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Abstract

Economists do not have reliable measures of current house values, let alone housing re-

turns. This ignorance underlies the illiquidity of mortgage-backed securities, which in turn feeds

back to deepen the sub-prime crisis. Using a massive new data tape of housing transactions

in L.A., we demonstrate systematic patterns in the error associated with using the ubiquitous

repeat sales methodology to understand house values. In all periods, the resulting indices

under-predict sales prices of less expensive homes, and over-predict prices of more expen-

sive homes. The recent period has produced errors that are not only unprecedentedly large in

absolute value, but highly systematic: after a few years in which the indices under-predicted

prices, they now significantly over-predict them. We introduce new machine learning tech-

niques from computer science to correct for prediction errors that have geographic origins. The

results are striking. Accounting for geography significantly reduces the extent of the prediction

error, removes many of the systematic patterns, and results in far less deterioration in model

performance in the recent period.
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1 Introduction

Despite the essential role they have played in the recent economic turmoil, we remain desperately

ignorant of the determinants of housing returns. This ignorance begins at a very primitive level: we

do not even have reliable measures even of current house values, let alone changes in value. Our

current ignorance underlies the illiquidity of mortgage-backed securities, which in turn feeds back

to deepen the current sub-prime crisis.

This paper presents first fruits of a research program in which economists and computer scien-

tists at NYU are looking jointly to push forward our understanding of house prices. Such improved

understanding is vital for those interested in assessing the level of house price risk that the finan-

cial sector is currently bearing in terms of likely default on outstanding mortgages. It is equally vital

in assessing the financial risk is involved in promising use of future taxes to support guarantees

being offered by Fannie Mae and Freddie Mac. Improved modeling of house prices will enable us

to uncover the economic fundamentals impacting their spatio-temporal evolution, as well as the

extent to which individual house price risk can be hedged by index-based securities.

As detailed in section 2, the most important house price measures in current use are based on

the repeat sales methodology, including the ubiquitous Case-Shiller (henceforth CS) index. Using

a massive new data tape of housing transactions in L.A. comprising over 1.5 million transactions

spread over some 25 years , we explore the relevance of this index to valuation of homes that have

not yet been sold, but may be so in a short period. Contrary to the assumption of the underlying

statistical model of house prices, we find systematic patterns in the error term:

• Mean reversion: The index systematically under-predicts future returns on cheaper homes

and over-predicts future returns on expensive homes.

• Patterns over turnover time: Performance deteriorates monotonically as the time between

sales increases, and returns on homes that transact after long periods of time are systemat-

ically over-predicted.

• Patterns by date: In the period Jul:Dec 2007, a period that saw a significant price decline

in LA, we find that the CS model has a systematic over-prediction of prices, having under-

predicted in the previous years. Moreover the errors in the CS model increased dramatically

after 2007.
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In the current work, we show that these systematic patterns in house prices are greatly reduced

when we take explicit account of geography. While the hypothesis that many patterns in returns

have geographic origins is of long standing, practical confirmation has been held back by the

massive computational requirements of models that look to uncover spatio-temporal patterns in

housing returns. It is in regard of working with such massive data tapes that our introduction of

new machine learning techniques from computer science is essential.

The results we derive with our measurement methodology are striking. First, we find that ac-

counting for geography eliminates all patterns in the error term with turnover time. Second, our

spatio-temporal model shows no bias in predicting prices of homes with low initial prices (although

bias remains for high priced homes). There is also less deterioration of the model performance

in the recent period, and far less systematic bias by date. The stark differences between the two

models clearly imply that accounting for geography has first order effects on prediction accuracy

and bias.

Following the literature review of section 2, we outline in section 3 the data tape of housing

transactions in Los Angeles County that we construct for purposes of model estimation. In section

4 we detail the predictive accuracy of the Case-Shiller repeat sales index in this data tape. In

section 5 we summarize the prior literature on the effects of location on house prices. In section 6

we outline our own spatio-temporal model of house prices, while section 7 presents our findings

on the performance of this empirical framework. The results open the door to new research in the

many areas of economics in which house prices play a role, including a wide range of research

programs that focus not only on the determinants of house prices, but also mortgage default, and

systematic patterns of local house prices.

2 Literature Review

2.1 Hedonic Pricing

The hedonic price equation says that the price of a house is a function of its attributes, each

of which has an implicit market price. However, there is no theory directing the researcher to

the theoretically correct functional form for the hedonic equation. Dubin [1998] was the first to

seriously investigate the choice of the functional form. He used the linear Box-Cox transform of
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the hedonic price equation, which is a special case of the following quadratic Box-Cox transform:

P (θ) = α0 +
k∑

i=1

αiZ
(λi)
i +

1
2

k∑
i=1

k∑
j=1

γijZ
(λi)
i Z

(λj)
j ,

where P is the price, Zi are the attributes, and P (θ) and Z
(λi)
i are the Box-Cox transforms as given

below,

P (θ) =
P θ − 1

θ
, θ 6= 0

= ln(P ), θ = 0

Z
(λi)
i =

Zλi
i − 1
λi

, λi 6= 0

= ln(Zi). λi = 0

The linear Box-Cox transform obviously does not involve the quadratic part. Goodman assumes

that λi = 1 ∀i. Maximum likelihood estimates reject both the linear (θ = 1) and the semi-log (θ = 0)

functional forms.

Halvorsen and Pollakowski [1981] use the more general quadratic transform, while assuming

that λi = λj = λ. They use ML to jointly estimate all parameters of the model. They reject all

popularly used functional forms from linear, semi log, log linear (θ = 0, λ = 0, γij = 0 ), trans-log

(θ = 0, λ = 0), and several quadratic forms. The ML estimates of θ and λ are found to be 0.06 and

0.28 respectively which suggest non-linearities in the pricing equation.

In addition to problems of functional form with given regressors, it is impossible to gather data

on all relevant characteristics of a home and its neighborhood. This data might either not be

recorded/available or just too costly to obtain. Hence omitted variables are likely to be a major

problem in any linear parametric pricing function. Data quality also varies by location. Finally,

depending on how the index is computed, hedonic models either assume constant marginal prices

over time or run pair-wise regressions for consecutive time periods to compute an index. The latter

approach selectively ignores large chunks of information. Given these fundamental problems with

using hedonics, most indices in use today are based on the repeat sales methodology.
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2.2 Repeat Sales Indices

Bailey et al. [1963] (henceforth BMN) proposed that the heterogeneity problem could be solved

by looking only at repeat sales. If houses do not change attributes over time, and if there is no

selection bias in selecting only households that have been sold at least twice, then this approach

constructs a house price index with desirable properties. The basic model here is as follows:

Pit′

Pit
=

Bt′

Bt
Uitt′ ,

where Pit is the price at which house i sells at time t, Bt is the price index at time t and Uitt′ is an

error term. Taking logs we obtain,

pit′ − pit = bt′ − bt + uitt′ ,

where small case represents logs. Defining xt as 1 in the period t when the house is resold, and

as −1 in the period t when the house is first sold, and as 0 in all other periods, the above equation

can be written as,

ritt′ =
T∑

j=1

bjxj + uitt′ ,

which in matrix notation becomes,

r = xb + u, (1)

where ritt′ = pit′ − pit and T is the total number of periods for which we have sales data. b can

now be estimated using OLS and this gives us the log price index.

More than twenty years after BMN wrote their pioneering paper on construction of house price

indices using repeat sales in a regression framework, Case and Shiller [1989] (henceforth CS)

addressed some of the limitations of the basic model and proposed a method to correct it. In

particular CS argue that the variance of the error term must depend on the time interval between

sales. The basic intuition is that changes in attributes, which this model does not explicitly account

for, are likely to be more significant the longer the time between sales, resulting in a larger unex-

plained variance in prices for these households i.e. there is a drift in house prices over time. In

the BMN method, homes resold after a longer time have a greater impact on the index (because

they have a higher unexplained variance as postulated by CS). Hence Case and Shiller argue

5



that these observations must be under-weighted in determining the price index. They formulate a

Weighted Repeat Sales (WRS) index to do this. The basic methodology is as follows.

