(x, x′)

(
min
s,s′

A(s, s′)

)
≤ ‖P∞(x) − P∞(x′)‖, (17)

whered(x, x′) = min(‖x− x′‖, ‖x+ x′‖).
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Propostion2.6shows that the lower Lipschitz bound is con-
trolled by two different phenomena. The first one depends
upon how the cones corresponding to disjoint switches are
aligned, whereas the second one depends on the internal
incoherence of each frameFJ (s,s′). One may ask how do
these constants evolve in different asymptotic regimes. For
example, if one lets the number of poolsK be fixed but in-
creases the size of each pool by increasingM . In that case,
the set of possible switchesS increases, and each coneCs
gets smaller. The bound corresponding toCs ∩ Cs′ 6= ∅
decreases since the infimum is taken over a larger family.
However, as the conesCs become smaller, the likelihood
that any pairx 6= x′ share the same switches decreases,
thus giving more importance to the caseCs ∩ Cs′ = ∅.
Although the ratio 1

L decreases, the lower frame bounds
λ−(FΩ)

2, λ−(FΩc)2 will in general increase linearly with
L. The lower bound will thus mainly be driven by the prin-
cipal anglesβ(s, s′,Ω). Although the minimum in (28) is
taken over a larger family, each angle is computed over a
smaller region of the space, suggesting that one can indeed
increase the size of each pool without compromising the
injectivity of the max-pooling.

Another asymptotic regime considers pools of fixed size
L and increases the number of poolsK. In that case,
the bound increases as long as the principal angles remain
lower bounded.

We also consider the stability of max-pooling with a half-
rectification. By redefining the switchess(x) accordingly:

s(x) = {j ; 〈x, fj〉+αj > max(0, 〈x, fj′〉+αj′ ; ∀ j′ ∈ pool(j)} ,
(18)

the following proposition, proved in sectionB, computes a
lower bound of the Lipschitz constant ofR∞.

Corollary 2.7 The rectified max-pooling operatorR∞ sat-
isfies

∀x, x′ , ‖x− x′‖min
s,s′

A(s, s′) ≤ ‖R∞(x) −R∞(x′)‖ ,

(19)
with

A(s, s′) =
{
λ2
−(FJ (s,s′)) +

1

4L
Λ2
s,s′,J (s,s′)c

}1/2

defined using the conesCs obtained from (18).

2.2.3.ℓ1 POOLING AND MAX -OUT

Propostion2.6 can be used to obtain a bound of the lower
Lipschitz constant of theℓ1 pooling operator, as well as
the Maxout operator (Goodfellow et al., 2013); see section
B.4.2in the supplementary material.

2.3. Random Pooling Operators

What is the minimum amount of redundancy needed to in-
vert a pooling operator? As in previous works on com-
pressed sensing (Candes and Tao, 2004) and phase recov-
ery (Balan et al., 2006), one may address this question by
studying random pooling operators. In this case, the lower
Lipschitz bounds derived in previous sections can be shown
to be positive with probability1 given appropriate parame-
tersK andL.

The following proposition, proved in AppendixB, analyzes
the invertibility of a generic pooling operator constructed
from random measurements. We consider a frameF where
itsM columns are iid Gaussian vectors ofRN .

Proposition 2.8 LetF = (f1, . . . , fM ) be a random frame
of RN , organized intoK disjoint pools of dimensionL.
With probability1 Pp is injective (modulox ∼ −x) if K ≥
4N for p = 1,∞ and ifK ≥ 2N − 1 for p = 2.

The size of the poolsL does not influence the injectivity of
random pooling, but it affects the stability of the inverse,as
shown in proposition2.6. The half-rectified case requires
extra care, since the set of admissible switchesΩ might
contain frames withM < N columns with non-zero prob-
ability, and is not considered in the present work.

3. Numerical Experiments

Our main goal in this section is to experimentally compare
the invertibility of ℓp pooling forp ∈ {1, 2,∞}, with and
without rectification. Unlike in the previous sections, we
will not consider the Lipschitz bounds, as we do not know
a good way to measure these experimentally. Our experi-
ments suggest that recovery is roughly the same difficulty
for p = 1, 2,∞, and that rectification makes recovery eas-
ier.

