Adaptive Long Range Vision in Unstructured Terrain
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Abstract— A novel probabilistic online learning framework
for autonomous off-road robot navigation is proposed. The
system is purely vision-based and is particularly designed
for predicting traversability in unknown or rapidly changing
environments. It uses self-supervised learning to quickly adapt
to novel terrains after processing a small number of frames,
and it can recognize terrain elements such as paths, man-made
structures, and natural obstacles at ranges up to 30 meters. The
system is developed on the LAGR mobile robot platform and
the performance is evaluated using multiple metrics, including
ground truth.

I. INTRODUCTION

Autonomous off-road robot navigation in unknown en-
vironments is a challenging task. One major difficulty is
the detection of obstacles and traversable areas when no
prior information about the terrain is known. Long range
vision is crucial, especially for efficient goal-driven planning
and driving. However, depending on image resolution and
processor speeds, stereo algorithms are generally accurate
only up to 10 to 12 meters, whereas in open land, camera
images contain information far beyond that. On the other
hand, the diversity of the terrain and the lighting conditions
of outdoor environments make it infeasible to employ a
database of obstacle templates or features, or other forms
of predefined description collections, which necessitates the
use of machine learning techniques. This work focuses on
conveying the short range knowledge of the environment to
long range vision via self-supervised near-to-far learning.

The learning architecture comprises two parts, a feature
extraction module that is trained offline, and an online
learning module that allows adaptation to any new, unseen
terrain. The proposed system does not require any human
intervention or labeling at any level, which is an advantage
in terms of practicality and implementation concerns.

The proposed approach was developed as part of the
navigation framework on the LAGR (Learning Applied to
Ground Robots) robot platform. For details of the LAGR
program and platform, see [1].

II. PREVIOUS WORK

Statistical learning techniques have been used to improve
autonomous navigation systems for a decade or more. These
early systems, including ALVINN [14] by Pomerlau, MA-
NIAC [7] by Jochem et al., and DAVE [10] by LeCun et
al.; use supervised learning to map visual input to steering
angles. Many other systems have been proposed that rely on
supervised classification [13], [6]. These systems are trained
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offline using hand-labeled data which requires significant
human effort. Moreover, offline training limits the scope of
the robot’s expertise to environments seen during training.

To overcome these limitations, navigation systems that
are capable of learning traversability labels directly from
the environment via self-supervision are developed: a reli-
able sensor provides traversability information learned by a
classifier that operates on data from another, less reliable
sensor. Not only is the burden of hand-labeling relieved,
but the system also becomes flexible to new environments.
Self-supervised learning helped win the 2005 DARPA Grand
Challenge: the winning team used a simple probabilistic
model to identify road surface based on color histograms
extracted immediately ahead of the vehicle as it drives [4].
In a slightly more complicated approach by Thrun et al.;
previous views of the road surface are computed using
reverse optical flow, and then road appearance templates are
learned for several target distances [11]. Stavens and Thrun
used self-supervised learning to train a terrain roughness
predictor [16]. An online probabilistic model was trained on
satellite imagery and ladar sensor data for the Spinner vehi-
cle’s navigation system [15]. Similarly, online self-supervised
learning was used to train a ladar-based navigation system to
predict the location of a load-bearing surface in the presence
of vegetation [18]. A system that trains a pixel-level classifier
using stereo-derived traversability labels is presented by
Ulrich [17]. Recently Kim et al. [8] proposed an autonomous
off-road navigation system that estimates traversability in an
unstructured, unknown outdoor environment.

The proposed system incorporates feature extraction and
label propagation into a self-supervised online learning
framework that is designed for maximum flexibility and
adaptability in changing, off-road environments.

III. OVERVIEW OF THE SYSTEM

As mentioned previously, the proposed long range obstacle
detection system (LROD) comprises two parts: a feature
extractor that is used to transform image patches to a lower
dimensional and more discriminative representation, and an
online module that learns the traversablity of the terrain
using the stereo labels in an adaptive manner. The feature
extraction is done with a multi-layer convolutional network
trained offline. The features are then used as inputs to the
online module as the robot traverses a course.

