IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 3, NO. 6, NOVEMBER 1992 991

Brief Papers

Improving Generalization Performance Using Double Backpropagation

Harris Drucker and Yann Le Cun

Abstract—1In order to generalize from a training set to a test set,
it is desirable that small changes in the input space of a pattern do
not change the output components. This can be done by including
variations of the input space as part of the training set—but this
is computationally very expensive. Another method is to force
this behavior as part of the training algorithm. This is done in
double backpropagation by forming an energy function that is
the sum of the normal energy term found in backpropagation and
an additional term that is a function of the Jacobian. Significant
improvement is shown with different architectures and different
test sets, especially with architectures that had previously been
shown to have very good performance when trained using back-
propagation. It also will be shown that double backpropagation,
as compared to backpropagation, creates weights that are smaller
thereby causing the output of the neurons to spend more time in
the linear region.

I. INTRODUCTION

ACKPROPAGATION [1] has been a popular supervised

training algorithm for a number of years. The general
procedure is to learn on a training set and see how well
the generalization is on a test set. In an attempt to improve
generalization performance, one can create different architec-
ture, or for a specific architecture one can impose additional
constraints. Two of the latter techniques are weights decay
[2]-[4] and training with noise [3], [S], [6]. The normal energy
term in backpropagation, here denoted as Ef (f for forward)
is of the form

Es=

> (dj - z;)?
j=1

(D - X)(D - X)* (1)

1
2
1
5
where ¢ indicates transpose, x; is the jth component of the
output (total m output components) and D and X are the
desired and actual output row matrices, respectively.

In weight decay we add to Ey a term of the form o||W||?,
i.e., a constant times the norm squared of the weight vector.
The idea here is to force the weights to be small therefore
keeping the output of the nonlinear elements out of the
saturated regions. Although weight decay does work, it is
not always obvious in advance what the value of a should
be. Therefore, it usually requires multiple runs to determine

Manuscript received June 11, 1991; revised January 3, 1992.

H. Drucker is with AT&T Bell Laboratories and Monmouth College,
Monmouth College, West Long Branch, NJ 07764.

Y. Le Cun is with AT&T Bell Laboratories, Room 3G-332, Crawford

Corners Road, Holmdel, NJ 07733.
IEEE Log Number 9106865.

«. The rationale of adding noise to the input patterns is to
move the search out of a local minimum of the weight space
in addition to providing variations of the input. The problem
with this approach is to determine how much noise should be
added thereby requiring multiple runs to determine the proper
amount of noise. Generalization may be increased by picking
appropriate architectures or starting with an architecture and
then pruning or adding units [7]-[9].

II. DOUBLE BACKPROPAGATION

In double backpropagation, in addition to the normal energy
term Ey we additionally try to minimize a term of the form:

1(8Ef* 1(0Ef* 1/0Ef\?
By = 5(dix) +§(iy) +"'§<az’n>
where i; refers to the jth (of a total n) input component. The
rationale for this approach is that if the input changes slightly
the energy function Ey should not change. One measure of
this change is just the derivative of E¢ with respect to all the
inputs. Therefore, by forcing E; to be small we force all of
the appropriate derivatives to be small.
Let us calculate (0Ef/d1):

o8,
011

iy
OTm
— CEm)ﬁ)

| = (D-X)JC

0 17
~((d1 — 1) 22 4 (dy - 562)5%—2
31

+...+ (dm

-(D - X)
(o2
I
where J is the m by n Jacobian matrix (corresponding to the
m output components and n input components) and C' is a
column vector of row size n with unity in the first row but
zero, otherwise. Let us use C; as the column vector of row
size m that is zero except for unity in row j.
We now need as the first term of Fp:

2
(%E—f> = (D - X)JC.C, tJt(D — X)‘
21

(6Ef/0i;) can be calculated similarly except that Cp is
replaced with C;.

1045-9227/92$03.00 © 1992 IEEE

992 |EEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 3, NO. 6, NOVEMBER 1992

Therefore
E,=(D- X)J[Clci + CgCt2 +...+ Canz]J‘(D - X).

