Improving Generalization Performance
in Character Recognition

Harris Drucker
AT&T Bell Laboratories and Monmouth College
Monmouth College, West Long Branch, NJ 07764

Yann Le Cun
AT&T Bell Laboratories
Holmdel, NJ 07733

Abstract: One test of a new training algorithm is how well the algorithm
generalizes from the training data to the test data. A new training algorithm
termed double backpropagation improves generalization by minimizing the
change in the output due to small changes in the input. This is accomplished
by minimizing the normal energy term found in backpropagation and an
additional energy term that is a function of the Jacobian.

Introduction

Backpropagation [1] has been a popular supervised training algorithm for a
number of years. The general procedure is to leam on a training set and see how
well the generalization is on a test set. In an attempt to improve generalization
performance, one can create different architectures, or for a specific architecture
one can impose additional constraints. Two of the latter techniques are weights
decay [2-4] and training with noise [3,5,6].

The normal energy term in backpropagation, here denoted as E; (f for forward) is
of the form E; = (D — XXD — X)'/2 where t indicates transpose, and D and X are
the desired and actual output row matrices (of size m corresponding to the m
output components), respectively. In weight decay we add to E¢ a term of the form
al [W1|2, i.e., a constant times the norm squared of the weight vector. The idea
here is to force the weights to be small therefore keeping the output of the
nonlinear elements out of the saturated regions. Although weight decay does
work, it is not always obvious in advance what the value of a should be. The
rationale of adding noise to the input pattems is to move the search out of a local
minimum of the weight space in addition to providing variations of the input. The
problem with this approach is determining how much noise should be added
thereby requiring multiple runs to determine the noise level. Generalization may
be increased by picking appropriate architectures or starting with an architecture
and then pruning or adding units [7-9).

| 191 IBBE W()véslrok oy, Aeuvol ,«,e’J‘u.avL(
7Q0V Sl?wp—Q PV‘vchJ;%

Double Backpropagation
In double backpropagation, in addition to the normal energy term E; we try to

minimize a term of the form:
2 i,

_1[ome

T2 e
where i, is one of n input components. The rationale for this approach is that if the
input changes slightly the energy function E; should not change. One measure of
this change is just the derivative of E; with respect to all the inputs. Therefore, by
forcing E,, to be small we force the appropriate derivatives to be small.

2 JEf

Eb —a;

Pyl
2

We can show that the above equation is equivalent to E, = (D-X)JJ'(D - X)'
where J is the m by n Jacobian matrix (corresponding to the m output components
and n input components. The elements of J are composed of the derivatives of
each output component to every input component.

If we now add the normal energy term to this last term we obtain for the total
energy term E;:

E,=(D-X) ®-X)

%Im +0oJJ

where I, is the identity matrix of square size m and a is a multiplicative constant
which will be related to the learning rate of the neural network. The constant o is
greater than one, the rationale being that near the minimum, (D — X)(D - X)' is
close to zero and hence JJ' will have small effect near this minimum unless o is
large. In practice the optimum solution is fairly insensitive to the choice of o and
no time is spent searching for the optimum a.. o is related to the choice of learning
constant in the neural network.

One of the key ideas in double backpropagation is that the additional energy term
E, can be calculated in one backward pass through a neural network or one
forward pass through what we will call an appended network. Let us examine a
simple architecture (Fig 1 - below the dashed horizontal line). The layers are fully
connected (to the layer immediately above) but not all weights are shown (nor is
the bias). The input layer has linear neurons while the other layers have the
nonlinear transfer function. Tlr,rejore a}”, represents the summed input of neuron
f

number j at layer r and x{? = f (a{? | where f is the hyperbolic tangent.

In this case the forward energy function is :
2 2
E;= % [dl - XSZ)] + % [dz - x?’] . (1)

Now, let us look at some of the terms obtained by backpropagating through the
network. First, the derivative of the forward energy function with respect to the

input of the first neuron of the output layer:

= lamoelrle).

where f’ is the derivative.

d
The change in weight A is now due to the term —a—]?;) multiplied by both x{" and
a

the learning constant. Similarly we can update the other weights. In normal
backpropagation, these are all the gradients needed. However, we can proceed
further and calculate the derivative of the forward energy function with respect to
the input (recalling that the input neurons are linear):
3 [JE; _ OE;

E—r +F—
2ald ' dag)

di;

d
Terms of the form a—lEf where j ranges over the n input components, are called the
J

input gradients. Tt is important to note that the calculation of the input gradients is
a linear operation. We now show that the input gradients can be calculated by
appending a network (the top part of Figure 1) to the original network.

The appended network, which is a "mirror image" about the dashed line, uses
linear neurons:

yJ(1') - kj(r)bgr)
@ r>0
L
r=0

where k is the multiplicative constant whose value is related to the derivative of
the input state of a neuron in the lower network. Note that the superscripts
decrease as one approaches the top of the appended layer.

Although not all weights are shown consider the input state of the first neuron of
the appended layer:

b =[x -a]
yP = kP b

—r[ap] [x-a]

which is equation (2). Proceeding in this fashion, we see that the output of the
appended network is just the input gradient of the forward energy function.