For each pair of stereo images received, the long range
module performs a series of computations, including pre-



TABLE I
OVERVIEW OF PRINCIPLE PROCESSING STEPS IN THE VISION

SYSTEM.
Processing Step Processing
Time

Pre-processing

Image rectification and point cloud extraction 45 ms

Ground plane estimation 35 ms

Conversion to YUV and normalization 40 ms

Horizon leveled, distance-normalized pyramid 10 ms
Labeling

Stereo labeling of windows in pyramid 20 ms
Feature Extraction

Feature extraction (convolutional neural network) 85 ms
Label Propagation

Query quad-tree for matching windows 10 ms

Label query results with probabilistic labels 0 ms

Insert feature vectors into quad-tree 0 ms

Add labeled samples to ring buffer 1 ms
Online Training and Classification

Train logistic regression on ring buffer contents 40 ms

Classify all windows in pyramid 5 ms

[ Total [ 291ms |

processing, feature extraction, training, and classification
steps. The steps in one full processing cycle are listed in
order in Table I, along with the average processing time for
each step. The LAGR Robot has four dual-core processors,
two of which are dedicated purely to visual computations.
This allows a frame rate of 2-3 Hz and thus real time
processing in accordance with the other parts of the sys-
tem. Section IV discusses the image pre-processing and the
feature extraction, and Section VI describes the online label
propagation and training strategies. The approach was tested
using two complementary evaluation measures, and results
are presented in Section VIIL.

IV. IMAGE PRE-PROCESSING

On every processing cycle, the long range module receives
a pair of stereo color images at a resolution of 320x240. In
order to train a classifier, the visual data in these images
must be transformed into discrete windows of information
and each window must be labeled with a traversability value.
This section describes the pre-processing and labeling steps.

A. Ground Plane Estimation

The first step is to rectify the images and then ob-
tain a point cloud in RCD (row, column, disparity) space:
P = (r1,c1,d1), (ra,¢c2,ds), ...y (T, Cn, dyp,) using the Tri-
clops SDK [2]. From this point cloud P, the ground plane
can be estimated: a necessary step for assigning traversabil-
ity labels. The ground plane is estimated initially using a
Hough transform, then refined by analyzing the principle
components of the points that are within a threshold of
the initial plane. Finding a ground plane allows us to map
pixels in the image to XYZ locations in the real world
and to determine their distance from the plane. The ground
plane is thus the basis of much of our processing, allowing
computation of stereo labels, correspondence of image data

and real world coordinates, distance/scale normalization, and
horizon leveling.

B. Contrast Normalization

The input image is converted to the YUV color space
and normalized. The U and V color channels are normalized
using an individual mean and variance for each channel, but
the Y channel, which contains the luminance information,
is normalized over small neighborhoods in order to protect
texture and image information while alleviating the effect
of dark shadows and bright sunlight. Pixel x in image I is
normalized by the values in a soft window centered on x:

xT
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where I is a 16x16 window in I, and K is a smooth,
normalized 16x16 kernel.

C. Horizon Leveling and Scale-Normalized Pyramid

Image pyramids have been used for image processing for
decades (see [3]), and more recently have been used for
scale-invariant object recognition (see [12]). We developed a
pyramid-based approach to the problem of distance and scale
in images. The classifier is expected to generalize from near-
range image windows to long-range image windows, but this
is extremely difficult because of the effect of distance on
scale. Our solution is to build a distance-normalized image
pyramid by extracting sub-images at different target distances
in the image and subsampling them to a uniform height. The
result is that similar obstacles in the image (e.g., a tree at 10
meters away and a similar tree at 30 meters away) appear
in different rows in the pyramid at a similar scale (e.g.,
both trees are 12 pixels high), making it easier to generalize
from one to the other (see Figure 1). Each pyramid row is
centered around an imaginary foot line on the ground that is
at a fixed distance from the robot. There are 24 foot lines
and corresponding pyramid rows: their distances form a 26
geometric progression, with the closest at 0.5 meters and the
furthest at 30 meters. The rows have a uniform height of 20
pixels and a width that varies from 36 pixels to 300 pixels.

D. Stereo Labeling

The stereo algorithm produces a point cloud of RCD val-
ues (row, column, disparity), and the distance of each point
from the ground plane can be computed once the parameters
of the plane have been estimated. The points are collected in
bins that correspond to the real world coordinates of windows
in the pyramid. Simple heuristics are used to decide whether
each window’s bin corresponds to a traversable (ground) or
non-traversable (obstacle) area, based on the groundplane
distance of the points in the bin and their variance. The
window could also be labeled as blocked, if there is a nearby
obstacle that occludes that window. Windows in the pyramid
are thus labeled (ground, obstacle, or blocked) according to
the RCD points at the foot line of the window (see Figure 2).



(a). sub-image extracted
from far range. (21.2 m

Fig. 1.