The term in brackets reduces to the identity matrix and
therefore we obtain:

Ey = (D - X)JJ{(D - X)".

If we now add the normal energy term to this last term we
obtain for the total energy term Ej:

E, = %(D _X)(D - X) + o(D — X)JJ'(D - X)"
—(D-X) (%Im + aJJt> (D - X)'

where I, is the identity matrix of square size m and a is a
multiplicative constant which will be related to the learning
rate of the neural network. The constant « is greater than one,
the rationale being that near the minimum, (D — X YD - X)*
is close to zero and hence JJ* will have small effect near this
minimum unless « is large. In practice the optimum solution
is fairly insensitive to the choice of o and no time is spent
searching for the optimum . « is related to the choice of
learning constant in the neural network.

One of the key ideas in double backpropagation is that the
additional energy term Ej can be calculated in one backward
pass through a neural network or one forward pass through
what we will call an appended network. Let us examine a
simple architecture (Fig. 1—below the dashed horizontal line)
with three input neurons, two hidden-layer neurons, and two
output neurons. The nonlinearity is the hyperbolic tangent
saturating at £1.7. These values are chosen so that the outputs
are +1 and the extremes of the second derivative take place
when the inputs are 1. The targets are always +1. The layers
are fully connected (to the layer immediately above) but not all
weights are shown (nor is the bias). We use letters (rather than
the typical weight notation with superscripts and subscripts) to
denote the weights. The input layer has linear neurons while
the other layers have the nonlinear transfer function. Therefore
agr), represents the summed input of neuron number j at layer

Y) =f (agr)) where f is the hyperbolic tangent.

In this case the forward energy function is:

r and x

1 1
gl = o)+ 5 = a5)”

E;=3

M
We call this the forward energy function because it is obtained
by propagating the states forward through the network. Now,
let us look at some of the terms obtained by backpropagating
through the network.

First, the derivative of the forward energy function with
respect to the input of the first neuron of the output layer:

g.fg) — (dr - o) 7 (of?)-
1

where f is the derivative. Next, the derivatives of the forward
energy function with respect to the input of both neurons at

M

Fig. 1. Backpropagation (below dashed line) and double backpropagation
(entire network).

the hidden layer:
oFE
a%) =14 o f'(“(ll))
30/1 aaz
OE;

OEy 0
——— D f, a.
aaél) [8(1(22)} (?)

The change in weight A is now due to the term —(8Es/0a

o5
2
80,(1)
OEy
___—+
o (2
(3a(1)

)
multiplied by both z(12) and the learning constant. Similarly
we can update the other weights. In normal backpropagation,
these are all the gradients needed. However, we can proceed
one more step and calculate the derivative of the forward
energy function with respect to the input (recalling that the

input neurons are linear):
oE
F—£.
Oas

321 aagl)
Terms of the form (0Ej/8i;), where j ranges over the n input
components, are called the input gradients. 1t is important to
note that the calculation of the input gradients is a linear
operation. We now show that the input gradients can be
calculated by appending a network (the top part of Fig. 1)
to the original network.

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 3, NO. 6, NOVEMBER 1992 993

The appended network, which is a “mirror image” about the
dashed line, uses linear neurons:

y) = KB
k‘;r) _ {f/(aﬁr))
1

where k is the multiplicative constant whose value is related
to the derivative of the input state of a neuron in the lower
network. Note that the superscripts decrease as one approaches
the top of the appended layer.

Although not all weights are shown consider the input state
of the first neuron of the appended layer:

b = (2 - a)

3 = kDp

-) =)

which is (2). Proceeding in this fashion, we see that the output
of the appended network is just the input gradient of the
forward energy function. Note that the bias is not involved
in the calculation of the input gradient. Therefore, three steps
are involved in calculating the input gradient: 1) forward
propagate through the lower network 2) copy the derivatives
of the input states from the lower network to the appended
network as the multiplicative constants of the linear neurons,
and 3) forward propagate through the appended network. Once
training is complete, the appended network is no longer needed
and is removed.