In theℓ2 case without rectification, and withd = 2, a grow-
ing body of works (Candes et al., 2013; Waldspurger et al.,
2012) describe how to invert the pooling operator. This is
often called phase recovery. A problem for us is a lack
of a standard algorithm whenp 6= 2 or with rectification.
We will see that the simple alternating minimization algo-
rithm of (Gerchberg and Saxton, 1972) can be adapted to
these situations. However, alternating minimization with
random initialization is known to be an inferior recovery
algorithm forp = 2, and so any conclusions we will draw
about ease of recovery will be tainted, as we would be test-
ing whether the algorithm is equally bad in the various situ-
ations, rather than if the problems are equally hard. We will
show that in certain cases, a training set allows us to find a
good initialization for the alternating minimization, leading
to excellent recovery performance, and that in this setting,
or the random setting, recovery via alternating minimiza-
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tion is roughly as succesful for each of thep, suggesting
invertibility is equally hard for eachp. In the same way,
we will see evidence that half rectification before pooling
makes recovery easier.

3.1. Recovery Algorithms

3.1.1. ALTERNATING MINIMIZATION

A greedy method for recovering the phase from
the modulus of complex measurements is given in
(Gerchberg and Saxton, 1972); this method naturally ex-
tends to the case at hand. As above, denote the frame
{f1, ..., fM} = F , let Fk be the frame vectors in thekth
block, and setIk to be the indices of thekth block. Let
F (−1) be the pseudoinverse ofF ; set(Pp(x))k = ||Fkx||p.
Starting with an initial signalx0, update

1. y(n)Ik
= (Pp(x))k

Fkx
(n)

||Fkx(n)||p
, k = 1 . . .K,

2. x(n+1) = F (−1)y(n).

This approach is not, as far as we know, guarantee to con-
verge to the correct solution, even whenPp is invertible.
However, in practice, if the inversion is easy enough, or if
x0 is close to the true solution, the method can work well.
Moreover, this algorithm can be run essentially unchanged
for eachℓp; for half rectification, we only use the nonega-
tive entries iny for reconstruction.

In the experiments below, we will use random, Gaussian
i.i.d. F , but also we will use the outputs of dictionary learn-
ing with block sparsity. TheF generated this way is not
really a frame, as the condition number of a trained dictio-
nary on real data is often very high. In this case, we will
renormalize each data point to have norm1, and modify the
updatex(n+1) = F (−1)y(n) to

2. x(n+1) = arg min
||x||2=1

||Fx− y(n)||2.

In practice, this modification might not always be possible,
since the norm‖x‖ is not explicitly presented inPp. How-
ever, in the classical setting of Fourier measurements and
positivex, this information is available. Moreover, our em-
pirical experience has been that using this regularizationon
well conditioned analysis dictionaries offers no benefit; in
particular, it gives no benefit with random analysis matri-
ces.

3.1.2. PHASELIFT AND PHASECUT

Two recent algorithms (Candes et al., 2013) and
(Waldspurger et al., 2012) are guaranteed with high
probability to solve the (classical) problem of recovering
the phase of a complex signal from its modulus, given
enough random measurements. In practice both perform

better than the greedy alternating minimization. However,
it is not obvious to us how to adapt these algorithms to the
ℓp setting.

3.1.3. NEAREST NEIGHBORS REGRESSION

We would like to use the same basic algorithm for all set-
tings to get an idea of the relative difficulty of the recovery
problem for differentp, but also would like an algorithm
with good recovery performance. If our algorithm simply
returns poor results in each case, differences between the
cases might be masked.

The alternating minimization can be very effective when
well initialized. When given a training set of the data to re-
cover, we use a simple regression to findx0. Fix a number
of neighborsq (in the experiments below we useq = 10,
and supposeX is the training set). SetG = Pp(X),
and for a new pointx to recover fromPp(x), find theq
nearest neighbors inG of Pp(x), and take their princi-
pal component to serve asx0 in the alternating minimiza-
tion algorithm. We use the fast neighbor searcher from
(Vedaldi and Fulkerson, 2008) to accelerate the search.

3.2. Experiments

We discuss results on the MNIST dataset, available at
http://yann.lecun.com/exdb/mnist/, and on
16 × 16 patches drawn from the VOC dataset, avail-
able at http://pascallin.ecs.soton.ac.uk/
challenges/VOC/voc2012/. For each of these data
sets, we run experiments with random dictionaries and
adapted dictionaries. We also run experiments where the
data and the dictionary are both Gaussian i.i.d.; in this case,
we do not use adapted dictionaries.

