Transforming Neural-Net Output Levels
to Probability Distributions
John S. Denker and Yann leCun
AT&T Bell Laboratories
Holmdel, NJ 07733

AT&T Bell Labs Technical Memorandum 11359-901120-05

November 20 1990

Abstract: (1) The outputs of a typical multi-output classification network do not satisfy the
axioms of probability; probabilities should be positive and sum to one. This problem can
be solved by treating the trained network as a preprocessor that produces a feature vector
that can be further processed, for instance by classical statistical estimation techniques.

(2) We find that in cases of interest, neural networks are (and should be) somewhat under-
determined because the training data is always limited in quality and quantity. We present
a method for computing the first two moments of the probability distribution indicating the
range of outputs that are consistent with the input and the training data.

It is particularly useful to combine these two ideas: we implement the ideas of section 1
using Parzen windows, where the shape and relative size of each window is computed using
the ideas of section 2. This allows us to make contact between important theoretical ideas
(e.g. the ensemble formalism) and practical techniques (e.g. back-prop). Our results also
shed new light on and generalize the well-known “softmax” scheme.

Copyright © 1990 AT&T; Unpublished.

1 Distribution of Categories in Output Space

In many neural-net applications, the ultimate goal is a set of C' numbers that serve as
estimates of the probability of C' mutually exclusive outcomes. Important examples include
character recognition and other pattern classification applications. According to the axioms
of probability, these C' numbers should be constrained to be positive and sum to one. We
show that rather than modifying the network architecture and/or training algorithm to
satisfy this constraint directly, it is advantageous to use a network without the probabilistic
constraint, followed by a statistical postprocessor. Similar strategies have been discussed
before, e.g. (Fogelman, 1990).

The obvious starting point is a network with C output units. We can train the network with
targets that obey the probabilistic constraint, e.g. the target for category “0” is [1, 0, 0, - - -],
the target for category “1” is [0, 1, 0, - - -], etcetera. This would not, alas, guarantee that the
actual outputs would obey the constraint. Of course, the actual outputs can always be shifted
and normalized to meet the requirement; one of the goals of this paper is to understand the
best way to perform such a transformation. A more sophisticated idea would be to construct
a network that had such a transformation (e.g. softmax (Bridle, 1990; Rumelhart, 1989))
“built in” even during training. We tried this idea and discovered numerous difficulties,
including (1) it is hard to assign target probabilities for the training data, and there were
convergence problems if we assigned targets near 1 and 0, (2) it is hard to choose classifier
parameters (e.g. softmax gain) during training, and (3) we saw little improvement in using
softmax during training, as opposed to plugging a softmax postprocessor onto a network
trained without probabilistic constraints. Therefore we will focus attention on networks
whose outputs span a C-dimensional hyperspace, and we must decide how to interpret an
unnormalized output vector such as [.6, .7, 0, ---].

Our analysis is applicable to a wide range of problems. The architecture of the network
should be chosen to suit the problem in each case. The network should then be trained
using standard techniques. The choice of targets is more or less arbitrary, as will become
clear below.

The most principled solution is simply to collect statistics on the trained network. Figures
1, 2 and 3 are scatter plots of output from our Optical Character Recognition (“OCR”)
network that was trained to recognize the digits “0” through “9” In the first figure, the
outputs tend to cluster around the target vectors [the points (T, T*) and (T, T7)], and
even though there are a few stragglers, decision regions can be found that divide the space
into a high-confidence “0” region, a high-confidence “1” region, and a quite small “rejection”
region. In the other two figures, it can be seen that the “3 versus 4” separation is somewhat
more difficult than the “0 versus 1”7 separation, and the “3 versus 5” separation is very
challenging.

In all cases, the plotted points indicate the output of the network when the input image is
taken from a special “calibration” dataset £ that is distinct both from the training set M
(used to train the network) and from the testing set G (used to evaluate the generalization
performance of the final, overall system).