Log price of the ith house at time t, pit is given by,

pit = ct + hit + nit,

where ct denoted the area wide price index, hit (the drift term) is a Gaussian random walk i.e.

hit − hit−1 is i.i.d N(0, σ2
h), and nit is an i.i.d sale specific random error with distribution N(0, σ2

n).

Writing the price difference equation we have,

pit′ − pit = ct′ − ct + ∆hitt′ + ∆nitt′ ,

where,

V ar(∆hitt′ + ∆nitt′) = σ2
h(t′ − t) + 2σ2

n.

CS use a 3 stage least squares method to estimate the price index. First they run OLS in the above

price difference equation. Then they regress the residuals from that regression on a constant and

the time difference between sales. From the above variance formula we know that the constant in

that regression would be 2σ2
n and the coefficient on the time difference between sales would be

σ2
h. Then they use the fitted values from this second regression to weigh variables appropriately

in the first price difference regression to get an estimate of ct.

The next significant innovation was due to Goetzmann and Spiegel [1995] (henceforth GS),

who showed that it is important to account for non-temporal returns from housing in any price

index construction using repeat sales data. GS argue that people make changes to the house

right around the time of the sale. Since this would not be controlled for in a standard repeat sales

model, the price index so constructed would be upward biased. The GS idea can be understood

in the CS framework in terms of a simple example. Let us assume that the log of non-temporal

return on housing is a constant η. Then the CS log price difference equation can be written as1,

pit′ − pit = η + ct′ − ct + ∆hitt′ + ∆nitt′ .

If the null η = 0 is rejected, there must be non-temporal returns to housing and a model that does

1This equation can easily be derived from a more fundamental price equation
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not take this into account would give a biased estimate of the price index. In particular, if η > 0,

the model without the intercept would result in an upward biased price index and vice-versa.

While they are relatively simple in principle to estimate, there are many questions concerning

repeat sales indices. One issue concerns the fact that prices are inferred based only on repeat

sales in a period, not all sales. Second, the index of today will be revised tomorrow as new

data arrives, and there may be systematic patterns in the revisions. In what follows we will apply

the index on a wide enough geographic area with many transactions available for each index

computation, so that one can hope that the former problem is not overwhelming. Furthermore the

revisions problem is of manageable proportions. Nevertheless, the index will be found seriously

wanting.

3 The L.A. Data Tape

3.1 Sources of Data

LoanPerformance, a division of First American CoreLogic, supplied NYU with a deeds tape record-

ing all transactions in LA county from Jan 1984 to Apr 2008 as well as the 2007 tax-roll tape. The

deeds tape comes from various counties’ registry of deeds. The tax-roll tape is compiled informa-

tion obtained from the tax assessor’s office and contains detailed information on all homes in LA

county irrespective of their transaction history. Almost all observations have associated with them

a valid APN number which uniquely identifies a home. It is therefore possible to combine the tapes

and to add in neighborhood specific attributes for all homes in LA county.

The deeds tape has a total of 14,713,346 recorded transactions between Jan 1984 and Apr

2008. Of these, 13,527,413 have valid APNs. We consider only arms length transactions that are

resales or new constructions with either a grant deed or foreclosure document type. This leaves

us with 3,630,759 property transactions for which we record:

• Sale price: This is the price at which the property transacted.

• Recording date: This is the date on which the property transaction was recorded.

• Sale date: This is the actual sale date of the property.
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The 2007 tax-roll tape contains detailed information about all properties in LA county. We use

the tape to identify single family residences, which are stand-alone properties that are inhabited

by one family only, leaving 2,187,254 transactions for 971,251 distinct homes. While the tax-

roll provides information on many home characteristics, we currently limit attention to land square

footage, living square feet, and effective year built: this is the last year in which the property had the

same physical characteristics as it has in 2007. The list of data items chosen is deliberately short

since the main aim of the paper is to show that explicitly accounting for geography, and geography

alone, can lead to better understanding of house prices. In addition, the quality of tax-roll tapes

varies from county to county, making findings that derive from detailed house characteristics hard

to generalize.

The tax-roll tape also provides mailing addresses for all properties. These mailing addresses

are used to geocode the home addresses. Roughly 14% of the data has problems with the mail-

ing address. The remaining 86% can be used for any spatio-temporal study that requires geo-

coordinates. In addition to the mailing address, the tax-roll tape provides the information on the

census tract and the associated zipcode. The Chief Executive Office - Public Affairs of LA county

provides a break-up of LA county by neighborhoods mapping zipcodes to neighborhoods. This

division was used to break LA county into 171 different neighborhoods. Several neighborhoods

have only one zipcode associated with them while others some have a couple dozen associated

with them. All incorporated cities in LA county, such as Pasadena, Santa Monica, and Beverly

Hills, define their own neighborhoods.

3.2 Data Cleaning

The data cleaning, which is designed to replicate the CS methodology as implemented by Stan-

dard and Poor’s (S&P) for their commercial index, comprises three stages.

Stage 1: The first step of cleaning operates at the home level.

• Transactions for the same home that happen on same exact date but with different prices

are all removed.

• Apparently separate transactions for the same home that happen on the same exact date at

the same exact price are unified.
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• Repeat transactions for homes that happen too quickly (currently within less than 7 months

of each other) are both removed. This is identical to the S&P cleaning methodology. Quick

transactions very likely involve structural change and hence cannot be used in a repeat sales

methodology. Further, transactions on a home before and after this dirty repeat transaction

are de-coupled due to potential structural change. In essence, it is now two different homes,

ones before the dirty repeat transaction and one after. Note that because of the de-coupling,

a single home is potentially broken down into any combination of single and repeat transac-

tions.

• After the above cleaning, a nx4 matrix S is constructed which is a pure transaction index

matrix. In it’s first column, this matrix has APNs which are not unique. In it’s second column

it has the number of transactions on that APN, which can be 1 or 2. In the third and fourth

column it has the row indices of these transactions (fourth column is empty for single trans-

actions) in the original cleaned raw tape. This implies that every sale price is only explicitly

tied to its last sale price, if available. This is in line with the two models we will be estimating.

Stage 2: In this stage, cleaning is done on repeat transactions only

• From the above matrix S, the subset of transactions that are repeat transactions are ex-

tracted.

• Repeat transactions in which the effective year built as recorded in the second transaction

lies after the first transaction are removed.

• Sale pairs where either the first or second price is less than $5000 and greater than $100,000,000

are removed, since these transactions have a high likelihood of being mis-recorded and are

hence removed.

• Sale pairs that have annualized returns less than -50% or greater than 100% are removed.

• Finally, sale pairs that out(under)-perform the median house price index by more(less) than

25% on an annualized basis are removed.2 The last two steps are implemented because

S&P implement some special down-weighting for transactions that display returns abnor-

mally above market returns. Since neither the definition of what constitutes an abnormal

2The standard deviation of housing returns less median house price index returns on an annualized basis is 12%.
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return nor the down-weighting procedure is publicly available, we experiment with reason-

able definitions of abnormal returns and then remove transactions that display abnormal

returns.3

Stage 3: Re-visiting single sales from the matrix S.

• Remove all single sales that have price greater than the maximum transaction price in the

repeat sales tape and all sales that have price less than the minimum transaction price in

the repeat sales tape.

After the above cleaning, we are left with 591,239 repeat sale transactions and 367,973 single

transactions making a total of 1,550,451 transactions. As shown in table 1, transaction volumes

were the highest in the late 1980’s (a period of high housing returns in LA), staying low through

the early and mid 1990’s (a period of low to negative housing returns in LA), then starting to climb

again through 2005 which corresponds to the housing boom and then dropping sharply in 2006

and 2007. For the repeat transactions, the median turnover time is 60 months or 5 years and

maximum number of transactions take place within 2 to 3 years.

4 Repeat Sales Indices as Predictors of Price

We implement the CS repeat sales index methodology following the specifications of Standard

and Poor’s (S&P) for their commercial index. Unlike the CS index discussed above which takes

a geometric average (uses log prices instead of prices), the S&P index uses actual prices and

computes an arithmetic average.