The basic setup of the experiments in each case is the
same: we vary the number of measurements (that is, num-
ber of pools) over some range, and attempt to recover the
original signal from theℓp pooled measurements, using
various methods. We record the average angle between
the recovered signalr and the originalx, that is, we use
|rTx|2/(||r||2||x||2) as the measure of success in recovery.

In each case the random analysis dictionaryF is built by
fixing a size parameterm, and generating a Gaussian i.i.d.
matrix F0 of size2m × n, wheren = 100 for MNIST,
andn = 256 for VOC. Each pair of rows ofF0 is then
orthogonalized to obtainF ; that is we use groups of size
2, where the pair of elements in each group are orthogonal.
This allows us to use standard phase recovery software in
theℓ2 case to get a baseline. We used the ADMM version
of phaselift from (Ohlsson et al., 2012) and the phasecut
algorithm of (Waldspurger et al., 2012). For all of our data
sets, the latter gave better results (note that phasecut can
explicitly use the fact that the solution to the problem is

http://yann.lecun.com/exdb/mnist/
http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2012/
http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2012/
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real, whereas that version of phaselift cannot), so we report
only the phasecut results.

In the experiments with adapted dictionaries, the dictionary
is built using block OMP and batch updates with a K-SVD
type update (Aharon et al., 2006); in this case,F is the
transpose of the learned dictionary. We again use groups
of size2 in the adapted dictionary experiments.

We run two sets of experiments with Gaussian i.i.d. data
and dictionaries, withn = 20 andn = 40. We considerm
in the range fromn/2 to 8n. On this data set, phaselift out-
performs alternating minimization; see the supplementary
material.

For MNIST, we use the standard training set projected to
R100 via PCA, and we let the number of dictionary ele-
ments range from 60 to 600 (that is, 30 to 300 measure-
ments). On this data set, alternating minimization with
nearest neighbor initialization gives exact reconstruction by
130 measurements; for comparison, Phaselift atm = 130
has mean square angle of.48; see the supplementary mate-
rial.

We draw approximately 5 million16× 16 grayscale image
patches from the PASCAL VOC data set; these are sorted
by variance, and the largest variance 1 million are kept.
The mean is removed from each patch. These are split into
a training set of 900000 patches and a test set of 100000
patches. In this experiment, we letm range from 30 to 830.
On this data set, bym = 330 measurements, alternating
minimization with nearest neighbor initialization recovers
mean angle of.97; for comparison, Phaselift atm = 330
has mean angle of.39; see the supplementary material.

3.3. Analysis

The experiments show (see figures1 and2) that:

• For every data set, with random initializations and dic-
tionaries, recovery is easier with half rectification be-
fore pooling than without (green vs dark blue in fig-
ures).

• ℓ∞, ℓ1, andℓ2 pooling appear roughly the same diffi-
culty to invert, regardless of algorithm (each column
of figures, corresponding to anℓp, is essentially the
same).

• Good initialization improves performance; indeed, al-
ternating minimization with nearest neighbor regres-
sion outperforms phaselift and phasecut (which of
course do not have the luxury of samples from the
prior, as the regressor does). We believe this of in-
dependent interest.

• Adapted analysis “frames” (with regularization) are
easier to invert than random analysis frames, with or

without regularization (the bottom row of each pair of
graphs vs the top row of each pair in Figure2).

Each of these conclusions is unfortunately only true up to
the optimization method- it may be true that a different op-
timizer will lead to different results. With learned initial-
izations and alternating minimization, recovery results can
be better without half rectification. Note this is only up un-
til the point where the alternating minimization gets better
than the learned initialization without any refinement, and
is especially true for random dictionaries. The simple inter-
pretation is that the reconstruction step 2 of the alternating
minimization just does not have a large enough span with
roughly half the entries removed; that is, this is an effect
of the optimization, not of the difference between the diffi-
culty of the problems.

4. Conclusion

We have studied conditions under which neural network
layers of the form (1) and (2) preserve signal information.
As one could expect, recovery from pooling measurements
is only guaranteed under large enough redundancy and con-
figurations of the subspaces, which depend upon whichℓp
is considered. We have proved conditions which bound the
lower Lipschitz constants for these layers, giving quantita-
tive descriptions of how much information they preserve.
Furthermore, we have given conditions under which mod-
ules with random filters are invertible. We have also given
experimental evidence that for both random and adapted
modules, it is roughly as easy to invertℓp pooling with
p = 1, 2, and∞; and shown that when given training
data, alternating minimization gives state of the art phase
recovery with a regressed initialization.