Now we can form the backward energy function, so named
because it could be obtained by backpropagating through the
lower network:

r>0
r=20

o= /2)(5) + 1/2(s”) + 1260

= (1/2)(‘96%)2 + (1/@(%)2 + (1/2)(83%)2-
S

We will now minimize the sum of a constant times the
backward energy function (3) and the forward energy function
(1). The general idea is to backpropagate through the lower
network to minimize the forward energy function and do
another backpropagation starting at the top of the appended
network to minimize the backward energy function (hence the
description of the training algorithm as double backpropaga-
tion).

Backpropagation through the upper network has some sub-
tleties because the weights are shared between the upper
network and the lower network. First let us find the derivative
of the backward energy function with respect to the state of
the first neuron in the top layer recalling both that the neuron
is linear and that for the top layer, the multiplicative constant
is 1.

IEb _ 4O
ol

Now, the gradient with respect to the weight F:

OE, _ OE, o 9B, 0al’ _ 9B), OB
OF — ap® OF " oV OF — g0 T oD

The first term of the sum is found in normal backpropagation,
the second is not. However, we will get the equivalent result
by backpropagating through the whole network. Therefore, the
algorithm proceeds as follows:

1) Present the input pattern and propagate it to the output
(the top of the lower network).

2) Backpropagate the gradient of the forward energy func-
tion through the lower network. Compute the change in
weights but do not change the weights yet.

3) Copy the appropriate derivatives from the lower network
to the appended network.

4) Propagate forward through the upper network

5) Now backpropagate the backward energy function from
the top of the appended network down through the
original network, calculating the weights changes but
do not change the weights yet.

6) Finally, change the weights using the weight changes
calculated in steps 2) and 5).

In our experiments, there is a learning constant associated
with each weight. The change in weight is a product of the
learning constant, the gradient of the output energy (whether
the forward or backward energy) with respect to the summed
input of the neuron immediately “above” that weight , and the
input to the weight. Effectively, the learning constant in step
2) above is half that of step 5).

III. EXPERIMENTAL RESULTS

Each results presented below is the average error rate on the
test set for ten runs for a particular architecture and particular
training algorithm. Each run consists of one hundred iterations
of the following: a pass through the training data followed
by the performance evaluation on the test data. The best
test results were retained. The best test performance always
occurred before the last pass through the training data.

Five learning algorithms were used:

1) Backpropagation.

2) Full double backpropagation which was described above.

3) Partial double backpropagation is a modified form of the
computationally expensive full double backpropagation.
In this case we form a backward energy term that is a
function of the gradients at the input to the hidden layer:
(0Ey/ 8a§1)). The rationale is that small changes in the
input to the hidden layer should not affect the output.
In this case, the appended network required to calculate
these derivatives is smaller (minus the uppermost layer
in Fig. 1).

4) Normal backpropagation followed by full double back-
propagation. The reasoning is that backpropagation is
faster and full double backpropagation following normal
backpropagation should require less training cycles. In
this case, full double backpropagation starts with the
results of the network with the best test score found in
1) above.

994 [EEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 3, NO. 6, NOVEMBER 1992

ERROR RATE IN PERCENT FOR FIVE ARCHITECTURES AND FIVE TRAINING ALrgﬁRBII{fMIS Six HUNDRED SAMPLES IN TRAINING SET AND Six HUNDRED IN TEST SET.
ARCHITECTURE 256-10 256-10-10 256-20-10 256-30-10 256-40-10
BACKPROPAGATION 122 7.1 5.8 5.6 5.3
FULL DOUBLE 7.9 4.7 3.9 3.7 3.4
BACKPROPAGATION
PARTIAL DOUBLE 7.9 5.0 3.6 3.1 3.0
PROPAGATION
FULL DOUBLE 7.9 6.7 5.6 5.4 5.0
BACKPROPAGATION
FOLLOWS BACKPROP
PARTIAL DOUBLE 7.9 6.9 5.6 5.5 5.0
BACKPROPAGATION
FOLLOWS BACKPROP