(b). sub-image extracted at (c). the pyrar)nid, with rows (a)
close range. (2.2 m from

and (b) corresponding to sub-

Sub-images (shown as blue rectangles) are extracted according to imaginary lines on the ground (shown in yellow) which are

computed using the estimated ground plane. (a) Extraction around a foot line that is 21m away from the vehicle. (b) Extraction around
a foot line that is 1.1m away from the robot. The extracted area is large, because it is scaled to make it consistent with the size of the

other bands. (c¢) All the sub-images are subsampled to 20 pixels high.

Fig. 2. The 3 possible labels: left: the foot line is on open ground,
so label = ground; center: the base of the object is on the foot
line, so label = obstacle; right: the foot line is blocked by a nearby
object, so label = blocked.

Fig. 3. The kernels learned by the feature extractor using offline
training show a sensitivity to horizontal boundary lines.

V. FEATURE EXTRACTION

A convolutional neural network (CNN) [9] contains local
receptive fields that are trained to extract local features and
patterns. This architecture makes the CNN naturally shift and
scale invariant, and therefore ideal for learning discriminative
visual features. The network trained for feature extraction has
two convolutional layers and one subsampling layer. The first
convolutional layer has 48 7x6 filters, shown in Figure 3, and
the second layer has 240 filters. For the purposes of training,
a final fully-connected layer exists with 3 outputs. After the
network is trained, the fully connected layer is removed and
the online output of the network is a 240 dimension feature
vector. The filters (see Figure 3) show that the network is
very responsive to horizontal structures, such as obstacle feet
and other visual boundaries.

The CNN is the only component of our system that is
trained offline rather than online. The offline data set con-
sists of 600,000 samples taken randomly from 130 diverse
logfiles. Image preprocessing and stereo labeling of these
samples was identical to the online process described in the
previous section. The stereo labels were “smoothed” using

the propagation scheme described in Section VI. The CNN
had a final error rate of 20.59%

VI. ONLINE LEARNING

Throughout this paper, online learning is used to refer to
the near-to-far learning of long-range traversability as the
robot traverses a course. At every video processing cycle, a
traversability label is associated with each window in stereo
range and stored in a quadtree data structure according to
its XYZ coordinates in the robot’s local coordinate system.
As the robot proceeds through the environment, it collects
features and the associated stereo labels in this map. From
this collection, soft-labels for the pyramid windows are
calculated as the ratios of the labels accumulated in the
quadtree cells corresponding to their real world locations.
This, in turn, softens the classification decision boundary
and eliminates the effects of the fluctuations in binary stereo
labels due to noise in the stereo, illumination changes of the
environment from different views, errors in local pose, etc.

A. Logistic Regression

The online learner was chosen to be a log-linear module
in order to provide lightweight computation for the training
on each frame of video processing. The logistic regression
module has three outputs corresponding to the probabilities
of a sample belonging to each one of the three categories:
occluded, traversable, and blocked. The loss function that is
minimized for learning is the Kullback-Liebler divergence or
relative entropy (See Figure 4).

K K
Loss = Dk (P||Q) = Zpilogpi - ZpiIOQQi
i=1 i=1

where p; is the probability that the sample belongs to class
i calculated from the stereo labels collected in the quadtree.
q; is the classifier’s output for the probability that the sample
belongs to class <.

exp(W;iX)
%= =g <
> k1 €TP(WKX)
where w are the parameters of the classifier, and x is the
sample’s feature vector.
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Fig. 4. Online Learning Architecture.

The update rule is,
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A crucial hyper-parameter in online learning is the learn-
ing rate, i.e. the size of the update step per sample. A well
known drawback of using high learning rate is overfitting
or loss of generalization due to overly quick adaptation
to recently seen samples i.e. knowledge of an environment
fades rapidly and the robot performs poorly on terrain it has
forgotten. One solution is to choose a low learning rate (7)),
but this has the disadvantage of reducing the responsiveness
to new environments. Thus, there is a trade-off between
responsiveness and generalization. Figure 6 shows a compar-
ison of classification performance for low and high learning
rates. With high 7 the performance of the classifier for far
range is even worse than the case when no learning is used
at all.

if i=j
otherwise

VII. RESULTS
A. Offline Error Assessment

The performance of the long range detection system can be
easily illustrated qualitatively, as in Figure 9, where the labels
from the stereo and the outputs of the network are projected
on to the image space. However, direct quantitative error
assessments as the robot drives are not feasible. Therefore,
we take offline measurements of the performance over the
logs after the robot’s run. One way of measuring classifica-
tion performance is to collect the stereo labels for the entire
course of the robot in a map. When the logs are reviewed,
this provides the true labels for the windows that don’t have
stereo labels at hand in a particular frame. Therefore, the
classifier’s outputs for unlabeled windows can be compared
against these labels. Figure 5 illustrates such a collection of
stereo labels over the course shown on the left. The graph in
Figure 6 shows a comparison of the classification error for
different configurations averaged from a test set of logs.