Given enough training data, we could use a standard statistical technique such as Parzen
windows (Duda and Hart, 1973) to estimate the probability density in output space. It is
then straightforward to take an unknown input, calculate the corresponding output vector
O, and calculate the estimated probability that it belongs to each class:

P.o(c|O) = _Ado) for each class ¢ (1)

ENCER)

T+

Detector

AN
a
/OV

M * * * * x X *
L ”:*#* * ** ***] |
¥ - **:(* * * &=
* X *
<
*x
+L L
d1010919(T,

Figure 1: Scatter Plot: Category 1 versus 0 The open circles represent test images
with assigned category ¢=0, while the + signs represent c=1. The horizontal axis is the
activation level of output unit j=0, and the vertical axis is the activation level of output
unit j=1; the other 8 axes of output space are suppressed in this projection. The clusters
appear elongated because there are so many ways that an item can be neither a “1” or a
“0”. This figure contains over 500 points.

+

J010912(

I%A

-L

T+

Detector

73/

Figure 2: Scatter Plot: Category 4 versus 3 This is similar to the previous figure. The
open triangles represent test images with assigned category ¢=3, while the filled squares

represent c=4.

N
< <
J g _q
< 4 3
4 q
3%,
q < 39
9 <X <9 3 4 9
L q qngﬁh@] +
<1<l] gﬂﬁqq B
a4 %3 <
q 4 4
4 4 4 g9
< < & aq
q
< <
a4 <
4 q <
< < < 4 g
<4<
L P b
« <
Q Q
aq a9 a
q N
a4 39 <
< . < 3% a 36
*
Q e
q Q
4 4 x N < G)
L * 4 x a4 < g | %a_;
x* x -
N
x * < -
x* an)
q :
* <
* S x <9
| N * * X |
* * <
* Y *
* * L * x * ii‘(x < x
5, * ox oy x x
* <
x K x x
>, R * *
* x x *”(x ¥ <
x *x x x
* “(*"‘ﬁ& x *x |
L x b
* * *:iﬁ‘k**« * * < e
X K x X * x *
R Y * x
X x X o x x
* * X x
i‘f* ¥ * ¥ i
XX ¥ *
x x *
*
| |

+L -L
103099312 G,

Figure 3: Scatter Plot: Category 5 versus 3 This is similar to the previous figures. The
open triangles again represent category c¢=3, while the filled stars represent c=5.

where p(c|O) is the density (in arbitrary units) of points of category ¢ “at” location O in
the scatter plot. The subscript on P.o is to distinguish it from other probabilities (with
different functional forms) also denoted by P below.

Technicalities: In principle, it is impossible to measure a probability directly; it is only
possible to measure a frequency from which the probability can be estimated. In the appro-
priate limits, we expect frequencies to converge to probabilities. The notion of probability
or frequency “at” a point generally requires averaging over a neighborhood of the point; this
introduces arcane measurability and smoothness questions which will be discussed below.

Remarks: We note that the dimensionality of the output space need not be exactly equal to
the number of classes, but the choice of targets is especially simple in that case. Similarly,
since output space is now distinct from probability space, the target values T+ and T~
need not equal 1 and 0 (and in fact we find it expedient to choose 1 and —1). We also
note that methods such as Parzen windows tend to fail when the number of dimensions
becomes too large, because it is exponentially harder to estimate probability densities in
high-dimensional spaces; this is often referred to as “the curse of dimensionality” (Duda
and Hart, 1973). Since the number of output units (typically 10 in our OCR network) is
much smaller than the number of input units (typically 400) the method proposed here has
a tremendous advantage compared to classical statistical methods applied directly to the
input vectors. This advantage is increased by the fact that the distribution of points in
network-output space is much more regular than the distribution in the original space.