5) Normal backpropagation followed by partial double 4000 Double Backpropagation
backpropagation. 6=.05
The first database consists of a “clean” set of digits: 600 3500 =

for training and 600 for testing generated by twelve users 3000 -

generating ten examples of each of the ten digits. The input

is on a 16 by 16 pixel array with —1’s for the background 2 2500 -

and +1 for the foreground. One architecture was a (256~10), 3

i.e., 256 input units and ten output units, fully connected. % 2000 Backpropagation

For this architecture full and partial double backpropagation B o=10

are equivalent. The other architectures were of the form € 1500 |

(256-2-10), i.e, z hidden units, once again fully connected. z

The results for this database are shown in Table 1. As 1000

can be seen by examining the first three rows, both full and

partial double backpropagation improves performance signif- 500

icantly, especially for those cases where the error rates using |

regular backpropagation were small anyhow. Because full 0—0.6 0.2 0.0 T o2 0.4

double backpropagation requires one backward pass through
the original network and another backward pass through both
the appended network and the original network, full double
backpropagation is slower than normal backpropagation. In the
initial implementation of double backpropagation the rate was
four times slower. However, in subsequent implementations
double backpropagation took only 30% longer using matrix
manipulations for linear operations. This includes the forward
pass through the appended network and all backward passes.

The convergence rate of double backpropagation compared
to normal backpropagation is approximately the same, al-
though the variance is large in both cases. Partial double
backpropagation is faster than full double backpropagation and
achieves approximately the same results. For this size database
and networks, the training time using a Sun SPARCstation is
inconsequential in either case.

Examining the last two rows of Table I, we see that double
backpropagation following normal backpropagation does in-
crease performance but insignificantly except for the 256-10
network. The advantage of this approach is the much faster
convergence, typically in one or two passes through the train-
ing set after the completion of the normal backpropagation.

Of particular interest is the histogram of weights. For
each of the ten 256-10-10 networks trained using normal
backpropagation or full double backpropagation we compiled
a histogram of the weights from the input to the hidden
units (Fig. 2). Since there are 2570 such weights for each

Value of Weights

Fig. 2. Histogram of weights.

network (including the bias), the histogram represents the
distribution of 25 700 weights. The standard deviation is much
smaller for the double backpropagation case appearing to give
results similar to what would happen with weight decay.
Another histogram (Fig. 3) is that of the summed inputs to
the hidden layer, essentially corresponding to the a§1) of Fig.
1. This histogram was the result of examining the ten units
in the hidden layer for ten 256-10-10 networks for all of
the 600 training patterns, a total of 60 000 samples. For both
double backpropagation and backpropagation, we obtain a
bimodal distribution. However, for double backpropagation,
the standard deviation is much smaller. For the sigmoid
transfer function used here, the input-output relationship is
almost linear when the input ranges over £0.7. Calculations
show that the histogram is 19.2% of the time in this range
for double backpropagation and only 4.0% of the time for
normal backpropagation indicating that double backpropaga-
tion forces the input into the linear region. Examination of
similar histograms (not shown) for the output layer shown
that double backpropagation and normal backpropagation do
not show this type of dissimilar behavior. Thus the improved
performance can be attributed to the weight distribution of the
hidden layers, rather than the output layer.

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 3, NO. 6, NOVEMBER 1992 995

5000 Double Backprop

19.2% in Linear Region
4500

4000
3500
3000
2500
2000

1500

Number of Summed Inputs

1000

Backprop
4.0% in Linear Region

500

0 1] | 1 1
6 5 4 3 2 14 0 1 2 3 4 5
Value of Summed Inputs

Fig. 3. Histogram of summed inputs.

We think that this smaller variance is important for better
generalization. If the input weights are too large, then the
hidden layer output tends to saturate and the outputs of the
network will be insensitive to large changes in the input with
subsequent poor inter-class discrimination. If the input weights
are too small so that the hidden layer is always in the linear
region, then small changes in the input will create larger
changes (compared to the saturated case) in the outputs which
increases the sensitivity to the input and thereby aversely
affecting intraclass clustering. Double backpropagation seems
to reach a compromise between the extremes of linearity and
saturation.