Fig. 5. Right image shows the collection of stereo labels, which
provide an answer key for offline testing for the course seen in the
image on the left. The robot traverses the soil path for about 100
meters.
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Fig. 6. Offline test error for different ranges over 9 log files from
different terrains. From left to right, the classification error without
any online training, online training with low learning rate (), and
with high 7 are shown. In the last case, the error for far bands is
even higher than the first, indicating that the generalization is lost.
The distances for the bands: Far Range [30m - 14.9m], Mid-Range
[14.9m - 5.3m], Short Range [5.3m -2.6m] See section VII-A for
the test setting.

B. Ground truth error

In this offline test setting, a human operator labels several
frames from each file in a collection of logs, by tracing ob-
stacle foot lines. Given the ground truth labels and long range
vision module outputs, the closest obstacles are compared as
illustrated in Figure 7(c). The possible comparisons are,

o matched: both ground truth and the long range system
found an obstacle in the column. The reported error is
the distance between those two obstacles.

e fake: only the long range system found an obstacle. The
error is the maximum distance along the column.

o missed: only ground truth found an obstacle. The error
is the maximum distance along the column.

The ground truth error is measured in both image space
and real space. Let d(rowl, row2,1) be the function which,
given a column i in the input image, returns the distance
between rowl and row?2 of this column. In image space, d
is calculated as the pixel distance of the ground truth foot
lines and the network outputs projected onto image space.

dr(rowl,row2,i) = |rowl — row?2|

On the other hand, when computing the real space dis-
tance, the row and columns are first converted into real world
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Ground truth comparison images. Image (a) results from human labeling. Image (b) results from LROD labeling. Image (c)

highlights fake and missed errors in red and pink, and shows what obstacles were found by ground truth (yellow) and LROD (blue).

distances and d is calculated as,
dr(rowl,row2,i) = |log(real(i,rowl))—log(real (i, row?2))]

We defined the following error metrics for each case,
e 0fm: error ratio of fake and missed obstacles.

O = 2 i1 E4m(i)
fm i d(min, maz, i)
e 0g: error ratio of matched obstacles.

Z?:l €ali)

Ga = Z:;l d(min, max,i) * matched

e Ofmq: the combined error ratio of fake, missed and
matched obstacles.

iz Epml(i) +ali)
Yo, d(min, maz, i) * (1 + matched)

Ofma =

where matched is 1 if obstacles match, O otherwise, and, min
and max are the limits of the range in the space where the
error metric is calculated.

if obstacle is fake or missed

(i) = d(min, max, i)
=13 0 otherwise

if obstacle is matched

(i) = d(gt_row,net_row,1)
=910 otherwise

Finally, the overall error ratios over m frames are defined
as,

m
Ototal—{ fma,fm,a} = Z O{fma,fm,a}

j=1
One can interpret the ground truth comparison visually,
as in Figure 7(c) where big overlayed stripes of red or pink
show the fake and missed obstacles, and blue and yellow
lines show matched obstacles. Or one can use the error ratios,
which are good to compare different systems over the whole
set of ground truth frames. Table II reports the ground truth
test error from 16 different log files and a total of 70-75
labeled images. The ratio of missed and fake foot lines from
the closest object detected falls from 52.7% to 39.9%. This
indicates that there is a significant improvement from the

offline trained system to online learning system. We can
also see that learning with soft probabilistic labels clearly
outperforms the use of binary labels.

This work presents and evaluates the performance of the
long range traversability detection module only. For the tests
of the overall system in unstructured environments see [S].

VIII. CONCLUSIONS AND FUTURE WORKS

A self-supervised terrain traversability classification sys-
tem with a range up to 30m is presented. An offline trained
feature extractor, which represents an initial notion of the
world, is combined with an online classifier trained on short
range stereo information. The system gives 85% overall
classification accuracy in offline tests over the logfiles.

One immediate future goal is to relax the single ground
plane assumption which would improve the robot’s per-
formance in uneven or hilly surfaces. Another direction is
employing active learning in order to preserve generalization
and to avoid memory loss over time for long courses.
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