In the S&P methodology, the entire time period is divided into a pre-base-period and a post-

base-period. The base period is January 2000. The index is normalized to 100 for the base period

and all other index numbers are computed relative to the base period index. In particular, the index

is computed in two steps. First, a pre-base-period index is computed by using only the pre-base-

period data. In the post-base-period sample, the index is computed in real time using data up

to that month only. For example, the index for March 2004 is not updated with the arrival of new

3Other more and less conservative definitions were also used for abnormal returns. However, the above definitions
return an index closest to the S&P Case Shiller index.
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Year Number of transactions

1984 62,151

1985 70,838

1986 86,789

1987 82,139

1988 86,896

1989 74,761

1990 55,843

1991 51,335

1992 46,751

1993 48,510

1994 55,540

1995 49,987

1996 54,200

1997 57,890

1998 66,624

1999 69,620

2000 66,491

2001 67,144

2002 75,018

2003 75,220

2004 73,349

2005 71,202

2006 57,612

2007 36,735

Jan-Apr 2008 7806

Total 1,550,451

Table 1: Final number of clean transactions by year

information in Apr-2004. Fortunately, revisions with the arrival of new information are very small

(on average a little under 1% annually) and display no systematic patterns.

Finally, the S&P index is a moving average index in that every transaction is assumed to take

place thrice, in the month in which it was recorded and the two months following that month. There

are two reasons cited for the moving average estimation. One, there are potential delays in the

flow of sale data from county deed recorders, and two, “to keep sample size large enough to create
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meaningful price change averages”.

Case Shiller Repeat Sales Index
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Figure 1: Case Shiller Repeat Sales House Price Index

As a first step, in replication, we estimate the CS repeat sales index using the above version

of the S&P methodology for the time period Jan 1987 to Apr 2008 and compare it to the actual

published S&P CS repeat sales index.

Case Shiller Repeat Sales Index Returns (Annual)
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Figure 2: Case Shiller Repeat Sales House Price Index Returns

Figure 1 shows that the indices are very close to each other. In figure 2 we compare annual
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returns on the two indices.4 There are differences in annual returns that the two indices accrue,

but they are small and are concentrated mainly in the late eighties and the late nineties.

4.1 Prediction Errors

One would ask of a price index that it not make systematic errors in predicting contemporaneous

prices. One would also be interested in understanding any such patterns that did exist and using

them as additional data of value in understanding actual contemporaneous house values. To

investigate this we develop a methodology for using the index for purposes of one step ahead

prediction. The unit of time is months. Prediction is done one period ahead by dynamically dividing

the data into training and test sets. The test and training sets are constructed as follows.

• There are 99 monthly test sets running from February 2000 to April 2008.

• A test set of a particular month comprises all homes that transact the second time in that

month with their first transaction happening in an earlier period.

• The corresponding training set includes all repeat transactions that took place before the test

month.

For each test period t the index values I1....It−1 are estimated using data on all repeat sales

data (training data) till t − 1. The index is then predicted one period forward by assuming that

nominal monthly returns Rt = It/It−1 − 1 follow a simple AR(1) process as follows, 5

Rt = ρRt−1 + θt,

where θt is assumed to be i.i.d N(0, σ2
θ). Case and Shiller [1989] show that the repeat sales index

returns exhibit significant positive autocorrelation at the quarterly level. The S&P index returns

display significant positive autocorrelation at the monthly level (though a fair amount of this is

artificially built in because of the moving average assumption). The value of ρ averaged over the

99 prediction runs is 0.85. It is important to note that the AR(1) model is a simplifying assumption

to build in a prediction based methodology for ease of comparison with results from our model in

4Monthly and quarterly returns are very volatile.
5Using an AR(2) or AR(3) process instead has no effect on our results
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the next chapter, and has no effect on the results. None of the results below change by using our

exact replica of the S&P index or the full data index.

Having estimated ρ̂, the index value in period t is given by Ît = ρ̂Rt−1It−1. The full series of

index values I1, ....It−1, Ît is then used to predict prices of homes in period t. Prediction error eit

for a pair of transactions (i, t, Pit) and (i, t′, Pit′) such that 1 ≤ t′ ≤ (t− 1) is defined as follows:

eit = 100(1−
Pit′

Ît
It′

Pit
).

We measure accuracy of prediction by several different criteria. The first two are the median actual

and absolute prediction error, and the others are the percentage of homes for which |eit| ≤ 5%,

and the percentage of homes for which |eit| ≤ 15%.

Median err (%) % Homes

Time period
Absolute Actual |eit| ≤ 5% |eit| ≤ 15%

Homes

Feb:Dec 2000 11.88 -3.96 23.49 59.02 31851

2001 11.39 -3.54 24.54 61.03 35893

2002 10.81 -0.67 25.65 62.99 42405

2003 10.42 1.10 26.60 64.72 43902

2004 10.68 3.13 25.20 63.96 43696

2005 10.63 3.20 25.61 64.40 44618

2006 11.69 1.36 22.92 60.33 37183

2007 13.86 -4.47 19.23 53.35 23913

Jan:Apr 2008 14.74 -4.97 18.15 50.71 5314

Table 2: Error patterns with time for Los Angeles county: 2000-08

We find that for LA county as a whole, the median absolute prediction error is 11.26%, with

24.41% of the homes having |eit| ≤ 5% and 61.67% of the homes having |eit| ≤ 15%. The median

error for LA county is 0.027%.

Table 2 shows the distribution of errors over time. The prediction accuracy of the CS index

stays roughly constant in the period 2000-06, thought it is somewhat lower in the early 2000s. In

2007-08, the prediction accuracy of the CS index takes a significant fall.
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The most significant finding is the dramatic change in the median actual error in the 8 year

period. The median error goes from −3.96% in 2000 to 3.2% in 2005, a change of over 7%.

Subsequently it drops by over 8% from 2005 to 2008.

After accounting for heteroscedasticity, the errors on the CS model should be i.i.d normal.

However, we find a lot of structure in the error term. In addition to the patterns over time (as

shown in table 2), we find patterns in the error term over initial prices, time between transactions

and geography.

4.2 Time Between Sales

Median err (%) % Homes

Time btwn sales
Absolute Actual |eit| ≤ 5% |eit| ≤ 15%

Homes

<1 year 5.86 2.83 43.52 93.4 12836

1-2 years 7.88 1.58 33.5 77.5 33650

2-3 years 9.22 2.15 29.24 70.89 40283

3-5 years 11.06 2.49 24.12 63.16 56326

5-7 years 13.02 0.69 20.83 55.93 37807

7-10 years 12.78 -2.27 21.66 56.51 39410

10-12 years 12.37 -4.33 22.19 57.62 22743

12-15 years 14.06 -5.08 19.8 52.49 31823

15-20 years 17.12 -4.73 16.31 45.06 29939

> 20 years 21.56 -5.23 12.83 37.34 3958

Table 3: Error patterns with time between sales

Table 3 shows a very strong pattern of errors with time between sales. The repeat sales index

seems to do an excellent job predicting prices on quick repeat trades. However, the performance

of the repeat sales index falls monotonically with increasing time between sales. For homes that

transact a second time after 15-20 years, the median absolute error is 17.12% and only 45% of

the test samples are predicted with less than 15% error.

Even more interesting is the result that the median error gets increasingly negative as time
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between sales increases, reaching roughly −5% for repeat transactions after 12 or more years,

where a negative error implies prices are over-predicted. This implies that turnover time has a

powerful correlation with housing returns and that homes with longer turnover times have sys-

tematically lower returns. Among the possible reasons for this are: that there are non-temporal

returns (GS) because of once-off improvements at the time of sale; that longer turnover times are

correlated with poor maintenance; that these homes are fundamentally different and should be

included in separate indices.