However, we are not anywhere near where we would like to
be in understanding these systems, or even the invertibility
of the layers of these systems. This work gives little direct
help to a practicioner asking the question “how should I
design my network?”. In particular, our results just barely
touch on the distribution of the data; but the experiments
make it clear (see also (Ohlsson et al., 2012)) that knowing
more information about the data changes the invertibility of
the mappings. Moreover, preservation of information needs
to be balanced against invariance, and the tension between
these is not discussed in this work. Even in the setting of
this work, without consideration of the data distribution or
tension with invariance, Proposition2.4 although tight, is
not easy to use, and even though we are able to use2.6 to
get an invertibility result, it is probably not tight.

This work also shows there is much research to do in the
field of algorithmic phase recovery. What are correct al-
gorithms forℓp inversion, perhaps with half rectification?
How can we best use knowledge of the data distribution
for phase recovery, even for the well studiedℓ2 case? Is
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Figure 1.Average recovery angle using alternating projections on random data; eachx is Gaussian i.i.d. inR40. The vertical axis
measures the average value of|rTx|2/(||r||2||x||2), wherer is the recovered vector, over 50 random test points. The horizontal axis
is the number of measurements (the sizem of the analysis dictionary is twice thex axis in this experiment). The leftmost figure isℓ1
pooling, the middleℓ2, and the right max pooling. The dark blue curve is alternating minimization, and the green curve is alternating
minimization with half rectification; both with random initialization.

it possible to guarantee that a well initialized alternating
minimization converges to the correct solution?
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(a) MNIST, random filters
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(b) MNIST, adapted filters
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(c) Image patches, random filters
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(d) Image patches, adapted filters

Figure 2.Average recovery angle using alternating projections on image patch data points. The vertical axis measures the average value
of |rTx|2/(||r||2||x||2), wherer is the recovered vector, over 50 random test points. The horizontal axis is the number of measurements
(the size of the analysis dictionary is twice thex axis in this experiment). The leftmost figure isℓ1 pooling, the middleℓ2, and the
right max pooling. In the top row of each pair of rows the analysis dictionary is Gaussian i.i.d.; in the bottom row of each pair of rows,
it is generated by block OMP/KSVD with5 nozero blocks of size 2. The dark blue curve is alternating minimization, and the green
curve is alternating minimization with half rectification;both with random initialization. The magenta and yellow curves are the nearest
neighbor regressor described in3.1.3without and with rectification; and the red and aqua curves are alternating minimization initialized
via neighbor regression, without and with rectification. See Section3.3for a discussion of the figures.
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A. Comparison between phaselift and the
various alternating minimization
algorithms

Here we give a brief comparison between the phaselift al-
gorithm and the algorithms we use in the main text. Our
main goal is to show that the similarities between theℓ1,
ℓ2, ℓ∞ recovery results are not just due to the alternat-
ing minimization algorithm performing poorly on all three
tasks; however we feel that the quality of the recovery with
a regressed initialization is interesting in itself, especially
considering that it is much faster than either phaselift or
phasecut.

In figures3, and4 we compare phaselift against alternat-
ing minimization with a random initialization and alternat-
ing minimization with a nearest neghbor/locally linear re-
gressed initialization. Because we are comparing against
phasecut, here we only show inversion ofℓ2 pooling.

In figure of3, we use random data and a random dictionary.
As the data has no structure, we only compare against ran-
dom initialization, with and without half rectification. We
can see from figure3 in this case, where we do not know
a good way to initialize the alternating minimization, alter-
nating minimization is significantly worse than phasecut.
On the other hand, recovery after rectified pooling with al-
ternating minimization does almost as well as phasecut.