2 Output Distribution for a Particular Input

The purpose of this section is to calculate how limitations in the quantity and/or quality of
training data affect the reliability of neural-net outputs. This calculation does not use the
ideas developed in the previous section; the two lines of thought will converge in section 3.
The calculation proceeds in two steps: (1) to calculate the range of weight values consistent
with the training data, and then (2) to calculate the sensitivity of the output to uncertainty
in weight space. The result is a network that not only produces a “best guess” output, but
also an “error bar” indicating the confidence interval around that output.

Distribution in Weight Space

A very nice, general formulation of the learning problem is to imagine a probability distri-
bution P(O, I) [rather than the usual function O = f(I)] where I and O represent the input
vector and output vector respectively. For any specific input pattern, we get a probability
distribution Por(O|I), which can be thought of as a histogram describing the probability of
various output values.

Histogram Formalism: Imagine (for starters) a single-output neural network in which the
output unit produces a histogram rather than a simple number — the output unit could
report all the possible output values and the corresponding probabilities. Such a network
would be ideal for classification problems, especially when the training data was noisy,
and/or the inputs were ambiguous. It could be trained by minimizing a loss function E cho-
sen to represent the distance between the desired distribution and the actual distribution
reported by the network. This distance can take any of several forms, including L, distance,
Kullback-Leibler distance, distinguishability distance, etcetera. A particularly interesting
version (Milito, 1990) is to require convergence of the moments of the histogram to the

moments of the desired distribution; different moments could be weighted appropriatedly
and added to form the overall distance measure. Note that vanilla back-prop is a special
case of this formalism: training with the usual LMS loss function causes the output unit’s
activation level to converge to the mean (first moment) of the desired probability distribu-
tion. This can be thought of as a rather lame sort of “distance between distributions] but
it is apparently good enough for many applications.

Point 1: In many applications, such as optical character recognition (LeCun et al., 1990a),
there are many elements of the training set for which it is hard to assign non-extremal
probabilities. For example, a vertical line (even in the presence of considerable pixel-noise)
is assigned to category “1” with probability 1 — €, where we have no rational basis for
evaluating e. We know € is very small, but setting it to zero leads to considerable theoretical
and practical problems.

Point 2: In many cases, the application requires decent estimates of the probabilities of
the possible classifications; e.g. if the probability is slightly low, the customer may need to
revert to human-based recognition procedures.

Consequence: Observe that point 1, point 2, and the “histogram formalism” (previous para-
graphs) are inconsistent. A simple “reproduce the training” scheme cannot get probabilistic
outputs from categorical examples. The roots of this inconsistency are quite deep. It is pos-
sible to have a case where the training data has absolutely no noise (e.g. when it is generated
by a mathematical function on a discrete input space (Denker et al., 1987)). In such a case
the output can still be uncertain if the network is underdetermined; the uncertainty arises
from lack of data quantity, not quality. In the real world one is faced with both problems:
less than enough data to (over)determine the network, and less than complete confidence in
the data that does exist.

In order to deal with these problems, we need the ensemble viewpoint (Denker et al., 1987).
Rather than viewing training as a dynamic process that causes the parameter vector to
move around in parameter space, we imagine an ensemble of networks, each with the same
architecture but different parameter values. If you wish, imagine one network (one element
of the ensemble) located at (and named for) each point W in parameter space. To each
of these networks (after looking at m training points) we assign a number p,, (W) (Tishby,
Levin and Solla, 1989).

We use this number as follows: when it comes time to test the performance of our learning
system, we choose a network from the ensemble according to the probability density!

Py = Pp(W) := % (2)

We average over this probability to get the risk (= expected loss)
R= / Ea(W) PndW 3)
where Eg (W) is the loss function evaluated on the testing set (the subscript G stands for

generalization).