Therefore, three steps are involved in calculating the input gradient: (1) forward
propagate through the lower network (2) copy the derivatives of the input states
from the lower network to the appended network as the multiplicative constants of
the linear neurons and (3) forward propagate through the appended network. Once
training is complete, the appended network is no longer needed and is removed.

Now we can form the backward energy function, so named because it could be
obtained by backpropagating through the lower network:

_1f 0>]2 l[0>]2 l[0>]2

2 2
1 | 0Ef

E
We will now minimize the sum of a constant times the backward energy function
(3) and the forward energy function (1). The general idea is to backpropagate
through the lower network to minimize the forward energy function and do another
backpropagation starting at the top of the appended network to minimize the
backward energy function (hence the description of the training algorithm as
double backpropagation).

2 JEf

1| oEf OEf
3y

OEf| 1
2 | oy

3

Backpropagation through the upper network has some subtleties because the
weights are shared between the upper network and the lower network. First let us
find the derivative of the backward energy function with respect to the state of the
first neuron in the top layer recalling both that the neuron is linear and that for the
top layer, the multiplicative constant is 1.

aEb (1))
abso) - Y&
Now, the gradient with respect to the the weight F:
aEb aEb abso) aEb aag) aEb aEb .
= + = yg) + 1.
oOF ob{® oF 3af® oF ob{¥ oal

The first term of the sum is found in normal backpropagation, the second is not.
However, we will get the equivalent result by backpropagating through the whole
network. Therefore, the algorithm proceeds as follows:

1. Present the input pattern and propagate it to the output (the top of the lower
network).

2. Backpropagate the gradient of the forward energy function through the
lower network. Compute the change in weights but do not change the
weights yet.

3. Copy the appropriate derivatives from the lower network to the appended
network.

4. Propagate forward through the upper network

5. Now backpropagate the backward energy function from the top of the
appended network down through the original network, calculating the
weights changes but do not change the weights yet.

6. Finally, change the weights using the weight changes calculated in steps 2
and 5.

Experimental Results

Each results presented below is the average error rate on the test set for ten runs for
a particular architecture and particular training algorithm. Each training cycle was
followed by one test cycle and the best test results were retained. Five learning
algorithms were used:

1. Backpropagation
2. Full double backpropagation which was described above.

3. Partial double backpropagation is a modified form of the computationally
expensive full double backpropagation. In this case we form a backward
energy term that is a function of the gradients at the input to the hidden
layer: a—}if) The rationale is that small changes in the input to the hidden

a;
layer should not affect the output. In this case, the appended network
required to calculate these derivatives is smaller (minus the uppermost layer
in Figure 1).

4. Normal backpropagation followed by full double backpropagation. The
reasoning is that backpropagation is faster and full double backpropagation
following normal backpropagation should require less training cycles. In
this case, full double backpropagation starts with the results of the network
with the best test score found in (1) above.

S. Normal backpropagation followed by partial double backpropagation.

A database consisting of 320 training examples and 180 test samples were used on
four locally constrained architectures that had been previously shown to give good
results using backpropagation [10]. Twelve examples of each of the ten digits
were hand drawn by a single person on a 16 by 13 bitmap using a mouse. Each
image was then used to generate four examples by putting the original image in
four consecutive horizontal positions on a 16 by 16 bitmap. Thus the architectures
and training algorithms will be specifically tested against a database consisting
strictly of translations.

The four architectures :

1. local-net: A locally connected architecture with two hidden layers (figure
2). The output of the second hidden layer is fully connected to the output.

2. local2-net: A network with two hidden layers and weight sharing (figure 2)..
All units in the first hidden layer share the same weights.

3. local2l-net: Same as local2-net except that the weights in going from the
first to second hidden layer are also shared.

4. local4-net: Two hidden layers, the first of which consists of four 8x8 feature
maps and the second four 4x4 feature maps. All the units in a feature map
share the same weights, the receptive fields being of size 3x3 in going from
the input to first hidden layer and of size 5x5 going from the first to second
hidden layer.

In these cases of multiple hidden layers, partial double backpropagation means that
the appended network consists of two layers: the mirror image (around the dashed
line of Figure 1) of the output layer and the hidden layer closest to the output. The
resultant error rates for the four architectures and five learning algorithms are
shown in Table 1. Except for two cases of the local2l architecture double
backpropagation improves performance. Our local21 architecture was never able to
learn the training set in those cases where double backpropagation gives worse
results. Of special interest is that fact that the local4 architecture which gives the
best results using normal backpropagation has the most significant increase in
performance (to 2.2%) using double backpropagation.

Our next trial was on a very large database consisting of 9709 training samples and
2007 test samples taken from handsegmented zip code data obtained from the U.S.
Postal Service. The architecture is fully explained in [11,12] and consists of 4645
neurons, 2578 weights (some shared), and 98442 connections. We therefore did
one run starting from the best network configuration to date. That best result using
a Newton version of regular backpropagation has previously been reported as
5.03%. Using partial double backpropagation starting from these best results, the
error rate was reduced to 4.68% after twenty-three iterations (approximately
twelve days).