4.3 Initial Price: Mean Reversion

Table 4 shows that the CS index does a very poor job at predicting prices of homes with either very

low or very high initial prices. The error is below 15% for only 2% of the homes with initial price

less than $25,000. Though one might view very low priced homes like these with skepticism in the

light of possible measurement errors, the index does only marginally better with homes in the initial

price range $25,000-50,000. The index performance improves as initial price increases. It peaks

for homes in the initial price range of $200,000-400,000, predicting roughly 70% of the homes with

less than 15% error and a median absolute error of about 9%. As initial price increases beyond

$400,000, prediction accuracy again starts to fall. The error is below 15% for only a little under

half of the homes with initial prices between $1 and 2 million, and the median absolute error is

15-16%.

The most striking finding in table 4 is that the index systematically under-predicts prices of

homes with very low initial prices and over-predicts prices of homes with very high initial prices.

Homes with initial prices in the range $25,000-50,000 have a median error of 55%, which continues

to stay high (17%) if one looks at homes with initial price in the range $50,000-75,000. Similarly,

homes with initial prices greater than $500,000 are systematically over-predicted with median error

rising from about 8% from homes with initial prices in the range $500,000-600,000 to almost 11%

for homes with initial prices in the range $1 to 2 million.

One might ask if the above mean reversion results are in fact just an artifact of the time between

sales effect with homes in the mid-price range transacting more frequently and homes at the end

of the price range spectrum transacting less frequently. Though that would explain the magnitude

of the error, it would not explain its sign. Further, we repeat the same exercise with homes that
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Median err (%) % Homes

Initial price ($)
Absolute Actual |eit| ≤ 5% |eit| ≤ 15%

Homes

≤25,000 81.43 81.1 0.51 2.24 1958

25-50,000 57.08 55.61 2.41 7.86 3269

50-75,000 25.87 17.13 9.82 29.97 8079

75-100,000 17.85 5.48 15.04 43.3 17817

100-125,000 14.84 2.3 17.68 50.49 26641

125-150,000 12.8 1.54 20.78 57.4 38289

150-200,000 10.18 2.56 25.84 67.25 65096

200-250,000 8.89 1.7 30.07 71.75 40784

250-300,000 8.65 0.26 31.42 72.26 29237

300-350,000 8.87 -1.77 30.94 70.7 21363

350-400,000 9.1 -3.06 30.17 69.61 17248

400-450,000 9.97 -4.7 27.59 66.18 12726

450-500,000 10.64 -6 25.84 64 9718

500-600,000 11.91 -8.11 22.67 59.72 12741

600-750,000 12.99 -9.18 21.14 55.81 10601

750,000-1 million 13.69 -8.98 20.38 53.89 7515

1-2 million 15.30 -10.90 18.26 49.13 5058

> 2 million 19.79 -14.48 15.92 40.07 791

Table 4: Error patterns with initial price in Jan 1984-Jan 2000

had their first transaction in the period Jan 1984 to Dec 1988 in table 5 and also for homes that

had their first transaction in the period Jan 1989 to Dec 1993 in table 6. The prediction accuracy

and median errors stay roughly the same for homes with initial prices in the lower range. However,

the median errors on homes with very high prices are now even more negative. In other words,

mean reversion is much stronger than table 4 suggests. Mean reversion is also a slow process.

If errors are measured on homes which transacted for the first time in the 1994-98 or 1999-2003

interval, the median errors get much closer to zero and prediction accuracy improves.
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Median err (%) % Homes

Initial price ($)
Absolute Actual |eit| ≤ 5% |eit| ≤ 15%

Homes

≤ 25,000 81.5 81.18 0.28 0.86 1393

25-50,000 57.34 55.77 2.53 7.92 1615

50-75,000 25.16 6.33 11.07 32.94 3466

75-100,000 16.14 -5.3 17.63 47.78 7865

100-125,000 13.76 -7.04 19.03 53.58 7638

125-150,000 13.18 -6.92 21.41 55.21 6618

150-175,000 12.82 -7.91 19.75 56.66 4571

175-200,000 13.94 -8.98 19.45 53.43 3279

200-250,000 16.9 -12.5 14.86 44.66 3674

250-300,000 18.68 -14.79 12.26 41.14 2282

300-400,000 21.93 -17.57 11.44 33.67 2159

400-500,000 25.47 -20.27 10.73 30.94 866

500-750,000 25.92 -22.95 10.33 31.81 745

750,000-1 million 32.95 -27.73 11.06 22.55 235

> 1 million 47.31 -42.62 5.88 18.23 170

Table 5: Error patterns with initial price in Jan 1984-Dec 1988

4.4 Geography

Finally, in this section we see if the CS errors have a geographic structure to them. We consider

nine major areas in LA county as shown in table 7 that are geographically well spread out over

LA county, and that are economically and demographically diverse. All the areas in the table are

incorporated cities except South Central which is a designated neighborhood by the Public Affairs

Office of the County of Los Angeles.

Homes were identified to belong to one area or another based on their zipcodes. The mapping

from zipcodes to cities and neighborhoods in LA county was also obtained from the Public Affairs

Office of LA county. Overlapping zipcodes resulted in certain cities being combined to form bigger

areas. Torrance and Redonodo Beach which are adjacent cities in the South Bay region were

combined. Agoura, Agoura Hills, Calabassas, Oak Park and Hidden Hills all cities in the western
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Median err (%) % Homes

Initial price ($)
Absolute Actual |eit| ≤ 5% |eit| ≤ 15%

Homes

≤ 25,000 84.06 84.01 0.24 2.18 412

25-50,000 73.03 72.17 0.14 1.87 694

50-75,000 46.98 43.68 6.41 15.8 810

75-100,000 22.84 10.49 11.23 33.71 1993

100-125,000 16.57 -0.99 16.57 46.23 4393

125-150,000 12.57 -3.04 21.35 57.88 7403

150-175,000 9.83 -2.47 27.72 67.71 8667

175-200,000 8.69 -2.3 30.11 71.33 7306

200-250,000 9.87 -4.49 27.49 67.78 8580

250-300,000 11.27 -5.56 23.82 62.29 5028

300-400,000 13.12 -6.91 20.91 55.33 5149

400-500,000 16.21 -9.62 17.64 47.11 2222

500-750,000 19.28 -13.65 13.58 40.12 2253

750,000-1 million 23.51 -17.15 11.96 32.4 719

> 1 million 30.7 -28.28 8.64 26.55 659

Table 6: Error patterns with initial price in Jan 1989-Dec 1993

part of LA county were combined. Industry, La Puente, Bassett, Valinda, Hacienda Heights, Dia-

mond Bar and Walnut, which are all cities in the eastern part of LA county were combined. Finally,

the city of Santa Monica was combined with Castellmare, Pacific Highlands and Pacific Palisades

which are all neighborhoods in LA city. This combination was necessary to expand the pool of

transactions for constructing a local index.

Table 7 shows that there is a lot of geographic structure to the CS error. The index does

relatively well in Industry and it neighboring cities, Long Beach, Van Nuys, and Torrance and

Redondo Beach. It does relatively poorly in South Central and Santa Monica.

Finally, table 8 shows that there are significant prediction gains to be had by simply estimating

indices at the local level. We employ the same prediction methodology as the one we use for LA

county as a whole. Prediction accuracy is improved, and in some cases by a significant amount,
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Median err (%) % Homes

Neighborhood
Absolute Actual |eit| ≤ 5% |eit| ≤ 15%

Homes

Los Angeles Full 11.26 0.027 24.41 61.67 308,775

Palmdale 13.99 -0.84 19.68 52.77 16387

South Central 16.04 5.86 16.79 46.99 5807

Pasadena 12.29 2.67 23.01 58.56 5587

Santa Monica etc. 14.79 -0.87 18.41 50.33 2265

Torrance etc. 10.63 -3.49 26.6 63.77 6931

Van Nuys 11.1 4.07 23.99 63.59 5431

Long Beach 10.45 2.66 25.99 65.96 14228

Agoura Hills etc. 12.3 -2.9 22.55 57.23 1658

Industry etc. 9.71 -3.02 28.1 67.98 11791

Table 7: Spatial error patterns

% Homes with |eit| ≤ 15%

Neighborhood
LA county index Local index

Palmdale 52.77 67.17

South Central 46.99 58.84

Pasadena 58.56 58.15

Santa Monica etc. 50.33 52.23

Torrance etc. 63.77 70.73

Van Nuys 63.59 69.71

Long Beach 65.96 68.17

Agoura etc. 57.23 58.02

Industry etc. 67.98 71.64

Table 8: Comparing prediction performance

by just estimating indices at the local level.
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5 Location and House Prices: Prior Literature

The results of the last section suggest that accounting for location may be important to under-

standing the patterns that we have uncovered in house prices. This idea not only motivates our

later work, but also rationalizes a large body of prior literature.