We need to choose a wise value for p,, (W) based on the information at hand, namely the
training-set loss E,, (W) [an additive function of the m training data], and our a priori
knowledge of plausible parameter values [contained in po(W)]. We assume all the (training

INotation: we write A = B to indicate that A and B are synonymous; we write C := D to indicate the
C is hereby defined to be equal to D.

and testing) data to be independent and identically distributed (iid). Since the loss is
additive and probabilities should be multiplicative, we are motivated (Tishby, Levin and
Solla, 1989) to choose

pm(W) = po(W) exp[—SEn (W) (4)

where 8 = 1/T is a measure of our confidence in the training data; T measures our tolerance
of error. Note that in the limit T — 0 the exponential is strongly peaked around the
minimum-loss (maximum likelihood) point(s) in weight space and p,, (W) is strongly peaked
at the maximum-a-posteriori (MAP) point, so this formalism contains the more conventional
approaches (including our group’s earlier efforts (Denker et al., 1987)) as a limiting case.
The advantages of a nonzero tolerance T' will become clear below; see also (Tishby, Levin
and Solla, 1989).

Caveats: The choice of g is important and depends on knowledge, which can be hard to
obtain, of the process (i.e. the training/testing data) being modelled. Also, it would be a
challenge to show that this procedure is optimal in any sense (or even admissible (Kiefer,
1987)) for any given task — though it is surely no worse than the standard loss-minimization
formalisms (since it contains them as a special case). Thirdly, this procedure exists only as
a theoretical viewpoint and not as a computational method; since it is infeasible to evaluate
the loss function at innumerable points in W space, we rely on methods like gradient descent
to find (local) loss-minima when we need them.

In the vicinity of a point (call it W) that is a local minimum of E, we (LeCun et al., 1990b)
can write a Taylor expansion for the loss:

BOV) = BOV) + Y gawi + % 3 higwiy +O(w?) (5)

where g is the gradient of the loss, h is the second derivative (Hessian), and the relative
coordinate in parameter space is w := W — W. The sums run over the dimensions of
parameter space. We now assume that in cases of interest we can neglect the cubic term in
this expansion. Also, since E has a (local) minimum at W, the linear term vanishes. We
further assume that we can neglect the off-diagonal terms in the second-order term. We
refer to these three assumptions (LeCun et al., 1990b) as the quadratic-extremal-diagonal
approximations. Plugging in, we find

pm(W) = po(W) exp[—f3 Z hiiw? /2] (6)

We see that the approximations we have introduced correspond to modelling the likelihood
(i-e. the data-dependent exponential term on the RHS, with suitable normalization) as a
Gaussian centered at the point W.

Technical aside: we know that the likelihood is not ezactly a Gaussian everywhere; the hope
is that our approximations are valid near W, and that the likelihood decreases sufficiently
quickly that the total likelihood elsewhere is negligible. Actually, the argument is even more
complicated, because we know that weight space has certain discrete symmetries associated,
for example, with relabelling hidden units and/or flipping the sign of groups of weights
(Denker et al., 1987). Therefore there are many points far from W where the likelihood
becomes large again. Fortunately these points are equivalent to W and we can lump them
all into an equivalence class; the effect on p,, is a constant that drops out when p,, is used
in equation 2. The general case, with multiple inequivalent local maxima of the likelihood,
is harder to treat, and is beyond the scope of this paper; for now we make an assumption
of non-ergodicity and restrict the analysis to the likelihood peak surrounding W.

Output Sensitivity

We need to know how the output O = fy (I) varies as W varies over parameter space
(holding the input I fixed). Let us begin by focussing on a the jth component of the output
vector. We can always write O; as

0;(W) = 0j + o(W) (7)
where O := fy (I), and the relative coordinate is given (to first order, in the neighborhood
of W) by:

o(W) = Z'kak (8)
k

where v denotes the gradient of o with respect to the parameters W. Note ~, like 0, has an
implicit dependence on j. It is easy to see that the average (o(W)),,. vanishes; this means
that to first order, the expected value (“best guess output”) of our method is identical to
the output of the vanilla network with weight vector W .