In the examples where we have training data, shown in
figure 4, alternating minimization with the nearest neigh-
bor regressor (red curve) performs significantly better than
phasecut (green and blue curves). Of course phasecut does
not get the knowledge of the data distribution used to gen-
erate the regressor.
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Figure 3.Average recovery angle using phaselift and alternating
minimization on random data, Gaussian i.i.d. points inR

40. The
blue curve is phaselift followed by alternating minimization; the
green curve is alternating minimization, and the red is alternating
minimization on pooling following half rectification.
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Figure 4.Average recovery angle using phaselift and alternating
minimization on MNIST and patches data sets. Top: MNIST dig-
its, projected via PCA toR100. Bottom: 16x16 image patches
with mean removed. The red curve is alternating minimization
with nearest neighbor initialization, the green is alternating min-
imization initialized by phasecut (this is the recommendedusage
of phasecut), the blue is phasecut with no alternating minimiza-
tion, and the aqua is alternating minimization with a randomini-
tialization.
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B. Proofs of results in Section 2

B.1. Proof of Proposition 2.2

Let us first show thatA0 > 0 is sufficient to construct an
inverse ofMα. Letx ∈ RN . By definition, the coordinates
of Mα(x) > α correspond to

s(x) = {i s.t. 〈x, fi〉 > αi} ⊂ {1, . . . ,M} ,

which in particular implies thatx is known to lie inVS(x),
the subspace generated bys(x). But the restrictionFs(x)

is a linear operator, which can be inverted inVS as long as
λ−(Fs(x)

∣∣
VS

) ≥ A0 > 0.

Let us now show thatA0 > 0 is also necessary. Let us
suppose that for someS, FS is such thatλ−(FS

∣∣
VS

) = 0.
It results that there existsη ∈ VS such that‖η‖ > 0 but
‖FSη‖ = 0. SinceS is a cone, we can findx ∈ S and
ǫ 6= 0 small enough such thatx + ǫe ∈ S. It results that
Mα(x) = Mα(x + ǫe) which implies thatMα cannot be
injective.

Finally, let us prove (9). If x, x′ are such thatS = s(x) =
s(x′), then

‖Mα(x)−Mα(x
′)‖ = ‖FS(x− x′)‖ ≥ A0(x− x′) .

If s(x) 6= s(x′), we have that|Mα(x)i−Mα(x
′)i| = |〈x−

x′, fi〉| if i ∈ s(x) ∩ s(x′) and |Mα(x)i − Mα(x
′)i| ≥

|〈x−x′, fi〉| if i ∈ s(x)∪ s(x′), i /∈ s(x)∩ s(x′). It results
that

‖Mα(x)−Mα(x
′)‖ ≥ ‖Fs(x)∪s(x′)(x−x′)‖ ≥ A0‖x−x′‖ .

�.

B.2. Proof of Proposition 2.4

The upper Lipschitz bound is obtained by observing that,
in dimensiond,

∀ y ∈ R
d , ‖y‖1 ≤

√
d‖y‖2 , ‖y‖∞ ≤ d‖y‖2 .

It results that

‖Pp(x) − Pp(x
′)‖ ≤ αp‖P2(x) − P2(x

′)‖ (20)

= αp‖M(x)−M(x′)‖ ≤ αpλ+(F) .

Let us now concentrate on the lower Lipschitz bound.
Givenx, x′ ∈ Rn, we first consider a rotatioñFk on each
subspaceFk such that〈x, f̃k,j〉 = 〈x′, f̃k,j〉 = 0 for j > 2,
which always exists. If now we modifỹFk by applying a
rotation of the remaining two-dimensional subspace such
thatx andx′ are bisected, one can verify that

(‖Fkx‖2 − ‖Fkx
′‖2)2 = (‖F̃kx‖2 − ‖F̃kx

′‖2)2
= (|〈x, f̃k,1〉| − |〈x′, f̃k,1〉|)2

+(|〈x, f̃k,2〉| − |〈x′, f̃k,2〉|)2 ,

which implies, by denotingM(x) = (|〈x, f̃k,j〉|)k,j , that
‖P2(x) − P2(x

′)‖ = ‖M(x)−M(x′)‖. SinceF̃ ∈ Q2, it
results from Proposition2.1that

‖P2(x) − P2(x
′)‖ ≥ d(x, x′) min

S⊂{1...m}

√
λ2
−(F̃S) + λ2

−(F̃Sc)

≥ d(x, x′)A2 �. (21)

B.3. Proof of Corollary 2.5

Givenx, x′, let I denote the groupsIk, k ≤ K such that
Sx ∩ Sx′ ∩ Ik = Ik. It results that

‖Rp(x)−Rp(x
′)‖2

=
∑

k∈I

|Rp(x)k −Rp(x
′)k|2 +

∑

k/∈I

|Rp(x)k −Rp(x
′)k|2

≥
∑

k∈I

|Rp(x)k−Rp(x
′)k|2+

∑

k/∈I

(‖M0(x)
∣∣
Ik
−M0(x

′)
∣∣
Ik
‖)2.