A second database consisting of 320 training examples
and 160 test samples were used on four locally constrained
architectures that had been previously shown to give good
results using backpropagation [10]. Twelve examples of each
of the ten digits were hand drawn by a single person on a 16
by 13 bitmap using a mouse. Each image was then used to
generate four examples by putting the original image in four
consecutive horizontal positions on a 16 by 16 bitmap. Thus
the architectures and training algorithms will be specifically
tested against a database consisting strictly of translations.

The four architectures (Fig. 4):

1) local-net: A locally connected architecture with two
hidden layers. The input layer is 16 x 16 and the first
hidden layer is of size 8 x 8 with each neuron on the
hidden layer taking its input from a 3 x 3 square on the
input layer. For units in the hidden layer that are one
unit apart, their receptive fields (in the input layer) are
two pixels apart. Thus the receptive fields in the hidden
layer overlap by one column and one row. The second
hidden layer is of size 4 x 4 with a receptive field of size
5 x 5, overlapping again by one column and one row.
The second hidden layer is fully connected to the output.
The net effect is 1226 connections, 1226 weights, and
357 neurons.

10 10
4 x4 4 x 4
ES 8x8

8

s
/5
b/

a8 \Ns s
16 33 3 |16

3

X8 5\ 5

16 16

(2) ®)

Fig. 4. (a) Local architecture (b) local21 and local2 architecture.

2) local2-net: A network with two hidden layers and weight
sharing. There are two hidden layers with the first hidden
layer consisting of two 8 x 8 feature maps, each feature
map examining a 3 x 3 neighborhood on the input layer.
All units in a feature map share the same weights. The
second hidden layer is again of size 4 x 4 with receptive
fields of size 5 x 5 and no weight sharing. The output of
the second hidden layer is fully connected to the output.
The net effect was 2266 connections, 1132 weights (free
parameters), and 421 neurons.

3) local21l-net: Same as local2-net except that the weights
in going from the first to second hidden layer are shared.
Thus the number of connections and neurons is the same
but the number of free weights is now 382.

4) locald-net: Two hidden layers, the first of which consists
of four 8 x 8 feature maps and the second four 4 x 4
feature maps. All the units in a feature map share the
same weights, the receptive fields being of size 3 x 3 in
going from the first to second hidden layer and of size
5 x 5 going from the first to second hidden layer. The
net effect is 9674 connections, 1406 free weights, and
597 neurons.

In these cases of multiple hidden layers, partial double
backpropagation means that the appended network consists
of two layers: the mirror image (around the dashed line of
Fig. 1) of the output layer and the hidden layer closest to
the output. The resultant error rates for the four architectures
and five learning algorithms are shown in Table II. Except for
two cases of the local21 architecture double backpropagation
improves performance. Our local21 architecture was never
able to learn the training set in those cases where double
backpropagation gives worse results. Of special interest is that
fact that the locald architecture which gives the best results
using normal backpropagation has the most significant increase
in performance (to 2.2%) using double backpropagation. In
some cases, partial double backpropagation gives better results
than full double backpropagation.

Our next trial was on a very large database consisting
of 9709 training samples and 2007 test samples taken from
handsegmented zip code data obtained from the U.S. Postal

996 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 3, NO. 6, NOVEMBER 1992
TABLE 11
ERROR RATE IN PERCENT FOR FOUR ARCHITECTURES AND FIVE TRAINING ALGORITHMS. 320 ITEMS IN TRAINING SET AND 160 IN TEST SET

ARCHITECTURE local Jocal21l local2 local4

BACKPROPAGATION 8.6 8.2 4.5 38

FULL DOUBLE 5.0 6.2 33 31

BACKPROPAGATION

PARTIALDOUBLE 6.9 8.5 2.8 22

BACKPROPAGATION

FULL DOUBLE 5.8 6.1 32 2.9

BACKPROPAGATION

FOLLOWS BACKPROP

PARTIALDOUBLE 6.5 9.5 37 2.6

BACKPROPAGATION

FOLLOWS BACKPROP

Service. The architecture is fully explained in [11], [12] but
in summary consists of the following:

1) A 16 by 16 input surrounded by a six pixel border set to
—1 (the background level) to give a 28 by 28 input layer
A first hidden layer consisting of four independent 24 by
24 feature maps. Each unit in a feature map examines
a 5 by 5 region of the input. The twenty-six weights
(including the bias) are shared with every set of twenty-
six weights connected to the other neurons within the
same feature map.