5.1 Hedonic Models and Location

There is now a large hedonic price literature on the spatio-temporal correlation of housing returns.

Spatio-temporal correlation arises for a number of reasons. Missing variables, especially neigh-

borhood variables like crime, schooling quality etc. will lead to spatial correlation of the error term.

In pricing homes, Realtors look at prices of nearby homes that transacted in the recent past. This

implies that house prices can be predicted by lags of prices of similar houses. Hence it is not

surprising that many recent papers find evidence for spatial autocorrelation of the error term in

the traditional pricing function. Can [1990] estimates the following spatial autocorrelation model

of prices on a data set of 563 single family homes that transacted in 1980 in the Franklin county

section of the Columbus metropolitan area (see also Can [1992]),

P = α + ρWP + βX + ε,

where P is the vector of house prices, W is a generalized weighting matrix, ρ is the autocorrelation

coefficient, X is the vector of housing and neighborhood attributes, and β is the marginal prices of

attributes. Examples of weighting adjacent house prices she considers are: for the price equation

of house j, Wij = 1/dij where dij is the distance between house i and house j, or Wij = 1/d2
ij .

She also consider a discrete version where Wij = 1 if dij < 5 miles and Wij = 0 otherwise.

Since P is both the dependent variable and a regressor, the error term cannot be assumed

to be independent of the regressors and OLS cannot be used. Can estimates this model using

maximum likelihood which, given the spatial autocorrelation, involves the use of non-linear opti-

mization techniques. She finds that the autocorrelation coefficient is positive and significant. She

further finds that the error term in the traditional hedonic model (without the WP term) displays

significant spatial correlation which disappears after the introduction of the WP term.The model

seems to perform best when the weighting matrix used in inversely proportional to the square of
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the distance.

Rather than incorporating the correlations directly into the pricing equation, Dubin [1992] incor-

porates spatial features into the model by allowing for spatial autocorrelation of the error term. In

Dubin [1998], the assumption is that all individual errors in the standard hedonic pricing equation,

P = α + βX + ε, are normal, εi ∼ N(0, σ2), but that these errors are correlated across locations,

Corr(εi, εj) = b1exp(−Dij

b2
)∀i 6= j,

where Dij is the geographic distance between i and j, and b1, b2 are parameters to be estimated.

Note that the variance covariance matrix V is given by σ2φ(b1, b2) where φii = 1 ∀i and φij =

b1exp(−Dij

b2
) for i 6= j. The estimation is performed using Maximum Likelihood and first the ML

estimates are obtained for β and σ2 as a function of b1, b2. These estimates are then plugged back

into the ML function, which is then maximized with respect to b1, b2.

Both the Dubin papers use a data set of 1493 transactions in 1978 in Baltimore. How severely

the current literature is limited by the availability of the right tools is best illustrated by the fact that

Dubin [1992] and Dubin [1998] are forced to break this small data set into smaller ones because

of computational issues. A separate model is estimated for each test point, using the nearest

100-150 training points. Finally, since there is now a structure on the error term, one can estimate

the error term on the test point by a process called kriging, and the estimate for the error term for

the ith test point ei given by,

ei = k′(i)φ−1ε̂,

where k′(i) is a vector whose jth element is given by b1exp(−Dij

b2
), φ is the correlation matrix for

the nearest neighbors of the test point i, and ε̂ is the corresponding estimated errors. Dubin finds

that both b1 and b2 are significant. The magnitude of the correlation decreases from from 0.64 at

100 feet to 0.53 at 1000 feet to 0.23 at 1 mile and 0.08 at 2 miles. He also reports a 38% reduction

in the sum of squared errors in the test sample as compared to the standard OLS model.

Basu and Thibodeau [1998] model the spatial autocorrelation of the error term using a spher-

ical semivariogram function for a sample of 5000 homes that transacted between 1991Q4 and

1993Q1 in metropolitan Dallas. However, they do not do this for the entire market, but in fact

for an exogenously defined set of eight housing sub-markets in Dallas, Texas. The housing sub-

markets are geographic in nature and are separated by major US highways. They find that in
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four of the eight housing sub-markets, there is significant spatial autocorrelation of the error term

for properties within 1200 meters of each other. For two of the housing sub-markets, the spa-

tial autocorrelation is present across the whole sub-market, while there is no evidence for spatial

autocorrelation in two of the sub-markets.

Pace and Gilley [1997] use the simultaneous autoregressive model (SAR) from the spatial

statistics literature to model the spatial autocorrelation of the hedonic residuals. Their data covers

roughly 72,000 transactions from Fairfax county Virginia and spans the period from 1966 to 1991.

Note that this seemingly large data set is still roughly only 5% of the size of our data set. They

estimate the model by maximizing the likelihood function and find that the model’s sum of squared

errors is 44% less than the corresponding OLS model which includes location dummies. Pace

et al. [1998] extend the analysis to make W a function of both space and time and also find a

significant increase in prediction accuracy of the model.

The above models clearly suggest that location matters, and that one can improve understand-

ing of local house prices by incorporating information that is richer than the city-wide index alone.

However they are both conceptually and computationally limited. In conceptual terms, marginal

prices β are assumed to be constant across space and time. This assumption is justifiable as long

as one works with a small and homogeneous geographic area and a small time span. Moreover,

they involve very limited data sets, and as such their conclusions do not have the generality re-

quired to impact day to day analysis of patterns in house prices. Our LA data covers a massive

set of transactions that are spread out over 4000 square miles of a very heterogeneous housing

market and span a period of 25 years. It is for this reason that we provide a more thoroughgoing

re-evaluation of index methodology both conceptually and computationally.

5.2 Repeat sales models and location

Goetzmann and Spiegel [1997] incorporate locational returns in their distance weighted repeated

sales model. Houses in the same neighborhood are very likely to exhibit co-movement of returns

and similarly houses in different neighborhoods are likely to exhibit very little correlation in returns.

Given the location dependence in this model, houses will be indexed both by the house number

i and the location number l in the original Case-Shiller model. Defining rt(l) as the error term

arising due to the location, GS assume that cov(rt(l), rt(m)) = σ2
r exp(−dt(l, m)) where dt(l, m) is
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some measure of the distance (not necessarily geographic) between the two locations l and m.

pilt′ − pilt = η + ct′ − ct + ∆hitt′ + ∆nitt′ + ∆rtt′(l)

In principle, all the variance parameters can be identified given their functional dependence on

measurable factors, time in case of σ2
h and the distance measure dt(l, m) in case of cov(rt(l), rt(m)).

Once this has been done, GLS can be used to estimate the price indices as before. GS estimate

their model on roughly 130,000 repeat sales in San Francisco over the period 1980-94. Despite

the relatively small size of their tape, GS run into computational problems because of the size of

the variance-covariance matrix and therefore only report OLS standard errors.

5.3 Semi-parametric and Nonparametric Techniques

Semi/non parametric models in the housing literature all fall in the class of nearest neighbor model.

Pace [1993] and Anglin and Gencay [1996] use kernel based estimation while Meese and Wallace

[1991] and Clapp [2004] use locally weighted regressions. We discuss the models with locally

weighted regressions as we employ this nearest neighbor technique in our model as well.

A local regression model is a non-parametric model, and as the name suggests is a regression

model fitted locally. For each house trade, one finds the “nearest” trades, and fits a polynomial

regression through those points by minimizing a weighted sum of squared errors, and uses the

fitted plane to predict the dependent variable at the test point. In conceptual terms, major changes

are that one allows for non-linearities in the hedonic equation, and uses a kernel function to identify

the extent of the neighborhood of each given transaction and the weights to be given to each of

the neighbors.