On the groups inI we can apply the same arguments as
in theorem2.4, and hence find a framẽF from the family
Q̃p,x,x′ such that

‖Rp(x)−Rp(x
′)‖I = ‖M(x)−M(x′)‖ ,

with M(x) = (|〈x, f̃k,j〉|)k∈I,j and {f̃k,j} ∈ Q̃p,x,x′.
Then, by following the same arguments used previously,
it results from the definition of̃Ap that

‖Rp(x)−Rp(x
′)‖ ≥ Ãpd(x, x

′) .

Finally, the upper Lipschitz bound is obtained by noting
that

‖Mα(x)−Mα(x
′)‖ ≤ ‖F(x− x′)‖ ,

and using the same argument as in (20) �.

B.4. Proof of Proposition 2.6

Let x, x′ ∈ RN , and letJ = s(x) ∩ s(x′). Suppose
first that Cs(x) ∩ Cs(x′) 6= ∅. Since‖P∞x − P∞‖ ≥
‖|Fsx| − |Fsx′|

∣∣
J
‖, it results that

d(x, x′)As(x),s(x′) ≤ ‖P∞x− P∞x′‖ (22)

by Proposition2.1and by definition (??).

Let us now supposeCs(x) ∩Cs(x′) = ∅, and letz = P∞x−
P∞x′. It results thatz = |Fs(x)x| − |Fs(x′)x

′| ∈ RK ,
and hence we can split the coordinates(1 . . .K) intoΩ, Ωc

such that

z
∣∣
Ω

= Fs(x)

∣∣
Ω
(x)−Fs(x′)

∣∣
Ω
(x′) ,

z
∣∣
Ωc = Fs(x)

∣∣
Ωc(x) + Fs(x′)

∣∣
Ωc(x

′) .
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We shall concentrate in each restriction independently.
SinceFs(x′)

∣∣
Ω
(x′) ∈ Fs(x′)

∣∣
Ω
(Cs(x′)), it results that

‖z
∣∣
Ω
‖ ≥ inf

y∈Fs(x′)

∣∣∣
Ω

‖Fs(x)

∣∣
Ω
(x)− y‖

≥ ‖Fs(x)

∣∣
Ω
(x)‖ · | sin(β(s(x), s(x′),Ω))| .(23)

Since by definition

∀ k ,
∑

j∈Ik

|〈x, fj〉|2 ≤ 1

|Ik|
|〈x, fs(x)k〉|2 ,

it results, assuming without loss of generality that all pools
have equal size (|Ik| = M

K ),

∀ x ∈ Cs , ‖Fs(x)

∣∣
Ω
(x)‖ ≥

√
K

M
‖F

∣∣
Ω
(x)‖

≥
√

K

M
λ−(F

∣∣
Ω
)‖x‖ .(24)

Equivalently, sinceFs(x)

∣∣
Ω
(x) ∈ Fs(x)

∣∣
Ω
(Cs(x)) we also

have

‖z
∣∣
Ω
‖ ≥

√
K

M
λ−(F

∣∣
Ω
) · |sin(β(s(x), s(x′),Ω))| · ‖x′‖ .

(25)
It follows that

‖z
∣∣
Ω
‖ ≥

√
K

M
λ−(F

∣∣
Ω
) |sin(β(s(x), s(x′),Ω))|max(‖x‖, ‖x′‖)

≥
√

K

4M
λ−(F

∣∣
Ω
) |sin(β(s(x), s(x′),Ω))| d(x, x′) . (26)

By aggregating the bound forΩ andΩc we obtain (28) �.

B.4.1. MAXOUT

These results easily extend to the so-called Maxout opera-
tor (Goodfellow et al., 2013), defined asx 7→ MO(x) =
{maxj∈Ik〈x, fj〉 ; k = 1 . . .K}. By redefining the
switches ofx as

s(x) = {j ; 〈x, fj〉 > max(〈x, fj′ 〉 ; ∀ j′ ∈ pool(j)} ,
(27)

the following corollary computes a Lower Lipschitz bound
of MO(x):

Corollary B.1 The Maxout operatorMO satisfies (19)
with A(s, s′) defined using the switches (27).