A second hidden layer which does averaging/sub-
sampling. It is composed of four planes of size 12 by
12. Each neuron in one of these planes takes inputs on
four units on the corresponding plane in the first hidden
layer. Receptive fields do not overlap. All the weights
are constrained to be equal, even within a single unit.
A third hidden layer consisting of twelve feature maps
arranged in 8 by 8 planes, each neuron examining a 5 by
5 field on some of the cells in the second hidden layer
and weights constrained to be the same.

A final hidden layer consisting of twelve 4 by 4 aver-
aging/subsampling maps.

6) An output layer fully connected to the last hidden layer.

The network has 4645 neurons, 2578 different weights,
and 98 442 connections. Because of the size of the training
set and the size of the architecture, one pass through the
training data initially took on the order of eleven hours using
a partially appended network. Using matrix multiplications
for the appended network and other enhancements, we now
require three hours for partial double backpropagation and four
hours for full double backpropagation on this size data set
and architecture. Performance is reported as two numbers: the
percent of patterns that must be rejected in order to achieve
a 1% error rate and the raw error rate. The best results using
a Newton version of regular backpropagation had previously
been reported [11,12] to be a 9.6% reject rate and 5.03% error
rate, i.e., 9.6% of the patterns must be rejected to obtain a 1%
error rate on the patterns not rejected, and there is a 5.03%
error rate with no rejects. Patterns are rejected if the difference
in output levels between the two neurons with the largest
outputs is smaller than some critical value (adjusted to get
the 1% error rate). Convergence is obtained in approximately
thirty passes through the training data.

2)

3)

4)

5)

The following performances were obtained using double
backpropagation:

Partial double backpropagation starting from the best network:
4.68% error rate and 10.5% reject.
Partial double backpropagation starting from random weights:
4.68% error rate and 8.9% reject.
Full double backpropagation starting from random weights:
4.68% error rate and 9.1% reject.

Convergence takes approximately twenty-three to thirty
iterations. Therefore, partial double backpropagation starting
from random weights gives the best improvement over regular
backpropagation.

Possible alternatives to double backpropagation are weight
decay and noise injection. In weight decay, when we change
the weights using backpropagation, we additionally multiply
each weight by (1—decay) where the decay is some small
number. In noise injection, we add to each pixel of the input
pattern a normally distributed, zero mean, random variable. On
this architecture and training set, we tried both techniques. In
the noise injection case, we varied the standard deviation from
0.1 to 1.0 and in weight decay, we varied the decay factor from
10~6 to 10~* using regular backpropagation starting from
random weights. Each run takes approximately three days on
a Sun SPARCstation.

The following results were obtained:

Decay of 1078 5.03% error rate and 11% reject rate.
Decay of 107°: 5.68% error rate and 13% reject rate.
Decay of 10™%: 7.80% error rate and 22% reject rate.

Noise of 0.1:
Noise of 0.2:
Noise of 0.5:
Noise of 1.0:

error rate of 5.2% and 10.3% reject rate.
error rate of 5.3% and 9.7% reject rate.

error rate of 5.2% and 11.3% reject rate.
error rate of 7.5% and 20.0% reject rate.

In no case was the error performance improved and in most
cases the reject rate was severely degraded. Thus, although the
literature reports that weight decay and noise injection does
work in many cases, there is no evidence of improvement for
this large and sophisticated architecture.

Two larger networks were formed in the following manner:
The weights for the network previously trained to a 4.68%
error rate and the 8.9% reject rate were fixed, the output layer

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 3, NO. 6, NOVEMBER 1992 997

removed (with its connections) and a network added to the
output of the penultimate layer and trained. The penultimate
layer has 192 outputs. In network 1, a 192-75-10 fully
connected network was added. In network 2, a 192-75-40-10
fully connected network was added. The advantage of this
technique is that training is much faster since one can store
and then train on the output of the penultimate layer.
The following results were obtained:

Network 1 using regular backpropagation: 4.68% error rate
and 9.4% reject rate.