Clapp [2004] estimates a semi-parametric model to identify variations in land value across

Boston MA. He finds that the land value surface f(W ) seems to capture well land price variations

in Boston (MA) based on a casual understanding of the real estate market. He also finds that

the out of sample mean square error is reduced by about 11% when compared to OLS. However,

Case et al. [2004] find that the semi-parametric model does worse than the model with spatially

autocorrelated errors (Dubin [1998]). Clapp rules out any relationship between attribute prices and

location by suggesting an equilibrium allocation where arbitrage would wipe out any such relation-
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ships (Rosen [1974]). Though the argument is theoretically sound under fairly elastic supply of

housing attributes and negligible moving and transaction costs, this is rarely the case. Further, it

is not clear why location alone determines land value. Separating neighborhood value from land

value suggests that the price of public facilities and amenities are independent of location. Clapp

is also severely constrained by the size of his dataset - a little over 5000 transactions spread out

over 10 years - in estimating a fully non-parametric price surface.

Meese and Wallace [1991] estimate a non-parametric hedonic index model. Their data con-

sists of 137,000 transactions from Alameda county and 45,000 transactions from San Francisco

county, spanning a nineteen year period from 1970 to 1988. For each quarter in this period, they

estimate the attribute prices of the median home that quarter using locally weighted regression.

The median home is defined as a home whose attributes take values that are given by the median

of the attributes of all other homes that traded that quarter. Meese and Wallace find significant

differences in attribute prices both across municipalities and across time, thereby rejecting linear

parametric forms with constant attribute prices. However, they simplify the analysis in many key di-

mensions as a result of data and computational constraints. In particular, due to lack of GPS data,

nearest neighbors are determined in attribute space rather than in distance-time space. Further,

computational complexities prevent them for estimating the entire price surface and they estimate

prices at median attributes only. These are constraints that our procedure allows us to relax.

5.4 Sub-markets/Stability of the Housing Price Function

In terms of the hedonic price equation, sub-markets imply several pricing equations with different

prices for the same structural and/or neighborhood attributes. If we were to estimate one com-

mon index for all sub-markets, the index would be biased towards sub-markets that have more

frequently transacted houses. Hence, identification of sub-markets is crucial. Most papers on sub-

markets divide the area under study into neighborhoods based on apriori information like school

districts, neighboring census tracts, municipalities etc. Though seemingly crude, these kind of

models have been extremely popular. Schnare and Struyk [1976] segregate the Boston housing

market by inner city/outer city, income and number of rooms. Goodman [1981] divides the New

Haven-Connecticut region into sub-markets based on contiguous local government areas. Meese

and Wallace divide their sample into municipalities. Michaels and Smith [1990] form sub-markets
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based on evaluations by real estate agents. They claim that according to the National Association

of Realtors, roughly 80% of home buyers buy homes through Realtors and hence the realtor’s

categorization of markets into sub-markets should contain all the relevant information.

Case et al. [2004] form neighborhoods by combining census tracts that have similar attribute

prices using a clustering method. As mentioned earlier, the neighborhoods they produce in this

manner are almost all geographically contiguous. Depending on the study, authors apply different

local models to the neighborhoods they construct varying from the basic OLS (Goodman [1981]),

local regression models, (Meese and Wallace [1991]) and models with spatially correlated errors

(Thibodeau [2003]) to mention a few. All of them find significant variation in attribute prices across

sub-markets/neighborhoods. McLennan and Tu [1996] and Bourasa et al. [1999] also use cluster

analysis to uncover sub-markets. Bourasa et al. [1999] do K means clustering on factor scores to

form sub-markets. This study is conducted for housing markets in Sydney and Melbourne. In both

cases, they find that three factors explain about 85% of the variance in the data. The first factor

has high scores for distance to central business district, average number of bedrooms, percentage

of people driving car to work, average number of cars, owner occupation rate, distance to coast,

persons per unit area, and number of dwellings per unit area. Bourassa et al. interpret this as a

locational factor that distinguishes between the inner and outer city. The second and third factors

are socioeconomic and have high scores for unemployment, income etc. They find evidence for

five sub-markets in both Sydney and Melbourne. Given the nature of these factors, it is hard to

intuitively interpret the sub-markets.

Thibodeau [2003] forms neighborhoods in Dallas county using two approaches. The first and

simpler approach labels every municipality as a neighborhood and estimates a separate linear

model for each municipality.6 In the second approach, Thibodeau combines adjacent census

blocks to get approximately 150 homes in each neighborhood. This results in a total of 256 neigh-

borhoods. The only condition imposed is that the combined census blocks belong to the same

municipality and the same school district. He evaluates the predictive power of a model by first fit-

ting the model on the training sample and then evaluating its predictive power on the test sample.7

Predictive power is measured by considering the fraction of homes in the prediction sample whose

prices were predicted with less than 10% error and those with less than 20% error. The simple

linear model predicts the prices of 36% of the homes with less than 10% error, and 62% of the

6The data has 41,985 properties sold in the 1998-99 period, spread over 21 municipalities and 15 school districts
7This is necessary to avoid over-fitting.
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homes with less than 20% error. The municipality neighborhood model significantly out-performs

the linear model, predicting 51% of the homes with less than 10% error and 76% of the homes

with less than 20% error. Further, the census block neighborhood model significantly out-performs

the municipality neighborhood model, predicting 62% of the homes with less than 10% error and

84% of the homes with less than 20% error.

6 Our Model

Rather than break the housing market into neighborhoods and estimate a separate model on each

one of them, we use a local regression model to find nearest neighbors for each home in the test

sample. We then use suitable spatio-temporal kernel functions to smooth the unobservable price

surface, which is estimated by minimizing the prediction error in a least squares sense. A detailed

description of the model follows.

There are a total of i = 1....M transactions spanning t = 1...T months. ct is the natural log of LA

level house price index at time t. Each transaction i is identified by a set Di = {ti, li, pi, zi, ai, bi}:

• ti: month of transaction

• pi: natural log of price of transaction

• zi: natural log of the deviation from cti (intrinsic price)

• li: GPS co-ordinates of home underlying transaction i

• ai: natural log of the living area of the home underlying transaction i

• bi: indicator variable that equals 0 if there is no past transaction and k if there is a past

transaction k.

The optimization problem is:

Min{ct}T
t=1,{zs

i }M
i=1

(MSSE + V C + SC), (2)

where
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• MSSE is the model8 sum of squared errors and equals

M∑
i=1

[pi − (cti + zs
i )]

2. (3)

zs
i is a smoothed deviation from the index for transaction i.

• V C is the variability constraint and equals

δ
M∑
i=1

(zs
i )

2, (4)

where δ is a parameter that will be exogenously fixed using a procedure called validation,

which is described in section 3.5. The V C term drives z to 0 and minimizes variability of

zs
i around the mean. This is done to ensure that any common component of house price

appreciation is absorbed by the index and not the smoothed intrinsic price surface.

• SC is the smoothing constraint and is given by

α

M∑
i=1

(zs
i −

∑
j∈Ni

wi
jz

s
j )

2 if bi = 0 (5)

α
M∑
i=1

(zs
i − [(1− λ(ti, tk))

∑
j∈Ni

wi
jz

s
j + λ(ti, tk)zs

k])
2 if bi = k, (6)

where α is a parameter that will be fixed exogenously using validation. Ni is the set of spatio-

temporal neighbors of transaction i. wi
j are coefficients independent of both the index and

the intrinsic price surface and will be determined by a smoothing process that we will shortly

explain. λ(ti, tk) is a weighting function which is decreasing in ti − tk. When there is no past

sale (bi = 0), the smoothing constraint says that the intrinsic price of any transaction must

equal a weighted sum of the intrinsic price of its spatio-temporal neighbors. When there is

a past sale k the weights are distributed between the past intrinsic price zs
k and the intrinsic

price of the spatio-temporal neighbors depending on the time between sales.