We now calculate the second moment o := /(0?) as follows:
e / (W) Py d W
, (9)
_ 1 / (3 w200 (W) exp[—B Y haguw? /2] dW
k i
where the normalization factor (the denominator in equation 2) is
2i= [(W) expl= Y higu? /214w (10)

If we assume pq is reasonably constant? over the region of interest, this is just a bunch of
Gaussian integrals, which are easy to evaluate. The result is rather simple; the uncertainty
in the output depends on the curvature of the loss function (h;;), the quality of the training
data () and the sensitivity of the outputs (v;):

2

0" = ()0 = 3 g (1)

%

We now have the first two moments of the output probability distribution (O and o); we
could calculate more if we wished.

Note that -y; depends explicitly on a particular input I, while h;; does not — it depends
on a sum over all inputs in the training set. In fact, using the Levenberg-Marquardt ap-
proximation to approximate the second derivative by the square of a first derivative, we

find
hii =2 Z Z ¢ (12)

training output
patterns units

which leads to an amusing sum rule for 2.
We will denote the conventional Normal (Gaussian) distribution with mean Z and variance
o by
1 . —(z —1)?
X
oV 2m P 902

2Treating variations of pg to first or second order is straightforward.

Nz, o](z) :=

(13)

It is reasonable to expect that the weighted sums (before the squashing function) at the
last layer of our network are approximately normally distributed, since they are sums of
random variables. The signals will surely not be normal after passing through a strongly
nonlinear squashing function, so we will concentrate on networks where the last-layer units
are essentially linear. This can always be arranged by choosing targets that lie in the linear
regime of the output units’ squashing function. This approximation is easily checked in
particular cases. The output distribution is then given by

P;r(0;]I) = N10,0](0;) (14)

where O and ¢ depend on j and I. This formula applies to a particular output unit j. For
multiple output units, we must consider the joint probability distribution Por(O|I). If the
different output units’ distributions are independent, Pp; can be factored:

Por(O|I) = H P;1(0;1) (15)

where the factors are given by equation 14.

We have achieved the goal of this section: we have a formula describing a distribution of
outputs consistent with a given input. This is a much fancier statement than the vanilla
network’s statement that O is “the” output. For a network that is not underdetermined,
in the limit T — 0, Por becomes a & function located at O, so our formalism contains the
vanilla network as a special case. In general, the region where Por is large constitutes a
“confidence region” of size proportional to the fuzziness T' of the data and to the degree to
which the network is underdetermined.

Note that algorithms exist (Becker and LeCun, 1989), (LeCun et al., 1990b) for calculating -y
and h very efficiently — the time scales linearly with the time of calculation of O. Equation
15 is remarkable in that it makes contact between important theoretical ideas (e.g. the
ensemble formalism) and practical techniques (e.g. back-prop).

3 Combining the Distributions

The main objective of this paper is an expression for P(c|I), the probability that input I
should be assigned category c¢. We get it by combining the idea that elements of the calibra-
tion set L are scattered in output space (section 1) with the idea that the network output
for each such element is uncertain because the network is underdetermined (section 2). We
can then draw a scatter plot in which the calibration data is represented not by zero-size
points but by distributions in output space. One can imagine each element of £ as covering
the area spanned by its “error bars” of size ¢ as given by equation 11. We can then calculate
P(c|I) using ideas analogous to Parzen windows, with the advantage that the shape and
relative size of each window is calculated, not assumed. This resolves the smoothness and
measurability questions raised back in section 1.

To quantify this, we assume the network has already been trained and hold W fixed while
we calibrate the statistical postprocessor. We consider the probability P(O, ¢, I) with which
elements are drawn from £. We can always factor this as

P(0,¢,I) = Por(Ole, I)P(c, I) (16)

where Por(O|c,I) = Por(O|I) is given by equation 15 because the output of the network
doesn’t depend on the category label ¢ assigned to the calibration data.