Analysis of the distribution of weights shows the reason why double
backpropagation improves performance. In double backpropagation, the
distribution of weights to the first hidden layer have a unimodal distribution with
significantly smaller variance than that of a network trained using
backpropagation. By inputting all the test patterns we can also obtain a
distribution of the summed input (essentially corresponding to the af" of figure 1.)
This distribution is bimodal with smaller variance when trained using double
backpropagation. The transfer function of the sigmoid is linear over a small region
centered around zero. For networks trained using double backpropagation, many
more of the signals at the input to the first hidden layer are in the linear region
(typically 20%) than when trained used backpropagation (where the typical

number is 5%). This type of behavior is not exhibited at the higher layers,
therefore the improved performance is due to the different distribution of weights
at the input to the first hidden layer.

Conclusions

Double backpropagation has been shown to be a technique that improves
performance by forcing the output to be insensitive to incremental changes in the
input. The improvements are especially significant for those architectures which
show very good performance when trained using backpropagation. The penalty
paid is an increased running time which is not too large a penalty if partial double
propagation is used. Double backpropagation can be used following normal
backpropagation but generally does not give as good results as double
backpropagation alone. It was furthermore shown that double backpropagation
creates a weight distribution at the input to the first hidden layer that has a smaller
variance than that generated using backpropagation.

ARCHITECTURE local local2l local2 locald
BACKPROPAGATION 8.6 8.2 4.5 3.8
FULL DOUBLE 5.0 6.2 33 3.1
BACKPROPAGATION

PARTIAL DOUBLE 6.9 8.5 28 22
PROPAGATION

FULL DOUBLE 5.8 6.1 32 29
BACKPROPAGATION

FOLLOWS BACKPROP

PARTIAL DOUBLE 6.5 9.5 3.7 2.6
BACKPROPAGATION

FOLLOWS BACKPROP

Table 1. Error rate in percent for four architectures and five training algorithms.
320 items in training set and 180 in test set."

References

{11 D.E.Rumelhart, et. al., "Learning internal representations by error
propagation,” Parallel Distributed Processing: Explorations in the

Microstructure of Cognition, 1 Rumelhart and McClelland (eds.), MIT Press,
Cambridge MA, 1986, pp. 318-362.

(2] G.E. Hinton, "Learning Distributed Representations of Concepts”, Proceeding
of the Eight Annual Conference of the Cognitive Science Society, pp. 1-12
(Amherst 1986), Hillsdale: Erlbaum, pp. 1- 12.

[3]1 R. Scaletter and A. Zee, "Emergence of Grandmother Memory in Feed
Forward Networks: Learning with Noise and Forgetfulness. Connectionist
Models and Their Implications: Readings from Cognitive Science , D. Waltz
and J.A. Feldman (eds.), pp. 309-332. Norwood: Ableex, 1988.

[4] A. H. Kramer and A. Sangiovanni-Vincentelli, "Efficient Parallel Leaming
Algorithms for Neural Networks, Advances in Neural Information Processing
Systems I , (Denver 1988), D.S. Touretzky (ed.), San Mateo: Morgan Kaufmann,
1989.

[51 A. von Lehman, et. al,, "Factors Influencing Learning by Back Propagation,
IEEE International Conference on Neural Networks, (San Diego 1988), vol I,
pp. 335-341, New York, IEEE,

[6] J. Sietsma and R.J.F. Dow, "Neural Net Pruning--Why and How", IEEE
International Conference on Neural Networks (San Diego 1988), vol I, pp. 325
- 333, New York: IEEE.

[71 S.E. Fahlman and C. Lebiere, "The Cascade-Correlation Learning Architecture,
Advances in Neural Information Processing Systems 11, D.S. Touretzky (ed.),
1990, pp. 524-532, San Mateo: Morgan Kaufmann.

{8] M. Mezard and J.-P. Nadal, "Learning in Feedforward Layered Networks: The
Tiling Algorithm, Journal of Physics A 22,(1989) pp. 2191-2204.

[91 S.I. Gallant, "Optimal Linear Discriminants, Eighth International
Conference on Pattern Recognition, (Paris 1986) pp. 849-852 New York: IEEE.

{10] Y. LeCun, "Generalization and Network Design Strategies, Connectionism
in Perspective, Pfeifer, et. al. (eds.), 19 Zurich, Switzerland: Elsevier

[11] Y. Le Cun, et. al., "Backpropagation Applied to Handwritten Zip Code
Recognition, Neural Computation 1, (1989), pp. 541-551.

[12] Y. Le Cun, et. al., "Handwritten Digit Recognition with a Back-Propagation
Network", Advances in Neural Information Processing Systems, (Denver -
1989) D.S. TouretzKky (ed.), pp. 396-404, San Mateo: Morgan Kaufmann.

10 10

\4x4 X4
8 x 8 S5 8x8
8 x 8 S S

/15

f \

; e 76
16 3 3 3 16

16 16

(@) (b)

Fig. 2. (a) local architecture
(b) local21 and local2 architecture

LJG 21610 01 rez

Figure 1: Backpropagation (below dashed line)
and double backpropagation (entire network)

LJG 21610 02 rez