We will now explain how the smoothing constraint is derived. The nearness of a transaction j

8The pricing equation is given by pi = cti + zi + εi, where εi is i.i.d ∼ N(0, σ2
ε ).
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to a transaction i is determined by a spatio-temporal distance function K(i, j) which is given by,

K(i, j) = Max(0, 1− d(li, lj)
d

− r(i, j)
r

), (7)

where

• d(li, lj) is the geographic distance in miles between i and j,

• r(i, j) = |ti − tj | is the time distance between i and j determined.

• d and r are parameters fixed exogenously by validation.

In other words, we assume that the iso-distance (spatio-temporal) contours are straight lines.

This is in the spirit of the paper keeping all assumptions at a fairly simplified level to show first

order effects of accounting for geography.

A transaction j ∈ Ni where Ni is the set of nearest neighbors of i if K(i, j) > 0. If there are

more than m∗ neighbors that satisfy this criterion, only the closest m∗ neighbors are designated

as nearest neighbors. m∗ is a parameter fixed by validation.

The intrinsic price zs
i , or deviations from the index for any transaction i, will be a hedonic

function of home as well as neighborhood attributes. For simplicity, and to show first order effects

of geography we assume that,

zs
i = qi + hiai if bi = 0 (8)

where,

• qi: log of intrinsic price per unit area

• hi: accounts for possible non-linearities in the effect of increase in area on intrinsic price

(qi, hi) is the solution to the following weighted local regression model.

(qi, hi) = arg min
(q,h)

∑
j∈Ni

(zs
j − q − haj)2vi

j , (9)
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where vi
j = K(i,j)∑

j∈Ni

K(i, j)
is the normalized spatio-temporal distance function.

Note that zs
j are unknown. Hence qi and hi are obtained as functions of {zs

j}j∈Ni . We express

the solutions in terms of the following variables:

• a =
∑
j∈Ni

vi
jaj

• a2 =
∑
j∈Ni

vi
ja

2
j

• σ2
a = a2 − a2

The solution to the above weighted local regression model is given by

qi =
∑
j∈Ni

vi
j

a2 − aja

σ2
a

zs
j (10)

hi =
∑
j∈Ni

vi
j

aj − a

σ2
a

zs
j (11)

Therefore,

zs
i = qi + hiai =

∑
j∈Ni

wi
jz

s
j (12)

where,

wi
j = vi

j

a2 + aj(ai − a)− aai

σ2
a

(13)

When, for transaction i a past sale bi = k exists, we assume that

zs
i = (1− λ(ti, tk))

∑
j∈Ni

wi
jz

s
j + λ(ti, tk)zs

k (14)

where,

λ(ti, tk) = Max(0, 1− ti − tk
t

), (15)

and t is a parameter fixed by validation.
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Equations (12) and (14) are the smoothing constraints. They imply that controlling for area,

transactions that are spatio-temporally close cannot have intrinsic prices that are too different. In

case house i has a past transaction i.e. bi = k 6= 0, then both the neighboring transactions and

the past transaction k provide information about zs
i . The closer the past transaction in time, the

more information content it has relative to other spatio-temporally close transactions. In the limiting

case, with the past transaction happening instantaneously before, all useful information is in the

past transaction alone.

Note that the smoothing constraints can be written in matrix form as zs = Hzs where zs =

[zs
1...z

s
M ]′ and H is a M × M matrix of coefficients which can be computed from the weights wi

j

and λ(ti, tk). Substituting zs = Hzs in (2), we can re-write the optimization problem in matrix form

as

Minc,zs [p−Rc−Hzs]′[p−Rc−Hzs] + δ(zs)′zs + α(zs −Hzs)′(zs −Hzs)

where p = [p1...pM ]′, c = [c1...cT ]′, R is a M × T matrix with elements Rit = 1 if t = ti and

0 otherwise. It is this quadratic optimization problem that we solve computationally using the

conjugate gradient algorithm.

7 Prediction Methodology and Validation

The model is tested on eighteen different test periods which were constructed on the basis of

month of transaction. These were Mar:Aug 2000, Jan:Jun 2004 and Jul:Dec 20079. The samples

are deliberately chosen to represent three very different periods in LA house price history. The

first set of test periods Mar:Aug 2000 saw average growth in house prices, the second set of test

periods Jan:Jun 2004 were right in the middle of the housing boom and the last set of test periods

Jul:Dec 2007 saw a significant decline in house prices.

The training sample corresponding to each test period on which the model was estimated

included all transaction data from Jan 1984 to one month before the test period. For example, for

the test sample containing transactions in Mar 2004, the training data included all transactions in

the period Jan 1984 to Feb 2004.

9It was not possible to test on the entire period 2000-08 as in chapter 2 because the hard disk space required to
store all the relevant neighborhood matrices exceeds 250 GBs for just these 18 months
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For each training period 1...t, the vector of parameters c and zs are solved for using the con-

jugate gradient method. ct+1 or the index for the test period was forecasted exactly like it was in

chapter 2 by assuming that nominal returns follow an AR(1) process.

The value of zs
i in the test set was determined using the smoothing constraints (12) and (14)

where the nearest neighbor set Ni is constrained to be a subset of the training set. The final

prediction error ei for the ith test sample is given by

ei = 100(1− exp(cti + zs
i − pi))

Our model uses two variables that the CS repeat sales model does not - living area and GPS

co-ordinates which are obtained from the home address. Lack of clean addresses in some cases

implies that some of the transaction data that was used in chapter 2 can no longer be used.

Similarly, lack of data on living area resulted in some loss of data. Since we now have a different

data set, the CS prediction exercise in chapter 2 is repeated for the smaller data set.

All model parameters d, r, t, m∗, α, and δ are determined using a process called validation.

The model is estimated on the data from Jan 1984 to Jan 2000 and tested on Feb 2000. Model

parameters are chosen to maximize the number of transactions in Feb 2000 for which ei ≤ 15%.

The validated parameter values are as follows:

• d = 0.5 (miles)

• r = 36 (months)

• t = 120 (months)

• m∗ = 150

• δ = 0.01

• α = 1

Our results are not very sensitive to small variations of any of the parameters around the

validated values.
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7.1 Results
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Figure 3: Comparing House Price Indices
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Figure 4: Comparing Annual House Price Index Returns

Figures 3 and 4 compare the CS index with our spatio-temporal index ct. The index has

been normalized so that the index value in Jan 2000 is 100 as in the CS index. Barring the first

five years 1984-89, there is very little difference between the two indices. Recall however that

the prediction error using the CS index in chapter two displayed significant patterns with turnover
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time, initial price and geography. Our hypothesis is that both turnover time and price themselves

have geographical patterns and hence controlling for geography should substantially reduce, if not

eliminate, these patterns. Further, with an explicit accounting for geography we also expect to

reduce prediction errors.

7.1.1 Overall Index Performance

Median err (%) % Homes

Time period
Absolute Actual |eit| ≤ 5% |eit| ≤ 15%

Homes

Mar:Aug 2000 11.29 -3.50 24.79 60.91 15222

Jan:Jun 2004 10.31 3.61 25.95 65.56 16638

Jul:Dec 2007 14.90 -8.06 17.73 50.24 7355

Table 9: Error patterns with time: Case-Shiller Index

Tables 9 and 10 show the overall patterns of the error term for LA county under the two mod-

els. The spatio-temporal model comprehensively out-performs the CS index model in prediction

accuracy. The difference is particularly stark for the Jul:Dec 2007 period where not only is the CS

index drastically out-performed, but it also seems to over-predict on average by about 8% (median

error), whereas the spatio-temporal model displays little bias in this period. Figure 4 shows that

this difference is unlikely to be because of the index. This suggests that there are selection biases

in what kind of homes came up for sale in this period.