We assume the probability in input space is large where and only where the training examples
are found; this is tantamount to setting the probability (which we can’t observe) equal to
the frequency (which we can observe):

Ple,]) = % S 61— 14 (17)
l

where 6(a — b) is the Dirac delta and 2 is the Kronecker delta; I' and ¢! are the input
vector and assigned category (respectively) of the Ith element of the calibration set £, and
L is the cardinality of £. (Once again, we made an assumption here, with no guarantee that
it is optimal or even admissible.) This is a very non-smooth distribution in input space;
we rely on the smoothness of Poy (the slop in the underdetermined network) to produce a
reasonable distribution in output space. Combining equations 16 and 17 and integrating,
we find

PS(O,c):/P(O,c,I)dI _ %2:/P01(0|C,I)5(I—Il)5gz dI

- (18)
—_ I 7l c
= fEl:POI(0|C’I) ct

where the subscript S refers to the statistical postprocessor; it assigns categories to points
in network-output space according to:

Ps(O,C) _ Ps(o,c) _ Eleﬁc POI(O|CZ,II)
Ps(0) Y. Ps(0,¢) e Por(O|d, M)

where we have introduced £¢ to denote the subset of £ for which the assigned category is
c. Hence

P(c|0) = (19)

PED = [PllO)Por(OI1)d0

20
Yiece Por(OlI') 20
>1ec Por(O|1Y)

This is our central result; the rest of the paper will explore its implications. Note that Po;
(given by equation 15) is being used in two ways in this formula: to calibrate the statistical
postprocessor by summing over the elements of £, and also to calculate the fate of the input
I (an element of the testing set).

Por(0O|I)dO

Our result can be understood by analogy to Parzen windows, although it differs from the
standard Parzen windows scheme in two ways. First, it is pleasing that we have a way of
calculating the shape and relative size of the windows, namely Ppy. Secondly, after we have
summed the windows over the calibration set £, the standard scheme would probe P(c|O)
at the single point O (as in equation 21 below); our expression (equation 20) accounts for
the fact that the network’s response to the testing input I is blurred over a region given by
Por(O|I) and calls for a convolution.

Correspondence with Softmax

Whenever a new formalism is introduced, it is very illuminating to see under what assump-
tions it reduces to the previous scheme. We were not surprised that, in suitable limits, our
formalism leads to a generalization of the highly useful “softmax” scheme (Bridle, 1990;

Rumelhart, 1989). This provides a deeper understanding of softmax and helps put the
present work in context.

The first factor in equation 20, P(c|O), is a perfectly well-defined function of O, but it could
be impractical to evaluate it from it definition (summing over the calibration set — equation
19) whenever it is needed. Therefore we sought a closed-form approximation for it.

In the case where the network is not too badly underdetermined, the scatter in figures 1 —
3 will be large compared to the area “covered” by an individual datum. That is, the last
factor in the integrand in equation 20 will be so narrowly peaked that it can be treated as a
delta function located at O. (Remember O depends implicitly on I via O := fy,(I).) This
tempts us to carry out the integration in equation 20, yielding

_ Yiege Por(O|I')
P(ClI) - z:lleei POI(Olll)

We next assume that the density of scatter-plot points in category ¢ can be approximated
by multi-dimensional Gaussian, centered on the target vector 7¢. In particular let it be a
product of Gaussians centered at T} with widths o;; as always, ¢ denotes a category, and
j denotes a component in output space. In this case equation 21 becomes:
Plell) = [1; exp[—(0; — T)?/(202))] (22)
2o I1; exp[—(0; — T5')?/ (207 ;)]

Writing the targets explicitly as Tf = T+d5 + T~ (1 — d5), this can be expanded as