Network 1 using full double backpropagation: 4.13% error
rate and 7.7% reject rate.

Thus backpropagation slightly degrades performance (over
the original network) in this case and double backpropagation
significantly improves performance.

Network 2 using regular backpropagation: 4.58% error rate
and 7.7% reject rate.

Network 2 using full double backpropagation: 4.43% error
rate and 7.0% reject rate.

Therefore, in all these networks performance is improved
using double backpropagation.

IV. CONCLUSIONS

Double backpropagation has been shown to be a technique
that improves performance by forcing the output to be insen-
sitive to incremental changes in the input. The improvements
are especially significant for those architectures which show
very good performance when trained using backpropagation.
The penalty paid is an increased running time which is not too
large a penalty if partial double propagation is used. Double
backpropagation can be used following normal backpropaga-
tion but generally does not give as good results as double
backpropagation alone. It was furthermore shown that double

backpropagation creates a weight distribution at the input to
the first hidden layer that has a smaller variance than that
generated using backpropagation.

REFERENCES

[1] D.E.Rumelhart ef al., “Learning internal representations by error propa-
gation,” Parallel Distributed Processing: Explorations in the Microstruc-
ture of Cognition, 1 Rumelhart and McClelland, Eds. Cambridge MA:
MIT Press, 1986, pp. 318-362.

[2] G. E. Hinton, “Learning distributed representations of concepts,” in

Proc. Eight Annual Conf. Cognitive Science Society, Ambherst, MA.

Hillsdale, NJ: Erlbaum, 1986, pp. 1-12.

R. Scaletter and A. Zee, “Emergence of grandmother memory in feed

forward networks: Learning with noise and forgetfulness, in Connec-

tionist Models and Their Implications: Readings from Cognitive Science,

D. Waltz and J. A. Feldman, Eds. Norwood, MA: Ableex, 1988, pp.

309-332.

[4] A. H. Kramer and A. Sangiovanni-Vincentelli, “Efficient parallel learn-
ing algorithms for neural networks, in Advances in Neural Information
Processing Systems 1 , Denver, CO, 1988, D. S. Touretzky, Ed. San
Mateo, CA: Morgan Kaufmann, 1989.

[5] A. von Lehman, et al., “Factors influencing learning by back propaga-

tion,” presented at the IEEE Int. Conf. Neural Networks, San Diego, CA,

1988, vol. I, New York, IEEE, pp. 335-341.

J. Sietsma and R. J. F. Dow, “Neural net pruning—why and how,”

presented at the JEEE Int. Conf. Neural Networks, San Diego, CA, 1988,

vol. I, pp. 325-333.

S. E. Fahlman and C. Lebiere, “The Cascade-Correlation learning

architecture, in Advances in Neural Information Processing Systems II,

D. S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann, 1990, pp.

524-532.

[8] M. Mezard and J. -P. Nadal, “Learning in feedforward layered networks:
the tiling algorithm, J. Phys. A 22, pp. 2191-2204, 1989.

[9] S. 1. Gallant, “Optimal linear discriminants, presented at the Eighth Int.
Conf. Pattern Recognition, Paris, France, 1986, pp. 849-852.

[10] Y. LeCun, “Generalization and network design strategies, in Connec-
tionism in Perspective, Pfeifer et al, Eds. 19 Zurich, Switzerland:
Elsevier

[11] Y. Le Cun et al, “Backpropagation applied to handwritten zip code
recognition, Neural Computation I, 1989, pp. 541-551.

[12] Y.Le Cun et al., “Handwritten digit recognition with a back-propagation
network,” in Advances in Neural Information Processing Systems,
Denver, CO, 1989, D. S. Touretzky, Ed. San Mateo, CA: Morgan
Kaufmann, pp. 396-404.

E]

[6

17