Median err (%) % Homes

Time period
Absolute Actual |eit| ≤ 5% |eit| ≤ 15%

Homes

Mar:Aug 2000 9.43 -2.47 29.04 69.30 15222

Jan:Jun 2004 8.00 -3.17 32.95 76.42 16638

Jul:Dec 2007 9.24 +0.5 29.03 71.05 7355

Table 10: Error patterns with time: Spatio-temporal Index
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7.1.2 Turnover time

Tables 11 and 12 show the dramatic differences in patterns of the error term with turnover time

in the two models. Table 11 demonstrates the previously discussed patterns in the CS predic-

tion error. Prediction accuracy is high at low turnover times, and falls monotonically as turnover

time increases. Also, the median error becomes increasingly negative as turnover time increases

implying that homes that transact after a long time are over-predicted.

Median err (%) % Homes

Time btwn sales
Absolute Actual |eit| ≤ 5% |eit| ≤ 15%

Homes

< 1 year 6.36 2.61 41.78 90.18 1589

1-2 years 8.65 0.6 31.04 72.12 4133

2-3 years 9.22 2.41 28.68 71.08 4665

3-5 years 11.18 1.13 23.23 62.65 673

5-7 years 12.67 -1.2 21.53 57.7 4835

7-10 years 11.5 -2.54 23.98 61.26 5370

10-12 years 12.87 -5.51 21.16 55.96 3638

12-15 years 14.74 -5.46 19.66 50.49 4220

15-20 years 18.04 -5.31 16.04 43.24 3515

> 20 years 24.13 -10.51 9.78 30.52 511

Table 11: Error patterns with time between sales: Case-Shiller Index

Table 12 shows no patterns in the error term with turnover time for the spatio-temporal model.

The median error stays in the -1.5% to -2.5% range implying some over-prediction in all ranges

of turnover time. Prediction accuracy too stays roughly constant with median absolute error at

around 9% and a little over 70% of the samples being predicted with less than 15% absolute error.

The spatio-temporal model is significantly out-performed by the CS index model at turnover

times less than a year. For transactions that happen between 1 and 3 years, there is little differ-

ence between the two models. As turnover time increases, the spatio-temporal model performs

increasingly better and the CS index model performance rapidly deteriorates. Overall, the effect

of turnover time is completely removed when geography is taken into account. This suggests that

turnover time displays strong geographic patterns, with clusters of households that trade infre-
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Median err (%) % Homes

Time btwn sales
Absolute Actual |eit| ≤ 5% |eit| ≤ 15%

Homes

< 1 year 7.79 -1.48 32.47 75.39 1589

1-2 years 9.21 -1.98 29.71 72.17 4133

2-3 years 8.71 -3.15 30.71 73.48 4665

3-5 years 8.8 -2.81 30.21 71.93 6739

5-7 years 8.78 -1.94 29.12 72.9 4835

7-10 years 8.53 -2.65 31.43 72.77 5370

10-12 years 8.51 -2.57 30.89 73.44 3638

12-15 years 8.78 -1.82 31.2 71.63 4220

15-20 years 8.4 -1.76 32.51 72.2 3515

> 20 years 9.53 +0.72 28.37 71.81 511

Table 12: Error patterns with time between sales: Spatio-temporal Index

quently due e.g. to catering to empty nesters and retirees, and other clusters that trade frequently

e.g. as starter homes.

7.1.3 Mean Reversion

The most stark finding in this section (tables 13 and 14) is that once geography is accounted

for the error term for homes with low initial prices no longer mean reverts. Since the indices are

the same, this implies that geography proxies for mean reversion. There is dramatic improvement

in prediction accuracy in the spatio-temporal model over the CS index model at low initial prices

with absolutely no under-prediction. At higher initial prices, both models perform badly and over-

predict.

7.1.4 Geography

When broken down into neighborhoods, the spatio-temporal model again significantly out-performs

the CS model, except in Pasadena. Another interesting fact to jump out of these tables is that for

Pasadena, Van Nuys and Long Beach, the CS model under-predicts by about 2% whereas the

36



Median err (%) % Homes

Initial price ($)
Absolute Actual |eit| ≤ 5% |eit| ≤ 15%

Homes

≤ 50,000 69.25 67.51 0.92 3.88 540

50-75,000 26.17 15.72 12.28 30.64 855

75-100,000 17.26 -0.77 15.88 44.47 2008

100-125,000 14.7 -0.2 18.12 50.95 3144

125-150,000 12.64 -1.32 21.24 57.48 4702

150-200,000 10.35 0.83 25.24 65.58 8533

200-250,000 9.26 1.45 28.91 71.11 5415

250-300,000 9.26 0.48 29.73 69.81 3810

300-350,000 9.71 -1.2 27.38 67.02 2669

350-400,000 9.85 -2.84 28.65 65.89 2111

400-450,000 10.96 -3.83 25.78 64 1567

450-500,000 11.7 -6.3 23.61 59.83 1245

500-600,000 12.54 -8.5 22.83 57.52 1747

600-750,000 13.45 -8.87 19.36 54.57 1508

750,000-1 million 13.66 -7.66 21.31 53.23 990

> 1 million 13.41 -6.53 21.44 54.53 816

Table 13: Error patterns with initial price: Case-Shiller Index

spatio-temporal model over-predicts by about 5-6%.

8 Conclusion

We have introduced new techniques from the machine learning literature and on this basis have

developed a new methodology for estimating house prices. Our methodology is designed to pro-

vide richer insights into spatio-temporal variations in returns than do current repeat sales based

methods. The results provide clear evidence that our techniques indeed provide such insights.

Specifically, they allow us to spot systematic patterns in the supposedly idiosyncratic prediction

errors associated with repeat sales indices. These positive findings open the door to new re-
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Median err (%) % Homes

Initial price ($)
Absolute Actual |eit| ≤ 5% |eit| ≤ 15%

Homes

≤ 50,0000 10.46 0.91 27.4 62.59 540

50-75,000 10.71 1.22 25.49 62.1 855

75-100,000 9.28 0.07 30.37 69.47 2008

100-125,000 8.83 -0.43 30.18 73.31 3144

125-150,000 8.11 -0.95 32.28 75.84 4702

150-200,000 7.74 -2.39 34.22 77.97 8533

200-250,000 8.00 -3.37 33.22 77.52 5415

250-300,000 8.51 -3.24 30.73 73.62 3810

300-350,000 9.13 -3.48 29.18 72.16 2669

350-400,000 9.15 -2.56 29.79 70.39 2111

400-450,000 9.7 -2.64 28.2 68.41 1567

450-500,000 9.63 -1.59 27.38 68.99 1245

500-600,000 10.32 -1.09 27.41 66.34 1747

600-750,000 10.51 -2.46 25.19 65.64 1508

750,000-1 million 12.75 -5.00 23.23 57.07 990

≥ 1 million 16.59 -13.94 17.03 44.73 816

Table 14: Error patterns with initial price: Spatio-temporal Index

Median err (%) % Homes

Neighborhood
Absolute Actual |eit| ≤ 5% |eit| ≤ 15%

Homes

Palmdale 13.96 -5.35 19.78 52.6 1673

Pasadena 11.12 2.87 24.42 61.29 819

Torrance etc. 10.16 -1.79 24.78 64.01 831

Van Nuys 13.72 2.19 18.61 54.3 779

Long Beach 10.95 2.26 25.14 64.82 1845

Industry etc. 10.53 -4.35 25.79 63.55 1663

Table 15: Spatial error patterns: Case-Shiller Index
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Median err (%) % Homes

Neighborhood
Absolute Actual |eit| ≤ 5% |eit| ≤ 15%

Homes

Palmdale 8.4 -0.46 31.2 75.31 1673

Pasadena 12.43 -6.03 21.85 57.63 819

Torrance 8.48 -1.44 30.92 74.84 831

Van Nuys 9.38 -5.03 26.44 72.65 779

Long Beach 9.19 -4.3 29.21 74.25 1845

Industry etc. 6.91 +0.27 38.18 81.9 1663

Table 16: Spatial error patterns: Spatio-temporal Index

search in the many areas of economics in which house prices play a role, including a wide range

of research programs that focus not only on the determinants of house prices, but also mortgage

default, and systematic patterns of local house prices.
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