(21)

exp[— Ej (05 =T7)%/(20¢;)] exp[TAOc/acc] exp[TATO/aCC]
> (same)

where T2 := T+ —T~, and T° := (T +T")/2. Now we would like to make the additional
assumption that the first exponential is independent of ¢ (which would happen if, for each
J, 0c; were independent of ¢). This assumption is not supported by the data; a comparison
of the horizontal spread of the squares in figure 2 with the horizontal spread of the stars in
figure 3 indicates that 43 is much smaller than o53. If we make the assumption anyway,
the first exponential is a common factor in the numerator and denominator, and the whole
expression reduces to

(23)

expl[T2(0. — T°)/02,]

P(c|I) = 24
(C|) ch exp[TA(OC/ _ TO)/Uglcl] ()

This can be compared to the standard softmax expression
P(el) = <0 (25)

> e exp[lOc]

We see that our formula has three advantages: (1) it is clear how to handle the case where the
targets are not symmetric about zero (non-vanishing 7°); (2) the “gain” of the exponentials
depends on the category c; and (3) the gains can be calculated from measurable® properties
of the data. Having the gain depend on the category makes a lot of sense; one can see
in the figures that some categories are more tightly clustered than others. One weakness
that our equation 24 shares with softmax is the assumption that the output distribution
of each output j is circular (i.e. independent of ¢). This can be remedied by returning to
equation 23, if £ is adequate to determine the C? different parameters o.;.

30ur formulas contain the overall confidence factor 8, which is not as easily measurable as we would like.

Summary

In a wide range of applications, it is extremely important to have good estimates of the
probability of correct classification (as well as runner-up probabilities). We have shown how
to create a network that computes the parameters a probability distribution (or confidence
interval) describing the set of outputs that are consistent with a given input and with the
training data. The method has been described in terms of neural nets, but applies equally
well to any parametric estimation technique that allows calculation of second derivatives.
The analysis outlined here makes clear the assumptions inherent in previous schemes and
offers a well-founded way of calculating the required probabilities.

References

Becker, S. and LeCun, Y. (1989). Improving the Convergence of Back-Propagation Learning
with Sec ond-Order Methods. In Touretzky, D., Hinton, G., and Sejnowski, T., edi-
tors, Proc. of the 1988 Connectionist Models Summer School, pages 29-37, San Mateo.
Morgan Kaufman.

Bridle, J. S. (1990). Training Stochastic Model Recognition Algorithms as Networks can
lead to Maximum Mutual Information Estimation of Parameters. In Touretzky, D.,
editor, Advances in Neural Information Processing Systems, volume 2, (Denver, 1989).
Morgan Kaufman.

Denker, J., Schwartz, D., Wittner, B., Solla, S. A., Howard, R., Jackel, L., and Hopfield, J.
(1987). Automatic Learning, Rule Extraction and Generalization. Complez Systems,
1:877-922.

Duda, R. and Hart, P. (1973). Pattern Classification And Scene Analysis. Wiley and Son.
Fogelman, F. (1990). personal communication.
Kiefer, J. (1987). Introduction to Statistical Inference. Springer-Verlag, New York.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and
Jackel, L. D. (1990a). Handwritten digit recognition with a back-propagation net-
work. In Touretzky, D., editor, Advances in Neural Information Processing Systems 2
(NIPS*89), Denver, CO. Morgan Kaufman.

LeCun, Y., Denker, J. S., Solla, S., Howard, R. E., and Jackel, L. D. (1990b). Optimal
Brain Damage. In Touretzky, D., editor, Advances in Neural Information Processing
Systems 2 (NIPS*89), Denver, CO. Morgan Kaufman.

Milito, R. (1990). personal communication.
Rumelhart, D. E. (1989). personal communication.

Tishby, N., Levin, E., and Solla, S. A. (1989). Consistent Inference of Probabilities in
Layered Networks: Predictions and Generalization. In Proceedings of the International
Joint Conference on Neural Networks, Washington DC.

It is a pleasure to acknowledge useful conversations with John Bridle.