B.4.2.ℓ1 POOLING

Propostion2.6 can be used to obtain a bound of the lower
Lipschitz constant of theℓ1 pooling operator.

Observe that forx ∈ Rn,

‖x‖1 =
∑

i

|xi| = max
ǫi=±1

|〈x, ǫ〉| .

It results thatP1(x;F) ≡ P∞(x; F̃), with

F̃ = (f̃k,ǫ =
∑

i

ǫ(i)fk,i ; k = 1 . . . ,K ; ǫ ∈ {−1, 1}L} .

Each poolF̃k can be rewritten as̃Fk = HLFk, whereHL

is theL × 2L Hadamard matrix whose rows contain theǫ
vectors. One can verify thatHT

LHL = 2L1, which implies

that for anyΩ ⊆ {1 . . .K}, λ−(F̃
∣∣∣
Ω
) = 2L/2λ−(F

∣∣
Ω
). It

results that

Corollary B.2 Theℓ1 pooling operatorP1 satisfies

∀x, x′ , d(x, x′)

(
min
s,s′

Ã(s, s′)

)
≤ ‖P1(x)− P1(x

′)‖ ,
(28)

whered(x, x′) = min(‖x− x′‖, ‖x+ x′‖) and

Ã(s, s′) = max
{

min
Ω⊆J (s,s′)

√
λ2
−(F̃Ω) + λ2

−(F̃J−Ω) ,

1

2
min

Ω⊆{1...K}

√
Λ2
s,s′,Ω + Λ2

s,s′,Ωc

}
,

with s, s′ andβ(s, s′) are defined on the framẽF .

Similarly as in Corollary2.7, one can obtain a similar
bound for the Rectifiedℓ1 pooling.

B.5. Proof of Corollaries 2.7 and B.1

The result follows immediately from Proposition2.6, by
replacing the phaseless invertibility condition of Propostion
2.1by the one in Proposition2.2. �.

B.6. Proof of Proposition 2.8

Proposition2.8also extends to the maxout case. We restate
it here with the extra result:

Proposition B.3 Let F = (f1, . . . , fM ) be a random
frame ofRN , organized intoK disjoint pools of dimension
L. Then these statements hold with probability1:

1. Pp is injective (modulox ∼ −x) if K ≥ 4N for p =
1,∞, and ifK ≥ 2N − 1 for p = 2.

2. The Maxout operatorMO is injective ifK ≥ 2N+1.

Let us first prove (i), withp = ∞. Let x, x′ ∈ RN such
that P∞(x) = P∞(x′), and lets = s(x), s′ = s(x′).
The set ofK pooling measurements is divided into the in-
tersectionJ (s, s′) = {k ; s(x)k = s(x′)k} and its com-
plementJ (s, s′)c = {k ; s(x)k 6= s(x′)k}. Suppose first
that |J (s, s′)| ≥ 2N − 1. Then it results that we can pick

d = ⌈ |J (s,s′)|
2 ⌉ ≥ N elements ofJ (s, s′) to form a frame
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V , such that eitherx − x′ ∈ Ker(V ) or x + x ∈ Ker(V ).
Since a random frame of dimension≥ N spansRN with
probability1, it results thatx = ±x′. Suppose otherwise
that |J (s, s′)| < 2N − 1. It follows that |J (s, s′)c| ≥
2N + 1, and hence that any partition ofJ (s, s′)c into two
frames will contain always a frameF

∣∣
Ω

with at leastN+1
columns. Since two random subspaces of dimensionN in
RM have nonzero largest principal angle with probability
1 as long asK > N , it results thatΛs,s′,Ω > 0 and hence
that Prob(|P∞(x)

∣∣
J (s,s′)c

| = |P∞(x′)
∣∣
J (s,s′)c

|) = 0. The
casep = 1 is proved identically thanks to CorollaryB.2.

Finally, in order to prove (ii) we follow the same strategy.
If |J (s, s′)| ≥ N , thenMO(x) = MO(x′) ⇒ x = x′

with probability1 sinceF
∣∣
J

spansRN with probability1.
Otherwise it results that|J (s, s′)c| ≥ N + 1, which im-
pliesMO(x) 6= MO(x′), since two random subspaces of
dimensionN in R|J (s,s′)c| have0 intersection with proba-
bility 1.

Let us now prove the casep = 2. We start drawing a ran-
dom basis for each of the poolsF1, . . . , FK . From propo-
sition2.4, it follows that we have to check that ifM ≥ 2N ,
the quantity

min
F ′=U F ,UTU=1

min
Ω⊆{1...M}

λ2
−(F

′
Ω) + λ2

−(F
′
Omegac) > 0

with probability1. If M ≥ 2N − 1, it follows that either
Ω has the property that it intersects at leastN pools, either
Ωc intersectsN pools. Say it isΩ. Now, for each pool with
nonzero intersection, sayFk, we have that

‖(F ′
k)

T y‖ ≥ 1√
(L)

|〈fk,j , y〉|

for somefk,j belonging to the initial random basis ofFk.
It results that

λ2
−(F

′
Ω) ≥

1√
(L)

λ2
−(F

∗) ,

whereF ∗ is a subset ofN columns of the original frame
F , which means

λ2
−(F

′
Ω) ≥

1√
(L)

λ2
−(F∗) > 0 .

�.

C. Notes on changes from cycle 1

The mathematical results have been essentially rewritten,
for clarity as well as to sharpen the bounds. The proofs are
now in the supplementary material, as requested by the re-
viewers. We have used the extra space to expand the indro-
duction, conclusion, and intro to the experiments, in part to

to explain the connections between the theoretical and ex-
perimental parts of the paper, as requested by the reviewers.
We also added results on the invertibility of random mod-
ules.

We have edited the text in the experiments section and in
the captions of the figures to clarify them. Each curve is
described in the caption and the text; the graphs are also
now specifically referenced in the analysis bullets in section
3.3.

The introduction and conclusion more explicitly address
take messages. Note that the take home message is not
of the form “this is how to design a network”, but rather,
“these conditions allow (stable) inversion”. We are sym-
pathetic to the reviewers desire for a take home message
giving insight into the actual design of networks for prac-
tical applications. That is, of course, the ultimate goal of
a mathematical analysis of a learning algorithm. However,
if the standard for theoretical papers analyzing deep mod-
els is that they lead immediately to design suggestions with
associated performance increases on benchmarks, it is un-
likely that there will ever be a mature enough theory to give
honest design suggestions.

Finally, we reprint larger versions of the figures below.
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Figure 5.Average recovery angle using alternating projections on random data. The vertical axis measures the average value of
|rTx|2/(||r||2||x||2) over 50 random test points. The horizontal axis is the numberof measurements (the sizem of the analysis
dictionary is twice thex axis in this experiment). The top row isℓ1 pooling, the middleℓ2, and the bottom max pooling. In the left
column eachx is Gaussian i.i.d. inR20, on the right, inR40. The dark blue curve is alternating minimization, and the green curve is
alternating minimization with half rectification; both with random initialization.
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Figure 6.Average recovery angle using alternating projections on MNIST data points. The vertical axis measures the average value of
|rTx|2/(||r||2||x||2) over 50 random test points. The horizontal axis is the numberof measurements (the size of the analysis dictionary
is twice thex axis in this experiment). The top row isℓ1 pooling, the middleℓ2, and the bottom max pooling. In the left column the
analysis dictionary is Gaussian i.i.d.; in the right column, generated by block OMP/KSVD with5 nozero blocks of size 2. The dark blue
curve is alternating minimization, and the green curve is alternating minimization with half rectification; both with random initialization.
The magenta and yellow curves are the nearest neighbor regressor described in3.1.3without and with rectification ; and the red and
aqua curves are alternating minimization initialized via neighbor regression, without and with rectification.
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Figure 7.Average recovery angle using alternating projections on image patch data points. The vertical axis measures the average
value of|rTx|2/(||r||2||x||2) over 50 random test points. The horizontal axis is the numberof measurements (the size of the analysis
dictionary is twice thex axis in this experiment). The top row isℓ1 pooling, the middleℓ2, and the bottom max pooling. In the left
column the analysis dictionary is Gaussian i.i.d.; in the right column, generated by block OMP/KSVD with5 nozero blocks of size 2.
The dark blue curve is alternating minimization, and the green curve is alternating minimization with half rectification; both with random
initialization. The magenta and yellow curves are the nearest neighbor regressor described in3.1.3without and with rectification; and
the red and aqua curves are alternating minimization initialized via neighbor regression, without and with rectification.
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